
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2014) 000–000
www.elsevier.com/locate/procedia

International Conference on Information and Communication Technologies (ICICT 2014)

Fault Tolerant Scheduling of Mixed Criticality Real-Time Tasks
under Error Bursts

Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat

Mälardalen University, Sweden

Abstract

Dependability is an important requirement in hard real-time applications due to the potentially catastrophic consequences of fail-
ures. In these systems, fault tolerance mechanisms like temporal redundancy are adopted to improve reliability. Most of these types
of systems are increasingly moving towards integrating critical and non-critical functionalities on the same platform to, e.g., better
utilize resources and further reduce cost, and are commonly deployed in environments where errors typically occur in the form of
bursts e.g., due to Electro Magnetic Interference (EMI). Consequently, in mixed criticality real-time systems, the designer must
guarantee that critical tasks are feasible even under the presence of the error burst, while ensuring the feasibility of the non-critical
tasks that are not affected by the burst. We refer to this as Fault Tolerance feasibility (FT-feasibility) of mixed-criticality real-time
systems.

In this paper, we build on the well established results on Earliest Deadline First (EDF) scheduling, to derive a sufficient test that
determines the FT-feasibility of a set of mixed criticality real-time tasks under the assumption that the inter-arrival time between
two consecutive error bursts is at least equal to the hyper-period of the taskset.
c© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014).

Keywords: Mixed Criticality Systems, Real-time Systems, Error Bursts, Reliability

1. Introduction

Modern mission and safety critical real-time systems are moving towards integrating functionalities of different
criticalities on the same platform to reduce Size Weight and Power (SWaP) constraints. These systems must be highly
reliable, and especially, the critical part of the software needs to be tolerant towards faults. One way to guarantee the
reliable and timely operation of the system is to use real-time fault tolerance mechanisms that can prevent failures.
However, in order to reason about the correctness of the system, a realistic error model is required. Additionally,
the overheads associated with the adopted fault-tolerance mechanisms must be considered. Traditionally, errors are

∗ Abhilash Thekkilakattil. Tel.: +46-21-101689.
E-mail address: abhilash.thekkilakattil@mdh.se

1877-0509 c© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies
(ICICT 2014).

2 Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000

treated as singleton events which may not be realistic in situations where the errors occur continuously over a period
of time, e.g., errors occurring on the computer system of a vehicle when it passes through an electromagnetic field. An
error burst model, together with a suitable failure tolerance strategy, is more appropriate for such situations to provide
feasibility guarantees to the failed tasks in mixed criticality systems.

The events occurring in a real-time system are mapped to a taskset comprising of different real-time tasks. Each task
in the task set may generate an infinite number of jobs that need to finish executing by their associated deadlines. The
real-time system may employ an appropriate fault tolerance strategy, such as temporal redundancy. Under temporal
redundancy, the failed tasks are re-executed or an alternate task is executed before the associated deadline1 2. We refer
to the original task executions as the primary of the task and the re-executions as alternates of the task. If the error
burst occurs during the execution of alternates, recovery tasks are executed until one successful execution is achieved.
However, from a feasibility perspective, these re-executions need to complete before the original task deadline in
mixed criticality hard real-time systems. Previously, Many and Doose3 and Aysan4 proposed methods to determine
the Fixed Priority schedulability of a set of real-time tasks under error bursts.

One of the main motivations behind mixed criticality scheduling is to enable the use of Commercial Off-the Shelf
(COTS) hardware and software components while developing safety-critical and mission-critical real-time systems5 6.
COTS components are typically developed by third parties, and hence may exhibit unpredictable behaviors at runtime
that may jeopardize correctness (w.r.t value and timeliness) guarantees in the system. Therefore, while building safety
and mission critical systems, the developer has to guarantee that the critical functionalities in the system does not
fail even if the COTS components exhibit unpredictable behaviors. We focus our attention on providing timeliness
guarantees to mixed criticality systems in the presence of error bursts using temporal redundancy. We define the
Fault Tolerance feasibility (FT-feasibility) of a mixed criticality real-time system under an error burst of known upper
bounded length, as the existence of a schedule that guarantees the successful re-execution of the critical jobs hit by
the burst, as well as the feasible execution of non-critical jobs that are not hit by the burst.

In this paper, we consider the problem of determining the FT-feasibility of a set of temporally redundant mixed
criticality real-time tasks. We build on the well established results on EDF to propose a sufficient test that determines
whether any given mixed criticality real-time taskset is FT-feasible in presence of an error burst whose length is no
more than a known upper-bound. For this purpose, we generalize our FT-feasibility analysis presented in7 to the case
of mixed criticality systems.

The rest of the paper is organized as follows: Section 2 details the system model and the problem definition,
followed by our FT-feasibility analysis of mixed-criticality systems in section 3. before concluding in section 4.

2. System Model

In this Section, we describe the task model, error model, scheduling model as well as the notations used throughout
this paper.

2.1. Fault and Error Model

A fault in a system is defined as the hypothesized cause of an error in the system1. We assume that all the faults
occurring in a task causes an error, which in turn leads to its failure. An error in a task, that leads to its failure,
can be seen as a fault in the system which can be tolerated by a suitable fault tolerance mechanism like temporal
redundancy. Hence the use of the terms faults, errors and failures depend on the level of abstraction of the system that
is considered. A majority of the related works in the literature treats error occurrences as singleton events. Instead, in
this paper, we consider error bursts defined as a series of soft/transient or intermittent errors that occur within a known
time interval that prevents successful task executions during that interval, e.g., radar waves in airport areas produce
electromagnetic fields that can cause error bursts on computer systems3 8. The duration of the error burst depends on
the duration for which the computer system is exposed to the EMI. We assume that the fault burst occurring during the
task executions, that may affect the CPU, memory or the I/O subsystems, eventually manifests as an error burst on the
tasks, leading to their failure. The underlying platforms such as operating system and the error detection mechanism
is assumed to be resistant to the burst. Spatial redundancy techniques must be employed to tolerate such failures,
which is outside the scope of this paper.

Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000 3

We assume that the upper-bound on the error burst length is known, and is denoted by Tlength. Two consecutive
error burst occurrences are assumed to be separated by a time duration no less than the LCM of the task periods.

2.2. Task Model

We assume a mixed criticality sporadic real-time taskset denoted by Γ= {τ1, τ2, ...τn}. Consecutive jobs of each τi is
assumed to be separated by a time interval no less than Ti, and has a Worst Case Execution Time (WCET) denoted by
Ci and a relative deadline denoted by Di ≤ Ti. Every τi ∈ Γ belongs to either Γc or Γnc, where Γc is the subset of critical
tasks and Γnc is the subset of non-critical tasks. A deadline miss on critical tasks can have catastrophic consequences,
while a deadline miss on non-critical tasks does not cause any catastrophe, except for a minor degradation of system
performance. Our aim is to guarantee the successful execution of all critical tasks even under the presence of error
bursts, while guaranteeing the execution of all non-critical tasks that are not affected by the burst. In case a critical
task is hit by the burst, they are re-executed or a recovery task is executed until a successful execution is achieved.

The tasks are assumed to be indexed according to the increasing order of relative deadlines. Each τi generates an
infinite number of jobs, where the jth job of τi is represented as τi, j. The set of absolute deadlines of the taskset in
the LCM (for the strictly periodic case) is denoted by ∆ = {d1, d2, ..., dm}, di < di+1. Here, LCM is used to denote the
hyper-period of the taskset. We also denote ε to represent a very small positive number arbitrarily close to zero.

2.3. Scheduling Model

We assume the earliest deadline based scheduler to determine the FT-feasibility of a set of mixed criticality real-
time tasks under error bursts. The use of EDF enables us to leverage on the associated well established results9 10.
Our result facilitates the use of existing operating systems that support EDF, e.g., ERIKA11, for mixed criticality fault
tolerant scheduling of real-time tasks.

3. Schedulability Analysis

When a set of mixed criticality real-time tasks is hit by an error burst during any time interval, the failed tasks devi-
ate from their specified behavior, e.g., gives the wrong output or overruns their WCET. This deviation in the behavior
can be typically detected at the end of their budgeted time, and an alternate action can be taken by the scheduler such
as the execution of an alternate task. In this time interval, between the last idle time in the system and the successful
execution of all the failed tasks, there are three components that decide the mixed criticality schedulability:

1. The demand bound, which accounts for one correct execution of each task.
2. The duration of the error burst.
3. The time wasted in executing the failed tasks.

If a job τi, j is hit by a burst, a part of its execution time is wasted since the error detection happens at the end of its
budgeted time. The wasted time is maximum if the error burst begins right before τi, j finishes its execution, or ends
immediately after the primary/alternate of τi, j starts executing.

Definition 1. The Maximum Wasted Execution Time (MWET) for a critical task τi that fails due to an error burst is
defined as the maximum WCET of its failed primary or an alternate lying outside error burst.

MWET (τi) = Ci − ε

An example of the MWET for a critical task is shown in Figure 1.
The error burst can affect jobs of multiple critical tasks leading to many such MWETs that waste the processor

time. The sum of all the possible MWETs of all the critical tasks scheduled in a time interval of length t gives the
worst case temporal wastage in t.

Definition 2. The Worst Case Temporal Wastage (WCTW) in any time interval of length t, denoted by Werr(t), is
defined as the sum of MWETs of maximum possible aborted primaries and alternates of the critical tasks having their
release times and deadlines in t.

4 Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000

primary alternate

t

Largest Fault
Tolerance Overhead

Largest Fault
Tolerance Overhead Tlength

worst case recovery overhead (Rt)

ε ε

alternate alternate
Critical

task

Fig. 1: Worst Case Error Overhead.

alternate

WCET WCET Tlength ε

primary alternate alternate

t (relative deadline)

Critical
task

Fig. 2: Longest tolerable error burst.

In the following, we derive the equations to calculate Werr(t) and derive a sufficient condition for the feasibility of
a set of mixed criticality real-time tasks.

Outline of our approach: Our strategy for deriving the sufficient condition that determines the feasibility of a mixed
criticality system is as follows. We consider a time instant t′ when a job τi, j, which can be critical or non-critical,
having an absolute deadline at time t is executing on the processor. We assume that even if an error burst occurs
in [t′, t] there are no deadline misses on the critical jobs scheduled in the interval [t′, t], and then derive a sufficient
condition for this to be true. In the case of non-critical jobs, we assume that, if they are not hit by the error burst they
are guaranteed a successful execution and derive a sufficient condition for this to be true. In order to avoid notational
clutter, we assume that if there are more than one critical jobs with absolute deadline at t, τi, j denotes the critical job
with the largest execution time. We also use t0 to represent the earliest time instant before t′ at which the processor
is idle. Without loss of generality, we can set t0 = 0. Here, our goal is to find the worst case temporal wastage in the
interval [t0 = 0, t], i.e., Werr(t − t0) = Werr(t).

The Werr(t) occurs when the jobs of Γ arrive strictly periodically, because such a scenario maximizes the number
of jobs that are hit by the error burst. We derive Werr(t) for each of the following cases:

Case 1: No job scheduled in [t′, t] is hit by the error burst.

Case 2: Only one job scheduled in [t′, t] is hit by the error burst.

Case 3: At least two jobs scheduled in [t′, t] are hit by the error burst.

In the following, we show that if τi, j is a critical job, no job released in [t′, t] having an absolute deadline later than t
are affected by the burst.

Observation 1. If the error burst starts at t′ and τi, j is a critical job, then no job τa,b released in [t′, t] with an absolute
deadline greater than t is affected by the the error burst.

Proof. The proof follows from the assumptions that a) there are no deadline misses even if some tasks are hit by the
error burst, and b) the primaries and alternates are scheduled based on EDF. The job τi, j has a higher priority than
τa,b because of its earlier absolute deadline. Consequently τa,b will execute only after τi, j has completed its execution.
According to our assumption, the critical jobs are schedulable even if they are hit the error burst, and hence τi, j will
eventually succeed no later than t. Therefore, when τa,b starts its execution, the error burst would have ended since
the critical job τi, j would have completed one successful execution. Therefore (any such) τa,b is not affected by the
burst.

Lemma 1. If no job is released in [t′, t] with absolute deadline ≤ t, the WCTW Werr(t) is given by:

Werr(t) =

{
2(Ci − ε), i f τi ∈ Γc

0, otherwise

Proof. If τi, j is critical, its primary or an alternate has to finish one successful execution for any job other than τi, j to
start its execution. Thus, as seen from Observation 1, τi, j is the only job that fails due to the error burst.

Since we consider mixed criticality systems, we need to provide re-execution guarantees to only the critical jobs.
Therefore Werr(t) occurs when τi, j is a critical job, and the error burst starts ε units before its primary finishes executing,
and ends ε units after its last failed alternate starts execution (an example is given in Figure 1). The value of Werr(t) is

Werr(t) = 2(Ci − ε)

Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000 5

If τi, j is non-critical, since we consider a scenario where no job with deadline < t is released in [t′, t], then some task
with a deadline greater than t can fail due to the error burst. This is because we assume that non-critical jobs are not
re-executed upon failures. Once the budgeted time of the failed primary of τi, j expires, a job with a deadline greater
than t can be scheduled in [t′, t]. However, these failed primaries and/or alternates will influence the WCTW at some
time instant later than t. Therefore, in this case,

Werr(t) = 0

The proof follows by unifying the above two equations.

Observation 2. The relative deadline of every job with a release time in [t′, t], and an absolute deadline < t, is less
Di.

This is quite straightforward as τi, j has been released prior to time instant t′. Consequently, every job released in
[t′, t] with an absolute deadline less than t will have a relative deadline less than that of τi. We now consider case 1 in
which no job scheduled in [t′, t] is hit by the burst.

Lemma 2. If an arbitrary job τa,b with an absolute deadline given by dl = bTa + Da is not affected, and the error
burst started at some time prior to its start time,

Werr(dl) = Werr(dl−1)

Proof. In this case, some higher priority critical jobs that executed prior to the start of τa,b are hit by the error burst.
Let the dk denote the latest deadline of such a high criticality job prior to dl. In this case, the Werr(dk) can cause a
deadline miss at dl. Therefore,

Werr(dl) = Werr(dk)

There could be more jobs having an absolute deadline in the interval between dk and dl. These jobs are not affected
by the error burst since it has already ended at dk. The WCTW at all these deadlines is equal to Werr(dk).

⇒ Werr(dl) = Werr(dl−1)

In the following, we consider the case when only a single job fails due the burst in [t′, t].

Lemma 3. If only a single job fails due to the error burst in [t′, t], the Werr(t) is given by:

Werr(t) =

{
max{2(Ck − ε)}, ∀τk ∈ Γc : Dk ≤ Di

0, otherwise

Proof. We showed earlier that all the jobs with release times and deadlines in [t′, t] are jobs with relative deadline
less than that of τi. If a job of τk ∈ Γc executing in the interval [t′, t] is hit, the contribution is twice the maximum of
the corresponding MWETs. In this case, the error burst starts an arbitrarily small time unit before the failed primary
of the critical task finishes executing and ends an arbitrarily small time unit after the last failed alternate has started
executing (proved in Lemma 1). Here, τk can be either τi, if it is critical, or, as per observation 2, any critical task τa

such that Da ≤ Di.
The contribution to Werr(t) is equal to zero if τi is non-critical, and there are no critical jobs having a relative

deadline less than or equal to Di. The proof follows.

In the next Lemma, we find an upper-bound on the contribution of job τi, j to Werr(t) when more than one jobs are
hit by the error burst in [t′, t].

Lemma 4. If the error burst leads to the failure of at least one more job in addition to τi, j, in the interval [t′, t], the
contribution of τi, j to Werr(t) at time t happens when τi, j is a critical job and the contribution is equal to 2(Ci − ε).

6 Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000

Proof. According to our assumptions, only the critical jobs are re-executed upon failures, and hence τi, j contributes
to Werr(t) only if it is a critical job, otherwise its contribution to Werr(t) = 0.

The contribution of τi, j is maximum when its primary is hit ε units before completion, and one of its failed alternates
is preempted after an arbitrarily small time duration (ε units) after the start of execution. The contribution of the
primary of τi, j to Werr(t) is equal to (Ci − ε).

Since the alternate of τi, j can be preempted by one or more jobs (in a nested manner), we have two cases- 1) none
of the preempting jobs are critical 2) at least one of the preempting job is critical.

Case 1: No jobs preempting τi, j are critical.

If only non-critical jobs preempt τi, j, all these jobs will be affected until the error burst ends. However, they do
not contributed to Werr(t). When τi, j resumes its execution, the worst case contribution of τi, j occurs a) when
the error burst ends before τi, j resumes its execution or b) when the error burst ends just after the last failed
alternate of τi, j has started execution. The contribution of τi, j in both the cases a and b is at most (Ci − ε).

Case 2: At least one job preempting τi, j is critical.

According to our assumption, all critical jobs are feasible even if there are error bursts. Hence, all critical jobs
that are preempting τi, j in a nested manner, will complete its execution successfully before τi, j is again sched-
uled. Hence the error burst would have ended when τi, j resumes its execution. Consequently, the remaining
execution time of τi, j, i.e., Ci − ε, is wasted as it was hit by the burst before being preempted. Since the error
burst has already ended, the alternate of job τi, j can execute successfully. The contribution of the failed alternate
of τi, j to the Werr(t) is (Ci − ε).

Therefore, the contribution of τi, j to Werr(t) at time t is equal to 2(Ci − ε).

No more than one primary or alternate of the critical jobs executing in the interval [t′, t] contributes to Werr(t).

Lemma 5. If the error burst leads to the failure of at least one more job in addition to τi, j, in [t′, t], no more than one
affected primary or alternate of each critical job other than τi, j will contribute to Werr(t).

Proof. We had assumed that the job τi, j is the first to be affected by the burst, and it contributes to Werr(t) only if it is
a critical job. Its contribution, in this case, is equal to 2(Ci − ε), as presented in the previous Lemma.

I I

E

A A

Tlength

I

ε

ε ε

ε

A

non-critical job

critical job

critical job

Fig. 3: Critical and non-critical jobs under an error burst in a mixed criticality system

Consider a job τa,b, that is the next job to be hit by the burst. The job τa,b has a release time and deadline in the
interval [t′, t]. If τa,b is a critical job, then it must recover before its absolute deadline for the task set to be feasible.
The contribution of τa,b to Werr(t) is maximum when τa,b is a critical job and one of the following is true:

Case 1: The failed primary or an alternate of τa,b is preempted after an arbitrarily small duration from the start of its
execution, by a higher priority job τe, f .

Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000 7

If τe, f is a critical job, it will complete one successful execution and the error burst will end prior to its com-
pletion. After it completes, the failed τa,b, which was preempted, executes wasting the processor time. Thus,
according to the definition 1, the largest processor time wasted by τa,b before it can successfully execute is
(Ca − ε). On the other hand, if τe, f is non-critical, it need not achieve one successful execution before its dead-
line. However, the MWET by τa,b at time t is still (Ca − ε), which is when the error burst ends right after the
last failed alternate of τa,b starts executing (see Figure 3).

Case 2: The error burst ends right before the start of the last affected alternate of τa,b.

In this case τa,b is the only critical job in addition to τi, j that fails due to the burst. If τa,b is a critical job, the
contribution of τa,b to Werr(t) is (Ca − ε), before τa,b completes without a failure.

Hence, if τa,b is a critical job, its contribution to Werr(t) is (Ca − ε). The argument presented above can be recursively
applied for all higher priority critical jobs τe, f that are released between the release time and deadline of τa,b. An
example for the case where more than one job is hit is given in Figure 3.

Thus we can conclude that if at least two jobs are hit by the error burst, no more than one affected primary or an
affected alternate of each critical job other than τi, j will contribute to Werr(t).

We now derive the Werr(t) when at least two jobs are hit by the error burst in the interval [t′, t], corresponding to
the case 3 enumerated above.

Lemma 6. If the error burst leads to the failure of at least one more job in addition to τi, j, in the interval [t′, t], the
WCTW Werr(t) is given by:

Werr(t) =

2(Ci − ε) +

∑
∀τk∈Γc:Dk<Di

(Ck − ε), i f τi ∈ Γc∑
∀τk∈Γc:Dk<Di

(Ck − ε), otherwise

Proof. It is evident from Lemma 5 that no more than one primary or one alternate of the affected critical jobs with
releases and deadlines in [t′, t] will contribute to Werr(t). Hence the total contribution to Werr(t) is largest when every
critical job τa,b released in the interval [t′, t], with a deadline before t, fails and contributes Ca− ε time units to Werr(t).
Such a case occurs when the jobs in the interval [t′, t] preempt each other in a nested manner, with the preemption on
a critical job occurring ε units after its primary or alternate starts executing.

From observation 2, we know that the jobs that are released in [t′, t] have relative deadlines less than Di. The
contribution of these jobs to the WCTW is

∑
∀τk∈Γc:Dk<Di

(Ck − ε). According to Lemma 4, the contribution of τi, j

to Werr(t) is 2(Ci − ε), if it is a critical task, and 0 otherwise. The proof follows by summing up the respective
contributions.

In the following, we derive Werr(t) and use this in Theorem 2 to derive the condition for FT-feasibility.

Theorem 1. In a mixed criticality system, the worst case temporal wastage Werr(t) where t = dl = jTi + Di for any
job τi, j, is given by:

Werr(t) = max (x, y,Werr(dl−1))

Here,

x =

2(Ci − ε) +

∑
∀τk∈Γc:Dk<Di

(Ck − ε), i f τi ∈ Γc∑
∀τk∈Γc:Dk<Di

(Ck − ε), otherwise

y =

{
max{2(Ck − ε)}, ∀τk ∈ Γc : Dk ≤ Di

0, otherwise

Proof. The proof follows from Lemma 2, 6, 3. The Werr(t), where t = jTi + Di for any τi, j is obtained from by the
max of the Werr(t) given by Lemmas 2, 3 and 6.

8 Thekkilakattil, Dobrin and Punnekkat / Procedia Computer Science 00 (2014) 000–000

We now define the worst case error overhead at any time instant t introduced by our mixed criticality model.

Definition 3. The worst case error overhead Et at an arbitrary time instant t is defined as

Et = Tlength + Werr(t)

Figure 1 illustrates the worst case error overhead at time instant t i.e., Et. Building on the demand based analysis
by Baruah et al.9, we can obtain a sufficient condition for FT-feasibility of mixed-criticality real-time systems.

Theorem 2. A mixed criticality real-time task set Γ is FT-feasible, such that the tasks are hit by an error burst of
length at most Tlength, if, ∀t = kT j + D j,∀τ j ∈ Γ and t ≤ LCM,

Et +

n∑
i=1

DBFi(t) ≤ t

Proof Sketch. Assume that the condition presented above does not hold for some t, i.e., Werr(t) +
∑n

i=1 DBFi(t) >
t − Tlength. In this case, during the interval of length t, the demand bound requested by the real-time taskset is greater
than the available processor time outside the error burst. We do not present the formal proof which is similar to the
one presented by Aydin2.

The Theorem 2 is only a sufficient test for determining feasibility of a mixed criticality real-time task set. This is
because, in many cases, the actual WCTW at t may not be as high as the one calculated by our method.

4. Conclusions

In this paper, we presented a test to determine the fault tolerance feasibility of mixed criticality real-time tasks
affected by an error burst of known upper-bounded length. We have assumed that the underlying scheduler is the
Earliest Deadline First scheduler that has enabled us to bild on the associated schedulability tests. The test that we
have proposed enables a system designer to determine the schedulability of a given set of mixed criticality real-time
tasks that are affected by error bursts. Future work will include extensions of the approach to different error models
as well as to multiprocessing environments.

Acknowledgment

This work was supported by the Swedish Research Council project Contesse (2010-4276).

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.. Basic concepts and taxonomy of dependable and secure computing. IEEE
Transactions on Dependable Secure Computing 2004;.

2. Aydin, H.. Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Transactions on Computers 2007;.
3. Many, F., Doose, D.. Scheduling analysis under fault bursts. In: The 17th IEEE Real-Time and Embedded Technology and Applications

Symposium. 2011, .
4. Aysan, H.. Fault-tolerance strategies and probabilistic guarantees for real-time systems. In: PhD thesis, Malardalen University. 2012, .
5. Vestal, S.. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In: The 28th IEEE

International Real-Time Systems Symposium, 2007. 2007, .
6. Burns, A., Baruah, S.. Timing faults and mixed criticality systems. In: Dependable and Historic Computing; Lecture Notes in Computer

Science. 2011, .
7. Thekkilakattil, A., Dobrin, R., Punnekkat, S., Aysan, H.. Resource augmentation for fault-tolerance feasibility of real-time tasks under

error bursts. In: The 20th International Conference on Real-Time and Network Systems. ACM; 2012, .
8. ARP5583A, . Guide to certification of aircraft in a high-intensity radiated field (HIRF) environment. In: Ae-4 Electromagnetic Environmental

Effects (E3) Committee, SAE International, Product Code: ARP5583A, Revision Number: A. 2010, .
9. Baruah, S.K., Rosier, L.E., Howell, R.R.. Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on

one processor. Real-Time Systems 1990;.
10. Baruah, S., Mok, A., Rosier, L.. Preemptively scheduling hard-real-time sporadic tasks on one processor. In: The 11th Real-Time Systems

Symposium. 1990, .
11. Cirinei, M., Mancina, A., Cantini, D., Gai, P., Palopoli, L.. An educational open source real-time kernel for small embedded control

systems. In: Computer and Information Sciences. Springer Berlin / Heidelberg; 2004, .

