
The Nature and Content of Safety Contracts:
Challenges and Suggestions For a Way Forward

Patrick Graydon1

1School of Innovation, Design, and Engineering
Mälardalen University

Box 883, 721 23 Västerås, Sweden
+46.21.10.14.21 (voice), +46.21.10.14.60 (fax)

Iain Bate1,2

2Department of Computer Science
University of York

Deramore Lane, Heslington, York, YO10 5GH, UK
+44.1904.325572 (voice), +44.1904.325599 (fax)

Abstract—Software engineering researchers have extensively
explored the reuse of components at source-code level. Contracts
explicitly describe component behaviour, reducing development
risk by exposing potential incompatibilities early in the devel-
opment process. But to benefit fully from reuse, developers of
safety-critical systems must also reuse safety evidence. Full reuse
would require both extending the existing notion of component
contracts to cover safety properties and using these contracts in
both component selection and system certification. This is not
as simple as it first appears. Much of the review, analysis, and
test evidence developers provide during certification is system-
specific. This makes it difficult to define safety contracts that
facilitate both selecting components to reuse and certifying
systems. In this paper, we explore the definition and use of safety
contracts, identify challenges to component-based software reuse
safety-critical systems, present examples to illustrate several key
difficulties, and discuss potential solutions to these problems.

Keywords—Component-based software engineering, safety, con-
tracts, safety arguments, modular safety case

Category: Regular Paper

I. INTRODUCTION

Software engineering researchers have extensively ex-
plored the reuse of components’ implementations, usually
at source-code level. Researchers have proposed leveraging
component-based software engineering (CBSE) techniques
such as assume-guarantee contracts to lower the cost of
developing software for safety-critical systems [1], [2]. But the
cost of generating and checking certification evidence dwarfs
software implementation costs in such systems. Benefitting
fully from reuse requires incremental certification that reuses
as much safety evidence as practicable. Achieving incremental
certification using CBSE would require both extending the ex-
isting notion of component contracts to cover safety properties
and using these contracts in both component selection and
system certification. This is not as simple as it first appears:
many safety properties must play mutually-exclusive roles or
are attested to by context-specific evidence.

In CBSE, developers describe software components using
contracts [3]–[5]. Each contract describes a guarantee that
can be made about a component’s behaviour provided that an
assumption is satisfied. For example, a fuel level estimator
component might guarantee accurate output if sensors provide
it accurate and timely input. These contracts facilitate both se-
lecting components for a given application and reasoning about

the behaviour of compositions of components [4]. To facilitate
reuse, researchers participating in the SafeCer project [2]
propose defining safety contracts to describe components’
safety-related properties [5], [6]. These would help developers
to address development risk by selecting components that have
needed safety properties, avoiding surprises during later safety
analysis. Safety contracts are also meant to aid operational
risk assessment by documenting the properties each component
claims to have. Qualification of components would attest that
reusable safety evidence supports those claims. Unfortunately,
the nature of some safety properties and the evidence support-
ing them makes it difficult to define contracts that are useful
for both component selection and system certification.

In this paper, we build upon prior work [7] to explore
the definition and use of safety contracts. We use a running
example to illustrate subtle and surprising implications of
that definition. Our contribution comprises (a) identifying
challenges to using safety contracts to lower development cost
and (b) proposing solutions to those problems.

In Section II, we define safety contracts and discuss how
they might be used in system development and certification. In
Section III, we introduce our specimen system. In Section IV,
we illustrate how the role of safety contracts might change over
the course of system development. In Section V, we discuss the
contract content needed to support a component-based safety
argument and discuss the issues that this content raises. Finally,
in Section VI we present conclusions and recommendations for
safety contract structure and content.

II. THE DEFINITION AND ROLE OF SAFETY CONTRACTS

In this section, we present a vision for how safety contracts
might be used in system design and incremental certification.
While this vision comes from one particular project – Safe-
Cer [2], [5], [6] – it represents a simple, obvious combina-
tion of existing ideas on software contracts, component-based
software engineering, safety cases, and safety certification. It
is useful to explore the implications of such a vision before
proposing more complex approaches.

A. Components, Safety Evidence, and Contracts

In this work, we distinguish between component types and
component instances: the former is the reusable, non-system-
specific form of a component and the latter is a component
as instantiated in a specific system [5]. This distinction helps

1

Component

Safety argument
module

Describes the
behaviour of

Cites and
explains

Makes

Supports

Implementation

Source code

Design

Object code

Development artefacts

Unit test plan

Requirements

Safety requirements

. . .

Safety evidence

. . .

Unit test results

Operational history

Review results

Component contracts

Safety contracts

Assumptions

Guarantees

Fig. 1. Relationship between components, safety evidence, and contracts

to separate information that applies to multiple systems from
information specific to a single system. A component type
might be packaged and distributed as source code or as object
code. A component instance comprises distinct portions of the
system’s design, the software source code, and the object code
that will be deployed as part of a complete system.

Fig. 1 illustrates the relationship between safety contracts
and components. While a component comprises design, source
code, and object code, only the latter directly affects safety:
design and source code flaws matter only insofar as they
lead to object code flaws. Safety contracts must document
the behaviour of the object code running on the target micro-
processor. Source code and design properties are interesting
only as (i) means of predicting components’ behaviour during
selection and (ii) indirect evidence of object code behaviour.
Unfortunately, object code is rarely reused across systems.
Thus, certification will typically require a combination of
reused and system-specific safety evidence.

Component contracts describe the behaviour of each com-
ponent (both as a type and as an instance) in terms of assump-
tions and guarantees. Researchers have given the following as
examples of what contracts might specify [4], [8], [9]:

• If X is in [0, 10], then [output] Z is in [-∞, 50]
• Output X is always less than the sum of inputs Y and Z
• Calls to a component that reads and writes files must

follow the sequence (Open; (Read | Write)* ; Close)*

• The maximum dynamic memory usage is 100 bytes
• The WCET of the provided service A is 150 milliseconds
• Value errors on input port B do not affect output C

In the SafeCer component model, each component type
is associated with zero or more safety and non-safety con-
tracts [5]. When a component is instantiated in the context of a
particular system, it implicitly inherits the contracts associated
with its type. That is, the component type’s contracts become
the component instance’s contracts. Safety and non-safety
contracts might describe similar properties; the distinction is
whether the guaranteed property is traceable to a hazard.

B. Safety Contracts and Safety Arguments

To explore the role of safety contracts in incremental
certification, we examine how safety contracts could be used in

Main safety argument module

Safety argument
module for

component 1

Safety argument
module for

component n

Auxiliary
argument
module i

Auxiliary
argument
module m

. . .

Safety Argument
Contract (SAC) main–1

SAC main–n

SAC
main–m

SAC 1–i
SAC n–i

SAC n–m

System
testing
module

SAC main–S.T.

SAC
1–n

Fig. 2. Safety argument modules and contracts

CAN bus

Fuel gauge Warning lamp Fuel level sensor(s)

ECU 1 ECU 2

Fig. 3. Example Fuel Level Estimation System

a safety case [10], [11]. A safety case is ‘a structured argument,
supported by a body of evidence, that provides a compelling,
comprehensible and valid case that a system is safe for a
given application in a given environment’ [11]. Its purpose
is to organise and explain the safety evidence [10]. In some
domains, standards require the construction and evaluation
of a safety case [11], [12]. However, even where developers
write no safety argument, there is implicit logic linking safety
evidence to certification and the decision to put a system into
service [13], [14]. Investigating how safety contracts will be
used in incremental certification reveals necessary properties.

To facilitate reusing evidence, each component should be
associated with one or or more safety argument modules [5],
[6], [10]. Fig. 2 illustrates this arrangement. Each such ar-
gument module explains how, given the assumptions in each
component’s safety contracts, evidence shows that it meets
its guarantees. A main safety argument module presents the
system’s main safety claim and supports this with an argument
over system hazards [15]. Hazard management claims would
be broken down into claims about the properties of com-
ponents. Those claims would be supported by the argument
modules associated with those components. Safety argument
contracts [10] (not safety contracts) show how each module’s
assumptions are justified (by other components’ guarantees,
the system context, etc.) so that the guarantees can be trusted.

III. AN EXAMPLE SYSTEM: FUEL LEVEL ESTIMATION

We use a running example to make our discussion of safety
contracts more concrete. Our illustrative system is inspired
by a real system used to monitor fuel level in heavy road
vehicles [16]. Loss of engine power in such vehicles can make
them difficult to control, which would merit ASIL C according
to ISO 26262’s risk analysis scheme [12]. Fig. 3 illustrates

2

ECU 2

ECU 1

ADC driver

Sensor reader

Fuel level estimator

Output writer

C
om

m
un

ic
at

io
ns

 la
ye

r

Analog-to-Digital Converter (ADC)
(connected to fuel level sensor(s))

Input reader

Fuel level display

Fuel gauge driver

Warning
lamp driver

Fuel level as
voltage samples

Fuel level samples
as percentages

Conditioned fuel
level estimates

 Fuel level as voltage level
Conditioned fuel
level estimates

Conditioned fuel
level estimates

PWM Output
(Connected to
Fuel Gauge)

GPIO Output
(Connected to
Fuel Gauge)

M
es

sa
ge

C
om

m
un

ic
at

io
ns

 la
ye

r M
essage

Fuel level as
duty cycle

Fuel warning
as logic level

CAN
bus

Fig. 4. Software Components of Example System

the major hardware components of the fuel level estimation
system: (a) a fuel level sensor or sensors, (b) a microcontroller
(ECU 2) connected to the sensors, (c) a microcontroller (ECU
1) connected to ECU 2 by a controller area network (CAN)
bus, (d) a low-fuel warning indicator lamp, and (e) a fuel
gauge. Fig. 4 illustrates the system’s software components:

1) An ADC driver through which the system obtains digitised
samples of the signal from the fuel level sensor(s) though
the analog-to-digital converter (ADC)

2) A sensor reader component that periodically triggers the
ADC and produces fuel level estimates as percentages

3) A fuel level estimator that filters fuel level samples to
eliminate noise (e.g. from fuel sloshing in the tank)

4) An output writer that transmits fuel levels to other ECUs
5) The communications layer of the ECU platform
6) An input reader that receives estimates from ECU 2
7) A fuel level display component that periodically updates

the fuel gauge and warning lamp
8) A fuel gauge driver through which the software drives

pulse-width modulation hardware to drive the fuel gauge
9) A warning lamp driver through which the software controls

power to the warning lamp

ECU 1 and ECU 2 also implement other functions. A real-time
operating system sequences execution of components.

Variants of the system are used on several vehicles. Fuel
tank size and shape vary. Vehicles use diesel, petrol, or liquified
petroleum gas (LPG). LPG requires a different type of sensor
than diesel or petrol. Microcontroller models vary with storage
and speed needs and as manufacturers update offerings.

IV. THE LIFECYCLE OF A SAFETY CONTRACT

Fig. 5 illustrates a proposed incremental certification life-
cycle for CBSE [7], [17]. This is simply a standard safety-
related lifecycle (e.g. from ISO 26262 [12]) with additions for
component qualification. Ideally, component types would be
qualified so that assessors need check reused evidence only
once. In the proposed lifecycle, safety contracts would fulfil
a number of distinct roles and might undergo a related series
of changes. In this section, we explore what safety contracts
need to be to facilitate incremental certification.

System Design Phase

System Certification Phase

Component Instance
Qualification Phase

Component Type
Qualification Phase

Component
Selection Phase

Component Creation Phase

Concept Phase,
Including Hazard Analysis

(System-Level) Requirements

System Design

Detailed Hardware
Requirements

Detailed Design
(Hardware)

Hardware
Development

Detailed Software
Requirements

Detailed Design
(Software)

Software
Development Qualification of Hardware /

Software Component
Instance (In Context)

Software / Hardware
Component Type

Development

Qualification of Hardware /
Software Component Type

(Out of Context)

System Integration

Component Selection

System Verification and Validation

System Certification

Instantiation of Component
in System Context

Fig. 5. Phases of an incremental certification model for CBSE

Software must be maintained after a system is put into
operation. Space constraints preclude fully exploring the role
of safety contracts in maintenance (e.g. in component replace-
ment) here. However, that typical safety practice uses change
impact analysis to fake a rational process [18]; certification of a
changed system might differ only in that unimpacted evidence
need not be regenerated. We leave investigation of the role of
contracts in the maintenance phase for future work.

A. A Component Type’s Safety Requirements

Safety engineering is concerned with managing operational
risk (i.e. the risk of harm to humans or the environment, as
opposed to development risk). For example, developers of a
vehicle and its systems must manage the risk of accident
associated with loss of control of the vehicle. Typical safety
processes (such as that defined by ISO 26262 [12]) require
developers to (1) identify hazards, (2) analyse potential risk,
(3) develop safety requirements that manage risk, and (4) al-
locate these requirements to system components. Developers
must reason about how the behaviours of individual compo-
nents could contribute to hazards. But ‘hazard’ (like safety) is
irreducibly a system-level concept and component behaviour
that is a hazardous contribution in one system may be of little
consequence in another. For example, the fuel level estimator
component in Fig. 4 has neither mass nor energy. Only when
we consider (a) how the fuel level estimator’s behaviour might
misinform the driver about fuel level, (b) that a misinformed
driver might run out of fuel, and (c) that loss of engine
power makes some large vehicles uncontrollable do the safety
implications of the this software component become clear. The

3

lesson here is clear: it is imperative to evaluate the safety
implications of components in their full system context.

To facilitate CBSE, developers of a component type might
assume a set of safety requirements that might arise in some
systems. Developers building a component for use in a product
line might derive safety requirements from a product-line-
oriented causal analysis such as product line fault tree anal-
ysis [19]. Developers building a general-purpose component
might use a suitable safety analysis (e.g. a safety analysis for
operating systems [20]) or simply ask potential customers what
their applications require. In our example system, hazard and
causal analyses of a defined product line or even of example
systems selected to represent known variances would likely
yield all component-level safety requirements of interest. But
these techniques do not guarantee complete safety require-
ments. This observation reveals another lesson: component
type safety contracts are guesses about what might be required.

After identifying safety requirements, developers would
document them as contracts. Developers should endeavour to
record all assumptions. However, neither formal analysis nor
careful human enumeration can be guaranteed to reveal them
all: it is impossible to prove that a formal model does not
oversimplify the real world, and human software developers
cannot reliably enumerate the assumptions their software relies
on [21]. Failure to record and account for assumptions has
caused accidents [22]. Another lesson is clear: developers in-
stantiating a component cannot simply assume that if the stated
assumptions are satisfied, everything is fine. Some researchers
propose approaches based on reasoning about contracts as
if the sets of assumptions are complete (e.g. [4]). But the
assumption of completeness is unsupportable; in-context safety
analysis (as standards dictate) is essential for safety assurance.

Developers instantiating the component in a system should
perform a system-specific safety analysis and derive safety re-
quirements for the component instance. Where (a) an assumed
safety requirement satisfies a real derived requirement, (b) the
documented assumptions are satisfied, and (c) safety analysts
find no specific factors of the new context that undermine the
safety evidence, developers can reuse the component type’s
safety case module in the complete system safety case. Where
these conditions are not met, system developers will need to
supply additional, system-specific, safety evidence.

B. The Development Lifecycle

Fig. 5 depicts the main phases of an incremental certifica-
tion lifecycle for CBSE [6], [17]. During these phases, devel-
opers perform six component-related activities: (1) component
creation, (2) component selection, (3) system design, (4) com-
ponent type qualification, (5) component instance qualification,
and (6) system certification.

1) Component Creation: Developers create component
types to be instantiated either (i) in a particular system or
systems or (ii) in other, unknown systems (i.e. out of context).
A contract might represent the design requirements for the
component. For example, developers building our example
system might create contracts for its components and give these
to sub-teams for detailed design, instantiation, and unit testing.

2) Component Selection: Developers building a new sys-
tem might re-use appropriate component types selected from
a library. Developers must use component types’ contracts to
predict how component instances might behave, then select
components that are likely to provide needed functionality,
have acceptable safety properties, and meet any other ap-
plicable requirements. For example, developers building our
example system might search an in-house component library
and select a sensor reader component to reuse. An appropriate
component would have appropriate interfaces, be compatible
with the vehicle’s fuel level sensors, etc.

3) System Design: Developers must design a system
around the components they have selected. During design,
developers specify how components are connected, supply
parameter values for each component (if any), and assign
tasks to processors. Component instance contracts specify
both known behaviours and design targets such as execution
time budgets. The latter will evolve as engineers assess and
refine the system design. For example, developers building our
example system might supply parameters representing the fuel
tank size, fuel tank geometry, and fuel level sensor gain to the
sensor reader component. Developers might also specify code
size, stack size, and static data budgets for each component.

4) Component Type Qualification: Qualification attests that
a component type satisfies its safety contracts. Developers
supply evidence showing that guarantees are met provided that
assumptions hold; assessors confirm the evidence’s adequacy.
For example, reused components in our specimen system might
come complete with test plans and qualification might attest
that those test plans cover a specified set of requirements. If
those requirements include the safety requirements assigned to
the component instance, component type qualification might
satisfy safety assurance obligations related to test coverage.

5) Component Instance Qualification: A component type
contract holds only if the contract is used as directed. Com-
ponent instance qualification confirms that the component
type’s assumptions are satisfied in a specific context, and
thus that its guarantees hold in that context. For example,
suppose that developers building our example system used a
sensor reader component from an in-house component library.
Component instance qualification would attest that developers
had checked declared assumptions, systematically searched
for violations of unstated assumptions, considered any new
hazardous contributions the component might introduce, and
found no unacceptable issues.

6) System Certification: Developers must show that the
whole system meets its safety obligations. Component instance
contracts represent derived safety requirements. Developers
must use component qualification evidence and system-specific
safety evidence to show that these requirements are met.
For example, suppose that developers of our example system
reused the sensor reader component at the source code level on
a new model of microcontroller. Because the component was
recompiled for a new target (even if its requirements and code
did not change), developers must re-run its unit tests on the
new microcontroller. This evidence, together with integration
testing, software testing, and system testing evidence, would
form part of the complete system safety case.

4

7) Extending Existing Systems: Section IV-B presents com-
ponent type creation as though components are always built
from scratch. In practice, developers will repurpose existing
code to create components. That is, they will note a wider need
for some functionality that they have already developed for
a specific application, adapt that existing implementation for
more general use, and package and deploy it as a component
type. For example, developers might create a sensor reader
component from code used successfully in prior products.

C. The Changing Role of Safety Contracts

The lifecycle described in Section IV-B makes a safety
contract play four roles: (1) a means of encapsulating portions
of the safety case; (2) a target for component type design; (3) a
placeholder to facilitate system design; and (4) an indicator of
expected performance. In this section, we discuss these roles
and what it means to perform them adequately. Some roles
are more crucial to safety than others. As we will show by
example in later sections, creating contracts that perform all
of these roles simultaneously is not straightforward.

1) A Means of Encapsulating Portions of the Safety Case:
Perhaps the main role of a safety contract is that of encap-
sulating portions of the safety case. During system design,
verification, validation, certification, and maintenance, encap-
sulation is critical to ensuring that the argument structure is
both comprehensible and robust to expected changes. A ‘good’
set of safety contracts would address several challenges:

a) Communicating clearly and accurately. If component in-
stance safety contracts are wrong or can be misinterpreted,
assessors might certify a system as safe when it is not.
For example, if a reasonable person reading the sensor
reader component type’s contract thought that it produced
no output in the case of a hardware error when in fact
it produced saturated-high output, safety analysis might
miss important contributions to system hazards.

b) Exposing the properties needed to argue safety. If a
component type contract does not guarantee a property
that system safety relies on, system developers face extra
work. For example, if the fuel level estimator component
type’s contract did not specify a response to input over
100%, developers instantiating that type in a system must
specify this behaviour and provide appropriate evidence.

c) Facilitating a compact, comprehensible argument. Divid-
ing the argument into component-related modules must
not obscure the overall safety story. For example, engi-
neers analysing contracts for separate speed and stability
control systems in a car must not overlook the safety
implications of feature interaction when the vehicle is
driven on a slippery road surface. Moreover, since there
is no known absolute scale for argument or evidence
strength (see Section V-F), the argument must be compact
enough to facilitate human understanding of how evidence
quality affects confidence in safety claims.

d) Being robust to change. Contracts should encapsulate
components’ evidence and argument to facilitate substitu-
tion. For example, a sensor reader component type might
use triple sensors. If its contract guarantees triple modular
redundancy, designers cannot later substitute an ultra-
reliable single sensor without revising the argument.

2) A Target or Placeholder for Design: Safety contracts
play the role of both targets for component type design and
placeholders for system design. Contracts record the detailed
software requirements that system-specific components will
later satisfy; these requirements serve as input to the Detailed
Design (Software) phase shown in Fig. 5. For example, a
safety contract for the fuel level estimator component in our
sample system might specify (i) the filter function to be used,
(ii) the maximum response time, (iii) how the component
should react if an input sample is missing or out of range, and
(iv) budgets for stack usage and the code and data segments.
These might serve the component developer as a target, but
system designers could also use this information to determine
whether, if the instantiated components keep to their memory
budgets, the software will fit into memory.

A safety contract serving as a design target or placeholder
is subject to change. For example, developers might find a
time or resource target impossible or unexpectedly difficult
to meet. The developers of a speed control might discover
the possibility of interaction with traction control through a
safety analysis performed after both components have been
designed, leading to a new requirement constraining speed
control functionality when stability control is intervening. Be-
cause design placeholders change and depending on unstable
contracts might lead to rework, developers must be able to
distinguish stable contracts from design placeholders.

3) An Indicator of Expected Performance: The final role
that safety contracts might play is as an indicator of expected
performance. For example, suppose that contracts for the
versions of the sensor reader component in the in-house
component library specify execution time. Suppose further that
this component is delivered as source code and compiled with
other modules into an executable for the target system. The
actual execution time will depend upon the target architecture,
compiler, and compiler settings, and other factors. Any upper
bound on execution time for the component type must be
approximate, generous, or both.

However, developers selecting components for a new sys-
tem could use data about execution times on well-known
platforms to approximate the execution time of component
instances in their system. Returning to our example, contracts
for components in the library might specify execution time
limits for combinations of compiler, compiler setting, micro-
controller model, and microcontroller settings that have been
used in earlier systems. While not useful for certification –
developers instantiating the component in a new system would
need new evidence establishing its worst case execution time –
contracts expressing weak execution time limits could help to
reduce the development risk of selecting a component that later
testing would reveal to be too slow. The lesson here is that,
to facilitate both component selection and safety arguing, we
must be able to distinguish between indicative (low confidence)
contracts and higher-integrity contracts.

V. CONTRACTS REFLECTING SAFETY REQUIREMENTS

To fill the roles defined in Section IV-C, safety contracts
must record assumed safety requirements, derived safety re-
quirements, and anticipated safety requirements. To explore
the issues involved in doing so, we first consider the sorts of

5

component properties that safety arguments might depend on
and then explore how contracts might express the properties
that are relevant to that logic.

Consideration of the ways in which software is known
to fail suggests that an enumeration of potential software
contributions to system hazards would likely cover properties
including: (i) nominal functional behaviour, (ii) resource usage,
(iii) timing properties, (iv) platform assumptions, and (v) fail-
ure modes, propagation, and isolation. We examine each in
turn, identifying issues related to specifying these properties
in contracts and discussing the implications for safety-critical
CBSE as researchers currently envisage it [5], [6].

A. Nominal Functional Behaviour

A component might contribute to a hazard by computing
the wrong function. Both the identification of failure contribu-
tions and arguments about management of failure contributions
will require reasoning about the functional behaviour of com-
ponents. This might be expressed in terms of pre-conditions
and post-conditions or valid operation sequences [5]. Func-
tional behaviour might be described informally (e.g. using
natural language text), formally (e.g. in Z [23] or Othello [9]),
or a mix of the two.

1) Related Issues: Developers designing a component type
will describe aspects of its behaviour that they think are
important. When the component type is intended for a specific
system, these designers will be aware of what is important
and what is not important in that system’s context. When a
component type is designed for out-of-context use or used
in a new context, the component type designer’s notion of
what aspects of behaviour are important might differ from
those of the application developer. For example, the fact that a
component temporarily suspends all interrupts might be utterly
unremarkable in some contexts and important in others.

Some of the evidence supporting functional behaviour
contracts is system-specific. For example, functional tests
must use the chosen compiler and target computer if they
are to reveal defects arising from compiler bugs or incorrect
compiler settings. Even if a component’s source code, safety
requirements, and test plan do not change from platform to
platform, developers must re-execute tests to confirm that the
compiled object code makes the target behave as specified.

2) Implications: A component type’s contracts might de-
scribe behaviour that is unremarkable in some systems but
unsafe in others. While system-specific safety assessment (see
Section IV-A) should reveal these, belated discovery that a
component is unsuitable necessitates rework. To minimise the
related development risk, component type developers should
document characteristics that are plausibly important in some
use scenarios even if they are not important in the context(s)
in which the component type will be first instantiated.

When a component type will be used on multiple platforms,
its functional behaviour contracts indicate what what instances
are expected to do, not what reusable evidence shows that
they do. The contract mechanism must make this distinc-
tion – and the need to re-run functional tests on the target
hardware – clear to developers. One way to do this might
be to associate each component with at least two argument

Instantiation

Main argument module

Instance argument module
for component n

Pattern argument module
for component n

Certified argument module for component n

SAC main–n

Direct linkage

Full set of component’s
safety properties

Full set of component’s
safety properties

Properties supported by
context-neutral evidence

Evidence checked during type qualification

System-specific evidence

Direct
linkage

Fig. 6. Multiple modules distinguish argument and evidence checked during
component type certification from argument and evidence checked later

modules: (1) a certified argument module featuring only with
properties checked during component type certification and
(2) an instance argument module dealing with the complete set
of component contracts. The latter would contain a safety argu-
ment pattern [10], with annotations indicating which pieces of
evidence need to be supplied by the developer instantiating the
component. For example, claims about test plan requirements
coverage and structural coverage might be included in the
certified argument module (and checked during component
certification) because they not system-specific. The instance
argument module might simply refer to the certified module
for support of these properties. However, the behaviour claims
themselves might appear only in the instance argument module,
where they would be supported (in the context of the coverage
claims) by testing evidence marked to indicate that developers
should provide this evidence by executing the tests. Fig. 6
illustrates this approach.

Note that some test plan properties are application-specific.
For example, boundary value coverage of sensor reader’s test
plan depends on the ADC’s fmax and fmin properties.

3) Example Contracts: Nominal functional behaviour of
component types and component instances can be described
using typical contracts. For example, sensor reader might have
the following contract:

Assume: Platform assumptions. (See Section V-D.)
Guarantee: Output fuel level fo is related to the input

ADC sample fi, the sample value
representing an empty tank fmin, and the
sample representing a full tank fmax as
specified by Equation 1.

Confidence: Backing evidence will be appropriate for
ASIL C. (See Section V-F.)

Status: Design target (possibly subject to change).

fo = max

(
0,min

(
100,

⌊
100× fi − fmin

fmax − fmin

⌋))
(1)

Sensor reader is distributed as source code. Because the
target microcontroller and compiler will vary when the com-
ponent is instantiated, the unit tests backing this contract
must be rerun. The safety argument module associated with

6

the sensor reader component type should be a pattern [10]
with the unit test evidence marked as requiring instantiation.
Developers instantiating the component would conduct the unit
tests, remove the triangle decoration, and assess the completed
argument. This logic depends on properties of the unit test
plan, including requirements coverage. That coverage might
have its own contract:

Assume: None.
Guarantee: Unit test plan TP-13A achieves coverage

of requirements SUR-12 and SUR-16.
Confidence: Backing evidence will be appropriate for

ASIL C. (See Section V-F.)
Status: Confirmed (unlikely to need higher SIL).

Requirements coverage evidence might come from in-
spections that need not be repeated when the component is
recompiled for a different target. To benefit from qualification,
the sensor reader component type’s functional behaviour and
test plan coverage contracts might be backed by evidence in
separate arguments: one that is distributed as a pattern, and
one that is delivered as a complete, verified argument.

B. Resource Usage

Identifying failure contributions and arguing about their
management might require reasoning about components’ re-
source usage. For example, developers might need to know
limits on a component instance’s usage of (a) program text,
(static) data, and stack memory, (b) permanent storage (e.g.
disk or flash memory), and (c) energy (if the system is power-
constrained).

1) Related Issues: The amount of memory a component
instance uses is not solely a function of its design and source
code. Compiling the same source code with a different com-
piler, for a different microprocessor, or with a different optimi-
sation setting might produce program text of a different length.
A stack variable of type int in C might be as small as 16
bits but is often 32 bits and may be larger. Compilers pad data
structures to comply with platform alignment requirements.
Typical programming language rules do not forbid compilers
to use arbitrary amounts of memory for purposes other than
storing the variables, constants, and parameters specified in the
source code. Thus, while we must know the memory consumed
by a component instance for which we have object code, we
cannot, in general, determine an upper bound for the amount
of memory that a component type distributed as source code
might consume when instantiated on an arbitrary platform.

2) Implications: Contracts for some resource usage prop-
erties might change during component instantiation. Contracts
guaranteeing a component type’s performance when instanti-
ated under very strict conditions might serve to indicate com-
ponent instances’ expected performance (see Section IV-C3).

When an implementation is available, system designers
could replace the estimated figure with a more considered one.
If this contract is to serve to encapsulate portions of the system
safety case (see Section IV-C1), developers would also supply
appropriate evidence.

3) Example Contracts: The developers of component type
X might specify its resource usage based on experience. For
our example sensor reader component type:

Assume: Sensor reader is compiled for a Freescale
MPC 5554 using GCC 4.2 with no
optimisation (-O0).

Guarantee: Sensor reader uses no more than 4 KiB of
the program text segment.

Confidence: Informative only.
Status: Confirmed (based on a completed product).

When sensor reader is instantiated, a related contract might
serve as a placeholder to facilitate system design:

Assume: Nothing.
Guarantee: Sensor reader uses no more than 4 KiB of

executable ecu1fl.elf’s text segment.
Confidence: Informative only.
Status: Design target (likely to change).

Note that memory usage evidence generally comes from tools
that can analyse entire executables as easily as their compo-
nents in isolation [24]. It makes more sense for safety cases
to cite evidence of executables’ memory usage than to argue
over their components’ memory usage. Developers should not
specify high confidence for properties that will not be backed
by evidence in the final, complete system safety case.

C. Timing Properties

Identifying failure contributions and arguing about their
management might require reasoning about timing properties.
A component instance might contribute to a system hazard if
(i) its inputs are late, causing knock-on effects; (ii) its inputs
that are samples of real-world values were taken too long ago,
causing it to produce incorrect output; (iii) it delivers its output
late; (iv) it consumes processor time that has been allocated
to another component; (v) its execution is interrupted at the
wrong time (e.g. during an operation that must be atomic);
(vi) its execution causes or masks events that affect other
components (e.g. disables interrupts); or (vii) the infrastructure
does not execute it at the right time. Avoiding these problems
will require defining and satisfying requirements such as [25]:

• Timing and timeliness requirements on inputs and outputs
• Requirements on when the component is executed (e.g.

frequency, offset, and/or conditions)
• Lower bound on Best Case Execution Time (BCET)
• Upper bound on Worst Case Execution Time (WCET)
• Interrupt handling and/or masking behaviour
• Synchronisation requirements (e.g. assuming one core,

using synchronisation primitives, or disabling interrupts

1) Related Issues: Software execution time might depend
on properties that vary across the systems a component might
be instantiated in. Compiling the same source code with a
different compiler (even for the same platform) might re-
sult in object code differences that affect execution time.
Optimisation settings can affect runtime. Even a component
distributed as object code might run faster or slower in different
contexts. For example, two applications might use processors
that execute instructions in a functionally identical way but
have different pipelines, branch prediction features, or caches.
Identical processors might be configured with different clock
rates or cache settings. Safety often requires knowing how
long software will take to execute. Achieving target levels of
processor utilisation often requires knowing this precisely [25].
Unfortunately, for the reasons given above, we cannot precisely
know the execution time of a component type.

7

2) Implications: A wide range of factors affect execution
time. It is unlikely that developers could specify assumptions
so precisely and completely that the execution time evidence
backing WCET guarantees would hold in any other system.
As a result, component type WCET contracts should not claim
high confidence even where the assumptions are satisfied.

As with memory usage, component type WCET contracts
might be the basis for component instance contracts that serve
as design placeholders. Given that WCET evidence is not
typically reusable (for the reasons discussed above), it makes
little sense use WCET contracts as intermediate claims in a
safety argument about timing (see Section IV-C1). Moreover,
if WCET evidence must be collected anew each time a
component is instantiated, it might make more sense to gather
evidence about threads’ WCET than components’ WCET.

3) Example Contract: Component type contracts for
WCET might serve to indicate component instances’ expected
performance. These would follow the pattern for resource
usage given in Section V-B3. For our example sensor reader
component type:

Assume: Sensor reader is compiled using GCC 4.2
with no optimisation (-O0), executed on a
Freescale MPC 5554 at 200±4 megahertz
with caches disabled, and not interrupted.

Guarantee: The WCET of sensor reader’s UpdateFL
task is not more than 1 millisecond.

Confidence: Informative only.
Status: Design target (subject to change).

Suppose that a developer is building a new system and
wishes to use this component. However, the new system will
use a newer but similar model microcontroller. The devel-
oper would have to infer from existing, informative contracts
whether the existing component’s performance is likely to
be good enough in the new context. Developers who judge
the development risk of the component turning out to be too
slow in practice to be high could address this risk through a
risk reduction activity such as timing a prototype instantiation
compiled for the new target.

D. Platform Assumptions

Any guarantee that a component makes about behaviour
and timing will depend upon assumptions about the platform.
For example, assumptions about instruction set architecture
might underpin a WCET guarantee. Assumptions about in-
struction set architecture might even underpin functionality
guarantees if the component’s source code includes inline
assembly code. Reasoning about safety argument module
contracts might require information about:

• Processor type (e.g. instruction set and number of cores)
• Processor configuration (e.g. clock rate, cache enable, and

cache lines locked)
• Other hardware, its configuration, and its performance

(e.g. the existence of an digital to analog converter, its
hardware address, and its conversion rate)

• Operating system configuration or services

1) Related Issues: Some platform assumptions will un-
derpin many, most, or all contracts for a given component.
For example, the component type contracts illustrated in

Section V-B2 and Section V-C2 both specify a compiler and
compiler settings. Our description is necessarily brief, but a full
specification of relevant settings might be lengthy. Including
such long detailed assumptions could bloat contracts, making
them difficult for humans to read and understand.

2) Implications: A shorthand mechanism for denoting a
set of assumptions might make contracts more readable. This
would allow a contract to signify assuming several related
properties using one convenient identifier.

3) Example Assumptions: Developers might specify plat-
form assumptions as part of a statement of a component
type’s intended applicability. This specification might be as
simple as a list of assumptions. For example, the sensor reader
component’s assumptions might include:

• PA1: A float-type fuel-level sensor is connected to an
8+-bit, 10+ kilohertz ADC that can be sampled through
a component exporting the ADCSampler interface.

• PA2: The target microcontroller is a uniprocessor.
• PA3: No interrupt handler will alter memory in the

portions of the text segment, data segment, and stack
associated with sensor reader.

E. Failure Modes, Propagation, and Isolation

Identifying failure contributions and identifying system
hazards will depend upon knowing both (1) how each compo-
nent might fail and (2) how each component might propagate
failures. A description might cover:

• Means of preventing, blocking, or tolerating interference
(e.g. memory overwrites) [26], [27]

• A definition of ‘abnormal’ input data and a description of
the component’s reaction to it

• A definition of potential abnormal outputs and a descrip-
tion of the cases under which they might occur

• A description of anticipated hardware failures and the
component’s reaction to these

1) Related Issues: All analyses of how a component might
contribute to a system hazard are system-specific: ‘hazard’ is
defined in terms of the system’s impact on the world. However,
some behaviours (e.g. memory overwrites) are considered
failures and would contribute to hazards in nearly all systems
(barring those in which software is wholly irrelevant to safety).
Component type contracts might cover these behaviours.

2) Implications: Evidence that all relevant failure contribu-
tions have been included must be system-specific. It would be
helpful if the analysis providing this could leverage existing
knowledge about specific problems to lower analysis cost.

3) Example Contracts: Means of preventing interference
might be documented as contracts. For example, our sensor
reader component might have the following contract:

Assume: Nothing.
Guarantee: Sensor reader will write to the stack only

as its interface and the ABI dictate.
Confidence: Backing evidence will be appropriate for

ASIL C. (See Section V-F.)
Status: Confirmed (generally necessary).

Evidence that source code has been mechanically verified
to conform to the SPARK language rules [28], [29] might

8

show that it does not violate memory constraints. Failure
modes and propagation could be described using an existing
notation such as the Failure Propagation and Transformation
Notation (FPTN) [30] or the Architecture Analysis and Design
Language (AADL) Error Model Annex [31].

F. Confidence

Some of the properties above, like WCET, cannot be
established beyond doubt [25]. As a result, (1) contracts must
specify the confidence with which components guarantee these
properties, (2) components’ safety evidence must justify the
specified confidence, and (3) system developers must confirm
that the specified confidence is sufficient given the potential
consequence of not satisfying the guarantee. Researchers have
proposed and practitioners use several different means of
communicating confidence [32]:

• Safety Integrity Levels (SILs). Many standards define
SILs and use these (roughly) as a metric for confidence:
developers determine the potential impact of a failure,
define appropriate SIL levels for system elements, and
supply the forms of safety evidence dictated by SIL level.

• Distributions of Failure Rates. Some researchers propose
modelling confidence in safety properties using statistical
distributions of dangerous failure rates [32], [33].

• Bayesian Belief Levels. Researchers have proposed using
Bayesian Belief Networks (BBNs) to model and reason
about uncertainty in safety claims [32], [34]–[38].

• Baconian Probabilities. Other researchers favour mod-
elling uncertainty using Baconian (as opposed to Pas-
calian) probability [32], [39]–[41].

1) Related Issues: Unfortunately, none of these is a perfect
solution [32]. SIL-based approaches have several drawbacks.
First, there is no evidential basis for the logic that two SIL x
components make a SIL x + 1 component [32]. (One might
use a joint failure distribution to make a claim about failure
rates, but that is different.) Second, because the meaning of
‘safety’ changes from system to system and standards typically
allow developers and assessors to agree arbitrary means of
compliance, it is unclear from a SIL x designation what has
been done and what confidence can be placed in a reused
component [42]. Third, because standards define SILs, safety
processes, and terms such as ‘safety’ and ‘fault’ differently,
frustrating cross-domain reuse [43].

Because it is generally impractical to determine the distri-
bution of failure rates for highly reliable software [44], [45],
distributions of failure rates and BBNs based on them generally
rely on expert opinion [32], [46]. While numbers give the
impression of precision, reliance on dubious data creates a
danger of producing “superficially plausible nonsense” [46].

Confidence concepts based on Baconian probability can
help to identify threats to confidence [39], [41]. Some re-
searchers have suggested specifying confidence in terms of
the number of threats to a claim addressed [40], [41]. How-
ever, knowing that three of four identified threats have been
addressed is only a measure of confidence if we know that
there are no other threats [32].

2) Implications: We cannot avoid specifying confidence
and no existing means of doing so is well-suited to all reuse

scenarios. Given the familiarity of the SIL concept, many
developers will want to specify confidence using SILs. Others
will want to use component qualification evidence to help
show conformance to a standard that uses SILs. To facilitate
this use and help developers to avoid the associated pitfalls,
safety experts might (1) define a domain-neutral SIL scale in a
standard for component qualification and (2) publish guidance
on accepting such qualifications as evidence of conformance
to the relevant objectives of popular standards.

3) Pattern and Example: In Section V-A3, we used ISO
26262 ASIL levels [12] as a rough indicator of the quality of
evidence underpinning functional behaviour contracts. In our
example system, which is meant to conform to ISO 26262,
ASIL might make a flawed but serviceable confidence metric:
developers in one organisation, following one standard as
reified in their in-house policy manual, will tend to use the
same kind of evidence for each type of property at each ASIL.

VI. CONCLUSIONS

Researchers propose leveraging Component-Based Soft-
ware Engineering techniques to lower the cost of developing
safety-critical software systems [2]. In this paper, we have
explored the roles that assume–guarantee contracts would play
in such reuse and the requirements such contracts must satisfy.
In doing so, we have revealed several insights about such
contracts that have not been documented previously:

• Only in a specific system’s context can we say which of a
component’s contracts are safety related. Safety engineers
distinguish safety requirements from others to treat them
more rigorously. We propose annotating contracts with a
confidence specification to facilitate that distinction.

• Functional test evidence must be regenerated when com-
ponents are recompiled. We propose associating compo-
nents with both pattern and certified argument modules.
Test plan properties could be specified in the former and
qualified with the component type. The pattern module
could show developers how to cite test results after they
have run the tests on the target.

• There are properties such as memory usage and execution
time whose role and meaning change over the develop-
ment lifecycle. Component type contracts specifying these
can aid component selection but cannot be guaranteed to
the degree required for system certification. These distinct
roles must be highlighted to avoid confusion. We propose
associating each contract with confidence and status fields
that indicate how much it can be trusted at any time.

• Properties such as memory usage and execution time
are often the subject of speculation during early design;
developers make guesses and then revise these as concrete
data becomes available. It must be clear to developers
which contracts are stable and which might be revised.
We propose a status property of contracts to clarify this.

• Some assumptions (e.g. about the platform) might under-
pin several guarantees. We propose a shorthand notation
for common assumptions to make them more readable.

• Because safety is a system property, developers must
assess reused components’ contributions to each system’s
hazards. We propose that the component instance qualifi-
cation process include system-specific hazard and causal

9

analysis that take existing contracts’ insights into account
where doing so speeds the process.

• While many crucial safety properties cannot be ‘proven’,
no existing means of specifying confidence is ideally
suited to CBSE for safety-critical software. We propose
further research into reliably communicating confidence.

ACKNOWLEDGMENT

The work was funded by the Swedish Foundation for
Strategic Research (SSF) as part of the SYNOPSIS project
and EU’s Artemis funded SafeCer projects.

REFERENCES

[1] J. L. Fenn, R. D. Hawkins, P. J. W. Williams, T. P. Kelly, M. G. Banner,
and Y. Oakshott, “The who, where, how, why and when of modular and
incremental certification,” in Proc. IET Int’l Conf. on Sys. Safety, 2007.

[2] SafeCer. (2013, June) Safety certification of software-intensive systems
with reusable components. [Online]. Available: http://www.safecer.eu

[3] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[4] A. Cimatti and S. Tonetta, “A property-based proof system for contract-
based design,” in Proc. EUROMICRO Conf. on Software Engineering
and Advanced Applications, 2012, pp. 21–28.

[5] J. Carlson, C. Ekelin, J.-L. Gilbert, Á. Herranz, and S. Puri, “Generic
component meta-model, v. 1.0,” SafeCer, Report D2.2.4, 2012.

[6] P. Graydon, I. Bate, L.-O. Berntsson, O. Bridal, J. Carlson, R. Land,
A. Leitner, H. Martin, and B. Winkler, “Nature and derivation of safety
contracts, v. 1.1,” SafeCer, Report D2.3.2, 2013.

[7] P. Graydon and I. Bate, “Thoughts on the nature and content of safety
contracts,” in Proc. Int’l Symp. on High Assurance Systems Engineering
(HASE), Miami, FL, USA, January 2014, fast abstract paper.

[8] P. Böhm, J. Carlson, P. Conmy, C. Ekelin, J.-L. Gilbert, T. Gruber,
Á. Herranz, and A. Martelli, “Specification of the requirements on the
generic component model, including certification properties and safety
contracts,” SafeCer, Report D2.2.1 & D2.2.2, 2012.

[9] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta, “Validation of require-
ments for hybrid systems: A formal approach,” ACM Transactions on
Software Engineering and Methodologies (TOSEM), 2012, to appear.

[10] K. Attwood et al., GSN Community Standard Version 1. York, UK:
Origin Consulting Limited, November 2011.

[11] Def. Stan. 00-56, Safety Management Requirements for Defence Sys-
tems, Issue 4. United Kingdom: Ministry of Defence, June 2007.

[12] ISO 26262:2011, Road Vehicles — Functional Safety. International
Organization for Standardization, 2011.

[13] P. J. Graydon and T. P. Kelly, “Using argumentation to evaluate software
assurance standards,” Information and Software Technology, vol. 55,
no. 9, pp. 1551–1562, 2013.

[14] C. M. Holloway, “Making the implicit explicit: Towards and assurance
case for DO-178C,” in Proc. Int’l Sys. Safety Conf. (ISSC), 2013.

[15] P. Conmy and I. Bate, “Assuring safety for component based software
engineering,” in Proc. Int’l Symp. on High Assurance Sys. Eng. (HASE),
2014, pp. 121–128.

[16] O. T. Jaradat, P. Graydon, and I. J. Bate, “The role of architectural
model checking in conducting preliminary safety assessment,” in Proc.
In’l Sys. Safety Conf. (ISSC), 2013.

[17] S. Björnander et al., “A generic process model for integrated certifi-
cation and development of component-based systems, v. 1.1,” SafeCer,
Report D2.1.1, 2011.

[18] D. L. Parnas and P. C. Clements, “A rational design process: How and
why to fake it,” IEEE Trans. on Software Eng., vol. 12, no. 2, pp.
251–257, February 1986.

[19] J. Dehlinger and R. R. Lutz, “Software fault tree analysis for product
lines,” in Proc. Int’l Symp. on High Assurance Sys. Eng. (HASE), 2004.

[20] P. M. Conmy, “Safety analysis of computer resource management
software,” Ph.D. dissertation, University of York, York, UK, 2006.

[21] M. Spiegel, P. F. Reynolds, Jr., and D. C. Brogan, “A case study of
model context for simulation composability and reusability,” in Proc.
Winter Simulation Conf., 2005.

[22] Ariane 501 Inquiry Board, Ariane 5 Flight 501 Failure: Report by the
Inquiry Board, Paris, France, July 1996.

[23] J. Spivey, The Z Notation: A Reference Manual, 2nd ed. Prentice Hall,
2001.

[24] AbsInt, “StackAnalyzer: Stack usage analysis,” Web page:
http://www.absint.com/stackanalyzer/index.htm, last checked 24
March 2012.

[25] P. Graydon and I. Bate, “Realistic safety cases for the timing of
systems,” The Computer Journal, 2013, in press.

[26] P. J. Graydon and T. P. Kelly, “Assessing software interference manage-
ment when modifying safety-related software,” in Proc. Int’l Conference
on Computer Safety, Reliability, and Security (SAFECOMP) Workshops.
Springer, September 2012, pp. 132–145.

[27] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance,” Langley Research Center, Technical report
NASA/CR-1999/209347, 2000.

[28] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

[29] AdaCore, “SPARK Pro,” Web page: http://www.adacore.com/sparkpro/.
[30] P. Fenelon, J. A. McDermid, M. Nicholson, and D. J. Pumfrey, “Towards

integrated safety analysis and design,” SIGAPP Applied Computing
Review, vol. 2, no. 1, pp. 21–32, March 1994.

[31] SAE AS5506/1, SAE Architecture Analysis and Design Language
(AADL) Annex. SAE, 2006, vol. 1.

[32] P. J. Graydon, “Uncertainty and confidence in safety logic,” in Proc.
Int’l Sys. Safety Conf. (ISSC), 2013.

[33] R. E. Bloomfield, B. Littlewood, and D. Wright, “Confidence: Its role
in dependability cases for risk assessment,” in Proc. Int’l Conf. on
Dependable Sys. and Networks (DSN), 2007, pp. 338–346.

[34] A. Ayoub, J. Chang, O. Sokolsky, and I. Lee, “Assessing the overall
sufficiency of safety arguments,” in Proc. Safety-Critical Sys. Symp.
(SSS), 2013.

[35] E. Denney, G. Pai, and I. Habli, “Towards measurement of confidence
in safety cases,” in Proc. Int’l Symp. on Empirical Software Engineering
and Measurement (ESEM), 2011.

[36] B. Littlewood and D. Wright, “The use of multi-legged arguments to
increase confidence in safety claims for software-based systems: a study
based on a BBN analysis of an idealised example,” IEEE Trans. on
Software Eng., vol. 33, no. 5, pp. 347–365, May 2007.

[37] W. Wu and T. Kelly, “Combining Bayesian Belief Networks and the
Goal Structuring Notation to support architectural reasoning about
safety,” in Proc. Int’l Conf. on Computer Safety, Reliability, and Security
(SAFECOMP), 2007, pp. 172–186.

[38] X. Zhao, D. Zhang, M. Lu, and F. Zeng, “A new approach to assessment
of confidence in assurance cases,” in Proc. Int’l Conf. on Computer
Safety, Reliability, and Security (SAFECOMP), 2012.

[39] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A new approach
to creating clear safety arguments,” in Proc. Safety-Critical Sys. Symp.
(SSS), 2011, pp. 3–23.

[40] J. A. McDermid, “Risk, uncertainty and software safety,” in Proc. Int’l
Systems Safety Conf. (ISSC), 2008.

[41] C. B. Weinstock, J. B. Goodenough, and A. Z. Klein, “Measuring
assurance case confidence using Baconian probabilities,” in Proc. Wkshp
on Assurance Cases for Software-Intensive Sys. (ASSURE), 2013.

[42] F. Redmill, “Safety integrity levels — theory and problems,” in Proc.
Safety-critical Sys. Symp. (SSS), 2000.

[43] V. Manni et al., “Baseline for the common certification language,”
Open Platform for EvolutioNary Certification Of Safety-critical Systems
(OPENCOSS), Report D4.1, 2012.

[44] R. W. Butler and G. B. Finelli, “The infeasibility of experimental
quantification of life-critical software reliability,” in IEEE Trans. on
Software Eng., 1991, pp. 66–76.

[45] B. Littlewood and L. Strigini, “Validation of ultrahigh dependability
for software-based systems,” Comm. ACM, vol. 36, no. 11, pp. 69–80,
1993.

[46] B. Littlewood, “Dependability assessment of software-based systems:
State of the art,” in Proc. Int’l Conf. on Software Eng. (ICSE), 2005,
pp. 6–7, invited talk.

10

