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ABSTRACT

The solution to the complex nature of developing software is software engineering.
Software engineering provides techniques for structured design, formal- and informal
analysis, and software metrics. The part of software engineering concerned with high-
level design and analysis is called software architectures. The objective of
architectural analysis is to verify quality requirements on software. It can be applied
on any level in the design but it focuses on the structure of the software. While the
architecture provides a high-level abstraction of the software, divergences between
the designed system and the requirements can be detected early in the design phase.
However, the structure of the software alone does not always provide enough
information in order to analyze all requirements put upon a software system.
Additional information about the software construction is provided by different
architectural views. The number of views, and their contents varies depending on the
system domain and the required quality properties to analyze.

In this report, the state of the art in the field of software architectures is described.
The survey is focused on software architectures for real-time systems but many of the
described techniques can be applied to general software systems.
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1 Introduction

The number of projects in industry developing software is congtantly increesing. Software is
not only replacing old and well-established technologies, but aso increasing in Sze and
complexity. To manage the complexity, engineering methods for condructing software
needed, i.e. software engineering. Software engineering has been established as a broad
discipline that covers topics ranging from requirements capture, design, implementation, and
software metrics, to maintenance, verification and vaidation. An established engineering
practice is taken for granted in many engineering disciplines but not in the software
community. In order to be considered an engineering practice, we must be able to construct
models that can be analyzed and verified. Moreover, design methods are needed including
established techniques that have been proven successful as well as tools supporting the
methods. The part of software engineering that focuses on high-level design and andlyss is
cdled software architectures.

Edsger Dijkstra pointed out in a paper from 1968 the importance of partitioning and
dructuring software, in contrast to just focusing on programming to produce the correct
functiondlity [dijk68]. This is what software architecture, and software architecturd analyss
is about as it deds with how to structure a software sysem and how to evauate that
structure with respect to different quality properties. The interest in the software architecture
fiedd has increased lately due to the increased functiondity provided by software systems,
the increased Sze and complexity, and the increased cost of developing and maintaining
software products. Today, industry is aware of the benefits of being able to anadyze and
verify software congructions in an early phase of the development process. If a software
development project diverges from the functiond requirements or the qudity requirements,
and if those divergences are not detected early, the cost of revisng the design in the end of
the project will be significant due to redesign. Almost 80 percent of the cost for developing a
software product are spent after the initia design and implementation phases [Clem96h).
These 80 percent spent on maintenance, which includes error detection, correction and
evolutionary development.

Not only does a dructured description of a software system congtitute a basis for
architecturd analyds, it can dso improve the productivity of new membersin a project. The
architecture provides a smple and haoligtic view of the whole system. This is very important
snce complex sysem usudly engage a lot of people, dl with unique competencies, at
different stages of the development process. Since desgning red-time sysems usudly
require multi-disciplinary knowledge, it is very important to have an architectura description
that can be understood by software engineers as well as control and mechanical engineers.
Furthermore, many software projects employ a lot of consultants. Consultants may have
little knowledge of a company’s product line and need a quick briefing in order to get
productive and cost efficient.

The complexity of software systems dso causes problems when maintaining and correcting
errors in a software product. It is seldom possible to, in advance, be aware of dl the sde
effects that particular a correction may give rise to. If an architectura description is a hand,
it could give some guidance on what modules are mogt likely to be affected by the
correction. This is highly related to evolutionary development. If the architecture of the
software condruction is violated, it ceases to exist in its former shape. The construction Hill
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has an architecture, but as long as the architecture is not explicitly, and correctly described,
it is of no use. Consequently, the architecturd description may, and should, evolve as the
congtruction that it describes evolves.

1.1 Towards a definition

There are dmogst as many definitions of software architecture in the literature as there are
software architects and designers. We mention afew examples:

The software architecture of a program or computing system is the structure or
structures of the system, which compromise software components, the external visible
properties of those components, and the relationships among them [BCK 98].

In [Paul94] the following definition is given:

Software architecture not only reflects how the functional requirements are met, but
addresses:

1. non-functional requirements
2. designrationale
3. architecture style
Y et another definition is provided in [Clem964]:

A view of a system that includes the system’s major components, the behavior of
those components as visible to the rest of the system, and the ways in which the
components interact and coordinate to achieve the system’'s mission.

One property that seems to be common among amost every proposed definition is that the
software architecture describes a system by a compostion of its software components and
ther interrdationships. In addition, software architectures should provide a high levd
description, i.e. a more abstract leve than the leve that adgorithms and data Structure
provides. However, defining a software architecture only as a syntactica representations of
components and their interconnections in the software systems is not sufficient. To be useful,
additiond information must be present in the description, in particular the semantics of
components and connections. Different domains of software sysems have different
semantics of thar software architecturd description. A doman defines the class of
goplication to which a product belongs, e.g. desktop applications and industria control
goplications. As a consequence, there will be vaiaions in the definitions of software
architectures depending on the domain. Furthermore, the definition also depends on the am
of the architecturd description, e.g. support for architectural andyds, representation or
description of the designed system. It is probably impossible to unify software designersin
one sngle definition as it degpends on the am of the architecture and the domain inwhich it is
used. What we can date is that software architecture is a description of the software
gructure and methods to evauate and compare design solutions.

1.2 Open research areas

As software architecture is an immature research area, a lot of open questions il exis.
Most of the ongoing research in the field of software architectures is focused on description
languages and andlysis of architectures for non-red-time sysems. The analys's methods are



dill informd in ther nature. As the andyss methods are informd they provide rough metrics
and estimations. We believe that formality can be added to architecturd modes. Thus, the
modds can provide means for formd verification of some of the quality properties that are
lised in this survey.

Mog of the materid on software architectura andyss found in the literature ignores the
temporal aspects. By adding the tempora dimension on software, completely new problem
aises. As an example, components developed for red-time systems, i.e. system for which
correctness depend on both the functiondity and the temporal correctness, can not be
reused in new environments unless at least the tempora condraints are dill fulfilled. Qudlity
properties such as flexibility, i.e. the ability of a software system to adopt new, or remove
old functiondity, are dso important. As red-time systems are restricted to resources such as
processors, communication busses, etc., alot of additionally parameters must be taken into
account in such an andysis.

The tool support for architectura design and analyss is poor. Tools that support the
complete process of developing an architecture are needed. Today, architectura tools for
red-time sysems dmost exclusvely focus on schedulability andyss. As indicated in this
report, there are alot of other important properties of red-time systems software. However,
implementing such toals is non-trivid. One approach is to use exigting tools for automatic
verification. This can be done if the problem of analyzing a specific qudity property can be
transformed into a property that can be verified using that tool. Examples of existing tools for
formd verification are UPPAAL and KRONOS [LPY 97][DaY 095].

1.3 Outline

Chapter 2 discusses architectura description languages and desired properties of such. In
Chapter 3, the architectura view necessary for an architectural analyss of red-time software
architectures is discussed. Architecturd analysis is dedlt with in Chapter 4. Finaly, Chapter
5 concludes the report. Terminology used in the paper is explained asit is used. Appendix A
provides, however, acomplete list of the vocabulary together with a short explanation.






2 Architecture description languages

Communication anong oftware enginears is crucid. Without means for communication,

important informetion into- and from the design phase might accidentally get logt, resulting in
misinterpretations. Moreover, a system desgner must be able to communicate with
cusomers, other project members and management in an unambiguous way. An
unambiguous architecturd description is dso a necessay condition for performing
architecturd andyss. A parableisthe building trade, where building architects transform the
customer requirements into a desgn. This desgn must be described in a way the building
congiructor understands in order to do mechanica sirength calculus and for building workers
to use as a blueprint. When developing software, a software engineer formaizes the

customer requirements. Basaed on the requirements, a high-level design is described in a
language that is commonly understood by customers and designers. The common language

iSanecessity in order to communicate and discuss design solutions. As output from the high-

level design phase, one or severd candidate architectura solutions are produced.

To verify that the quality requirements of the system are met by the architectural solutions,
the architecture has to be analyzed. Hence, the description language used in the high-leve
design must support the analysis methods. Once a software architecture is constructed that
fulfils the requirements, the architecturd description is used as a "blueprint” when
implementing the system. In addition, an architectural description makes maintenance esser
gance it facilitates the understanding how parts of software systems cooperate. Thus, the
parts of a software system, i.e. components and sub-systems, affected by a correction are
detected in advance.

2.1 Desired properties of an architecture description language

Languages for architecturd description are caled Architecture Description Languages
(ADL). There is an abundance of ADL:s each of them with its own specific syntax,
semantics, expressveness and purposes EHLS94][LKAVI3][Vet94]. An ideal ADL
should however, provide six classes of properties. composition, abstraction, reusability,
configuration, heterogeneity and analysis [SHGA96]. By composition is meant that a
software system should be described as a composition of components and connections.
Furthermore, components and connections must aso be described in away that clearly and
explicitly describes the exact role of each element, i.e. modeled on an gppropriate leve of
abstraction.

As components are reused in different goplications that are described using different
description languages, the architectura description must be able to adopt to reuse. That is, it
should be possible to reuse components, connectors describing the interconnection between
components and architectural patterns in different architectural descriptions. Related to
reusability is heterogeneity. Heterogendty is the posshbility of combining different
heterogeneous architectural descriptions.

Configuration means tha the architectural Structure among components in the system

should be separated from the structure in the components. The language should aso support
dynamic reconfiguration. As will be discussed in Chapter 3, the structurd view describes all



components and connections, whereas the module view unvels the dructure of each
component.

Findly, as high-levd desgn andyss is one of the primer judtifications for uang software
architectura techniques, the architectural description must support different kinds of
analyses.

Congdering the dedred properties of an architecturad description above, how can a
software architecture be described? One possibility is a plain texturd description in anatura
language. However, natural languages tend to be ambiguous, making them redly hard to
interpret in a condstent manner. By using a formd language an unambiguous description is
obtained. With forma languages it is possble to use mathematics when modding and
verifying the architecture. The disadvantage of usng formd languages as architecturd
decriptions are tha most of them requires a lot of experience and mahematicd sKill.
Consequently, such a description may be sufficient and useful at some stage in the design
process but not for communication with partners in a project without a computer science
background. By rdaxing the formdity, a semi-formd, grgphicd representation may be
obtained. Even inexperienced people can get a feding for how a system is congtructed by
interpreting a graphicd representation. The semi-forma description dso permits andyses
and qudlity predictions to be made as described later in this report. The graphica approach
has been adopted by many of the available ADL, where the software design is constructed

[ Component B j [ Comnonent C j

Figure 1. A graphical software architecture
description.

usng components and ther interconnections in a 4™ generation language manner as
illugrated in Fgure 1.

2.2 Semantics of an ADL

The architecturad description in Figure 1 provides only the informetion thet there are tree
components in the system, which are connected to each other. The connections could
indicate a class hierarchy or a network communication link over a distributed hardware
architecture. As stressed by Clements and Northrop [Clem96b], it must be known exactly
what the components are, what the connections mean and what the postion of the
components imply, i.e. a wel-defined semantics If the semantics is not clear the
architectura description is quite usgless.
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One single architecturd description language can not fit the desired level of abstraction for
every different software doman and application. There is for example a big difference
between designing a red-time system with hard- and soft tempora requirements compared
to desgning an adminidrative gpplication with database management and transactions.
Consequently, we need a unique description language for every gpplication domain.

Even though there must be differences in the architectura description depending on the
goplication domain, there might exist a least common denominator. Such a least common
denominator could, for ingtance, condst of components and connections. But the
sgnificance of a connection or acomponent could be domain specific.

If the ADL has an unambiguous semantics, design tools for architectura anayses can be
developed [ERGUSA97] [LPY 97]. However, andysis of qudity properties usualy requires
more information than just the architectura structure. This additiona information is provided
by the architecturd views and is discussed in Chapter 3.

2.3 Examples of existing architectural description languages

There exist severd architectural description languages for red-time sysems. Typicaly they
differ in theair expressveness and formality. As an example of a forma modding language
that can be used for describing architectures for redl-time systems we use timed automata
[ALDI92]. Architectures are described in timed automata as a network of finite State
meachines, where a process or a component is one state machine. Synchronization channels
connect processes in timed automata to each other. A synchronization channel defines the
name of the sgnd used for synchronization. Thus, architecturd interconnections are
described using synchronization. Below is a more rigorous description of timed automeata.

A timed automaton is a finite state machine extended with redl-valued clocks that increases
uniformly. Moreover, trangtions in a timed automaton are decorated with guards and
actions. Guards are clock congraints that enables or disables atrangtion, i.e. if the guard is
true then the trangtion can be taken. In Figure 2, the trandtion from Sl to &2 can be taken if
the clock x has avaue greater than 10 time units.

O——0

Figure 2. A smple timed automaton

Actions enable synchronization between different timed automata in a rendezvous manner,
i.e. processes hdts until both participating processes can synchronize. This indicates that a
complete system is modeled by a set of timed automata, such a st is cdled a network and
conggts of the pardlel compostion of the included processes. Consder Figure 3 where a
small network is displayed congsting of two processes, A and B.
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Figure 3. A network of timed automata processes

Whenever process B isin sae S5, it will wait for another process to send a 9gnd on
channd a. The question mark after the channd name indicates that B iswaiting for the Sgndl.
Aslong asno dgnd isbeng sent on channd a, Bisduck in gate Sb. As soon as process A
reaches state S3, the processes can synchronize and the processes progressto S1 and 4
respectively. During this trangtion, no clocks are progressing, i.e. it is a discrete trangtion.
Modds of timed automata can be congructed and automdticaly verified usng existing
model-checking tools, e.g. UPPAAL and KRONOS [LPY 97][DaY 095].

Another example of an ADL for red-time sysems is MetaH [Ves94]. This is a language
that models a system on level of abstraction higher than timed automata. MetaH provides
mesans for specifying real-time processes, referred to as tasks, that can be ether periodic or
gperiodic, communication among tasks, modes and composites of processes and modes
that are cdled macros. Furthermore, the hardware alocation of processes and
characterigtics of the hardware such as channels that are used for communication among
processors can be specified. Asthe tempora properties of tasks and modes are provided in
the moddls, MetaH support different kinds of red-time andyses such as schedulability
andyss. There exist a graphicd tool that supports the modeling in MetaH and anaysis of
red-time software architectures described in MetaH. The schedulability andysis in this tool
is based on rate-monotonic [LILA73].
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3 Architectural views

Architecturd views condtitute an important part of a software architecturd description as
they expose architecturd information gpart from only the structure. In Figure 4, architectura
description languages for different software families (domains), are viewed as an inheritance
graph. The top node includes description primitives shared by dl domains (compare with a
virtua base class in the object orientation community). Two common description primitives
could, for example, be syntacticd symbols representing components and the connections
between components. This means that components and links can describe the structure of
any sub-doman of software gpplications. However, the component primitives and the
connection primitives have no semantics in the top node. Semantics and new syntactical
symbols will be added while moving down in the inheritance hierarchy. For instance, the
semantics of a component in a red-time system is probably a task, and the links are the
communication among tasks or precedence reations. In an adminidrative software
gpplication on the other hand, components are most certainly databases or user interfaces,
and connections denote database transactions.

All domains

Administrative Real-Time System

Periodic

E—

Static Schedule

Figure4. Architectural description and view hierarchy.

The nodes in Figure 4 are intentiondly displayed in a 3-dimensond manner. Each sSde of a
cubicd node is a metaphor for a unique view of the architecture. There might be arbitrary
many different views, depending on the needs for verification and anayss in a software
development project.

In this Chapter, views important for the red-time systems domain are discussed. Note that
not al views must be modeled in a project developing red-time sysems. Only the views
aufficient for the andyses required must be present in the architecturd description. The
names of the views and their contents are not standardized but we propose the following:

Structurd view
Module view
Logicd view

Hardware view
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Tempord view
Communicetion view

Synchronization view

Structural view

The structurd view describes the overdl architectura design and style, providing the highest
leve of abdraction. This is the naturd garting point for an architect desgning a software
system. The structurd view congsts of software modules and their interconnections, i.e. the
interfaces between them. The syntacticd representation of modules and connections is
optiona but should be uniform within the development project for the sake of
communication among enginears.

Asdesign on thisleve israther rapid, it is possble to design severd competing architectures
for evduation and comparison. Once a software architecture satisfying the qudity
requirements is salected, it is settled. Depending on the required analyses, more views might
have to be modeled in order to make a correct decison. For instance one or more of the
views proposed in this chapter could be considered.

In Figure 5, the structure of a system consisting of four components is displayed. The arrows
between the components represent function calls through the component interfaces.

Module A Module B

A

Module C Module D

Figure 5. The structural view of the softwar e ar chitecture.

In the design methodology cdled Module Approach to Software Construction,
Operation and Test (MASCOT), the structurd view is modeed with a diagram called the
decomposed component level view [Masc87]. This view provides a decomposition of a
sub-system into its main congtituents, i.e. itstasks.

The object-oriented methodology for red-time sysems cdled Hard Real-Time
Hierarchical Object-Oriented Design (HRT-HOOD), dso has a sructurd view that is
provided by the so-called parent-objects [BuWed4]. A parent-object is a component on its
highest-level that may be further decomposed.

The corresponding abstraction for networks of timed automata is the processes. A system
modeled in a network condists of a set of automata (processes). Each of these processes
could be seen as a component. The interconnections are modeled using synchronization
actions. Interconnections visudize the data flow. Informetion of the control flow is given by
the logica view, which is discussed in Chapter 3.3.
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Module view

The module view exposes dl the functions, methods or sub-modules in dl the components
modeled in the dructura view. A software component is a software module, which is
further, decomposed into functions and sub-modules in order to unvell the divison of
functiondity. This view should aso describe the interactions between the functions. It is, for
example, dedrable that the interaction between functions in different componentsished to a
minimum. Some communication between components is hecessary, but the communication
must be performed trough well-defined interfaces that conced the underlying functiondity.

Hierarchica methods such as MASCOT and HRT-HOOD both provide means for
component decomposition. In MASCOT the module view becomes the structural view as
each component is refined, while in HRT-HOOD, the module view is described by child-
objects derived from each parent-object.

Figure 6. The M odule view of components.

Logical view

In this view the functions from the module view is described in more logicd detals. It serves
as amode of the actua implementation, which can be used as a low-level description or
condtitute the basis for formal verification. Some possible descriptions are state machines or
dgebra like CCS [Miln87]. These are dl different ways of describing the functiondity of
software formally. State machines can be of different types depending on the gpplication.
For example, timed automata can be used for red-time systems as it provides a notion of
time as well as concurrency [ALDI92]. If time is of no concern, an ordinary state machine
can be used. CCS is a process dgebra with which it is possble to modd concurrent
systems. Such dgebrais useful when modding communication and synchronization, which is
essentid when designing redl-time systems.

In Figure 7, The logica view for the sub-components is modeled usng time automata. The
upper sub-module synchronizes with the lower sub-module by sending sgnd a.

From the software architecture perspective, the logical view may be on a far too detailed
level since software architectures are descriptions of software systems on a higher level than
dgorithms. However, this view will eventudly be implemented, if not in logic 0 in the
chosen programming language which in itsdf isaforma description of the pecification.

The logica view is of no interest when settling the architecturd style. It provides a basis for
formal verification and in the end the program source code.
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Figure 7. Thelogical view.

J

Har dware view

If the system is digtributed, i.e. a set of interconnected and geographically separated CPUS,

or amulti-processor system, i.e. a set of interconnected and geographicaly collected CPUs,

there might be requirements of pre-alocated functiondity among the nodes in the system.

Such an dlocation will affect the find architecture and the performance of the application.

Y et another reason for having a hardware view description in the software architecture is the

issue of portability. If software should be easy to move between different types of platforms,

the dependencies to the hardware and the operating systems must be encapsulated from the
rest of the software system. One can discuss whether this is a software architectural view or

not, but as long as hardware has an impact on the software architecture, we congder it a
view.

A

Processor 2

Processor 1

Figure 8. The processor allocation in the hardwar e view.

In the Yourdon Structured Method (YSM), the dlocation of functions to hardware
processors is called the processor environment model [Cool91]. Besides the function
alocation, this view reveds the data that will be communicated among the processors.

Temporal view

The views discussed so far are common among different software families and consequently
resde in the topmost node in the architecturd hierarchy shown in Figure 5. The temporad
view is, however, domain specific. As the correctness of a red-time sysem not only
depends on correct function, but dso correct timing, the tempora congdraints must be
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present in the architecture. By correct timing we mean not too early and not too late. In
order to verify whether or not tasks in a red-time application will be schedulable, i.e. dl
tempord condraints are fulfilled such as dl deadlines are met, we need a view of the
temporal requirements.

The tempora view contains data such as release timei.e. the earliest gart time of atask, the
deadline i.e. the latest completion time of a task, the period time (the frequency) of a task,
etc. We say that atask model determines the exact content of the tempora view. The exact
gppearance of a task model varies depending on the execution strategy. The execution
drategy defines the rules that determine what task to execute.

As an example of a variation in the tempora view, consider a periodic task that samples a
Sensor in a process. As the sampling should be performed with some specific frequency in
order to obtain a correct view of the process, a period specifying the interva between two
consecutive executions of the sampling must be specified. In contrad, if the gpplication is
purely event trigged, i.e. tasks have arbitrary release times, there is no need for specifying
period times. Ingtead, the minimum inter-arriva times must be specified for the tasks.

HRT-HOOD has a tempord view that is divided into two parts, one that describes the
execution gtrategies for a class and one that provides the tempord attributes. The execution
strategy can be either cyclic or sporadic. Depending on the execution strategy, classes can
be assigned, eg. period times, minimd inter-arriva times, and deadlines.

In timed automata, clocks and guards on clocks describe the tempora view.

Communication view

For telecommunication systems, and for red-time systems in generd, it is desirable to modd
communication among tasks and processes. Communicetion is typicaly performed using
messages and dgnds that are sent back and forth in the system, ether locdly on one
processor or amnong nodes in adistributed system. For this purpose the communication view
can be used. In Figure 9, the communication is visudized with Message Sequence Charts
(MSC). The vertical line in each process depicts time which increase downwards. The
horizontd lines between the processes depict the messages or Sgndls.

\5 msg 2
— ]

msg 3 L

msg 4 /

Figure 9. Message Sequence Chart

The MSC can be trandated into ordinary finite state automata which makes it possible to
formaly verify them using, for ingtance, tempord logic [Lal.ed4].
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Synchronization view

As red-time sysems often are multi-tasking sysems having severd tasks running
concurrently, it is necessary to synchronize access to shared resources in order to avoid
inconstancy. Tasks that uses a shared resource must mutualy exclude each other, i.e. only
one task can use the resource a the time. There exist severa techniques for handling mutua
excluson in red-time sysems, eg. semaphores, Sgnas or separation of task in time. In
addition, to guarantee precedence relations, i.e. requirements of the execution order among
tasks in a system, synchronization is necessary.

What synchronization technique to choose depends on the provided infrastructure, i.e. the
red-time operating system (RTOS), and the available task modds. For ingtance, if the
gystem is pre-run-time scheduled, i.e. a pre-runtime generated table defines the execution
order of the tasks, time-vise separation of tasks can be used. On the other hand, if the
system is event-triggered, and semaphores are the only means for synchronization provided
by the infrastructure, the semaphore approach must be used.

The information unveiled in the synchronization view is implicitly present in other views
discussed in this section. For ingtance, if synchronization is resolved by separaion in time,
thisis visble in the tempord view, or if Sgnds are used, thisis visble in the communication
view.

In MASCOT, communication and synchronization is modeled usng paths dong which
entities communicate. A path can indicate a dependency to commonly used data, or a
dependency to another entity that results in a sending/recelving of messages.

Communication and synchronization between processes can be modeled in timed automata
by using synchronization actions.

3.1 Discussion

All the different views should not be designed in the beginning of a development project.
Instead an iterative processis often preferred. For some gpplications, some of the views can
be excluded. For ingtance, if there is no digtribution and no requirements regarding
portability, the hardware view may be excluded.

There exig relaions among different architecturd views. The rdation between the Sructura
view and the module view is obvious as the module view provides a decompostion of the
architecture specified in the structura view. The logicd view defines the ”low-level-design”,
specified in some forma language suitable for forma verification of, for indance, the
communication and synchronization among the modules in the software sysem. The
schedulability of a distributed red-time system depends on how tasks are dlocated, i.e. how
the tasks are distributed. The dlocation affects the utilization of each processor and the time
spent on communication between tasks alocated on different processors.
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4Architectural analysis

The main incitement for usng software architecture notation when designing a software
system is the ahility to andyze and verify the design in an early stage of the development
process. By comparing different candidate architectures, confidence in early desgn
decisons is achieved. Such a comparison is done by liging pros and cons for each
architecturd solution according to the quality requirements put on the system. Furthermore,
architecturd andys's enables the possihility to get software metrics based on the high-leve
design, eg. the levd of coupling and cohesion within and between the different modules that
condtitute the software system [Fenton96].

In this report, the software system qudlity properties are divided into two different classes,
functiond and nonfunctiond. Functiond quality properties are those concerned with the
runtime behavior of the software, eg. peformance or rdiability, whereas nonfunctiona
quality properties are concerned with the qudity of the software itsdlf, e.g. maintainability or
reusability. Most of these software qudity properties are quditative rather than quantitative,
thus being practicable only for comparison between different architectures.

4.1 Methods for architectural analysis

An architectural anadlyss process is divided into two stages, questioning and measuring.
The questioning phase generates questions that are answered by the measuring phase. Len
Bass . d. [BCK98], have categorized the questioning stage in architecturd review and
evadudion into three different classes namdy Scenario-based, checklist-based and
guestionnaire-based.

Scenarios are a set of cases where the software architect asks a lot of "what if” questions
that reflect the requirements. It is however not atrivia task to congtruct the right questions
and to know when to stop generating scenarios. This requires a lot of experience and
knowledge, which can be achieved by being involved in many design projects. A scenario is
adways system specific, i.e. talor-made for a particular gpplication in a domain, whereas
guestions that are valid for dl architectures in a particular domain resides in a checklist. The
items in the checklist can ether generate scenarios or be verified in the measuring stage
directly. As an example, condder the domain of safety-critical red-time sysems. The
checkligt contains the following items

1. Isthe system schedulable?
2. Isthereerror recovery code in the system to clean up after error detection?

The firg item is verified directly by performing a mathematicd schedulability andyss. The
second item is too generd and therefore it must be formalized into a set of scenarios before
it can be answered. As scenarios are system specific, they can sress different types of
errors in specific modules residing in the system. One possible scenario is: “What happen
when division by zero occurs in the control task”. The scenarios can than be verified by,
for instance, smulation or scenario execution, both described later in this chapter.

The quedtionnaire-based quedtioning typicaly dresses generd  logigticd  software
architecture questions. These questions have usudly very little to do with the quaity of the
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software itsdf, but rather focusng on issues such as documentation, and how the
architecture was generated. Although the logigtical questions do not examine the qudlity of
the software product itsdf, it has impact on the quaity since good qudity requires a mature
development process. Examples of such questions are: “Is a standard architectural
description language used?’, or “Is the intended work digtribution supported by the
architecture?’.

There are a couple of measuring techniques avalable for architecturd andyss namdy
scenario execution, simulation and prototyping, mathematical methods and experience
based knowledge reasoning. The idea with scenario execution is to “execute’ the
guestion Stated by a scenario on the architecture. By executing a scenario is meant that the
effects on the architecture imposed by a scenario is investigated. This method is particular
suited for analyss of non-functiona quality properties.

Smulation requires a prototype implementation of the architecture. Such a prototype
should be as smdl as possible, containing only the information needed for the andysis to be
performed. Smulation is a method targeting on andysis of functiona quality properties.

Experienced-based reasoning can be used for any of the two classes of qudlity properties.
Actudly, experienced-based reasoning is usudly how the software architecture evauation is
done in indudtry today, athough in a rdatively unorganized manner. As an organizaion and
its development process mature, more of the forma eva uation techniques will be adopted.

Mathematical methods can be used provided that a mathematica mode of the architecture
exists. Such amodd is provided by, eg. timed automata. More examples of mathematical
measuring techniques are the schedulability test for redl-time systems and Satisticd rdiability
modding. These methods give a clear yes- or no answer, or a quantitative vaue that is
comparable among al different types of software applications.

Figure 10 provides a schematic picture of how the different evauation techniques relate.
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Figure 10. Schematic picture of therelations between the evaluation techniques
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Although measuring techniques might give quantitetive vaues, these vaues must be treated
caefully. The quantitative vaues should be used as rdative vadues when comparing
competing software architectures. Moreover, if scenarios or experienced reasoning was
used to obtain the vaues, the exact same set of scenarios and reasoning must be used when
evauating the competing or refined architecture. Otherwise, the measures are not
comparable. Consequently, it is impossible to compare measured quality of a software
architecture across the gpplication domain i.e. within the same class of products but in
different environments or goplications.

4.2 Functional analysis

There exig functiona quality properties in abundance, among which the properties of
particular interest when designing safety-criticd red-time sysemislisted in Table 1.

Performance The systems capacity of handling data or events.

Rdiahility The probability of a sysem functioning correctly over agiven period of time

Safety The propety of the sysem that it will not endanger humaen life or the
environment

Security The ability of asoftware system to resst mdicious intended actions

Avallability The probability of asystem functioning correctly & any given time

Tempord condrants| Red-time attributes such as deadlines, jitter, response time, worst case
execution times (wcet), etc.

Table 1. Functional quality properties
Performance

Certain functional properties of a software system are tricky or even impossible to predict
using the architectura description level only, eg. performance. Performance estimations
must have the dgorithmic solutions as input. As discussed in the introduction, software
architecture is a description of the syssem on a higher leve of abdraction than agorithmic
solutions and data Structures. However, by using prototyping and smulation techniques,
performance in terms of for instance, event throughput or queuing length for events in a
system, can be estimated [ GRBO]. Since such a performance measure is not absolute, it can
only be used when comparing two different architectura solutions, not when estimating, for
ingtance, the worst execution time for handling an event in the system.

Reliability
There are mathematical methods based on probability theories such as Markov models for
asessing rediability [Tram95]. However, these theories are developed for hardware where

failures often are caused by physica wear such as corroson, overhesting, etc. Such failures
are probabiligtic in nature whereas software failures are mistakes (errors), made in the
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specification, the design or in the implementation. These types of falures are certainly not
probabilistic according to some digtribution over time. Furthermore, software can never be
worn out. Attempts have been made to apply the methods from the hardware community to
software. In software, the datistics are the numbers of errors in the program or the
likdihood of a falure in a point of time based upon the error didribution in the past
[Fenton96]. To get such falure edimations, there must be an implementation of the
goplication or a least a prototype. Anyhow, a description of the gpplication on alower leve
than the architecture is needed. With some heuristics from smilar gpplications developed
ealier experienced engineers can edimae the expected number of erors in the
components. Such estimations are very complex, giving rough metrics. An dternative to
directly measure the rdiability of the architecture is to measure the tetability. The testability
is a function of the effort required in order to assure the required level of rdiability or
avalahility.

There are three different gpproaches to handle faults in order to achieve a reliable system
[Lapro2]:

Fault avoidance
Fault remova
Fault tolerance

Fault avoidance is about desgning error free sysems. This implies the use of structured
design methodol ogies such as forma methods or semi-forma methods. Forma methods are
based on mathematicd models of the software system and the requirement specification.
These models form the basis when proving correctness of the modd with respect to the
sysem specification. There exids a wide area of forma methods and forma modding
languages, each supporting different system domains. Semi-forma methods are, as the name
suggedts, less formd, i.e. they do not support techniques to exhaustively prove correctness
of the modes. Ingead, they offer a structured way of reasoning, both when designing
modds of the system and when anayzing the modds. The methods are usudly based on
some “forma” notation, eg. Unified Modeling Language (UML)[BRJ98], ADLS, €ic.,
representing the syssem mode. Examples of such methods are object-oriented analysis
and design (OOA/OQD), and software architecture techniquesin general.

No matter how accurate the models are andyzed, there may ill be errors in the
implementation. These errors usudly originate from the specification and from the mismaich
when mapping the modds to the source code. In order to improve religbility in the program,
fault removal techniques can be applied. Fault removal is basicaly the task of finding the
errors by testing and removad of them by error correction. Under the assumption that no
new errors are introduced, the reliability will grow as errors are corrected. This assumption
is, unfortunately, seldom true, implying that the whole system has to be re-tested after each
increment. The results from testing and re-testing can be used for datigticadly forecasting of
the fallure rate (and consequently the rdiability), of a software system. Such amethod is the
reliability growth model, first proposed for software by Jdinsky et. al. [JEMO72]. There
exist an abundance of different gpproaches to modd reliability growth; they are dl based on
data collected during testing, but differ in the way the satistical mode is made.
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Some faults are impossible to avoid regardless of how accurate the design and the tests are
performed. If it is particularly important that a certain module in the system does not fall,
fault-tolerance can be introduced. Fault-tolerance is a technique which can be interpreted
in two different ways: it could be the ability of a software sysem to tolerate faults from its
environment, eg. the operator, hardware errors, etc., or it could mean that the system
should be tolerant againgt design faults in the software itsdlf. The two different fault-tolerance
goproaches are, naturdly, solved using different techniques. For instance, to be fault-tolerant
againg hardware errors such as eectromagnetic distortion, redundant hardware can be
used, each with equivdent software running on them. This solution will however not tolerate
software faults. Different gpproaches to be tolerant againgt software faults are recovery
blocks and N-version programming [ Storey96][CA78].

Recovery blocks are based on acceptant tests of the calculated values. If the processed
vaue is not accepted the program tracks back to a recovery point where it is safe to
continue the execution after having restored the system’s date.

N-version programming is achieved by developing N different versons of the software;
each developed by different and isolated design teams. All N different versonsrun in pardld
a runtime and ther respective results are voted upon. This technique has, however, been
proven not so successful since Al different versons of the software sart out from the same
specification, and Snce most design errors originate from the specification, they will contain
COMMON Efrors.

Even if the source code is absolutely correct, the compiler may ill produce erroneous
binaries. Faults introduced by the compiler can be tolerated by using the N-version
goproach. Each verson has exactly the same code, but they are dl compiled using different
compilers.

It is important to note that the different techniques discussed above can be gpplied at any
gtage in the development process. For ingtance fault remova can be used when verifying the
designed architecture againgt the system specification. Fault-tolerance is dso a matter of
architectural design. The techniques for fault-tolerance discussed above are al achieved
using different architecturd solutions.

Safety

Safety seems, at afirg glance, very smilar to rdiability. There is however a clear ditinction
as safety is only concerned with falures that endangers human life and the environment, i.e.
hazards, whereas rdiability deds with al falures regardless of their consequences.
However, before any safety andlyss of the architecture can be performed, the hazards must
be identified. Thisisdonein ahazard analysis that is a reasoning based method for finding
al hazards in the system that is going to be designed [Leveds).

There exist saverd techniques for assessing safety properties in software designs. Most of
them are scenario based and work ether backward or forward. If the method works
backwards, the anadlyss starts with the hazard as a scenario, trying to trace down the
responsible component. On the contrary, if the method works forward, the effects of an
error in acomponent is investigated.
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Some of the most well known forward methods are Falure Mode and Effects Anayss
(FMEA) and Hazard and Operability studies (HAZOP). Both methods andyze the
consequences of failures in the components. One commonly used backward technique is
cdled Fault Tree Andyss (FTA)[Storey96]. FTA darts with a hazard, trying to determine
its origin among the components. Thiskind of andyses give an understanding of where in the
architecture fault-tolerance techniques should be introduced, or if aready introduced,
verifying whether the intended fault-tolerance is achieved or not.

Depending on the results from the safety andyss, changes in the design may have to be
performed. Different design approaches to avoid catastrophic failures can be gpplied based
on the severity of an accident caused by the hazard. The different approaches are [Leveds]:

Hazard dimination
Hazard reduction
Hazard control
Damage minimization
The severity is a quantified vaue that makes it possble to compare and rank hazards.

Typicdly, the saverity is given in terms of the cost or, logt lives, for the stakeholder if the
accident occurs.

Substitution, decoupling, and simplifications achieve hazard elimination. By substitute a
dangerous design possibility by a functiondly equivaent, but not dangerous solution, the
hazard itsdf is diminated. For instance, if the system involves a very toxic chemicd liquid,
subgtituting the liquid with a non-toxic one diminates the hazard. Moreover, by decoupling
safety-critica parts of the software from non-critica software, the risk for an error in the
non-critica part to propagate into the safety-critica parts is eiminaed. There exist some
known architectura solutions based on decoupling, e.g. safety kernds, firewalls, hierarchical
architectures [ Storey96)].

Hazard reduction reduces the likelihood of the occurrence of a hazard. It might not be
feesble or even possble to diminate the hazards. Then the designer has to design the
system in such a way that the hazard is not very likely to occur. An example of hazard
reduction is to erect a fence around an indugtrid robot, preventing humans to come close
enough in order to get hurt.

Hazard control is applied in order to reduce the likelihood of an accident if a hazard arises.
This can be achieved using fail-safe design, i.e. the system should be designed to detect the
hazard and then trandfer it into a safe Sate if such exigs. There are, however systems where
no safe date exigts. A typicaly example of such a sysem is airplanes. These systems must
keep operating even if something goes wrong. This is achieved using fault-tolerance such as
redundancy. It is essentid that an airplane keeps flying even if one engine bresks down by
using the second engine. The performance will of course be reduced, but the arplane can
gill be maneuvered to its safe state on the ground.

Yet, if an accident Hill occurs, the consequences and losses must be reduced. This is
achieved with damage minimization that strives to minimize the exposure of the accident to
the environment or human beings.
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Availability

Rdiahility and availability are strongly corrdated. According to the definitions given in Table
1, ridhility is the probability of a software system functioning correctly over agiven period
of time and availability is the probability of a software system functioning correctly a any

given time. More generdly, rdiability is equivdent to Mean-Time-Between-Failure (MTBF)
and the availahility is a percentage figure given by the formula below:

MTTR
MTBF

Availability = 1-

MTTR is an abbreviation for Mean-Time-To-Repair, i.e. time spent on service. The reation
is shown graphicaly in Figure 11 below. If any point of time is picked randomly aong the y-
axis, there is a probability of having correct functiondity, i.e. the availahility of the software
sysem.

MTTR
A <> MTBF
—>

Functionality

time

Figure 11. Availability and reliability

Security

Security is concerned with protecting a software system from maicious intended actions,
eg. intruson by unauthorized users or locking out unintended accesses to safety-critical
parts of the system. This can be achieved by different architecturd solutions. safety/security
kerndls, firewdls, etc. which dl are different ways of restricting the access to the system or
sub-systems. As security can be achieved using different architecturd solutions, it can be
assumed that security is assessable by architecturd analysis. A scenario-based method can
be used. Typicaly, such a scenario could reason about what happens if an operator or a
sub-module tries to access a protected region of the syslem. Another possible way of
andyzing software architectures from the security point of view, is amulation, provided that
the logicd view of the software architecture contains sufficient information regarding rules for
authorization and identification.

Real-time requirements

When designing redl-time systems it is important to ensure the tempora correctness of tasks
in the gpplication. The timing must be just perfect, neither too fast nor too dow. The
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information necessary for the verification of tempora condraints is provided by the tempora
view of the architecture. A typica example of such an analyss are schedulability ted, i.e.
andyzing whether the task set is schedulable or not given the resources and temporad
congraints given as release times, deadlines, worst case execution times (weet), jitter, etc.
The resources taken into account when analyzing the schedulability of a system are typicaly
CPUs, communication busses, actuators, €tc.

There exigt alot of mathematicd methods for verifying the tempora behavior of a red-time
system, dl having different assumptions on the scheduling srategy and the task mode
[LILA73][ABDTWO5]. A task modd defines the temporad requirements put upon a task,
i.e. priorities, period times, etc. The task model and the scheduling Strategy is strongly
coupled snce the task mode provide the input to the schedulability andysis.

In Figure 12, a classfication of different scheduling strategiesisillustrated.

Scheduling
\

Preemtive/non-preemtive

/\

Run-time scheduling Pre-run-time scheduling

'
Priority based

/\

Static priorities Dynamic priorities

RM Rate Monotonic
/\ /\ FPS Fixed Priority Scheduling
ED Earliest Deadline
User definerade  RM+PCF PCP Priority Ceiling Protocol

Figure 12. Classification of scheduling strategies.

4.3 Nonfunctional analysis
The number of nonfunctiond qudity properties is, as the functional quality properties in the

previous chapter, very large. In Table 2, a subset of dl such qudity properties is listed, al
being important in a mature and modern design process for red-time systems.

Cost The cost for performing any action such as development, evolution and
verification

Tedtahility How easy it isto prove correctness of the system by testing

Reusability The extent to which the architecture can be reused

Portability How easy it isto move the software system to a different hardware-
and/or software platform

Maintainability The gptitude of a system to undergo repair and evolution

Modifiability How sengible the architecture is to changes in one or several components

Table 2. Nonfunctional quality properties
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A very smple but yet powerful method for andyss of nonfunctiona quality properties is
execution of scenarios. Severd of the direct and indirect quality properties listed in Table 2
can be examined and analyzed by using scenarios. By direct we mean an attribute that focus
on the software only such as the reusability of a module or subsystem or the portability i.e.
how easy or had it is to move the sysem to another operating system or hardware
platform. An indirect property is one that depends on a direct one. A typical example isthe
cost. The cogt is dways related to the action, for instance the cost associated with testing,
development, maintenance, €tc.

Cost

As discussed above, cost is an indirect qudity property, dways depending on other quality
properties of the system. Typicaly, after a system has been released and been running for a
while, new functiondlity is required from the customer or new features and improvements are
desred within the organization. Then the cogt is probably dependent on the reusability,
maintainability and testability of the software. Cost estimations are probably one of the
hardest tasks for every development project. The cost estimation for the design of a
completely new system is extremdy hard to achieve. Usudly such estimations are based
only upon higtorical experiences with Smilar sysems. If no such experience is avallable, the
edimation gets even more imprecise. The software architecture description could help
illuminate the cogt of developing a system or adding new functiondity to an existing system.
Partly by being a structured description of the gpplication, helping the designer to get a full
perspective of the gpplication scope, but aso by providing techniques for andyzing the
effects of adding new features to an existing software system.

Testability

Tedting is essential in order to prove functiona correctness of a software system. It is aso
used for obtaining some confidence in functiond qudity properties such as rdiability,
performance, etc. A lot of time and consequently, money is spent in the testing phase of
software development. To reduce the amount of time needed for testing of the software, the
architecture must be designed so thet it is easy to ted, i.e having high testability. The
testability is dependent on three individua properties. observability, controllability, and for
concurrent systems and systems dependent on time, reproducibility [Bind94]. Testability is
consequently an indirect quality property as well.

In order for atest case to be useful, the result of it must be observed. If the componentsin
the architecture are seen as “black boxes’, i.e. the structura view, only the interfaces are
obsarvable. The bigger interface, the more vighility. Apparently, bigger interfaces give
higher observability, thus higher testability.

When performing atest, a particular input is given to the system or a sub-system. This input
is the only way in which the test engineer can control the path taken in the program. If the
peth taken only depends on the input itself, maximum controllgbility is achieved. This is of
course not the case in general. There are often data dependencies between different
modules such as globa variables etc. If those data dependencies, which are not controllable
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by the test input data, affect the control flow, the controllability is decreased, giving lower
tetability.

Findly, when testing concurrent system or red-time systems in generd, the order in which
different processes in the system are executed will influence the observed result from a test.
For ingtance, in a system controlling the water leve in atank, there is one process sampling
the actual water level and one process caculating how to adjust the water level based on the
measured value and some sat vaue. If the control process executes twice without any
intermediate execution of the sampling process, the result of the control decison will be
different in the second invocation than if the water level was re-sampled in between. To get
high testability, the order in which processes execute must be controllable or determinigtic,
i.e. high reproducibility [ThH299].

Reusability

Reusing a software component to its full extent, without any modifications, is extremely
difficult if not the domain in which the reuse isintended is the exact domain of the component
origin. When a component or architecture is reused in the same application domain we call it
a domain-dependent reuse. When containers are reused, i.e. lidts, arrays, sets, etc., they can
be reused across different gpplication domains. An example of such reuse is the Standard
Template Library (STL) for the object-oriented language C++. Reuse, which is possible
across the gpplication domains, is consequently called domain-independent reuse.

When andyzing the levd of reusability of a component or a part of the architecture, one
must consder not only the origind application domain, but dso how isolated and
independent it isfrom rest of the system. The less dependencies, the more reusable, and vice
versa

The focus on reuse, in industry, has been intensfied due to the potentid cuts of cost. The
time spent on implementation decreases when reusing components. Furthermore,
components can be bought from third-party developers. Such components are cadled
Commercid-Off-The-Shelf components (COTS).

Portability

To be able to analyze software architectures with respect to portability, the platform on
which the system is going to run on has to be modeled as well. This to unvel the
dependencies between the software components in the system and the platform. As
platform we consder the hardware, e.qg. processors, A/D converters, as well as the
software providing the infrastructure eg. operating sysems. If the amount of direct
dependencies, i.e. the number of components having a direct connection to the platform, is
low, then the architecture as whole is quite insengble to a change of platform. Thus, having a
high degree of portability.

Maintainability
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Kazman et. d. [KAC96], have proposed a methodology for visuaizing the amount of
changes required in the modules or in the architecture when adding or changing functionaity
in the syslem. The amount of changes in the software architecture enforced by adding new
functiondity or error corrections, are referred to as maintainability. By using scenaios
developed from the requirements of the new function, the exigting architecture is analyzed.

The concept, direct scenarios, were introduced meaning scenarios that are directly
supported by the existing architecture i.e. no mgjor architectura changes are required. In
opposite, an indirect scenario exposes the need for architectura changes, which is more
difficult and codtly to achieve. Remember that there is a difference between a direct or
indirect scenario and the direct and indirect quaity properties introduced earlier in this
chapter. After having mapped the scenarios on the architecturd structure and determined if
the scenario is direct or indirect, scenario interaction should be reveded. Two or more
indirect scenarios are said to interact if they affect the same module.

To make the potentid architectural violations and changes in the system visble, graphica
representation of modules were scded in the ADL according to the amount of indirect
scenario interactions.

29






5 Architectural design

Architectural analyss can, and should, be used as guidance when designing a software
system. A oftware syssem can be implemented in severa ways, dl having different
achitecturd solutions. By usng achitecturd anayss, the architecture that fulfills the
requirements best can be chosen. The workflow for designing architectures for a system is
shown in Figure 13.

Describe candidate architectures {——Ilterate———————— Develop scenarios
[ T

v

Evaluate each scenario

v

Visualize pros and cons

Figure 13. Architectur e development and analysis process.

The first phase when developing a software system is to develop candidate architectures and
a set of scenarios that reflects the requirements on the system. The number of scenarios to
develop is related to the generation of ordinary test cases. Eventudly, a state is reached
where the added vaue of a new scenario is less then the effort required to develop the
scenario itsdf. When this point in time is reeched or when the development budget is
violated, the scenario generation should stop.

Now we have the candidate architecture and a set of scenarios. By executing the scenarios
on the architecture a table with the desired quality attributes can be constructed. In the table,
al requirements are marked with plus sgns and minus sgns representing how well the
architecture fulfills the requirements. If the result from the analyss is satisfactory, the next
phase is to do low-leve design and implementation. However, if the analyss results are not
satisfactory, an dternative architecture must be developed on which exactly the same
scenarios are executed. Consequently, the evaluation must be done all over again. The work
of finding a sufficient architecture is highly iterative, meaning that the architecture can evolve
by smdl steps until a reasonable solution is found. Consequently, changes suggested by the
andyss may result in a complete redesign usng a completdy different architectura style or
minor modifications in subsystems only.

The table produced in the andyss phase containing al the anadyzed qudity properties
condtitutes the input to a tradeoff analysis. In a tradeoff andyss the set of competing
architectures is compared or the result from arefined architectura solution is compared with
the result from the analyss of the preceding generation of the architecture. The objective of
the tradeoff analyss is to choose the architecturd aternative that best complies with the
ranking among the qudlity properties.

A method for tradeoff analyss caled Architecture Tradeoff Analysis Method (ATA) has
been developed at the Software engineering indtitute (SEI) a Canegie Mdlon universty
[Kazm9g]. It is an iterdtive development method that is Smilar to the process shown in
Figure 13.
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A method cdled Software Architecture Analysis Method (SAAM) is dso developed at
SEl. The purpose of SAAM is to andyze software qudity attributes by examining
competing architectures [KBAW4]. To do 0, they patitioning the functiondity in the
architecture i.e. identifies were in the different architectures the functiondity of the systemis
dlocated. The functiond partitioning is system domain specific. Some domains dready have
a well-defined functiond partitioning; a typica example of such a domain is compilers.
Compilers are built with a front-end, a parser, a code generator etc. However, nothing is
assumed about how functions are organized and sructured, i.e. the architecture of the
compiler. This partitioning gives a common description and common modules, each with the
same functiondity but organized in different ways. The communa description is an absolute
condition for the comparison, which ams to unvell how well a certain qudity attribute, is
adopted by the architecture. Again, the analysisis based on scenarios, congtructing input for
atradeoff andyss.

5.1 An example

As an example of how an architecture is constructed, analyzed and transformed in order to
better comply with the requirements condder a red-time system that controls the water
level in atank. The sysem samples a water level sensor, takes a decison whether to let
water out, or pour water into the tank. The system actuates a pump or a vave if the leve
has to be adjusted. Asiit is a red-time system, the tempora congtraints on the system must
be fulfilled, i.e. there is a functiond qudity requirement on timing. Moreover, the sysem
should easly be modified to run on different plaiforms (red-time operating sysem and
hardware), i.e. portability.

Fird, the structurd view of the architecture is developed, identifying the components in the
system and their interconnections. In this case, the interconnections represents transportation
of data among the task usng services provided by the RTOS. While portability is crucid,
the operating sysem and the hardware view is modded as wdl. The firg candidate
architecture is shown in Figure 14.

Sampling
Task

)

Control -
Task B

—

Actuate
Task

RTOS HW

Figure 14. Thefirst candidate ar chitecture for a water tank controller

Next the compliance between the architecture and the required qudity properties must be
andyzed. Verifying the tempora behavior requires the tempora view of the architecture. For
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this particular application, the period time, the estimated worst execution time (wcet), and
the deadlines for the three tasks is shown in Table 3.

Task Period time (T) wecet (C) Deadline (D)
Sampling task 1ms 50 ns 60 ns
Control task 2ms 200 s 1ms
Actuate task 2ms 50 s 1ms

Table 3. Thetemporal view

The tempora behavior is verified usng exact analysis where the worst case response time
for dl tasks is caculated. If the response times are less than the specified deadlines for al
tasks, the system is schedulable [JOPAS86]. Exact andys's requires priorities to be assigned
to the tasks. In this particular example, priorities are assigned according to the rate
monotonic agorithm where the task with the shortest period gets highest priority [LILA73].
Rate monatonic gives the sampling task high priority, the control task medium priority and
the actuating task low priority. The exact anadlyss formula is recursve and calculates the
worst case response time with respect to interference of the execution of tasks with higher
priorities. The recursion stops when two subsequent calculations result in the same response
time, i.e. afix-point is reached. The formulais shown below:

R™=C + é g;gpj " i1 hp(i) Denotes dl tasks j with higher priority than
SILEON R

task .

The response times for the sampling task is 50 s as no other task interferes with it Snce it

has the highest priority. The response time for the control task is 250 ns. Findly, the actuate

task has a response time of 300 ns. If the calculated response times are compared to the

specified deadlines, it could easily be verified that the system is schedulable as the response

timesfor dl tasks are less than corresponding deedlines.

To assess portability, scenarios can be used. For the matter of smplicity, only one scenario
is used in this example, namely: "Move the system to another platform”. The idea is to
execute this scenario on the proposed software architecture to estimate the number of
component being subjects to changes. As portability is the issue, the number of affected
components should be held to a minimum. In the architecture suggested in Figure 14, al the
components interact with the red-time operating system. Consequently, there are a lot of
platform specific sysem cdls embedded in each and every component, giving poor
portability since every component has to be changed as a result of a changed platform. To
increase the portability, architectura transformations have to be performed, i.e. the software
architecture has to be refined. One possble transformation is to introduce a proxy-
component between the task components and the red-time operating system. This
transformation is shown in Figure 15.
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Figure 15. The architecture after the transformation

The proxy provides the tasks with dl necessary services in order for them to perform their
intended tasks, while hiding the actual system cdls. To verify the new architecture according
to the requirements, the scenario has to be re-executed. Now the proxy component is the
only one affected by a changed platform, i.e. a maxima portability is achieved. However,
the portability is achieved a the expense of an increased overhead for system cdls.
Therefore, the worst case execution times for the individua task components must be re-
edimated and the exact andyss must be done al over again to verify the tempord behavior
of the system. The phenomena that quality properties might affect each other in a negative
manner, isreferred to as tradeoff.



6 Conclusions

Software architecture is part of what generdly is referred to as software engineering.
Software engineering aso includes a lot of other techniques like software metrics, forma
methods, tes methodologies, etc. Thus, software engineering is an umbrdla for dl
techniques and methods needed to establish a "science of engineering” practice in the
software community. Software architectures are an important part of software engineering
gnce it deds with high-level modding and evauation. The software architecture community
is ill very young, but the recent interests from the industry have launched a lot of research
activities in academia. Especidly relevant are the software architecture andysis methods as
the analyss provides the information for early desgn decisons.

To make architectura analyss possible, the architecture must be described in a language
with well-defined semantics. A language that describes software architectures is cdled
Architectural Description Language (ADL). There exigs alot of different ADL:s, but few of
them have recaved any particular attention since it is very difficult to design a language with
syntax and semantics powerful enough to cover dl possible application domains and that can
be interpreted by al stakeholdersin a project. As a consequence, software developers use
their own description languages. An important property of an ADL isthe architectura views,
providing detailed information needed for the andyss. The number of views and the
contents of each view will vary between different application domains and the required
andyses. Findly, a description language with a well-defined semantics is dso a necessary
condition for developing tools that support architectural development and evauation.

This report has described exigting techniques for describing and evduating software desgns
based on information mainly provided by the high level description, i.e the software
achitecture. The ability to evduate early desgn decisons is very important snce early
design decisons are crucid for the find result, both regarding correct functionality and cost.
The earlier design mistakes are detected, the less time has to be spent on redesign. The
properties andyzed using software architectures are caled quality properties. In this survey,
the qudity properties are divided into two separate classes, functional and nonfunctiond.
Functiona quality properties are concerned with the run-time behavior of the software
gystem, for ingtance performance and rdiability. In contrast, nonfunctiond quality properties
are concerned with the quality of the software itself. Examples of nonfunctiona properties
are reusability, maintainability, and testability.

Tool support for architectura development and evaluation is poor. It is possible to formdize
knowledge in frameworks, guiding the desgner in both architecturd transformations and in
the tradeoff andyss. There exist tools for some of the andyses, for ingtance tools for
verifying the tempord behavior in ared-time sysem [ERGUSA97], but these tools are il
idands in the ocean cdled software engineering. We need to discover, or build new idands
and connect them to each other in order to get complete suits of tools, supporting the
complete software development- and maintenance process. In mature engineering
disciplines, such tool support is taken for granted. Software engineering tools will probably
appear as the software community gets more mature, it is sill very young, at leest when
compared to other traditiona engineering disciplines.
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Appendix A - Terminology

ADL - Architecturd Description Language, Language for describing software architectures
Architectural style - Standard types of architectures identified with names and patterns

Architectural view - Provide the architecture description with information needed when
andyzing it. The components and their interconnections are shown in the structura view.

Architectural transformation — Changing the architecture in order to obtain required
functiondity and qudity

Availability - The probability of a system functioning correctly at any giventime

Checklist based questions — Domain specific questions used when evauating a software
architecture

Cost - The codt for performing any action such as development , evolution and verification
COTS - Commercid Off The Shelf components
Design patterns - Named object oriented solutionsin the object oriented community

Design space - A N-dimensiona space where every axis represents a design parameter,
scaed with the different design options possible for that particular parameter

Direct scenario - A scenario that is directly supported by the architecture

Fault-tolerance - The ability of software to detect and tolerate errors in the design and/or
from its environment

Framework - An architecturd pattern for a particular domain, widely used in the object
oriented community.

Functional quality property — Quality properties concerned with the run-time behavior of
the software system

Indirect scenario — A scenario that requires an architecturad transformation to be
supported by the architecture

Maintainability - The gptitude of a system to undergo repair and evolution

M odifiability - How sensible the architecture is to changes in one or several components
M TBF — Mean-Time-Between-Failure

MTTR —Mean-Time-To-Repair

Nonfunctional quality property - Qudity properties concerned with the software itsalf

Performance - How fast or dow the system performs its functions measured in time or the
systems capacity measured in event-throughput

Portability - How easy it is to move the software system to a different hardware- and/or
software platform
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Refer ence style - Architecturd styleswiddy used in particular application domains, eg.
the pipe-and-filter Architecture used in compilers.

Redliability - The probability of asystem functioning correctly over agiven period of time
Reusability - The extent to which the architecture can be reused
Safety - The property of the system that it will not endanger human life or the environment

Scenario based questions — Application specific questions used when evaduating a
software architecture

Scenario execution - Method for analyzing an architecture by asking “what if” questions
Security - The ability of a software system to resst malicious intended actions

Temporal congraints - Red-time attributes such as deadlines, jitter, response time, worst
case execution times (wcet), etc

Testability - How easy it isto prove correctness of the system by testing

Tradeoff - A relation between two or more qudity attributes where an increased leve of on
property resultsin a decrease of another property.

Questionnaire based evaluation — Questions used when evauating project logistic
properties of software architectures
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