
MOPED: A Mobile Open Platform for Experimental

Design of Cyber-Physical Systems

Jakob Axelsson, Avenir Kobetski, Ze Ni, Shuzhou Zhang, Eilert Johansson

Software and Systems Engineering Laboratory

Swedish Institute of Computer Science (SICS)

Kista, Sweden

E-mail: jakob.axelsson@sics.se

Abstract—Due to the increasing importance of cyber-physical

and embedded systems in industry, there is a strong demand for

engineers with an updated knowledge on contemporary

technology and methods in the area. This is a challenge for

educators, in particular when it comes to creating hands-on

experiences of real systems, due to their complexity and the fact

that they are usually proprietary. Therefore, a laboratory

environment that is representative of the industrial solutions is

needed, with a focus on software and systems engineering issues.

This paper describes such an environment, called the Mobile

Open Platform for Experimental Design (MOPED). It consists of

a model car chassis, equipped with a network of three control

units based on standard hardware, and running the automotive

software standard AUTOSAR, which consists of operating

system, middleware, and application software structures. It is

equipped with various sensors and actuators, and is open to

extensions both in hardware and software. It also contains

elements of future systems, since it allows connectivity to cloud

services, development of federated embedded systems, and

continuous deployment of new functionality. In this way, the

platform provides a very relevant learning environment for
cyber-physical systems, today and in the future.

Keywords—cyber-physical systems; federated embedded

systems; automotive; AUTOSAR; software engineering; education.

I. INTRODUCTION

Cyber-physical systems (CPS), i.e., systems containing
interacting elements of mechanics, electronics, and software,
are of ever-increasing importance in our society. They are part
of a large range of industrial products, in domains such as
automotive, aerospace, and industrial automation. Due to this
importance, it is essential to ensure that companies have access
to engineers and researchers with a broad and deep knowledge
of the workings of contemporary CPS technology, and
education and academic research in the area must ensure that
they deal with the challenges industry face today and
tomorrow. Those challenges are increasingly on the software
side, and on how to deal with complexity as the CPS becomes
connected to others and forming federated embedded systems,
where the embedded systems in different products connect to
each other. CPS engineers do not only need a theoretical
understanding of concepts, but due to the applied nature of the
field, experience gained from practical work is also essential.

The latter is a challenging situation for educators, since it is
difficult to provide students with a laboratory environment

which is representative of current industrial systems. Real
industrial systems could be an option, but they are proprietary,
and thus hard to get unlimited access to. They are also often
very expensive, and tend be cumbersome to work with in
practice, meaning that students need to spend excessive time on
parts that are not key to their learning. Of course, similar
problems also face researchers, who want to advance the
current state-of-the-art in the area.

The purpose of this work is therefore to develop an
effective and efficient platform for research and education on
contemporary and future industrial CPS, with a focus on
software and systems issues. Effectiveness means that it should
allow students and researchers to reach their learning
objectives to gain practically useful knowledge, and efficiency
means that they should be able to do so with a minimal waste
of resources, both in terms of time and money.

More specifically, such a platform needs to reach the
following goals:

• Representative: It should reflect key elements of the
current state-of-the-art in industry.

• Accessible: It should be possible for any researcher or
educator to use it, without limitations and within a
reasonable budget.

• Extensible: It should be possible to easily add new
functionality and interfaces.

• Future oriented: It should contain elements of
technology that can be expected to become common in
future CPS, such as connectivity, and continuous
deployment.

• Useable: It should be possible to operate the systems
built on the platform without the need for excessive
special equipment, and in a normal office environment.

It should be noted that most real industrial systems fail to
meet these goals, except the first one.

Elements that are important for a good learning experience
in CPS include a good visual feedback of the physical systems
in operation; practical experience of the interaction between
software, hardware, and mechanics; and experience of dealing
with the complexity of distributed, heterogeneous systems.

The approach used to meet these needs is to create and
iteratively evolve a model car, which contains a hardware and
software environment representative of the complexity and
technology found in a real car, but built out of cheap standard
components. The platform is called Mobile Open Platform for
Experimental Design, or MOPED for short. Using a car as a
platform was a deliberate choice, both due to the opportunities
for visual feedback, and for the importance of the automotive
industry, which is both large in comparison to many other
sectors, and also in many respects leading when it comes to
new technologies and new ways of working in software and
systems engineering. Experiences gained using automotive
technology are surely valuable also in other industries.

The rest of the paper is structured as follows. In the next
section, some background information on automotive systems
is presented, to introduce some of the concepts used in the
platform. Then, in Section III, the architecture of MOPED is
described, and in Section IV, some experiences of the work are
discussed. Section V presents related work, and the last section
summarizes the conclusions and gives directions for the future
evolution.

II. AUTOMOTIVE SYSTEMS BACKGROUND

In this section, the nature of automotive systems will be
described, and some key concepts are introduced that will be
used later in the paper. The section will also later be used to
substantiate the fact that the MOPED platform is meeting the
representativeness criteria described in the introduction, by
replicating the essential characteristics of real vehicular
systems.

A. Vehicle Electronic Systems

Over the last few decades, automotive embedded systems
have expanded rapidly in functionality and complexity. Today,
a car typically contains several dozen electronic control units
(ECUs) that are connected through communication networks.
Each ECU runs control functionality using sensors and
actuators, but there are also control functions that are
distributed over several ECUs. The most common network
technology is CAN, and several such networks usually exist in
each vehicle. Also, there are sub-networks connecting devices
to an ECU using simpler serial protocols such as LIN.
Increasingly, more high-performance technology such as
Flexray and even Ethernet are coming into use for the
backbone communication infrastructure.

B. AUTOSAR

The increase in complexity is even more visible in the in-
vehicle software, and to cope with this, the automotive industry
has for the last decade been developing the standard
Automotive Open System Architecture (AUTOSAR) [1]. It is,
according to the AUTOSAR consortium, already in use in 25
million electronic control units (ECUs) in 2011, a figure
expected to rise to 300 million in 2016.

AUTOSAR is structured around a layered software
architecture that decouples the basic software (BSW) that
needs to exist in all ECUs and can be standardized, from the
application software (ASW). In between is a middleware called

the runtime environment (RTE). AUTOSAR also provides a
component model that eases reuse of parts of the ASW, and
allows it to be reallocated if the underlying distributed
hardware architecture is changed, thereby improving flexibility
and scalability. The BSW consists of:

• Operating system (derived from the OSEK standard);

• System services for, e.g., memory management;

• Communication concepts;

• ECU and microcontroller hardware abstractions; and

• Complex device drivers for direct access to hardware.

The ASW consists of a number of software components
(SW-C). Each component declares a number of ports, which
can be either required ports (where the component is expecting
input) or provided ports (that the component uses for its
output). The ports can implement different interaction schemes,
including sender-receiver or client-server. Ports of different
components are connected using configuration tools to form an
application. The internal functionality, or the runnable, of the
component only accesses its ports, and not any other
components. The runnables are mapped to OS tasks. SW-Cs
can also be composite, i.e., containing other SW-Cs inside.

Between the ASW and BSW is the RTE. It manages all
communication between ASW SW-Cs, as well as their access
to the lower layers. To make the SW-Cs independent of their
physical allocation to different nodes, a concept called the
virtual functional bus (VFB) is used, which allows SW-Cs to
communicate between each other as if they were all allocated
to the same ECU. If they are in fact on different ECUs in a
particular implementation, the communication between them
has to be mapped to network messages, and this is taken care
of by the VFB. The actual implementation of the RTE is done
by generating ECU specific software from a description of how
the constituent SW-Cs are allocated to ECUs and what links
between the components exist. The result is thus a C program
that provides an API to the ASW, and that in turn calls the API
of the BSW. Apart from communication, the RTE also handles
other functionality, such as events, critical sections, etc.

In addition to technical concepts, AUTOSAR also provides
a development methodology which heavily relies on different
tools for software configuration. Since the intended use is
software for resource-constrained embedded systems, the
approach is to do all configuring statically at design time
instead of dynamically at run-time. This is achieved through a
number of description files (using primarily XML format) that
are processed by different tools. These description files
include, among many other things, information about how the
ports of different SW-Cs are connected to each other to form a
system, and how SW-Cs are allocated to ECUs and tasks. From
the description files, executable software is generated that
implement the BSW, RTE, and ASW for a particular ECU.

C. Federated Embedded Systems

Although AUTOSAR provides a lot of flexibility in
reconfiguring a system, it is important to notice that it occurs at
design time. It does not offer any possibility to make dynamic

additions, but any changes require the software to be rebuilt
and the ECU to be reprogrammed. In the future, it is likely that
the need will arise to dynamically add plug-in software
functionality to the embedded systems, in a way similar to how
apps can be added to a modern mobile phone.

Such a dynamic model would have several benefits. Firstly,
it would drastically decrease the time to market since software
can be added or modified very late in the development process,
allowing for continuous deployment of new functionality.
Secondly, in combination with external wireless
communication, it gives the possibility for creating federated
embedded systems [2], i.e., embedded systems in different
products that cooperate with each other. Thirdly, it would
create a foundation for open innovation where an ecosystem of
third party developers can develop new services that add to the
value of the products. The benefits of federated embedded
systems, and also the challenges it entails on business and
product life-cycle, are further discussed in [3].

III. MOPED ARCHITECTURE OVERVIEW

After having described some key characteristics of
automotive CPS, the discussion will now focus on how a
platform that is representative for those characteristics can be
created. The presentation below is structured into a number of
technology areas, and for each of them, the choices made in the
MOPED platform are presented, together with a rationale and
in some cases also a comparison to other alternatives. A bill of
material containing the major components is provided in Table
1, and the physical implementation is shown in Fig. 1.

A. Mechanics

The mechanical platform consists of an off-the-shelf radio
controlled car in scale 1/10. It is equipped with a brushless
electrical DC motor for driving the rear wheels, and a servo
motor for steering the front wheels. The main trade-off here
was the choice of scale, and the rationale for the scale 1/10 was
to have a sufficiently large car to allow easy packaging of
electronics, and still a sufficiently small scale to allow driving
indoors. A small size also makes it easy to transport the car,
which is often needed. The particular car chosen is 53 cm long
and has a turning diameter of 1.2 m, which suits those
requirements. However, more or less any model car of a similar

size and capabilities could be used. In order to use the car
indoors, low speed control is more important than high speed,
and therefore the original motor had to be replaced with a
weaker one rated at 190W, and then the new motor was further
recalibrated for slower driving.

B. Electronics

A key decision in the project was which hardware to use for
the ECUs, and main factors here was accessibility and
extensibility. The hardware should be readily available on the
open market at a low cost, but still be fairly powerful to not
limit future extensions. Two alternatives emerged in the
evaluation: Arduino and Raspberry Pi model B, and the latter
was selected. The rationale for this was that at the time of the
decision, it was more capable than the corresponding Arduino
alternative. However, current versions of the Arduino, e.g.
Arduino Due, would also be feasible. The decision on ECU
hardware is quite fundamental though, since a lot of embedded
software is closely related to hardware, in particular OS and
device drivers.

The Raspberry Pi has many powerful features, and only
some of them are used in this project. It has an ARM11 based
processor running at 700 MHz, 512 MB RAM, and contains an
SD card for storing software. Peripherals include Ethernet
connection, USB ports, 8 general-purpose I/O pins, UART, I2C
bus, and SPI bus.

To make the architecture realistic, it was decided to build a
distributed system with three ECUs, connected through a
network (Fig. 2). The ECUs are named Vehicle Control Unit
(VCU), Sensor Control Unit (SCU), and Telematics Control
Unit (TCU), to indicate their principle responsibilities. The
rationale for using three ECUs was to allow a certain
complexity in distributed control functionality, while at the
same time keep a reasonable package volume and cost.

TABLE I. BILL OF MATERIAL FOR MAIN COMPONENTS

Component Type Actual Component Used

Car chassis Turnigy SCT 2WD short course

truck, scale 1/10 (includes steering

servo and original motor)

Motor speed controller Hobbyking X-Car 45A Brushless

Car ESC (sensored/sensorless)

Motor (replacement) Turnigy TrackStar 17.5T Sensored

Brushless Motor 2270KV

ECU Hardware (3 units) Raspberry Pi, Model B

Ethernet switch DLINK DES-105

Battery ZIPPY Flightmax 4000mAh 2S1P

30C hardcase pack

Voltage regulator TURNIGY 8-15A UBEC for Lipoly

Wheel speed sensor (reflective

opto switch; 2 units)

OPTEK OPB715Z

Battery voltage sensor MCP3008

Distance sensor (ultrasonic) HC-SR04

Inertial measurement unit MPU-9150EVB

Wireless connection Element14 WiPi dongle

Basic software, VCU and SCU ArcCore AUTOSAR v. 4

Operating system, TCU Raspbian

Fig. 1. The MOPED platform.

The ECUs are connected through a network, and it was
decided to use Ethernet for this. The rationale was that the
Raspberry Pi has integrated Ethernet controllers, using
100Base-TX over RJ45 as a physical layer. Ethernet is also an
upcoming standard in the automotive industry for backbone in-
vehicle networks, which makes it relevant and future oriented
(although the industry is likely to use the physical layer
BroadR-Reach instead). The main alternative was to instead
use CAN, and this has also been tested, by connecting an
external CAN driver over SPI. The main drawback of Ethernet
has been the complexity of the device drivers, which required
substantial amounts of work. To be able to connect three
ECUs, a simple Ethernet switch also has to be included.

Since the model car is intended for indoor use, no particular
protection has been used against environmental factors, such as
temperature, dust, moisture, etc.

C. Electrical Power

The electrical power system consists of a lithium-polymer
battery of 4000 mAh, of a standard type used for radio control
models, and the rationale for this choice was simply that the
mechanical platform was adapted for it. The battery has 7.2V
nominal voltage, which is fed to the motor and steering servo.
For the motor, there is in addition a 45A speed controller. To
feed the ECUs, 5V power is required, so a voltage regulator is
needed between the battery and the ECUs.

D. Sensors and Actuators

The platform is equipped with various sensors and
actuators, using the general-purpose I/O pins available on the
ECUs. On the VCU, two optical wheel speed sensors are used
to determine vehicle speed, measuring both a front and a rear
wheel to be able to detect wheel slip. It also has sensors for
measuring battery voltage. Actuators include control of the
motor and steering servo, and these are based on PWM signals.

There is also a set of light-emitting diodes, that can be turned
on or off individually, to mimic the different lights of a real
car.

The SCU contains more advanced sensor systems, and
includes connection to an inertial measurement unit with nine
degrees of freedom, which contains accelerometer, gyro, and
magnetometer, each in three axes. This sensor is connected
using an I2C protocol. It also contains a forward-looking sensor
for measurement of distance to obstacles. Currently, a simple
ultrasonic sensor with a range of approximately 4 m is used,
but future plans include an investigation of more advanced
sensor solution, and most likely also sensor fusion to give an
improved picture of the outer world.

The TCU currently contains a WiFi interface through a
USB dongle. Previously, a Bluetooth serial connection has also
been implemented. There are plans to later include an indoor
positioning functionality in this, to provide something similar
to GPS navigation in real vehicles.

The rationale for selecting this particular set of sensors and
actuators has been to include sensors that are representative of
functionality in real vehicles, and using similar technology.
However, the MOPED platform is also used for experimenting
with different sensor solutions, and therefore it is expected that
many other interfaces, complementing or replacing the ones
mentioned above, will be introduced over time.

E. ECU Software

A motivation for the whole platform was to apply software
technology used in real embedded systems, and for a vehicular
platform, it was a given choice to base ECU software on the
AUTOSAR standard. From an educational perspective, it also
provides a platform for learning modern software engineering
principles based on component-based development for CPS,
since this is the foundation for AUTOSAR.

Fig. 2. Physical architecture view, showing ECUs and networks.

The implementation chosen was Arctic Core, and the
rationale for this is that it is the only open source
implementation available with full AUTOSAR support. Other
alternatives, such as Trampoline [4], focus on the BSW part
only. The implementation used corresponds to version 4 of the
AUTOSAR standard, and the project has ported Arctic Core to
the Raspberry Pi hardware [5]. The porting involved
modifications of OS functionality such as boot loader,
initialization, memory model, context switching, and exception
handling. It also included writing device drivers for various I/O
types, namely the general-purpose I/O, UART, SPI, I2C,
Ethernet, and CAN.

AUTOSAR is used on the VCU and SCU, but the TCU is
using Linux. The rationale for this is that the TCU is more
similar to the infotainment and telematics units used in
vehicles, and Linux is increasingly used for that domain. The
MOPED platform thus represents the additional complexity
present in real systems due to the heterogeneous software
architecture. A further benefit of this approach is that device
drivers already exist under Linux for complex interfaces such
as USB, which reduced the effort of providing wireless
connectivity.

The application software consists of a number of SW-Cs, as
shown in Fig. 3, including their allocation to ECUs. In
principle, there is a sensor or actuator SW-C for each external
connection, and individual SW-Cs implementing higher level
functionality, such as a simple cruise control, automatic
braking based on obstacle detection, basic positioning, etc. In

the AUTOSAR based ECUs, the C language is used for writing
the software, and on the Linux based TCU, the language is
Java.

The built-in software of the ECUs can be reprogrammed
either by removing the SD card and copying the new software
to it directly, or by letting the boot loader download software
over a serial connection.

F. Driver Interface

One aspect where a model car differs from a real car is the
lack of a driver on-board, and to be able to run the car, a
remote interface is needed. In the MOPED platform, a simple
protocol has been included that runs on top of WiFi or
Bluetooth. An application has been developed that runs under
Android, e.g. on a mobile phone, and it consists of two sliders
for controlling motor speed (including forward and reverse)
and steering direction, respectively. An SW-C is included in
the TCU for handling these commands, which are then passed
over the network to the SW-C’s in the VCU that actually
control the motor and steering servo.

G. Plug-in Software

A novel part of the MOPED platform, compared to
contemporary industrial solutions, is the possibility to
download plug-in software into the embedded systems, as
mentioned in Section II.C above. The technical solution for this
is to embed a virtual machine (VM) into an AUTOSAR SW-C,

Fig. 3. Logical architecture view, showing AUTOSAR SW-Cs and their allocation to ECUs.

and use that as a sandbox for plug-in execution [2]. In this way,
the exact interface between plug-ins and the built-in software
can be controlled in detail, as can the resource usage of plug-
ins.

It was decided early to use a Java VM, since this is a wide-
spread technology, with good development tools available. The
next question was then which Java VM to use, and there are
many available. After a deep evaluation of alternatives, it was
concluded that the Oracle KVM (kilobyte VM) was most
suitable [6]. The rationale for this was that the KVM is
available as source code, which was necessary since some
modifications had to be made to integrate it into an AUTOSAR
SW-C. It is also comparatively lean in terms of memory usage
(50-70 kB), which makes it one of the more realistic
alternatives for resource-constraint CPS. A further benefit is its
modular and customizable structure, and the clean
implementation which makes it highly portable. A potential
drawback of this choice is that it uses Java version 1.4, which
is somewhat dated, and also the limited support for libraries in
its basic version, although additional libraries can be easily
included thanks to the modularity of the KVM code. As an
alternative, the more recent Squawk VM [7], which is a highly
portable Java VM intended for bare metal execution on limited
hardware, has also been investigated.

VMs are included in the VCU and SCU, and are given
controlled access to the sensors and actuators of those units, as
well as to the unused general-purpose I/O pins, to give
maximum flexibility when it comes to writing plug-in
software. The SW-Cs PlugInRunTimeEnvironment in the VCU
and SCU implement the VMs. They differ only in the set of
ports they provide and expect, but otherwise the internal
functionality is identical.

H. Connectivity

In the concept of Federated Embedded Systems lies also the
possibility to connect to systems outside the vehicle. One part
of this is to connect to a trusted server, where plug-in software
applications are stored. The concept does only allow
installation from this predefined server for security reasons. A
prototype trusted server has been implemented using Apache
and Wordpress. One design decision in relation to this was
whether the vehicle or the server should contain the
intelligence for configuring plug-ins for a particular
environment, and for keeping track of downloading and fault
handling. It was decided to push as much of this intelligence
onto the server, and the rationale was to minimize the load on
the embedded system, and also to make the solution more
robust when it comes to recovering from failures in the
embedded system. The trusted server is thus more than just a
file repository, it is a system for life-cycle management and
configuration management of plug-ins.

The other reason for adding connectivity is to let plug-in
software communicate with other systems, and for this a REST
based protocol over HTTP is implemented. In this way, it
becomes possible for plug-ins in the vehicle to send status
information, such as sensor values, to cloud based servers or
plug-ins in other systems, and also to receive commands.

The SW-C ExternalCommunicationManager in the TCM
deals with both types of connectivity.

IV. DISCUSSION

After having presented the technical details of the MOPED
platform, we will now turn to a discussion of some of the
experiences made while developing it.

A. Implementation Status

In the previous section, one reincarnation of the MOPED
platform was described, and it reflects the current status of
what we have in our lab at the time of writing. The major
components have been developed and integrated, and have
been subject to various degrees of verification and validation.

It should however be pointed out that we view MOPED
more as a concept, than as one specific implementation. Key
features of the concept are that it should capture the essential
complexity of real software development for CPS, with focus
on the automotive domain, and provide a representative
learning environment by using similar technology as is used in
industry, e.g. AUTOSAR. Things like what mechanical
platform, electronics hardware, and sensors are used are less
fundamental, and we expect to see many variants of this evolve
over time. Therefore, it is never possible to say that the
MOPED implementation is complete.

B. Development Tools

To work with the platform, a certain range of tools is
needed. This includes basic electronics tools, like soldering
equipment, multi-meter, battery charger, and possibly an
oscilloscope.

For the software part, there is in principle a need also for an
AUTOSAR tool chain, if one wants to modify the structure of
the application software in any way. The reason is that the
AUTOSAR RTE is generated by tools depending on how SW-
C’s are connected, and how they are allocated to ECU’s, so if
any of this needs to change, the RTE must be regenerated for
each ECU. This constitutes an obstacle for wider applicability
of the platform, since there is no open source or freeware
version of the tools available. In this project, an open source
version of the basic software from ArcCore was used, and they
have also generously provided us with the needed commercial
tools, but this cannot be guaranteed for others. The only known
effort in developing open source versions of the tools is ARTop
project, but it only releases its software to members of the
AUTOSAR consortium. Many other commercial tool suits also
exist, which could be used.

As for other software development tools, standard
compilers, IDEs, etc. have been employed. In addition, for the
close-to-hardware development such as device drivers, a JTAG
debugger is useful.

To make the development of plug-in software as easy as
possible, a simulator has also been developed, that allows early
testing of the plug-ins before integrating them into the real car.
This includes downloading applications from the trusted server,
executing them to see how the car responds, and how it
interacts with other plug-in software installed.

C. Difficulties Encountered

In the development of the MOPED platform, several
difficulties were encountered. Some were expected, but proved
even worse, and others were not foreseen. The porting of the
AUTOSAR operating system required a considerable effort,
and this was partly due to unfamiliarity with the
implementation, and partly to the many details of the hardware
that need to be understood. Device drivers proved to be at least
as difficult as expected, and here we relied as much as possibly
on existing solutions from other projects. However, the more
complex drivers, like Ethernet and USB, are very difficult to
integrate in a real-time operating system like AUTOSAR. In
particular, the Ethernet implementation on the Raspberry Pi
contained some surprises, since it actually uses USB to connect
between the processor and the Ethernet hardware, and therefore
elements of the USB driver had also to be understood to make
Ethernet work, which was not anticipated. To some extent,
device drivers are an important part of embedded systems, so it
is a fine line to draw whether students should be exposed to
them or not. We have strived to create an environment where
the education and research focus can be more on the higher-
level layers of software and systems engineering.

The Java VM also included many practical difficulties.
Among the obstacles encountered was the lack of a file system
in the underlying AUTOSAR operating system, which is
needed to store the downloaded plug-in modules, so a
rudimentary file system had to be implemented in RAM. At
start up, the plug-in files with Java byte code are transferred
from a permanent storage in the TCU under Linux, and then
stored during execution in the other ECUs. Also, the interface
between the plug-ins implemented in Java, and the AUTOSAR
SW-Cs implemented in C posed certain challenges, since KVM
does not provide a full Java Native Interface.

V. RELATED WORK

In this section, an overview of related work is presented. It
starts with general discussions about the contents of curricula
for embedded systems, and then provides a number of
examples of other experimental platforms for embedded
systems.

In [8], the contents of a graduate curriculum for embedded
software and systems is described. It covers many of the basic
competencies needed for an engineer in the field, but also
emphasizes the aspects covered by the MOPED platform,
namely systems issues and architecting. The authors point out
the importance of including laboratories on real hardware in the
education, as well as providing insight into real industrial
technology. However, their concrete suggestion for lab
equipment, namely LEGO Mindstorms, does not appear to
combine these two aspects as well as MOPED.

Ricks and Jackson [9] also stress the importance of the
system level in the curriculum, and point at the lack of a
suitable platform for this. They continue to outline such a
platform, but are limited to the embedded system, whereas
MOPED to a greater extent looks at the whole CPS product.
Several other authors present platforms of similar kinds, e.g. in
[10], [11] who present heterogeneous platforms, but with a
focus on implementation inside the embedded system. [12] is a

further example which focuses on hardware/software co-design
aspects, and [13] which introduces certain higher-level
software concepts such as middleware. All in all, there appears
to be a gap between the desired curriculum, and what is
actually supported by educational platforms. MOPED can
serve to fill this gap with a tool for education on both low-level
and system-level issues, integrated using real industrial
technology.

The idea to use a model car is not novel in itself, and
several other approaches have been presented. In [14], a model
car is used as a basis for mechatronics projects, but the focus is
on mechanical aspects such as four-wheel steering and driving,
and even though the implementation uses some industrial
technology, such as CAN, the software does not adopt state-of-
the-art standards. In [15], several examples of using model cars
as learning platforms for large student team projects are
described. However, the purpose is not to build a platform for
further use, but the students focus on building a working
product from scratch. Although this is certainly a valuable
experience in many ways, it requires very large courses, and
MOPED differs in that it provides a base platform that can be
reused also in courses or research with a more limited focus. In
[16], a further example is given of using model cars, but here
the focus is on research in cooperative driving, so the platform
is not representative of real in-vehicle software.

There are also plenty of examples of educational platforms
outside the automotive domain. For instance, [17] discusses the
use of the TekBot mobile robot as a laboratory platform for
computer engineering students, that can be used in many
courses, in a similar way as could the MOPED car. However,
there is no ambition to make that robot similar to real industrial
systems, or to study system-level issues. A further example of a
mobile robot is e-puck [18], but it suffers from similar issues
when it comes to representativeness as the previous reference.
However, the authors acknowledge the need for a simulator,
similarly to what was found in the development of MOPED.
Also, the paper discusses a large number of other available
robotic platforms. Finally, [19] presents a quadrotor platform,
which is possibly the one platform that comes closest to the
goals of MOPED, with a focus on software and systems issues.
However, despite the fact that it is more spectacular than a car
and thus raises much positive attention, the use of a flying
platform is in many ways delimiting compared to a vehicle. It
requires more space to operate; the operating time is much
shorter; the payload is limited leading to lower extensibility;
and the risk of damaging equipment through crashes is higher.

In summary, there is strong support in literature for the
need of a platform similar to MOPED, and it appears that the
approach presented in this paper provides several unique
characteristics: it does not limit itself to teaching of low-level
embedded systems development, but can also expand into the
full realm of CPS, allowing even the study of embedded
systems that connect to cloud-based services, and the creation
of federated embedded systems. It is also unique in the way
that it builds on real industrial standards, making them
accessible to students to broaden their experience and
strengthen the practical value of their education. The MOPED
platform thus provides a much broader spectrum of learning
opportunities for students as well as researchers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an open platform called MOPED has been
presented, that is designed to be highly representative of real
automotive systems when it comes to software, while
simplifying other aspects, and thus creating a highly accessible
and useable learning environment at a small fraction of the cost
of a real car. The platform is also extensible, allowing students
and researchers to experiment with added functionality and
interfaces, and contains elements of future federated embedded
systems, such as connectivity to cloud services and continuous
deployment of functionality.

When looking just at the functionality provided, MOPED is
a very complicated way of building something quite simple,
namely a radio controlled model car, but the complexity is in
this case something desirable, since it reflects a complex reality
that students need to experience in a learning situation. It can
also serve as a source of inspiration for future cost-efficient
architectures in real vehicles.

The core parts of the platform have been implemented and
this will continue to be refined in different ways in the future,
including adding more and improved sensor solutions and
algorithms. In particular, extending with a high-precision in-
door navigation solution would provide information that could
be interesting for many experiments. To come even closer to a
real vehicle, it would also be good to include more support for
diagnostics and calibration, which often constitute large parts
of the functionality in a real vehicle ECU.

To further increase the value of open platforms like
MOPED, it would be very beneficial to let students and
researchers have access to an open source, free version of the
AUTOSAR tools needed, at least with some basic capabilities.
It would also be interesting to look into alternative ways of
providing a VM, other than Java, to see how far the resource
requirements can be minimized.

So far, the experiences of using the platform in teaching are
limited, so further evaluations are needed, in particular
regarding the design of suitable courses and exercises to
achieve a maximum benefit in the learning situation.

More information about the MOPED platform, and
resources, are available at moped.sics.se.

ACKNOWLEDGMENT

The work presented in this paper is supported by
VINNOVA (grant no. 2012-02004), Volvo Cars, and the Volvo
Group. ArcCore has generously supported the project with
AUTOSAR tools.

REFERENCES

[1] AUTOSAR consortium. www.autosar.org.

[2] J. Axelsson and A. Kobetski. On the Design of a Dynamic Component

Model for Reconfigurable AUTOSAR Systems. In Proc. 5th Workshop
on Adaptive and Reconfigurable Embedded Systems, April, 2013.

[3] J. Axelsson, E. Papatheocharous, and J. Andersson. Characteristics of

Software Ecosystems for Federated Embedded Systems: A Case Study.
J. Information and Software Technology, 2014.

[4] J-L. Béchennec, M. Briday, S. Faucou, and Y. Trinquet. Trampoline –

an open source implementation of the OSEK/VDX RTOS specification.
In Proc. 11

th
 Intl. Conf. on Emerging Technologies and Factory

Automation, 2006.

[5] S. Zhang, A. Kobetski, E. Johansson, J. Axelsson, and H. Wang. Porting
an AUTOSAR-Compliant Operating System to a High Performance

Embedded Platform. In Proc. 3
rd

 Embedded Operating Systems
Workshop, August, 2013.

[6] Sun Microsystems. KVM Porting Guide. March, 2003.

[7] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java™ on

the Bare Metal of Wireless Sensor Devices: the Squawk Java Virtual
Machine. In Proc. 2

nd
 Intl. Conf. on Virtual Execution Environments, pp.

78-88. June, 2006.

[8] P. Caspi, et al. Guidelines for a Graudate Curriculum on Embedded

Software and Systems. ACM Trans. on Embedded Computing Systems,
Vol. 4, No. 3, pp. 587-611, Aug. 2005.

[9] K. G. Ricks and D. J. Jackson. Incorporating System-Level Concepts

into Undergraduate Embedded Systems Curricula. ACM SIGBED
Review, Vol. 6, 2009.

[10] F. Salewski., D. Wilking, and S. Kowalewski. Diverse Hardware

Platforms in Embedded Systems Lab Courses: A Way to Teach the
Differences. ACM SIGBED Review, Vol. 4, pp. 70-74, 2005.

[11] S. Nooshabadiand and J. Garside. Modernization of Teaching in

Embedded Systems Design – an International Collaborative Project.
IEEE Transactions on Education, Vol. 49, No. 2, pp. 254-262, 2006.

[12] W. Wolf and J. Madsen. Embedded Systems Education for the Future.

Proc. of the IEEE, Vol. 88, No. 1, pp. 23-30, 2000.

[13] J. Sztipanovits, et al. Introducing Embedded Software and Systems
Education and Advanced Learning Technology in an Engineering

Curriculum. ACM Transactions on Embedded Computing Systems, Vol.
4, No. 3, pp. 549-568, Aug. 2005.

[14] R. Grepl, et al. Development of 4WS/4WD Experimental Vehicle:
Platform for Research and Education in Mechatronics. In Proc. IEEE

Intl. Conf. on Mechatronics, pp. 893-898, April, 2011.

[15] M. Törngren, M. Grimheden, and N. Adamsson. Experiences from large
embedded systems development projects in education, involving

industry and research. ACM SIGBED Review, Vol. 4, pp. 55-63, 2007.

[16] D. Cruz, et al. Decentralized Cooperative Control – a Multivehicle
Platform for Research in Networked Embedded Systems. IEEE Control

Systems Magazine, Vol. 27, No. 3, pp. 58-78, June, 2007.

[17] R. Traylor, D. Heer, and T. S. Fiez. Using an Integrated Platform for
Learning to Reinvent Engineering Education. IEEE Trans. on Education,

Vol. 46, No. 4, pp. 409-419, Nov. 2003.

[18] F. Mondada, et al. The e-puck, a Robot Designed for Education in
Engineering. In Proc. 9th Conf. on Autonomous Robot Systems and

Competitions, pp. 59-65, 2009.

[19] P. Ulbrich, et al. I4Copter: An Adaptable and Modular Quadrotor
Platform. Proc. ACM Symposium on Applied Computing, pp. 380-386,

2011.

