
SEtSim: A Modular Simulation Tool for Switched

Ethernet Networks

Mohammad Ashjaei, Moris Behnam, Thomas Nolte

Mälardalen Real-Time Research Center (MRTC), Mälardalen University, Väster̊as,
Sweden

P.O. Box 883, SE-721 23 Väster̊as, Sweden

E-mail address: mohammad.ashjaei@mdh.se

Corresponding author. Tel.:+46 21 101772; Fax:+46 21 103110

Abstract

Using high bandwidth network technologies in real-time applications, for ex-
ample in automotive systems, is rapidly increasing. In this context, switched
Ethernet-based protocols are becoming more popular due to their features
such as providing a collision-free domain for transmission of messages. More-
over, switched Ethernet is a mature technology. Several protocols based on
switched Ethernet have been proposed over the years, tuned for time critical
applications. However, research for improving the features and performance
of these protocols is still on-going. In order to evaluate the performance
of early stage proposed protocols, the mathematical analysis and/or experi-
ments are required. However, performing an experiment for complex network
topologies with a large set of messages is not effortless. Therefore, using a
simulation based approach for evaluating a protocol’s performance and/or
properties is highly useful. As a response to this we have developed a simu-
lator, called SEtSim, for switched Ethernet networks. SEtSim is developed
based on Simulink, and it currently supports different network topologies of
the FTT-SE protocol as well as Ethernet AVB protocol. However, the ker-
nel of SEtSim is designed such that it is possible to add and integrate other
switched Ethernet-based protocols. In this paper, we describe the design of
SEtSim and we show its scalability.

Keywords: Switched Ethernet, Real-Time Networks, Simulation,
Evaluation, Simulink, FTT-SE Protocol, Ethernet AVB

Preprint submitted to Systems Architecture June 25, 2015



1. Introduction

Recently, there has been a growing interest in using Switched Ethernet for
hard real-time distributed systems as it provides means to improve the global
throughput of time-critical message transmissions compared with other real-
time network technologies. Switched Ethernet provides traffic isolation and
it eliminates the impact of the non-determinism due to the CSMA/CD ar-
bitration, that the original Ethernet was suffering from. Nevertheless, us-
ing Commercial Off-The-Shelf (COTS) switches in time-critical applications
is not adequate as it has the following limitations: (i) the queues inside
the COTS switches are limited in size and may overflow due to an uncon-
trolled packet arrival, which may lead to drop of some packets, and (ii) COTS
switches typically have FIFO queues, that can generate long blocking times
for urgent packets. Normally, this problem can be solved using separated
VLANs for different priorities, however the number of priority levels still is
limited to the number of parallel FIFO queues for each port.

There have been many works addressing the adequacy of switched Eth-
ernet for real-time communication. Many solutions that have been proposed
are using enhanced switches such as EtheReal [1] and the EDF Scheduled
Switch [2], both reserving a channel for traffic transmission. In addition, re-
cent technologies optimized for quick forwarding have been proposed, such as
Ethernet AVB (Audio and Video Bridging) that has gained some momentum
in the automotive industry.

Moreover, Avionics Full Duplex Switched Ethernet (AFDX) [3] is devel-
oped as a network specification with enhanced forwarding which, unlike the
Ethernet AVB protocol, does not rely on a clock synchronization protocol.
AFDX has been used mostly in avionics.

Despite the performance improvements offered by using these enhanced
switches, their usage result in a high cost and a lower availability compared
to COTS switches. Therefore, other protocols have been developed based
on overlay protocols that control the traffic loaded to COTS switches. In
this context, Ethernet POWERLINK [4] and the FTT-SE protocol [5], both
using a master-slave technique, were proposed.

In order to evaluate the performance of different switched Ethernet proto-
cols mathematical analysis and/or experiments can be conducted. However,
performing experiments for large scale network topologies, potentially with
complex message sets, is not straightforward. Therefore, an approach based
on simulation is more effective in particular for the early stages of a protocol.

2



1.1. Goal of the tool

In this paper we present a modular simulation tool, which is called SEt-
Sim1 (Switched Ethernet Simulator), that can be used to simulate Real-
Time Ethernet (RTE) protocols. SEtSim is based on Simulink which makes
it modular and allows us to create models of different components, e.g., nodes
and switches. Moreover, it can be used for evaluation of real-time control
networks, where control nodes exist in the architecture. Using Simulink, as
the developing environment, makes the tool possible to use different already
implemented control blocks as well as other Matlab toolboxes. Currently,
SEtSim is designed and developed to support different architectures of the
FTT-SE protocol and the Ethernet AVB protocol. However, once the core
is implemented it is easy to extend the simulator with other RTE protocols.
Design decisions for developing the tool have been made according to the
goals of the simulator. The main goals of SEtSim are listed bellow.

1. Real-time control applications: the ultimate goal for the tool is to eval-
uate distributed systems consisting of network components and nodes.
Moreover, control applications, resource reservation and resource adap-
tation are the applications we would like to deal with using the tool.
Therefore, the environment where the tool is developed should support
control functionalities and implementation space for different dunctions
in nodes, such as schedulers and control tasks.

2. Ability to connect to the world outside the simulation: it would be
helpful for the researchers to evaluate newly developed protocols par-
tially with hardware experiments. For instance, a simulation model
can be connected to an Ethernet node via a computer Ethernet port.
Therefore, the tool should support such an ability.

3. Modular tool: the functions of the simulator should be developed in a
way that they can be reused. Also, the new functions should be easily
replaced by new developed ones with a small effort.

4. Response time measurement: it is important that the response time
of all messages is measured during run-time. Moreover, the measured
response time should be reported after finishing the simulation together
with important parameters, such as types of messages and number of
deadline misses.

1SEtSim is available to download at: https://github.com/m-ashjaei/SEtSim

3



5. Visualization of messages: one of the goal is to visualize the transmis-
sion in each link. The trace of signals is helpful to check the behavior
of newly developed protocols.

6. Graphical user interface: it should be easy for the user to maneuver
in the tool, thus a graphical user interface is suitable instead of actual
coding for modeling an architecture. It significantly reduces the time of
evaluation as the user may require to change the architecture frequently.

1.2. Organization of the paper

The rest of the paper is organized in the following manner. The next
section discusses some related work on modeling and simulation of real-time
network protocols. Section 3 describes three architectures of the FTT-SE
protocol. Section 4 presents some backgrounds on the Ethernet AVB pro-
tocol. Then, Section 5 presents the SEtSim kernel design, while Section 6
validates the simulator using some experiments. Finally, Section 7 shows the
limitations of the tool, and Section 8 concludes the paper.

2. Related work

Several techniques have been proposed to model and simulate the Eth-
ernet protocol using different tools and modeling algorithms. In the work
presented in [6], models are proposed for nodes, switches and traffic accord-
ing to the Switched Ethernet protocol. Moreover, an evaluation is performed
to validate the performance of the modeling method by comparing the sim-
ulation results with the collected data from a specific network application.

In the area of embedded avionics networks, a simulation model consider-
ing the AFDX is proposed in [7]. The end systems (nodes), switches, different
queue managements in the switch and nodes, and the measurement units to
measure the latency of each flow were modeled. Moreover, the validation
of the modeling algorithm is performed using a single-switch case-study by
applying the worst-case scenario for the flows configuration. However, the
simulator was developed only for a particular application and it is not im-
plemented as a general simulator.

Furthermore, a simulation algorithm was proposed in [8] to evaluate the
end-to-end upper bound delay in AFDX networks. Finding an upper bound
end-to-end delay for each message using simulation, requires to investigate a
huge number of possible scenarios. Thus, an approach to reduce the number

4



of possible scenarios was proposed in [8]. It should be noted that two ap-
proaches were presented in the literature to compute the end-to-end delay of
traffic in AFDX networks. These approaches include the analysis based on
the network calculus [9], and the analysis framework based on the trajectory
approach [10].

In addition, different network simulation systems were designed based
on available simulation tools. For instance, a network simulator system for
AFDX networks was designed and implemented in [11], in which Network
Simulation (NS2) as a tool to simulate TCP, routing over wired and wireless
networks, was considered for the main platform. However, implementing a
particular model on an existing tool is straightforward, whereas extending a
tool for a general model is not an easy task. Also, the work presented in [12]
proposed a component-based model for AFDX networks in order to verify
the behavior of the network model.

As the requirements in automotive industries have changed to support
new functions using Ethernet, a simulation environment based on OMNeT++
has been proposed in [13] to evaluate mixed CAN-Ethernet networks. Fur-
thermore, there are many general tools developed for network simulation,
such as TrueTime [14], NS2 [15], OMNET++ [16] and OPNET [17].

TrueTime is a toolbox developed based on Simulink. The switched Ether-
net protocol as a network block has been supported by the TrueTime toolbox.
However, adding new protocols, such as the FTT-SE protocol, needs a lot of
modifications and changes to the kernel of the tool. Moreover, the output
results that can be generated from the TrueTime blocks are limited and they
need to be modified to allow for calculation of response time of messages.
Another tool is called OPNET, that is used to evaluate the performance
of a network, specially for evaluation of Internet. However, this tool is a
commercial tool, and its source code is not freely available to develop new
protocols. OMNET++ and NS2 are modular simulators mainly used for
sensor networks, internet protocols and performance modeling. NS2 han-
dles a lot of different network protocols, yet it supports limited number of
real-time protocols. The core of these simulation tools should be completely
changed to cover an RTE protocol, such as the FTT-SE protocol. Basically,
some of the RTE protocols require changing in the Ethernet frame (e.g., in
both the FTT-SE and the Ethernet AVB) and changing different network
layers. Therefore, implementing a new simulation tool, in particular for RTE
protocols, is useful in the real-time communication research area.

NS2 uses two programing languages, C and oTCL, where oTCL is an

5



object oriented language utilized for the graphical interface. Implementing a
user-friendly interface in NS2 is very much dependent on oTCL language that
is not rich for this task. For instance, developing a block for a component
(e.g., a node) with a feature of dragging and dropping is not easy in NS2.
Note that, in NS3 oTCL is completely removed because of a big overhead
for large simulations [18], however it is not completely settled for extension.
Also, in order to build a network example, a descriptive language is required
to create nodes and connect them in a network. This increases the chance
of making mistake, even in the first stage, i.e., building a network model. In
fact, one of the motivations to use Simulink as backbone is providing a user-
friendly interface by drag and drop of components in a model. Moreover,
NS2 is basically designed for Linux users. Although the installation guide
is available for Windows users, there are many bugs reported as some extra
packages are required to be installed (e.g., Cygwin package).

As a result of the above survey, neither of the mentioned tools can be used
directly to include RTE protocols (e.g., the FTT-SE protocol) along with cor-
responding response time calculations for messages. Besides, one of the main
goals of the tool, except graphical interface and message trace visualization,
is using that in control applications. Normally, in control applications differ-
ent types of signals along with control tasks are used. These control blocks
and signals are already designed and tested in Matlab toolboxes. Moreover,
an ultimate goal is to use the tool for end-to-end evaluation of distributed
embedded systems. Therefore, in this paper we present SEtSim which is
developed based on Simulink.

3. The FTT-SE protocol

The FTT-SE protocol is a bandwidth-efficient protocol, with respect to
the COTS switch [5], which uses the master-slave technique. This protocol
was initially presented in [5] for small size networks consisting of one switch
and few nodes. In order to extend the protocol to support multi-hop com-
munication, three different approaches were proposed, connecting multiple
switches in a tree topology. The first architecture [19] uses a single master
connected to the top of the network tree in order to control the traffic trans-
mission in the whole network. In the second architecture [20], each switch
has an attached master node, whereas in the third architecture [20] the mes-
sages within a group of switches are controlled by one master node. In this
section, we briefly sketch these three architectures.

6



3.1. Single-master architecture

The single-master architecture is depicted in Figure 1, in which one mas-
ter node is attached to the top of the network hierarchy, controlling the
traffic in the whole network. The master node is responsible to schedule
messages on-line according to any desired scheduling policy (e.g., Fixed Pri-
ority Scheduling), on a cyclic basis. The basic cycle has a fixed duration of
time and it is called Elementary Cycle (EC). Each EC is partitioned among
two types of traffic, i.e., synchronous and asynchronous traffic, resulting in
a design where the EC hosts one synchronous and one asynchronous win-
dow (Figure 2). The scheduler in the master node checks the synchronous
messages, which are activated periodically, whether they can be transmit-
ted during the associated window within EC (i.e., within the synchronous
window). The scheduled messages are encoded into a Trigger Message (TM)
that is transmitted to all slave nodes at the beginning of the next EC. The
TM transmission is based on the master-slave technique where the traffic
transmission is controlled by a master node and triggering the transmission
within specific cycles.

Master SW1 

SW3 
SW2 

SW5 SW4 

S1 

S5 S3 

S7 S6 

S2 

S4 

S8 

Figure 1: The Single-Master Architecture

The activation of asynchronous messages is unknown in advance and can
occur at any time during the EC. Therefore, a signaling mechanism [21] allows
the slave nodes to inform the master node about potential pending requests
using a Signaling Message (SIG), which is transmitted after reception of
the TM (e.g., A, B and C in Figure 2). The master then schedules the
asynchronous messages adequately and inserts them into one of the upcoming

7



TMs. The slave nodes receive the TM, decode it and initiate the transmission
of the scheduled messages and in parallel initiate reception of data messages
from other slave nodes. Note that, decoding the TM takes an amount of
time called Turn Around Time (TRD) (Figure 2). The actual length of the
TRD depends on the processing speed of the slave nodes. The response time
analysis for the traffic transmitted through the switches in this architecture
is developed and presented in [19].

Master 
Switch out 

Switch In 

S1 

S4 

S6 

TRD Synchronous Window Asynchronous Window 

Switch out 

Switch In 

Switch out 

Switch In 

Switch out 

Switch In 

Elementary Cycle 

A 

B 

C 

B C 

TM 

TM 

TM 

TM 

A 

X Y TM SIG 

Figure 2: The Elementary Cycle in Single-Master Architecture

3.2. Multi-master architecture

Unlike the previous architecture, the traffic in the multi-master architec-
ture is coordinated using multiple master nodes, each of which is connected
to one switch, as illustrated in Figure 3.

M1 
M3 

SW1 

SW3 
SW2 

SW5 SW4 

Cluster2 

Cluster1 

S1 

S5 S3 

S7 S6 

S2 

S4 

M5 

S8 

M2 

M4 

Figure 3: The Multi-Master Architecture

8



In this architecture, each switch along with all associated nodes that are
connected to it is called a sub-network (e.g., SW1, M1, S1 and S2). Moreover,
each sub-network is a parent for lower level sub-networks in the tree topology.
A group of sub-networks with the same parent sub-network is called a cluster
(e.g., Cluster 2 in Figure 3). Note that, the root sub-network is included in
its children cluster because it cannot be considered as a separate cluster.
Also, the traffic is categorized into two types. A message that is transmitted
within a sub-network is called local, whereas a message is called global if it
is transmitted beyond a sub-network.

The EC, in this architecture, is divided among different traffic types, i.e.,
local/global and synchronous/asynchronous. Also, the global asynchronous
window is further split among clusters. The EC partitioning is illustrated in
Figure 4.

X X TM asynchTM Local SIG Global SIG A B 

M1 
Switch out 

Switch In 

M3 

S4 

M4 

S6 

1 

3 

3 

4 

4 

1 

3 

3 

TRD Synchronous Window Asynchronous Window 

Local Global Local Global 

Cluster1 Cluster2 

A B 

A 

B Switch out 

Switch In 

Switch out 

Switch In 

Switch out 

Switch In 

Switch out 

Switch In 

Elementary Cycle 

Figure 4: The Elementary Cycle in Multi-Master Architecture

Each master node schedules its associated local synchronous and asyn-
chronous traffic within the dedicated windows. The request for local asyn-
chronous traffic is sent to the sub-network master node in order to be sched-
uled for the next EC (e.g., message A from S6 to M4 in Figure 4). The
global synchronous traffic is scheduled by all master nodes in parallel to have
a consistent scheduling in the entire network. The scheduled messages are
encoded into the TM and transmitted to the slave nodes in the beginning of
the EC. As there is no global view of the activation of global asynchronous
traffic, the master nodes cannot schedule them in parallel. Therefore, the
master of each cluster is responsible for scheduling them by receiving a sepa-
rate SIG request from children slave nodes (e.g., message B from S6 to M3 in
Figure 4). Then, the global asynchronous traffic is scheduled within a partic-
ular dedicated window (e.g., cluster1 sub-window within the asynchronous

9



window) and the identifiers of the scheduled messages are encoded into a
different TM, which is called asynchTM, to be transmitted after the regular
TM (e.g., asynchTM3 that is sent from M3 to S6 in Figure 4).

Slave nodes receive both the TM and the asynchTM, they decode them
and they initiate the message transmission. Moreover, the SIG requests,
both for local and global asynchronous messages, are sent by the slave nodes
concurrently. Note that, the partitioning of the windows for message trans-
mission is for scheduling purposes only. The slave nodes start to send their
scheduled messages immediately without considering the partitioning of the
windows.

In addition, this architecture requires that all master nodes are timely
synchronized. Therefore, a clock synchronization mechanism, used among
the master nodes, is presented in [22]. The response time analysis of the traf-
fic that is sent through multiple switches is developed and presented in [20].

3.3. Cluster-based architecture

The cluster-based architecture is a hybrid solution of single- and multi-
master architectures. The topology is the same as the multi-master architec-
ture, except having a single master for each cluster. The network example
is depicted in Figure 3 considering M1 and M3 in the network. The former
master schedules the traffic within cluster 1 and the latter master schedules
the traffic within cluster 2.

By dividing the network into clusters, the traffic types are categorized
as follows. The internal traffic is transmitted within a cluster, whereas the
external traffic is sent beyond the cluster. In addition, according to the
traffic types, the windows allocation is also split among internal/external
and synchronous/asynchronous traffic (Figure 5). The external asynchronous
window is still further split into cluster sub-windows.

In this architecture, each master schedules the associated internal mes-
sages and all external messages in parallel with other master nodes. SIG
messages are used to inform the master of the associated cluster, where the
internal/external synchronous messages are requesting to be scheduled (e.g.,
A, B and C in Figure 5). All the scheduled messages are encoded into a TM
to be sent to the slave nodes within the cluster.

The slave nodes commence the message transmission after receiving the
TM and decoding it. The request for the asynchronous messages is sent to the
master of the cluster in parallel with receiving the TM. This architecture uses
less signaling messages compared with the multi-master architecture, while

10



having the benefits of a lower number of master nodes, i.e., using one TM per
each cluster and one SIG per slave node. This topology also requires to have
timely synchronized master nodes. Therefore, the same clock synchronization
mechanism [22] is used in the cluster-based architecture.

X TM SIG A 

M1 
Switch out 

Switch In 

S1 

S3 

M2 

S6 

TRD Synchronous Window Asynchronous Window 

Internal External Internal External 

Cluster1 Cluster2 

Switch out 

Switch In 

Switch out 

Switch In 

Switch out 

Switch In 

Switch out 

Switch In 

Elementary Cycle 

1 

1 

1 

2 

2 

A 

A 

B 

C 

B C 

Figure 5: The Elementary Cycle in Cluster-Based Architecture

4. The Ethernet AVB

Ethernet AVB protocol is a common name to a set of specifications that
includes the following main amendments: (i) IEEE P802.1Qav - Forwarding
and Queuing Enhancements for Time-Sensitive Streams, (ii) IEEE P802.1Qat
- Stream Reservation Protocol, (iii) and IEEE P802.1AS - Timing and Syn-
chronization.

The IEEE P802.1Qav specifies a set of rules in order to queue and for-
ward the time-critical traffic, i.e., it provides a bounded latency to real-time
messages. The standard introduces two transmission algorithms according to
a certain application need. The first one is called strict priority transmission
algorithm (PQ) and the second one is called credit-based shaping algorithm
(CBQ). The non-real-time traffic is transmitted using the former algorithm,
whereas the real-time traffic is forwarded according to the latter algorithm.
The model of an output port for an AVB switch is depicted in Figure 6.
The time-critical traffic is entitled to be Class A or Class B according to its
priority. The operation of the CBQ for one queue (e.g., queue for Class A)
is depicted in Figure 7.

11



PQ
 

CBQ
 

Non-real-
time queues 

Real-time 
queues 

Class A 

Class B 

Output 
Port 

Figure 6: The AVB Output Port Model

HI

LO

0

Credit

idleSlope
sendSlope

No 
transmission

Time

Figure 7: The CBQ Operation

According to the CBQ, a message is queued when it becomes ready. Note
that the traffic pattern in AVB network is periodic. The message is selected
from the queue for transmission if there is a zero or positive credit. During
the message transmission the credit decreases at a constant rate, which is
called sendSlope. After the transmission, if the credit is still positive, another
message in the queue is selected for transmission. However, if there is a
high priority message with positive credit is waiting for transmission, it will
be selected. After consuming the credit, when there is a message in the
queue, the credit increases with a constant rate, which is called idleSlope.
The increasing and decreasing rates of the credit is set according to the
application by defining a bandwidth fraction for the queue, see (1) and (2),
where f is the fraction of bandwidth assigned to the queue and Rate is the
port transmission rate in bps.

idleSlope = f ×Rate (1)

sendSlope = idleSlope−Rate (2)

12



If a given traffic class queue (e.g., Class A) does not have any message
available in the queue, the lower priority traffic class queue (Class B) can
then be sent. The unused bandwidth, i.e., when the credit is not positive
for both Class A and Class B, is available for transmission of non-real-time
traffic using the PQ algorithm.

Another draft of the standard is the IEEE P802.1Qat which specifies the
admission control in order to manage the resource to be reserved for the
specific streams. This is mostly done by the Stream Reservation Protocol
(SRP) which introduces a producer-consumer model to negotiate for the
resource reservation. The last part of the standard, the IEEE P802.1AS,
specifies a clock synchronization protocol to ensure that the synchronization
requirements are met.

5. Simulator design

Using Simulink/Matlab, we have developed SEtSim to evaluate the timing
behavior of messages in switched Ethernet networks. The main ideas of
SEtSim are to support RTE protocols and to have a user-friendly graphical
interface in order to build a model easily. Simulink can fulfill the latter aim
as it allows us to implement nodes and switches as a block to let the user
build a network model by drag and drop of the blocks. This is achieved by
developing a component model (e.g., the switch) using custom blocks which
are available in Simulink. Moreover, there are many predefined blocks exist
in Simulink that can be directly used in SEtSim, such as scope blocks and
signal generators.

The core of SEtSim is based on a cycle-based approach, where execution
of all functions are done within a fixed duration of time, known as time-slots.
To simulate the parallel execution of blocks in a model, we have divided the
time into a number of small time slots in each of which all the functions are
executed. The number of time slots shows the resolution of the simulation
which is not fixed but can be changed in the configuration of the simulator.
Changing the number of time slots does not affect the accuracy of the message
response time. In fact, in any resolution the response time of the traffic in
a particular model is constant. However, it affects the accuracy of message
passing visualization by a scope block in Simulink, i.e., the granularity of
showing on the scope will be different. Note that, the function of blocks
in Simulink executes in sequential order which is automatically specified by
Matlab in advance. Therefore, the input data of each block is guaranteed

13



to be available before its execution. In addition, the kernel of SEtSim is
designed to be modular. Each block, e.g., the master block, contains several
functions which can be replaced with a new function. For instance, the
scheduler is a separate function that can be replaced with another scheduling
strategy, e.g., EDF Policy, without changing in the rest of the block. This
modularity is applied to the main scheduler, reading the inputs, ready queue
management, scoping the output, measuring the traffic response time and
queue management in AVB switches. In this section we describe the design
of the different blocks in SEtSim.

In general, we use S-Function block in Simulink to implement different
components, such as Ethernet switch and nodes. S-Function is a customized
Simulink block that allows the user to implement a functionality in it. It
is possible to define any number of input and output ports for S-Function
block. Also, different functions can be developed based on the input values.
Each block is executed once in a time-slot.

Figure 8: SEtSim Blocks Library

In SEtSim, we have developed five basic models using the S-Function
level2 custom block in Simulink to simulate the functionality of the master
node, slave node, switch model, Ethernet node and AVB switch. These
blocks are stored in a Simulink library file, as illustrated in Figure 8. The

14



user of SEtSim prepares a network model to evaluate by dragging the blocks
from the library and dropping to the new model. Then, the connections
between the input and output ports should be done. The further details for
the functions are given in this section.

5.1. Ready queues management

Each master contains four different ready queues to hold the activated
messages of four different message types, including local/global / synchronous
/ asynchronous in the multi-master architecture and internal/external / syn-
chronous / asynchronous in the cluster-based architecture. The exception
is the single-master architecture in which the master uses synchronous and
asynchronous queues, only, as it has just two types of traffic. The ready
queues are sorted based on the priority of messages in which the highest pri-
ority messages are inserted at the head of the queues. We have used the Fixed
Priority/Highest Priority First Scheduling Policy based on Rate Monotonic
priority assignment algorithm for on-line scheduling in SEtSim. Messages
with the same priority are sorted in the queues based on the First Come
First Serve (FCFS) policy. For management of the ready queues, we have
developed three functions to handle updating the queues before scheduling
the messages. These functions, which are implemented in Matlab m-files, are
the following:

Get head message. This function returns the first message in the ready
queue which is always the highest priority message among all messages in the
ready queue.

Remove a message. If the scheduler checks a message and it selects that
message to be transmitted in the current EC, the message should be removed
from the ready queue. Therefore, this function removes a message defined by
its id together with the ready queue in which the message is residing. The
output of this function is the updated ready queue sorted according to the
priorities of all messages in the queue.

Insert a message and sort in ascending format. Whenever a mes-
sage becomes ready, it should be inserted in the correct ready queue. This
function inserts a message in a queue according to its priority and it re-sorts
the queue according to the priorities of messages in which the highest priority
message is assigned at the head of the queue.

Note that, the ready queue management is not used in the Ethernet
AVB protocol simulation as there is no such ready queues in this protocol.

15



The output queues are managed with the PQ and CBQ algorithms in FIFO
queues.

5.2. Master block design

The master block is divided into two sub-blocks dealing with sender and
receiver functions. We have defined an array structure for the master node
to store its variables and parameters. All master blocks in the model are
connected to a single m-file function, which is distinguished with a mask
block parameter number, i.e., the mask parameter in Simulink for each block
is set with a unique value.

For each master input (receiver) and output (sender) blocks two separate
functions are implemented. However, the master function is developed based
on a state flow such that each of them should run in order. The master
function has three states which are depicted in Figure 9-a. Each state is
allowed to run when the previous state has executed, only. The first state is
broadcasting the TM (and asynchTM in case of multi-master architecture) to
the associated slave nodes. The next state (State 2) is receiving SIG requests
from the associated slave nodes during the TM window. The last state
(State 3) is performing the scheduling function for all types of messages, and
generating a TM (and asynchTM) for the next EC. State 1 and 3 are executed
in the master sender function, whereas State 2 is executed in the receiver
function. For input and output signals, we have implemented different scope
functions (scope-in and scope-out), as shown in Figure 9-b.

State1: 
TM (& asynchTM)

transmitting

State2: 
Receiving SIG 

request

State3: 
scheduling and 

generating 
TM 

(& asynchTM)

(a) Master Function State Flow (b) Master Block

Figure 9: Master Block

Depending on the architecture that has been chosen (i.e., single-/multi-
master or cluster-based), the master collects the SIG requests from the as-
sociated slave nodes in State 2 of the master function (e.g., collects from all

16



the slave nodes inside a cluster for the cluster-based architecture). This state
finishes and moves to the next state when all SIGs are received. The requests
are stored and the master schedules them for the next EC in State 3. In case
of the multi-master architecture, the scheduled global asynchronous messages
are encoded into a different TM (asynchTM) to be sent to the corresponding
children slave nodes.

The algorithm of State 3 for the master block is depicted in Figure 10,
which shows the scheduling of one (out of four) ready queue. However,
scheduling the messages in the other ready queues is similar to the one pre-
sented in Figure 10. The algorithm starts by updating the ready queue and
recording the ready time for the ready messages. The ready time is required
when calculating the response time of the messages in the simulation. Af-
terwards, the algorithm checks whether the messages in the ready queue can
be fitted in the dedicated window for each type of message according to the
route of the message. The remaining messages, which are not fitted in the
dedicated window, are kept in the ready queue for the next scheduling round
(i.e., the next EC). Finally, the algorithm generates the TM (and asynchTM
in case of a multi-master architecture) to be transmitted in State 1 of the
master function (Figure 9).

5.3. Switch model design

Similar to the master block, the switch is modeled with a Matlab S-
Function using a particular m-file associated to that. Four kinds of connec-
tions are defined for the switch model: (i) the master connection identified
in port 1, (ii) the parent switch connection is dedicated to port 2, (iii) four
children connections for the children sub-networks, and finally (iv) ten con-
nections for the slave nodes. Moreover, for each input and output ports a
specific buffer is assigned to store receiving and sending data. The buffers
are sorted according to the FIFO policy, similarly to the COTS switches.
The general structure of the switch model is to poll the input data and to
process the destination address of them, and in turn, insert the data into the
related output buffer.

5.4. Slave block design

Similar to the master block, the slave block is divided into two sub-blocks,
which are sender and receiver sub-blocks. The slave function is executed

17



Check if the 
message fits within 

the dedicated 
window 

Updating ready 
queue 

Store the message 
ready time 

Select the message 
from the head of 

ready queue 

Encode into TM 
(& asynchTM) 

Remove the message 
from the ready queue 

Generate TM 
(& asynchTM) 

Any message 
remains in the 
ready queue 

Select the next message 
in the ready queue 

Yes 

Yes 

No 

No 

Figure 10: Algorithm of State 3 in The Master Block

based on the state flow which indicates the current state of each slave node.
The slave function is composed of four individual states started by the TM
reception. The state flow of the slave function is depicted in Figure 11-a.

After receiving the TM (and asynchTM) from the master (and the parent
master) node, the slave node checks whether any message is ready to be
transmitted. For asynchronous messages, the sporadic model is used to model
this type of traffic in which the minimum inter-arrival time is defined for each
message. Therefore, in SEtSim activation period of asynchronous messages
are randomly set during run-time considering its minimum inter-arrival time.
Moreover, the asynchronous messages may become ready at any time during
the EC window. In the worst-case scenario the SIG from the slave node is
already transmitted when the asynchronous message becomes ready. This
means that the asynchronous message is activated slightly after sending the
SIG from the slave node so that the SIG cannot include this activation.
To consider this behavior in the simulation, the asynchronous messages are
always activated after transmission of the SIG. The third state of the slave

18



State1: 
TM (& asynchTM)

receiving

State2: 
SIG request
transmission

State4: 
receiving the 

messages

(a) Slave Function State Flow (b) Slave Block

State3: 
Decode TM 

(& asynchTM)
Initiate the 

transmission

Figure 11: Slave Block

function is decoding the TM (and asynchTM) and transmitting the scheduled
messages.

After sending the scheduled messages, the last state (State 4) is to wait
for message receiving. The slave nodes read their inputs until the EC time
window is finished. When a message is received from the slave node, the
receiving time is stored in the related message variable. The time interval
between the ready time (stored during State 3 of the master function) and
the receiving time of the messages shows the response time of the message.
For setting the receiving time, the store-and-forward switch delay and or-
der of messages are considered to simulate as accurately as possible. Since
the transmission window was checked in the scheduler, then all scheduled
messages should be received in the current EC without any overruns to the
next EC. Overrun of a message occurs when the message is not completely
received by the end of the EC, hence it interferes with the next EC operation.
In case of any overrun, deadline miss or failure in receiving of the message
will be reported when simulation is stopped.

For generating the scope output signals to cover both receiving and send-
ing messages, the scope functions store the messages which are sent and
received. The messages are scoped according to their transmitting time.
Each message is indicated by its identification number which is unique in the
entire network.

5.5. Ethernet node design

Ethernet node is designed as a block to be connected to an AVB switch.
The node is in an idle mode until a message, to be transmitted from the
node, becomes activated. The activation time for all messages is computed

19



by the node where the messages belong to. Note that the messages in AVB
networks are activated periodically. After activation, the node initiates the
message transmission. In order to record the response time of a message
during run-time, we store the transmission time and the reception time of
the message in the function block of the node.

5.6. AVB switch design

In order to develop an AVB switch a Matlab S-Function custom block is
utilized. The AVB switch contains six ports where the nodes are attached.
For each output port, three FIFO queues are considered: (i) traffic class A
queue, (ii) traffic class B queue, and (iii) the non-real-time traffic queue. The
received messages in the switch is queued according to its defined class. Also,
two forwarding algorithms, the PQ and the CBQ, are implemented in order
to handle the non-real-time traffic and the time-critical traffic, respectively.

Update the 
queue

Yes

No
If there is a 

message available 
in the queue

Transmit the 
message

Return

Credits are
negative or 
there is no 

transmission in 
classes A and B

Figure 12: The PQ Algorithm

The PQ algorithm is presented in Figure 12. When the credits of the
critical queues are zero or when there is no message in classes A and B, the
switch initiates the transmission of the non-real-time traffic using the PQ
approach. Therefore, the queue is updated and the first message in the head
of the queue is transmitted. In case of no message in the queue, the algorithm
returns to the loop where the other queues are serviced.

20



Furthermore, the algorithm for the CBQ approach is depicted in Fig-
ure 13. Note that the algorithm shows one of the classes, however it is the
same for all classes of the traffic. The algorithm checks whether any message
is available in the queue. If so, the credit for that queue is examined to see
if there is a zero or positive credit. In case of zero or positive credit, the
message will be transmitted and at the same time the credit is decreased.
In contrast, if the credit is negative there will be no transmission and the
credit will be increased. The rates of decreasing and increasing for the credit
is defined in the configuration m.file, by setting the idleSlope and sendSlope
parameters. If there is still a message in the queue, it will start for trans-
mission under two conditions. First, having a remained positive credit and
second, no high priority traffic class is ready for transmission. It should be
noted that if the queue is empty the credit becomes zero immediately.

5.7. Settings and configuration

In order to set the configuration of a network example, such as the EC
size, the windows allocation for the FTT-SE protocol and bandwidth set for
different classes in the Ethernet AVB protocol, a Matlab m-file is developed.
For each network model, different configurations can be determined to assess
the performance of the example.

Besides the windows allocation for different message types, other config-
urations such as number of slave and master nodes in the model, and the
message set declaration, should be set before running the simulation. The
message set declaration includes the parameters such as transmission time,
source node, destination node, period/minimum inter-arrival time, priority
and the routing information for the messages.

5.8. Output and reports

SEtSim generates two types of output for performance evaluation, (i)
the message transmission in the scope block of Simulink, and (ii) a report
that shows the response time of the messages. In order to check the message
transmission, it is required that a scope block in Simulink is connected to any
master or slave node to visualize the input and output messages. Moreover,
the output report presents the minimum, average and maximum response
time of all messages that are measured during the simulation. This can help
to compare the response time of messages to analytical results to figure out
the level of pessimism embodied in the analysis, for instance.

21



Update the 
queue

Yes

No
If there is a 

message available 
in the queue

Transmit the 
message

If credit is zero 
or positive

Decrease the 
credit by the 

rate of 
sendSlope

Credit = zero

return

No

Yes

Increase the 
credit by the 
rate idleSlope

If there is a
transmission on 

the port

No

Yes

Figure 13: The CBQ Algorithm

6. Examples

In this section, we present three different examples. The first one is a net-
work which is formed as a cluster-based FTT-SE architecture consisting of
ten switches and 100 slave nodes (ten slave nodes connected to each switch).
In the second example we keep the network topology and we change the
protocol to multi-master FTT-SE architecture. These two examples show
the scalability of SEtSim to large scale networks when using the FTT-SE
protocol. Note that SEtSim does not have any limitation in the number of
components including switches, nodes and messages. However, our motiva-

22



tion in this section is to show the applicability of the tool in the area of
automotive domains, where the generated examples are relatively large. Fi-
nally, the third example is a small network using the Ethernet AVB protocol.

6.1. Cluster-based FTT-SE example

In this example, the network is composed of ten switches along with
100 slave nodes. The parameters for this example are set as follows. The
Elementary Cycle (EC) is set to 10ms, the synchronous window is 4400µs
and the asynchronous window is 5500µs. Within the synchronous window,
2000µs is dedicated to internal traffic, while 2400µs is assigned to external
traffic. Moreover, the asynchronous window is divided between internal and
external messages, 2000µs for the former and 3500µs for the latter window.
The external asynchronous window is split among the three clusters equally,
i.e., 1160µs for each of them. The transmission speed for this example is
considered as 100Mbps and 3500 messages are generated randomly. Due
to the limited space in this paper, we illustrate a part of the network in
Figure 14 and a part of the root sub-network in Figure 15.

The simulation for this example is performed for a time duration of 10000
ECs that took 10 minutes in real time using a computer with Intel Core(TM)
i5-2540M CPU at 2.60GHz with 8GB RAM. Note that, using different com-
puter configuration (e.g., different CPU speed) affects the simulation time
as the functions could execute faster in higher CPU capacity. However, for
this example with a large number of nodes and a large set of messages the
simulation time is reasonable. To visualize the message transmission, an or-
dinary Scope block of Simulink is attached to the respective scope ports of
the slave blocks in the model. In this paper, we illustrate three messages
among 3500 messages due to the space limitation, which are m5, m9 and
m12. The selected messages are synchronous with a period of 2 EC and are
assigned the highest priority (priority equals to 1). Moreover, the messages
have different transmission times and all of them are transmitted from slave
node number 1. Figure 16 shows the output of slave number 1, in which
the x-axis is the simulation time and the y-axis shows the message IDs. The
selected messages are transmitted sequentially and they are marked in the
scope figure.

In addition, Figure 17 depicts the input of slave number 3, which is the
slave that m5 is transmitted to. As it can be seen, m5 is received with a
delay of its transmission time and the store-and-forward delay in the switch.

23



Figure 14: A Part of Network Example Model

Figure 15: A Part of Root Sub-Network Model

24



Simulation time 

M
e

ss
a

g
e

 I
D

 

m5 

m9 

m12 

Figure 16: Scope Output of Slave Number 1

Simulation time 

M
e

ss
a

g
e

 I
D

 

m5 

Figure 17: Scope Input of Slave Number 3

The receiving of m9 to slave number 11 and m12 to slave number 41 is
illustrated in Figure 18 and 19, respectively.

Simulation time 

M
e

ss
a

g
e

 I
D

 

m9 

Figure 18: Scope Input of Slave Number 11

25



Simulation time 

M
e

ss
a

g
e

 I
D

 m12 

Figure 19: Scope Input of Slave Number 41

Note that, the simulation time in the scopes (Figures 16, 17, 18 and 19)
is presented in 10ms unit, i.e., each unit, from 1 to 2 in the simulation time
of scope, represents 10ms of the simulation.

In addition to the message transmission visualization, the response time,
which is measured during the simulation, can be reported for all messages in
the model. The minimum, average and maximum measured response time
for the selected messages is presented in Table 1. Note that, the response
time are presented in integer number of ECs.

id Min RT (EC) Avg RT (EC) Max RT (EC) Period (EC) Deadline (EC)

5 1 1 1 2 2
9 1 1 1 2 2
12 1 2 2 2 2

Table 1: Response Time for the Selected Messages

As it can be seen in Table 1, the response time measured for m12 during
the simulation has minimum 1 EC, while it is 2 EC for maximum and average.
The reason to have equal response times for average and maximum is that the
average response time is presented as a ceiling of mean among the measured
response times. This is due to presenting the response time in number of
ECs for the FTT-SE protocol.

6.2. Multi-master FTT-SE example

In order to run the simulation for the same example, but in the multi-
master architecture, we need to change the architecture flag variable in the
configuration file, only. Changing the model in Simulink is not required as the
kernel of the tool handles that easily. This option is helpful when one network
example is needed to be evaluated in different protocols. The simulation is

26



performed for the new architecture (i.e., the multi-master architecture) for
1000EC. We present the response time of the three messages as m130, m232
and m1156 in Table 2.

id Min RT (EC) Avg RT (EC) Max RT (EC) Period (EC) Deadline (EC)

130 4 4 4 5 5
232 7 7 7 7 7
1156 1 2 3 6 6

Table 2: Response Time for the Selected Messages

6.3. Ethernet AVB example

In this example, we model a network composes of two AVB switches along
with three nodes, as depicted in Figure 20. The transmission speed is con-
sidered as 100Mbps. From this bandwidth, 40% is dedicated to the traffic
class A and 40% is allocated for traffic class B. The rest of the bandwidth is
available for non-real-time traffic transmission, i.e., when there is no message
in traffic Class A and Class B queues. Moreover, ten messages are randomly
generated, where their transmission times are set within [80, 120]µs and their
priorities are selected as class A (high), class B (low) and non-real-time mes-
sage, randomly.

The simulation is performed for 1 minute of simulation time. Table 3
shows the minimum, average and maximum response time of three out of ten
messages, which is measured during the simulation. These three messages
are m1, m2 and m10, which are assigned as Class A, Class B and non-real-
time types. Note that, the response times, perdiod and deadline of the traffic
is shown in milliseconds in Table 3.

id Min RT (ms) Avg RT (ms) Max RT (ms) Period (ms) Deadline (ms)

1 0.25 0.26 0.35 20 20
2 0.25 0.25 0.25 30 30
10 0.30 0.45 0.55 50 50

Table 3: Response Time for the Selected Messages

27



Figure 20: The Example of AVB Switch

7. SEtSim limitations

The aim of SEtSim is to cover RTE protocols. In the first version of the
tool we have developed different architectures of the FTT-SE protocol as well
as the Ethernet AVB protocol. Therefore, it lacks other alternatives such as
the HaRTES architecture [23], TT-Ethernet and AFDX protocols.

Moreover, in the current implementation, the number of ports for a switch
is limited to ten nodes and it is limited to six nodes for an AVB switch. This
limitation can be removed by allowing the user to define the number of ports
up to 33 ports, which is supported by the available COTS switches.

In addition, the output generation of the tool is limited to the message
passing visualization and the traffic response time measurement. However,
adding extra output reports including some statistics such as confidence in-
terval is remained for future work.

8. Conclusion and future work

In this paper, we have designed and developed a simulation tool, which is
called SEtSim, in order to evaluate the new proposed architectures and pro-
tocols based on switched Ethernet. This version of SEtSim supports three

28



different architectures of the FTT-SE protocol, which are briefly introduced
in this paper, and the Ethernet AVB protocol. Moreover, we presented the
design of SEtSim, which contains five basic models for the master, the slave,
the switch, the Ethernet node and the AVB switch, all implemented as Func-
tion blocks in Simulink.

In addition, we demonstrated three network examples, two examples us-
ing the FTT-SE protocol and one to show the Ethernet AVB functionalities.
The FTT-SE examples consist of ten switches along with 100 slave nodes
with a set of 3500 messages to show the scalability of SEtSim. Different
output scopes of message transmissions are presented as well as the response
time reports. Also, we illustrated an example of Ethernet AVB network com-
prises one AVB switch with three nodes. We also showed the response time
of the traffic transmitted in the Ethernet AVB network. SEtSim allows us
to perform a detailed analysis of the protocol before potentially making a
hardware implementation of it, with all its associated complexity.

SEtSim is extensible in the sense that we can easily accommodate other
switched Ethernet protocols, as the kernel is designed to be modular. The on-
going work is to remove the limitations inside SEtSim such as the availability
of a bounded number of supported protocols.

References

[1] S. Varadarajan, T. Chiueh, EtheReal: a host-transparent real-time fast
Ethernet switch, in: 6th International Conference on Network Protocols,
1998.

[2] H. Hoang, M. Jonsson, Switched real-time Ethernet in industrial ap-
plications - deadline partitioning, in: 9th Asia-Pacific Conference on
Communications, 2003.

[3] I. Land, J. Elliott, Architecting ARNIC 664 (AFDX) Solutions, 2011.

[4] Ethernet POWERLINK, available at http://www.ethernet-
powerlink.org.

[5] R. Marau, L. Almeida, P. Pedreiras, Enhancing real-time communica-
tion over COTS Ethernet switches, in: 6th IEEE International Work-
shop on Factory Communication Systems, 2006.

29



[6] Z. Huang, Y. Zhang, H. Xiong, Modeling and simulation of switched
Ethernet, in: 2nd International Conference on Computer Modeling and
Simulation, 2010.

[7] H. Charara, C. Fraboul, Modeling and simulation of an avionics full du-
plex switched Ethernet, in: Advanced industrial conference on telecom-
munications/service assurance with partial and intermittent resources
conference/e-learning on telecommunications workshop, 2005.

[8] J.-L. Scharbarg, C. Fraboul, Simulation for end-to-end delays distribu-
tion on a switched Ethernet, in: 12th IEEE International Conference on
Emerging Technologies and Factory Automation, 2007.

[9] H. Charara, J.-L. Scharbarg, J. Ermont, C. Fraboul, Methods for bound-
ing end-to-end delays on an AFDX network, in: 18th Euromicro Con-
ference on Real-Time Systems, 2006.

[10] H. Bauer, J.-L. Scharbarg, C. Fraboul, Applying and optimizing trajec-
tory approach for performance evaluation of AFDX avionics network,
in: The 14th IEEE Conference on Emerging Technologies Factory Au-
tomation, 2009.

[11] S. Dong, Z. Xingxing, D. Lina, H. Qiong, The design and implementation
of the AFDX network simulation system, in: International Conference
on Multimedia Technology, 2010.

[12] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, A. Legay, E. Sifakis,
Verification of an AFDX infrastructure using simulations and probabili-
ties, in: 1st International Conference on Runtime Verification, 2010, pp.
330–344.

[13] J. Matsumura, Y. Matsubara, H. Takada, M. Oi, M. Toyoshima, A. Iwai,
A simulation environment based on OMNeT++ for automotive CAN-
Ethernet networks, in: 4th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-Time Systems, 2013.

[14] D. Henriksson, A. Cervin, K.-E. Årzén, TrueTime: Real-time control
system simulation with MATLAB/Simulink, in: Proceedings of the
Nordic MATLAB Conference, Copenhagen, Denmark, 2003.

30



[15] The network simulator NS2, available at
http://www.isi.edu/nsnam/ns/.

[16] OMNET++: Component-based C++ simulation library, available at
http://www.omnetpp.org.

[17] OPNET: application and network performance, available at
http://www.
opnet.com.

[18] Introduction to NS3, available at http://www.nsnam.org.

[19] R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, P. Portugal,
Controlling multi-switch networks for prompt reconfiguration, in: 9th
International Workshop on Factory Communication Systems, 2012.

[20] M. Ashjaei, M. Behnam, L. Almeida, T. Nolte, Performance analysis
of master-slave multi-hop switched ethernet networks, in: 8th IEEE
International Symposium on Industrial Embedded Systems, 2013.

[21] R. Marau, P. Pedreiras, L. Almeida, Asynchronous traffic signaling over
master-slave switched Ethernet protocols, in: 6th International Work-
shop on Real Time Networks, 2007.

[22] M. Ashjaei, M. Behnam, G. Rodriguez-Navas, T. Nolte, Implementing
a clock synchronization protocol on a multi-master switched Ethernet
network, in: 18th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, 2013.

[23] M. Ashjaei, M. Behnam, P. Pedreiras, R. J. Bril, L. Almeida, T. Nolte,
Reduced buffering solution for multi-hop HaRTES switched Ethernet
networks, in: The 20th IEEE International Conference on embedded
and Real-Time Computing Systems and Applications, 2014.

31


