
Deriving Safety Contracts to Support Architecture
Design of Safety Critical Systems

Irfan Sljivo⇤, Omar Jaradat⇤, Iain Bate⇤†, Patrick Graydon⇤
⇤ Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

†Department of Computer Science, University of York, York, UK
{irfan.sljivo, omar.jaradat, patrick.graydon}@mdh.se, iain.bate@cs.york.ac.uk

Abstract—The use of contracts to enhance the maintainability
of safety-critical systems has received a significant amount of
research effort in recent years. However some key issues have
been identified: the difficulty in dealing with the wide range of
properties of systems and deriving contracts to capture those
properties; and the challenge of dealing with the inevitable
incompleteness of the contracts. In this paper, we explore how the
derivation of contracts can be performed based on the results of
failure analysis. We use the concept of safety kernels to alleviate
the issues. Firstly the safety kernel means that the properties of
the system that we may wish to manage can be dealt with at
a more abstract level, reducing the challenges of representation
and completeness of the “safety” contracts. Secondly the set of
safety contracts is reduced so it is possible to reason about their
satisfaction in a more rigorous manner.

Keywords—Safety Contracts, Safety Kernels, Incremental Cer-

tification, Modular Safety Case, Safety Argument.

I. INTRODUCTION

Contract-based approaches aimed at decreasing certifica-
tion costs and increasing maintainability of safety-critical
systems have been the topic of much research recently. Many
works focus on the underlying contract theory [4]–[6], while
not that many focus on the difficulty of specifying con-
tracts and the problem of their (in)completeness [7], [8]. A
component contract is usually defined as a pair of assump-
tion/guarantee assertions such that the component offers the
guarantee if an environment in which the component is used
satisfies the assumptions. The contracts can be characterised
as either strong or weak [18]. The strong contracts capture
behaviours that should hold in all environments/contexts in
which the component can be used, while the weak contracts
capture context specific behaviours. A “safety contract” is a
contract that specifically deals with behaviours of the system
linked to hazard mitigation.

Developers of safety-critical systems are sometimes re-
quired to construct a safety case to show that the system is
acceptably safe to operate in a given context, i.e., that the risks
of hazards occurring are reduced to acceptable levels. As a way
of documenting the safety case, a safety argument is often used
to show how safety claims about the system are connected and
supported by evidence. While the argument presents the safety-
relevant information about the system in a comprehensible
way, safety contracts capture the safety-relevant information in
a more rigorous manner. The fact that both, the safety argument
and safety contracts, deal with the same information makes the
contracts an important aid in safety case maintenance [15].

As safety-critical systems are characterised by a wide-
range of properties that influence safety-relevant behaviour
of components, it is challenging to derive contracts with a
complete set of relevant assumptions on the environment that
imply the guaranteed component behaviour. When dealing with
completeness of contracts without a reference point against
which we can check if the contracts are complete, then the
contracts are inevitably incomplete, since we cannot capture
all assumptions. To talk about contract completeness we need
to identify the reference point against which we can check the
contracts and that we can use to derive the contracts as well.
For example, safety contracts describing failure behaviours of
a component can be derived from a failure analysis such as
Fault Tree Analysis (FTA). Not all failure behaviours obtained
by failure analysis are relevant from the perspective of hazard
analysis results. Regardless of that, we still categorise con-
tracts capturing such behaviours as safety contracts, since the
captured behaviours can be safety-relevant in case of change
to the system or for other systems in which the component
can be used.

An approach to developing systems based on a “safety
kernel” was first proposed by Rushby [16] and used by Wika
[19]. The basic principles of their work are that:

1) The safety kernel protects the system from key (higher
criticality) hazardous events by checking that data flowing
out of a module of the system would not violate Derived
Safety Requirements (DSR) obtained via hazard analysis.

2) The safety kernel itself is much simpler than the rest of
the system.

The simplicity means that the safety kernel can be devel-
oped to the requisite high integrity even if the rest of the system
cannot be. Overall, the system is at least as safe as without
a safety kernel but costs may be reduced. In this paper, we
extend the original concept to include safety contracts being
associated with the safety kernel to help facilitate incremental
certification. The simplicity of the safety kernel also means
the aforementioned problems of representing contracts and
achieving completeness are eased.

Potential system changes during the system lifetime may
impact some parts of the safety case. These affected parts ne-
cessitate updating the safety case with respect to those changes.
We refer to the updating of the safety case after implementing
a system change as incremental certification. The intention that
change impact analysis can be performed by mainly assessing
whether the contracts still hold is slightly unrealistic as there
are significant issues with achieving complete contracts [8]. We

deem that change impact analysis can be guided by accessing
the satisfaction and completeness of contracts with respect to
failure analyses.

In this paper, we focus on the safety contract derivation and
the issue of their (in)completeness, as these two steps form the
basis for establishing safety case maintenance techniques using
the safety contracts. We judge that the contract completeness
can be established only with respect to a clearly identified
reference point such as failure analysis. Since failure analysis
itself can be incomplete, the derived safety contracts are at
least as complete as the analysis itself. Although contract
completeness cannot be established in general, contracts can
be used for guiding the designer to the key properties of
the system as part of de-risking incremental certification and
making it more efficient. This is supplemented by the designer
being given scenario-specific guidance on how to deal with
certain likely changes. In general for safety-critical systems
there is often a clear development roadmap that makes this
form of guidance practical. For instance it may be known
that in N years time the developers will want to change
the processors used due to obsolescence or remove a hydro-
mechanical backup due to weight. Maintainers updating or
upgrading a system might benefit from the original designers’
insight on planned change scenarios [15].

The contribution and structure of the paper is as follows.
In section II, we present the related work and an illustrative
example used to demonstrate the approach. An architecture
and supporting development process, in section III, that allows
two types of contracts to be supported that should lead to a
reduction in the initial certification costs as well as making the
system easier to maintain. In section IV, we demonstrate an ap-
proach to deriving safety contracts from FTA and present how
the derived contracts completeness check could be performed
with respect to the fault trees. In section V, we present a safety
argument based on the use of the safety kernel and contracts.
Finally, we present summary and conclusions in section VI.

II. BACKGROUND AND MOTIVATION

In this section we present the state of the art related to
contracts and modular safety arguments. In the second part
of the section we provide a brief description of the computer
assisted braking system used to illustrate the approach.

A. Related Work

We group the related work into two areas: contract-based
approaches for safety-critical systems and approaches related
to safety arguments for incremental certification.

1) Use of Contracts in Safety-Critical Systems: An “infor-
mal” contract-based approach is proposed in [7]. The approach
uses dependency-guarantee relationships to capture dependen-
cies between modules. The captured dependencies are identi-
fied by considering predicted changes in the system in order to
best contain their impact. A difficulty that arises is that usually
not all dependencies can be captured if contracts are restricted
to the relationship between just two modules as dependency
chains can span across several modules. Furthermore, the issue
of contract incompleteness is not fully addressed.

A more formal contract-based approach is shown in [20].
The work presents a language for describing assump-
tion/guarantee contracts used to capture vertical dependencies
between a software application and a hardware platform. While
the approach provides a benefit of automatic generation of
parts of arguments, it does not support capturing the broad
range of assumptions needed for a guarantee to be still valid
when a change in the environment occurs.

A range of formal contract-based approaches based on
contract algebra can be found in [4]–[6]. The contract algebra
includes definitions of contract refinement, composition, con-
junction etc., making these approaches quite powerful when it
comes to contract verification. The contract examples provided
in [5], [6] do not focus on failure behaviour, but rather on
behaviour when no failures occur. Moreover, the presented
contracts on timing behaviour require additional assumptions
if they are to be used in the process of incremental or modular
certification [8]. In our work we propose that in addition to
contracts describing expected behaviour in a specific context
captured within weak contracts, we capture strong contracts
describing how the faults in the system are handled by the
safety kernel. Due to the properties of the safety kernel,
such contracts are generally easier to satisfy due to fewer
assumptions.

2) Safety Argumentation in Support of Incremental Cer-
tification: In safety critical systems, particularly those for
which a safety case should be provided, change management
is a painstaking process. That is because accommodating the
changes in the system domain should be followed by updating
the safety case (i.e., incremental certification) in a safe and
efficient manner. A process is proposed in [15] to facilitate the
incremental change and evolving system capability. One ob-
jective of the Modular Software Safety Case (MSSC) process
is to minimise the impact on the safety case of changes which
might be expected during the life of the system. Using the
process may increase the system flexibility to accept changes.

The structure of the argument has a significant role in
accommodating the changes. Well structured arguments clearly
demonstrate the relationships between the argument claims and
evidence, therefore it is easier to understand the impact of
changes on them than poorly structured arguments. Moreover,
well structured arguments can be exploited to prioritise the
handling of change, identify the key areas of concern, and
hence de-risk the change management process. An approach
is proposed in [14] to show how the safety argument structure
facilitates the systematic impact assessment of the safety
case after applying changes. More specifically, the proposed
approach shows how it is possible to use the recorded depen-
dencies of the goal structure to follow through the impact of
a change and recover from change.

Another approach is proposed in [10] to facilitating safety
case change impact analysis. In this approach, automated
analysis of information given as annotations to the safety
argument highlights suspect safety evidence that may need
updating following a change to the system being performed.

B. Overview of the Computer Assisted Braking System

In this section we will present the computer assisted
braking system of an aircraft used in ARP4761 standard [17]

WBS
BSCU Hydraulics

subBSCU2

subBSCU1 Select
Switch

Valid&
Switch&

Valid&

CMD_AS&

AS&

CMD_AS1&

CMD_AS2&

AS1&

AS2&
Valid2&

Valid1&Pedal1&

Pedal2&
Valid1&

Alternate&
mode&

Emergency&
mode&

Braking&
command&

Fig. 1. Wheel Braking System - High Level View

to demonstrate the safety assessment process. The standard
describes a Wheel Braking System (WBS) that takes two input
brake pedal signals and outputs the braking command signal.
The high level architecture is shown in Fig. 1. For the purposes
of this paper we consider that all six components of the WBS
shown in Fig. 1 are implemented in software.

The system is composed of two subsystems: Brake System
Control Unit (BSCU) and Hydraulics. The brake pedal signals
are forwarded to BSCU, which generates braking commands
and sends the commands via direct link to Hydraulics subsys-
tem that executes the braking commands. If the BSCU, which
makes the normal operation mode, fails then Hydraulics uses
an alternate mode to perform the braking. If both, normal and
alternate mode fail, emergency brake is used.

In order to address the availability and integrity require-
ments, BSCU is designed with two redundant dual channel
systems: subBSCU1 and subBSCU2. Each of these subsystems
consists of Monitor and Command components. Monitor and
Command take the same pedal position inputs, and both
calculate the command value. The two values are compared
within the Monitor component and the result of the compar-
ison is forwarded as true or false through Valid signal. The
SelectSwitch component forwards the results from subBSCU1
by default. If subBSCU1 reports that fault occurred through
Valid signal, then SelectSwitch component forwards the results
from subBSCU2 subsystem.

III. OVERALL DEVELOPMENT APPROACH

In order to make the safety contracts more useful, i.e.,
applicable in more different contexts and less susceptible
to changes, we use the concept of safety kernels in the
development process. Safety kernels are generally simple and
independent mechanisms which behaviour can be easily en-
sured. Due to their simplicity and high independence, safety
kernel behaviours can be specified more abstractly, i.e., with
fewer context-specific assumptions. A reduced number of re-
quired assumptions increases reusability of safety information
captured by the contracts. This allows us to provide better
support for incremental certification through reuse of evidence
and safety reasoning related to contracts, and ease change
management within safety arguments. Besides safety kernels,
other types of failure mitigation and recovery techniques can
be implemented and packaged together with components. We
refer to such techniques as component wrappers.

We build our development approaches that utilise the
notions of safety kernels and component wrappers on the well-
established practices recommended by safety standards. The

proposed development approaches can be summarised by the
following steps:

1) Perform a hazard analysis as required by most standards.
2) Perform causal analysis (e.g., FTA) to understand how the

hazards can occur.
3) Create strong contracts for the fault handling behaviours

that are offered in all contexts. Such behaviours that are
specified more abstractly can be achieved with the use of
safety kernels.

4) Create weak contracts for the fault handling behaviours
that are context specific. Such behaviours are usually
achieved by failure mitigation and recovery techniques
(e.g., component wrappers) that are not developed with
high independence from the context.

5) Create an architecture which includes:
a) Features to enforce the separation between the safety

kernel and components. The safety kernel can only
provide sufficient protection to allow it to provide
fault tolerance if it can be argued that failures of the
components do not interfere with its operation.

b) A design for the safety kernel that provides fault
tolerance, principally fault detection and recovery, with
respect to the mitigation of the more critical hazards.

c) A design for component wrappers that provides fault
tolerance, principally fault detection and recovery, with
respect to the mitigation of the less critical hazards.
This largely deals with signal validation for data flow-
ing in and out of the component. It is noted that some
signals will be protected by both a wrapper and a safety
kernel where used by multiple components.

6) Revise the fault tree to include the safety kernel and
wrapper in the possible causes of hazards and judge
whether the residual risks are acceptable. If the risks are
not acceptable, judge whether more complex wrappers or
more safety kernel functions would address the issues.

The development approach follows a typical set of stages
except for the addition of contracts and the use of a safety
kernel and wrappers. After deriving the safety contracts, the
development approach continues to revise the contracts by
checking if they are sufficiently complete and whether the
described behaviours are sufficient to show that all identified
hazards have been adequately addressed. Additional evidence
backing the contracts is provided during the verification steps.

IV. DEFINITION OF SAFETY CONTRACTS

In this section we present part of the FTA performed on
WBS with (section IV-B) and without (section IV-A) safety
kernels. Later in section IV-C, we show how the results of the
analysis can be used to derive safety contracts capturing corre-
sponding safety behaviour of components addressed within the
fault trees. In the second part of section IV-C we discuss the
problem of incompleteness of the safety contracts and propose
how the contract completeness checking could be addressed.

A. Causal Analysis and Contracts for WBS

This section reuses the existing safety assessment of WBS
presented in Appendix L of the ARP4761 document. Building
upon the existing hazard analysis from Appendix L, we
identified failure condition reduced responsiveness of wheel

Fig. 2. Reduced responsiveness of all wheel braking Fault Tree

braking as hazardous, e.g., when it occurs during taxi phase it
can lead to low-speed vehicle collision.

In order to prevent the delayed response from the brakes,
we specify a timing safety requirement SR1 that the WBS
response time (i.e., time from the receipt of pedal brake signals
to issuing the braking command) shall be no more than 10 ms.
The fault tree in Fig. 2 addresses the reduced responsiveness
failure condition. It shows that the delay in issuing the braking
command can be caused by either of the three modes. The fault
tree focuses on the normal mode and demonstrates that BSCU,
Hydraulics or the communication channel between the two can
all contribute to causing a delay in normal mode.

After identifying the hazards and specifying the require-
ments, the safety process continues to design the system to
satisfy the specified requirements. Consequently, the safety
contracts are captured to show compliance with the safety
requirements. Strong safety contracts (denoted as a pair of
strong assumptions and guarantees hA,Gi) allow us to specify
behaviours that always must hold, i.e., strong assumptions
(A) must be satisfied and strong guarantees (G) must be
offered [18]. On the other hand, weak contracts (denoted as
a pair of weak assumptions and guarantees hB,Hi) allow us
to capture properties that change depending on the context
in which the component is used. The weak guarantees (H)
are offered only when all the strong contracts and the cor-
responding weak assumptions (B) are satisfied. The benefit
of using the strong and weak contracts distinction is twofold:
(1) it provides methodological distinction between properties
that must hold and those that may hold in certain cases (e.g.,
weak contracts are used to describe multiple context-specific
behaviours), and (2) when performing contract checking in
a particular environment, violation of the strong assumptions
is not tolerated, while violation of the weak assumptions
is allowed (since some of the weak contracts might not be
relevant for the particular context).

As the contracts need to be supported by evidence, we
attach evidence information (E) with the contracts. We repre-
sent the contract/evidence pair as “C: hA,Gi;E”, which can be
read as follows: contract C, which under assumptions A offers
guarantees G, is supported by evidence E. The motivation
for connecting the evidence with the contracts is not to argue

WBS Weak 1:
h B1: Platform=x and Compiler=y AND Hydraulics delay 4
ms AND BSCU delay 4 ms AND communication delay 0.1
ms AND emergency mode 1 ms;
H1: WBS delay 10 ms i;
E1: WBS timing analysis under assumed conditions

Fig. 3. WBS weak contract

WBS BSCU Weak 1:
h B2: Platform=x and Compiler=y AND subBSCUx delay < 3
ms and SelectSwitch delay < 1 ms AND scheduler policy does
not cause delay;
H2: BSCU delay 4 ms i;
E2: BSCU timing analysis under assumed conditions

Fig. 4. BSCU weak contract

contract satisfaction (rationale description is needed for that),
but to support change management. Besides identifying which
parts of safety case are affected by change, safety contracts,
when enriched by evidence information, can also be used to
identify which evidence should be revisited. The evidence
can be associated with a contract either directly, or indirectly
through the associated contracts. Since the underlying contract
formalism assumes hierarchical structure of components and
contracts, all evidence needed to support a higher level contract
are not associated with that contract directly, but can support
the contract indirectly through the associated lower level
contracts. The relation between a contract and its supporting
contracts is established through the dependency assumptions.

Using component-based development notions, such as con-
tracts, within safety-critical systems has some difficulties. The
out-of-context idea of safety contracts causes difficulties that
relate to both the nature of safety as a system property and
context dependent behaviours such as timing [8]. When it
comes to the nature of safety and contracts, it is difficult to
capture all failure scenarios that the component can contribute
to since what is safety relevant in one system might not
be in another. For example, the difficulty with capturing
timing properties within out-of-context contracts is not only
that timing depends on many factors, but that the timing
analysis is usually calculated with incompatible or simplified
assumptions [1], [9], [13], which makes the timing information
captured within contracts nearly impossible to reuse. While the
inevitable solution in that case would be to re-run the timing
analysis, the information captured within contracts can still be
useful in highlighting impact of the change on the safety case.

Based on the causal analysis we specify the contract
WBS Weak 1 (Fig. 3). WBS Weak 1 contains dependency
assumptions capturing connection between WBS and its sub-
components, while the guaranteed property is the response
time of WBS. In order to guarantee timing properties, such
as those noted in [8], we need to include additional assump-
tions that are not provided in the causal analysis. In case of
WBS Weak 1 contract we included additional assumptions on
platform and compiler configuration, as such assumptions can
be easily omitted from the causal analysis, and any change
or inconsistency related to these properties may invalidate the
corresponding contracts. We can note that the causal analysis is
useful for capturing dependency assumptions within the safety

Fig. 5. Reduced responsiveness of all wheel braking Fault Tree (updated)

contracts, but it is not sufficient as additional assumptions need
to be captured as well. The Ariane 5 rocket is an example
of how causality analysis does not cover some important
assumptions. A piece of software that should perform certain
computations right before liftoff was reused from the previous
rocket version. Since restarting the software during liftoff
might take time, the engineers decided to leave it running
even after liftoff. The software then continued the unneeded
computation during the flight time and caused an exception due
to a floating-point error which rebooted the processor [11].

The contracts in Fig. 3 and 4 focus on the behaviour
of WBS when there is no fault in the system. However the
contracts don’t describe behaviour of the system in situation
when anomalous behaviours occur, e.g. when BSCU delay is
greater than 4 ms or the communication channel fails. As
mentioned earlier, it is difficult to describe behaviour of a
component in all the failure scenarios, e.g. in some cases it
is reasonable to consider communication channel failure in
others it may not be the case. While the described behaviour
in contracts WBS Weak 1 and WBS BSCU Weak 1 can be
useful to know in certain situations, it is very difficult to reuse
such information in case of platform change or moving the
component from one system to another, as argued earlier. That
is why this behaviour is specified within a weak contract, as it
cannot be guaranteed in all systems. Further on we investigate
how these weak contracts can be complemented with strong
contracts capturing behaviour that prevents bad things from
happening that is guaranteed wherever the component is used.

B. Causal Analysis and Contracts on WBS with Safety Kernels

In the current design, the reduced responsiveness of WBS
can be caused by either of the modes. In order to reduce the
criticality of timing requirements in the Normal and Alternate
modes to an appropriate level, a design decision was made to
use a simple and sufficiently independent safety kernel. This
safety kernel acts as a last resort failure mechanism in case
of failures that might prevent Normal or Alternate mode from
generating the braking command. The safety kernel in form of
a watchdog timer is installed within Hydraulics component.
Once WBS receives the pedal signals the watchdog timer
is started. Unless either Normal or Alternate mode does not

WBS Strong 1:
h A1: sufficient independence of the safety kernel and emergency
brake from normal and alternate mode
G1: if braking command not received from normal or alternate
mode before watchdog timer expiry then kernel activates the
emergency brake i;
E3: Causal analysis; Contract completeness report
WBS Weak 1:
h B1: (Platform=x and Compiler=y AND Hydraulics delay 4
ms AND BSCU delay 4 ms AND communication delay 0.1
ms) OR (watchdog timer expiry 9 ms and emergency brake
delay 1 ms);
H1: WBS delay 10 ms i;
E1: New WBS timing analysis under assumed conditions

Fig. 6. WBS contracts

WBS SKC Strong 1:
h A2: -
G2: if the braking command signal not provided within 9 ms
from the receipt of the pedal signals, then activate emergency
brake within 1 ms i;
E4: Formal verification report

Fig. 7. Safety Kernel strong contract

provide the braking command within the required time interval,
the watchdog timer engages the emergency brake.

With introduction of the safety kernel in the WBS archi-
tecture, the initial FTA needs to be revisited to address both:
changes to the criticality of Normal and Alternate modes; and
extension of the current fault tree to include possible faults
related to the kernel itself. The updated fault tree is shown in
Fig. 5. The changes in the fault tree consequently influence the
contracts to be revisited. More specifically, the WBS Weak 1
contract needs to be updated with the new information re-
lating to the watchdog timer and the emergency brake. The
updated WBS Weak 1 contract is shown in Fig. 6.

When using the safety kernels, we focus on capturing with
the contracts how the component handles faults in the system.
Due to simplicity of the kernel and its high independence
from the rest of the system, we can specify strong safety
contracts for the kernel that are easier to satisfy because of
fewer assumptions. The strong contracts in Fig. 6 and 7 com-
plement the weak contracts in Figures 3 and 4 by describing
behaviour of the safety kernel when the normal or alternate
mode fail. The assumption of sufficient independence in the
contract WBS Strong 1 can be identified through the AND
connection in the fault tree in Fig. 5 between normal or
alternate mode delays and kernel and emergency mode delays.
The corresponding guarantee describes the behaviour of the
kernel in that situation. The WBS SKC Strong 1 contract on
the safety kernel addresses possible delay because of the kernel
itself by guaranteeing its timing behaviour for all systems in
which the kernel is used.

This example demonstrates that for the safety kernels we
can specify the strong safety contracts with fewer assumptions
(due to the simplicity and independence of the safety kernel).
Fewer assumptions means that the corresponding contracts
are easier to satisfy. Moreover, by reducing criticality of
requirements addressed by the weak contracts, the stringency

of evidence required to support the weak contracts is reduced.
Consequently, overall less effort should be required for pro-
ducing evidence to support such weak contracts.

C. Contract Derivation and Completeness Checking Methods

To talk about completeness of contracts we need to identify
with respect to what should that completeness be checked. The
safety contracts focus on failure behaviours of the system that
can be obtained by failure analysis (e.g., FTA) as these are
most often the causes of hazards. In this work we use FTA, a
well-established method recommended by safety standards, for
contract derivation and completeness check. Deriving contracts
from fault trees is performed as follows:

1) Identify fault tree nodes directly related to the component
for which the contract is being derived such that the nodes
do not belong to each others sub-branches.

2) For each identified node:
a) Create a safety contract that guarantees to prevent or

minimise the faulty state described by the node.
b) Identify candidate nodes for stating dependency as-

sumptions such that the assumption node belongs to
the same branch as the guarantee node, and that it
refers to behaviour either of first level subcomponent
of the current component, other components in the
environment that the current component is connected
to or other system properties.

3) The logical connection of the assumptions within the
contract is switched comparing to the connection in the
fault tree (e.g., AND connections in the fault trees become
OR in the contracts), similarly as the guarantees can be
regarded as negations of the corresponding nodes (e.g.,
a node “delay in execution” in a fault tree becomes a
guarantee “does not cause delay in execution”).

The assumptions on the first-level subcomponents are
included to capture dependencies between the two layers
identified by FTA, and in that way facilitate independent
development and change management. For example, BSCU is
independently developed by a contractor. Based on the speci-
fied dependency assumptions we can identify if the provided
(or replaced) component offers required behaviour to achieve
the WBS behaviour. This can be done by checking if the WBS
dependency assumptions are satisfied by BSCU contracts.

Once the change occurs in the system or the component
is moved to another system, the completeness of the contracts
needs to be checked with respect to the fault trees. In our case,
the contract WBS Weak 1 had to be changed after introducing
the safety kernel as the contract was not complete with respect
to the new fault tree in Fig. 5. Consequently, the evidence
required to support this contract had to be updated.

Completeness with respect to a specific failure analysis
does not imply contract completeness in general, but only
with respect to the analysis. Confidence in the completeness
check stems from the confidence in the failure analysis against
which the check is performed. In our work we use FTA for
completeness check under assumptions that producing fault
trees is well-established and that the resulting fault trees are
reasonably complete. It must be emphasised that the approach
does not rely on the fault trees actually being complete, as

G1
 System can tolerate
single component
failures

Str1
Argument over all
identified hazards

A

A1

Sub-systems are
independent

J

J1
This approach
addresses all failure
mechanisms

C1

Operational Role

G4

Goal Strategy Assumption Justification Context

Undeveloped
Goal (requires

support) Choice

G2

Software condition X
cannot occur

Module Reference

‘Away’ Goal

Spinal

Module Reference

Reference to
Argument Module

SolvedBy

InContextOf

Fig. 8. Overview of the Goal Structuring Notation (GSN)

the aim is to de-risk change rather than have a change process
where only contracts have to be checked following a change.
The derived contracts usually require additional assumptions
that can be derived from different analyses and used to
enrich the contracts, hence increase their overall completeness.
The contracts completeness check with respect to a specific
analysis is performed to ensure that there are no inconsistencies
between the dependencies captured within the contracts and
those identified by the analysis. The results of such check
can indicate that the contracts are incomplete with respect
to the analysis (in case of changes to the system, and to the
analysis), or the analysis can be incomplete with respect to the
contracts (if we have enriched the contracts using other types
of analyses). The contract completeness check with respect to
the fault trees is performed as follows:

1) Identify nodes in the fault tree that correspond to the
contract guarantees.

2) Identify nodes in the fault tree corresponding to the
assumptions.

3) For the identified assumptions within the fault tree, check
whether they belong to the branch corresponding to the
identified node related to the guarantee.

4) Identify the following inconsistencies:
a) Nodes that are included in the assumptions but do not

belong to the same branch as the guarantee node.
b) Nodes within the same branch as the guaranteed node

that are not covered by the assumptions (not all nodes
of the branch should be captured by assumptions but all
should be covered, i.e., if the node itself is not included,
then its sub-nodes or leaves of its branch should be
included for the node to be covered).

5) If assumptions cover all nodes within the guarantees
node branch then the contract is complete with respect
to the fault tree, but if there are additional nodes that
are assumed but do not belong to the same branch, the
inconsistency should be reported as either fault tree is not
complete, or the contract should be revised.

V. SAFETY ARGUMENT

In this section we present an overview of the graphical
notation (section V-A) used to construct our arguments. The
WBS safety argument is presented in section V-B.

A. Overview of Goal Structuring Notation

The Goal Structuring Notation (GSN) [12] – a graphical
argumentation notation – explicitly represents the individual

elements of any safety argument (requirements, claims, evi-
dence and context) and (perhaps more significantly) the rela-
tionships that exist between these elements (i.e. how individual
requirements are supported by specific claims, how claims are
supported by evidence and the assumed context that is defined
for the argument). The principal symbols of the notation are
shown in Fig. 8 (with example instances of each concept).

The principal purpose of a goal structure is to show how
goals (claims about the system) are successively broken down
into (“solved by”) sub-goals until a point is reached where
claims can be supported by direct reference to available evi-
dence. As part of this decomposition, using the GSN it is also
possible to make clear the argument strategies adopted (e.g.
adopting a quantitative or qualitative approach), the rationale
for the approach (assumptions, justifications) and the context
in which goals are stated (e.g. the system scope or the assumed
operational role). For further details on GSN see [12]. GSN
has been widely adopted by safety-critical industries for the
presentation of safety arguments within safety cases. While
GSN is mainly used to record monolithic safety arguments, an
extension facilitates the creation of modular arguments. As a
part of the modularised form of GSN, an away goal statement
can be used to support the local claim by referring to a claim
developed in another module. In this paper the modularised
form of GSN, as first introduced in [2], [3], is used.

B. Wheel Braking System Safety Argument

Fig. 9 shows the safety argument fragment for WBS
represented using GSN. The argument focuses on the timing
requirement SR1: “WBS response time shall be no more than
10 ms”, specified in Section IV and represented by the goal
WBSSafetyExeTime within the argument. We base the argument
that SR1 is satisfied on the WBSSWSafetyReq justification
that the software safety requirements are addressed by the
safety contracts. Moreover we provide an away goal SWSafe-
tyContracts presenting the required evidence to support safety
contract consistency, their correctness with respect to the
associated safety requirements and completeness with respect
to the failure analysis. In the presented argument we focus on
the product rather than the process by which we ensure that
these contract properties are achieved.

Based on the WBSSWSafetyReq justification we address
the WBSSafetyExeTime goal by the WBS weak 1 contract that
supports the SR1 requirement. In order to clarify the goal,
we create a context statement to identify the WBS weak 1
contract that addresses the goal, and to provide a reference
to WBS system description. To further develop the WB-
SSafetyExeTime goal, we use the dependency assumptions of
the associated contract WBS weak 1 to identify the support-
ing sub-goals: WBSWeakContract1.1, WBSHydraulicsDelay1.2
and WBSWeakContract1.3. The context statements for these
sub-goals are provided in the same way as for the WBSSafe-
tyExeTime goal. Further development of the sub-goals follows
the same procedure as for the WBSSafetyExeTime goal, i.e. by
identifying dependency assumptions of the associated contract
to the particular goal, we derive sub-goals until we reach the
lowest level component, i.e. where we have directly relevant
evidence that supports the goal.

As WBS architecture changed with addition of the safety
kernel, the corresponding safety argument needs to be up-

dated as well. Based on the derived safety contracts for the
safety kernel provided in Figures 6 and 7, we extend the
safety argument from Fig. 9 with an additional supporting
goal WBSSafetyKernel to the WBSSafetyExeTime claim, as
shown in Fig. 10. The goal WBSSafetyKernel is clarified
with context statements by referring to the corresponding
contract WBS Strong 1 (Fig. 6), and providing definitions of
the timer interval of 9 ms, and notions of emergency brake and
safety kernel definition. The WBSSafetyKernel goal is further
supported by an away goal WBSSafetyKernelReliability claim-
ing that the kernel has been developed to meet the required
reliability level, and a sub-goal WBSDelaysWDogEmerg based
on the WBS SKC Strong 1 contract.

VI. SUMMARY AND CONCLUSIONS

Means to capture failure behaviour within safety contracts
have received little attention in contract-based approaches
for safety-critical systems. Moreover, handling of inevitable
contract incompleteness, implied by a great number of assump-
tions that need to be captured, is not sufficient for showing that
the system is acceptably safe. We have presented a method for
deriving safety contracts from fault tree analysis and demon-
strated it on an example. The derived contracts from failure
analysis results are at least as complete as the analysis itself.
While particular analysis itself can be incomplete, different
analyses can be used to enrich the contracts and increase
their completeness. We have proposed a completeness check
method that identifies inconsistencies between the contracts
and the failure analysis and acts as guidance for change
management. We have used safety kernels to demonstrate how
simple components characterised by high independence from
the rest of the system allow for capturing the components
safety contracts with fewer assumptions. Such contracts are
easier to reason about in a more rigorous manner, both in terms
of difficulty of capturing such contracts and representing them.

Future work will focus on developing safety contract-based
change management techniques, which should cover both the
safety argument and associated evidence. Furthermore, we plan
to investigate techniques for identifying additional assumptions
needed to enrich the contracts derived from failure analysis.
To make the approach useful in production environments, we
plan to provide tool support for both deriving and checking the
contracts, and safety case change management guidance using
the derived safety contracts.

ACKNOWLEDGEMENT

We acknowledge the Swedish Foundation for Strategic
Research (SSF) SYNOPSIS Project.

REFERENCES

[1] I. Bate and A. Burns. An integrated approach to scheduling in safety-
critical embedded control systems. Real-Time Systems Journal, 25(1):5–
37, Jul 2003.

[2] I. Bate and T. Kelly. Architectural considerations in the certification of
modular systems. In Proceedings of the Computer Safety, Reliability and
Security - 21st International Conference, SAFECOMP 2002, volume
LNCS 2434, pages 321–333, 2002.

[3] I. Bate and T. Kelly. Architectural considerations in the certification of
modular systems. Reliability Engineering and System Safety, 81:303–
324, 2003.

SWCommandFailure—
Software fails to command braking when required is acceptably managed

ASSRCommandFailure—
Argument over software safety requirements

WBSSafetyExeTime—
WBS calculates braking force and
outputs braking command within 10 ms

...WBSSafetyContract1—
WBS should calculate braking force and output
braking command on receipt of brake pedal position

SWSafetyContracts—
All defined safety contracts for WBS are
consistent, and correct with respect to the
safety requirements
 SW Safety Requirements

WBSWeakContract1.1—
BSCU delay is ≤ 4 ms

CxtBSCU—
Ref: BSCU software description

CxtCommunication—
The Communication is the bus connects BSCU
and Hydraulics [Ref: WBS software description]

CxtSubBSCUx—
SubBSCUx is a subcomponent of the
BSCU [Ref: BSCU software description]

CxtSelectSwitch—
SelectSwitch is a subcomponent of the
BSCU [Ref: BSCU software description]

BSCUWeakContract1—
SubBSCUx delay is < 3 ms

BSCUWeakContract2—
SelectSwitch delay < 1 ms

WBSHydraulicsDelay1.2—
Hydraulics delay is ≤ 4 ms

WBSWeakContract1.3—
Communication delay is ≤ 0.1 ms

CxtContractWBSLink1—
WBSSafetyExeTime goal is the
guarantee of the [WBS_Weak_1] contract

CxtContractWBSLink1.3—
WBSWeakContract1.3 goal is the guarantee
of the [WBS_Comm_Weak_1] contract

CxtContractWBSLink1.1—
WBSWeakContract1.1 goal is
the guarantee of the
[WBS_BSCU_Weak_1] contract
CxtContractBSCULink1—
BSCUWeakContract1 goal is the guarantee
of the [BSCU_SUB_Weak_1] contract

CxtContractBSCULink2—
BSCUWeakContract2 goal is the guarantee
of the [BSCU_SUB_Weak_2] contract

CxtContractWBSLink1.2—
WBSHydraulicsDelay1.2 goal is
the guarantee of the [WBS_
Hydraulics _Weak_1] contract

CxtWBS—
Ref: WBS system description

Fig. 9. WBS safety argument before introducing the safety kernel

WBSSafetyExeTime—
WBS calculates braking force and outputs
braking command within 10 ms

CxtContractWBSLink1—
WBSSafetyExeTime goal is the guarantee
of the [WBS_Weak_1] contract

CxtWBS—
Ref: WBS system description

WBSSafetyKernel—
Safety kernel activates the emergency
brake If braking command not received
from normal or alternate modes before
exceeding the watchdog timer

CxtKernelContractWBS—
WBSSafetyKernel goal is the guarantee
of the [WBS_Strong_1] contract

CxtSafetykernel—
[Ref: WBS system description]

CxtEmergencyMode—
Emergency brake [Ref: WBS
system description]

WBSDelaysWDogEmerg—
Safety kernel activates emergency
brake within 1 ms

CxtContractWatchDog—
This claim is addressed by
contract [WBS_SKC_Strong_1]

CxtWatchDogTimer—
Watchdog timer is 9 ms

WBSSafetyKernelReliability—
Safety Kernel has been developed to meet the
required reliability level

 Reliability Assurance

The other sub claims
are shown in Figure 9

Fig. 10. The updated WBSSafetyExeTime goal after introducing the safety kernel

[4] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis. Multiple viewpoint contract-based specification and
design. In Formal Methods for Components and Objects, volume 5382
of Lecture Notes in Computer Science, pages 200–225, 2007.

[5] A. Cimatti and S. Tonetta. A property-based proof system for contract-
based design. In Proceedings of the 38th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pages 21–
28. IEEE Computer Society, 2012.

[6] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
contract-based component specifications for virtual integration testing
and architecture design. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6, 2011.

[7] J. L. Fenn, R. D. Hawkins, P. Williams, T. P. Kelly, M. G. Banner, and
Y. Oakshott. The who, where, how, why and when of modular and
incremental certification. In Proceedings of the 2nd IET International
Conference on System Safety, pages 135–140. IET, 2007.

[8] P. Graydon and I. Bate. On the nature and content of safety contracts.
In Proceedings of the 15th IEEE International Symposium on High
Assurance Systems Engineering, pages 245–246, January 2014.

[9] P. Graydon and I. Bate. Realistic safety cases for the timing of systems.
The Computer Journal, 57(5):759–774, May 2014.

[10] O. Jaradat, P. J. Graydon, and I. Bate. An approach to maintaining
safety case evidence after a system change. In Proceedings of the 10th
European Dependable Computing Conference (EDCC), August 2014.

[11] J.-M. Jézéquel and B. Meyer. Design by contract: The lessons of ariane.
IEEE Computer, 30(1):129–130, Jan. 1997.

[12] T. Kelly. Arguing Safety - A Systematic Approach to Safety Case

Management. PhD thesis, Department of Computer Science, University
of York, 1999.

[13] T. Kelly, I. Bate, J. McDermid, and A. Burns. Building a preliminary
safety case: An example from aerospace. In Proceedings of the 1997
Australian Workshop on Industrial Experience with Safety Critical
Systems and Software, October 1997.

[14] T. Kelly and J. McDermid. A systematic approach to safety case
maintenance. Reliability Engineering and System Safety, 71(3):271 –
284, 2001.

[15] Modular software safety case (MSSC) — process description.
https://www.amsderisc.com/related-programmes/, Nov 2012.

[16] J. Rushby. Kernels for Safety?, chapter 13, pages 210–220. Blackwell
Scientific Publications, 1989.

[17] SAE ARP4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, Dec.
1996.

[18] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and weak
contract formalism for third-party component reuse. In Proceedings of
the 3rd International Workshop on Software Certification, pages 359–
364, 2013.

[19] K. Wika and J. Knight. On the enforcement of software safety policies.
In Proceedings of the 10th Annual IEEE Conference on Computer
Assurance, June 1995.

[20] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, and M. Trapp. Vertical
safety interfaces–improving the efficiency of modular certification. In
Proceedings of the 30th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), pages 29–42, 2011.

