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1 Introduction

Worst-Case Execution Time (WCET) analysis [14] aims to estimate the longest
possible execution time for a piece of code executing uninterrupted on a particu-
lar hardware. Such WCET estimates are used when analysing real-time systems
with respect to possible deadline violations. For safety-critical real-time systems,
safe (surely not underestimating) estimates are desirable. Such estimates can be
produced by a static WCET analysis that takes all possible execution paths and
corresponding hardware states into account.

Static WCET analysis has been around for 20 years, and a number of tools
have emerged such as aiT [5], Otawa [2], Bound-T [8], Heptane [3], TuBound [11],
and Chronos [10]. Most tools today use the so-called “Implicit Path Enumera-
tion Technique” (IPET) [12]. In IPET, execution times are estimated from local
WCET bounds for small program fragments (typically basic blocks). Each such
fragment p is given an execution counter #p recording its number of executions:
the execution time for a path is then approximated from above by the sum∑

p WCET (p) ×#p, where WCET (p) is the local WCET bound for p. WCET
estimation can now be formulated as maximising this sum subject to program
flow constraints on the execution counters. If these constraints are linear, then
the WCET estimation becomes an Integer Linear Programming (ILP) problem
that can be solved by a standard ILP solver. It turns out that very many im-
portant program flow constraints can be expressed as linear constraints.

Thus, in the IPET model the WCET estimation problem is nicely decom-
posed into three distinct parts: the low-level analysis, which computes local
WCETs using hardware timing models, the program flow analysis that derives
program flow constraints (“Flow Facts”) from the program code, and the final
calculation where the ILP problem is solved to produce the WCET bound. No-
tably the program flow analysis will not need any information about hardware
timing, but can be based entirely on the functional semantics of the code. Flow
Facts can indeed be seen as a special kind of loop invariants.

2 SWEET

SWEET (SWEdish Execution Time tool) is a tool that derives Flow Facts au-
tomatically. SWEET can compute a variety of Flow Facts, from simple loop



iteration bounds to complex infeasible path constraints. It can analyze a vari-
ety of code formats through translation into the intermediate format ALF [6].
SWEET is open source: comprehensive information about the tool is found on-
line [13]. In Fig. 1 the structure of SWEET is shown.
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Fig. 1. The structure of SWEET

An earlier version of SWEET (“NIC-SWEET”) was integrated into a research
compiler, and could analyze code generated by that compiler. This version of
SWEET was a full WCET analysis tool using the IPET model. The current
version (“ALF-SWEET”) is a specialised program flow analysis tool.

SWEET uses Abstract Execution (AE) [7] to derive Flow Facts. AE can be
seen as a very context-sensitive value analysis, where different loop iterations
are analysed separately. This gives the analysis a flavor of symbolic execution,
executing the program in the abstract domain using abstract states rather than
concrete states. AE is based on the theory of abstract interpretation: thus it
is safe, and computed Flow Facts will never underestimate the set of possible
program paths. SWEET currently uses an abstract domain of bounded intervals,
but AE also works with other abstract domains.

Abstract states reaching a condition may contain concrete states for which
the condition evaluates to true and false, respectively. Then the abstract state is
split into a different abstract state for each outcome of the condition. To curb the
potential explosion of states SWEET offers a variety of merge strategies, where
abstract states are merged in certain program points using their least upper
bound operator. By selecting the proper strategy, the tradeoff between precision
and analysis speed can be fine-tuned.

AE is a potentially very general technique to derive Flow Facts. It can in
principle deal with loops of any form, as long as the abstract domain can ex-
press the semantics of the loop conditions accurately enough. AE can also bound
recursion depth. The price to pay for this generality is a risk of nontermination.
The current implementation in SWEET has some limitations: recursion is not
handled, as well some forms of unstructured loops. The use of interval domain
also yields some limitations. SWEET currently handles nontermination by al-
lowing the user to set a timeout where the analysis is aborted.



The environment of the analysed code may be important to know for the
analysis. For instance, the values of some variables may be confined to certain
ranges. SWEET provides abstract input annotations, where such constraints can
be specified. The AE can use this information to compute tighter Flow Facts.

SWEET uses recorders and collectors to compute Flow Facts during the
AE [7]. Recorders are attached to abstract states, and contain information that
is successively accumulated into the collectors during the abstract execution.
Collectors are pertinent to scopes (typically loops), and their final values are
used to produce Flow Facts for that scope. For instance, to compute an upper
loop bound the recorder is the execution counter for the loop header, and the
collector is a number containing the highest value of this counter seen for any
abstract state in the loop so far. Other, more complex Flow Facts are generated
using more elaborate recorders and collectors.

SWEET can compute different kinds of Flow Facts specified by a combination
of attributes telling the type of bound (upper/lower/infeasible), where to put
execution counters, and Flow Fact context. The Flow Facts can thus be context
sensitive (call strings), and they can pertain to different scopes (e.g., an execution
counter for the loop body in a nested loop can be relative to either the inner
or outer loop). SWEET has an expressive language for expressing these Flow
Facts. In addition, SWEET can generate Flow Facts in the annotation formats
of the commercial WCET analysis tools aiT and RapiTime.

In order to keep SWEET portable across different formats it analyses the
intermediate format ALF [6]. Other languages and formats can be analysed if
translated into ALF. To facilitate this, ALF is designed to faithfully represent
high-level languages (like C) as well as machine code. Currently two translators
from C to ALF exist, as well as a translator from PowerPC binaries to ALF.

The current version of SWEET lacks a low-level analysis. It can however
use simple timing models for ALF to obtain WCET estimates. This estimation
is done directly in the AE by treating time as a variable being incremented
for each executed statement [4]. The AE thus computes an interval bounding
the execution time. This interval also bounds the execution time from below,
thus providing a Best Case Execution Time (BCET) estimate. Such simple cost
models are way to coarse to provide both safe and tight WCET/BCET bounds,
but they can nevertheless be useful to provide approximate bounds, for instance
for early source-level timing estimation [1].

SWEET can also provide information from its rich set of internal analyses
supporting the AE. Such analyses include a conventional value analysis, data
flow analysis, construction of control flow and call graphs, and program slicing.

3 Conclusions

We have presented SWEET, a tool for generating precise Flow Facts. It is de-
signed for maximal interoperability. It can be used both as a standalone analysis
tool, or as a “plugin” providing Flow Facts to other tools: indeed, SWEET is an



important component in the Open Timing Analysis Platform [9]. Its main use
is however as a vehicle for program analysis research targeting real-time code.
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