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Abstract

The SWEET tool offers numerous static program analyses based on
abstract interpretation, such as value analyses and a variety of flow anal-
yses. For a long time, the main abstract domain used in SWEET to
represent sets of concrete integers has been an interval domain that can
model the wraparound behavior of fixed-precision arithmetic. Although
this domain is made attractive by its simplicity, it cannot abstract sparse
value sets with sufficient precision. Sparse value sets in which the elements
are separated by a constant stride commonly occur, e.g., when analyzing
array accesses to derive the possible byte offsets into the array. To im-
prove the accuracy of SWEET’s analyses in such situations, we extended
SWEET with a variant of Sen and Srikant’s domain of Circular Linear
Progressions, which keeps stride information together with the interval
bounds. This report describes our implementation, in which we improved
the expressiveness of the original domain by lifting some restrictions on
the parameters defining the objects of the domain.
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1 Introduction

SWEET (SWEdish Execution time analysis Tool) is a static program analy-
sis tool developed by the WCET research group at Mälardalen University in
Sweden. Its analyses, based on abstract interpretation, can derive numerous
types of information, such as possible values of variables at different program
points, upper and lower loop bounds, and infeasible execution paths. These
analyses in SWEET are performed on programs represented in the intermediate
format ALF (ARTIST2 Language for Flow Analysis) [3]. Designed to facilitate
translations of programs from a wide range of sources, ALF is a fairly low-level
language in many regards, but includes a few high-level language constructs
such as switch-case statements—which are also used to model simple two-way
branches as well as loops—and subroutines.

ALF’s type system defines only a few basic data types: two’s-complement
signed and unsigned integers, floats, and pointers to data or code. Moreover,
while there is a clear semantic distinction between the numerical types and
the pointer types, the differentiation between the different numerical types is
largely superficial. Similarly to assembly language, numerical values in ALF
are in practice merely bitstrings of certain widths, and their interpretation is
implicit in each operation applied to them. Thus, ALF defines separate versions
of all operators where the result, in terms of its binary representation, depends
on the interpretation of the operand bitstrings.

This text is concerned with the accurate and efficient analysis of fixed-
precision integer arithmetic, such as that found in ALF and most other lan-
guages and computer systems. In this arithmetic, when the result of an opera-
tion does not fit in the available bit width, its most significant bits are discarded,
resulting in a “wraparound” effect. This makes this arithmetic an instance of
modular arithmetic over Z/2wZ, where w denotes the bit width. A challenge in
analyzing this arithmetic is that its properties are quite different compared to
traditional integer arithmetic over Z. For example, if the sum of two positive
numbers wraps around, it becomes smaller than both of the summands.

Due to this wraparound behavior, it aids intuition to think of the values
representable in w bits as being placed along a circle of circumference 2w.
Throughout this text, we refer to such a circle as a number circle, in anal-
ogy to the number line. As shown in Figure 1, we visualize a number circle to
resemble a clock face, placing the origin at “12 o’clock”, and representing posi-
tive increments as clockwise rotations around the circle. Points on the left half
of the circle represent negative values ≥ −2w−1 under signed interpretation and
positive values ranging from 2w−1 up to and including 2w − 1 under unsigned
interpretation. Note that since we assume two’s-complement representation, the
signed and unsigned interpretations of a bitstring always appear at the same
point on the number circle.

Abstract interpretation is a technique by which sets of possible concrete
values are over-approximated by objects from an abstract domain. Previously,
the workhorse abstract domain in SWEET has been a type of interval with built-
in support to model wraparound as well as dual signed/unsigned interpretations.
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Figure 1: A number circle of circumference 2w. A double labeling is used for
points where the signed and unsigned interpretations differ, with the unsigned
label placed on the outside of the circle.

In this domain, a set of w-bit values V is abstracted using lower and upper
bounds1 l, u ∈ [0..2w) satisfying (u− l) mod 2w ≥ (v − l) mod 2w for all v ∈ V .
Note that the Euclidean definition of the modulo operation [1] is adopted here,
with which x mod y gives the smallest nonnegative value that is congruent to x
modulo y, i.e., 0 ≤ x mod y < |y| and x = x mod y+yq for some quotient q ∈ Z.
Going back to the number circle analogy, an interval object thus includes all
values that are passed over during a clockwise rotation from l to u on the circle.
When l > u, this means that the interval passes over 0 on the circle. Note also
that the bounds are selected from the unsigned range merely for convenience:
this has no bearing on which values the interval can represent, and it is trivial to
translate the included values between their signed and unsigned interpretations
when needed during an analysis. Due to its simplicity, this domain provides
very compact abstractions and efficient abstract operations based on a variant
of interval arithmetic.

Unfortunately, the interval domain suffers from an inability to abstract
sparse value sets with reasonable accuracy. Such value sets commonly result
from analyzing, e.g., array accesses, where the possible array offsets are sep-
arated by multiples of the width of the elements. Consider, for example, the
set of concrete 8-bit values {16, 48, 80, 144}, as shown laid out along the left-
most number circle in Figure 2. The tightest interval abstracting this value
set is given by l = 16 and u = 144. This interval, visualized in the middle in
Figure 2, includes all the concrete values 16, 17, . . . , 144 (when interpreted as
unsigned). Thus, if the value set represents the possible offsets into an array, the
elements stored at these offsets will be hugely over-approximated. Furthermore,
this over-approximation is quite arbitrary, as any values loaded from the array
offsets in-between the multiples of the element widths depend on the endianness

1Throughout this report, “..” is used to indicate integer intervals.
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Figure 2: Left: The set of concrete 8-bit values {16, 48, 80, 144} laid out along
a number circle of circumference 28 = 256. Middle: The tightest interval
abstracting the value set. Since l = 16 and u = 144, this interval includes
144 − 16 + 1 = 129 concrete values. Right: The same value set abstracted by
a Circular Linear Progression. Save for the superfluous value 112, the concrete
value set is approximated exactly.

of the modeled architecture.
An earlier version of SWEET included a congruence domain, which could

be used in combination with the interval domain to provide stride informa-
tion. However, this domain was based on mathematical congruences, and did
not model wraparound in a safe way. Thus, this domain was abandoned in later
versions. Recently, we instead turned to the work by Sen and Srikant [5, 6]. Sim-
ilarly to our interval domain, their Circular Linear Progression (CLP) domain
bounds each concrete value set using lower and upper bounds2 l, u ∈ [0..2w).
However, by using an additional stride parameter s ∈ [0..2w), they are able to
represent a constant dispersion of the values in-between the bounds as well. As-
suming an unsigned interpretation, a CLP object thus represents the concrete
set of values

{(l + si) mod 2w : i ∈ Z, 0 ≤ i ≤ b((u− l) mod 2w)/sc}. (1)

Returning to the earlier example, this domain enables an almost exact abstrac-
tion of the concrete value set by setting the stride s to 32. The values represented
by such a CLP are visualized on the rightmost number circle in Figure 2.

During the process of implementing the CLP domain in SWEET, we rec-
ognized some opportunities for improvements of the domain. Most notably, by
lifting some restrictions on the parameters defining a CLP object, we achieve
better expressiveness of the domain and improved approximation accuracy. The
rest of this report is outlined as follows. Our modified CLP domain is described
in Section 2 together with some elementary operations on CLP objects. In Sec-
tion 3, the full set of abstract operations on CLPs are described. Section 4 gives
an overview of the implementation of the domain in SWEET. Then in Section 5,

2In fact, they let l and u come from the signed range, but as discussed earlier, this choice
is arbitrary.
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an evaluation of the implementation is given. Section 6 concludes the report
and outlines some directions for future work.

2 Circular Linear Progressions

With Sen and Srikant’s original definition, l and u are always selected so as to be
no farther apart than 2w−1. Thus, a CLP can never overlap with itself, or “eat
its own tail”. This is assumed in all their abstract operations, and whenever an
operation returns bounds that differ by more than 2w−1 (before wraparound is
handled), the result must be “collapsed” into a less precise CLP to uphold this
assumption. We remove this restriction altogether to improve the expressiveness
of the domain. Instead of using lower and upper bounds to define a CLP, we
use a base value b ∈ Z and a cardinality n ∈ N0 giving the number of concrete
values represented. We denote a w-bit CLP by CLPw(b, s, n), where s ∈ Z gives
the stride. Bottom CLPs of width w, which we denote using the shorthand ⊥w,
are characterized by n = 0. Top CLPs, henceforth denoted >w, have an odd
value of s and n ≥ 2w, which means they include all values representable in w
bits.

We define two separate concretization functions for the signed and unsigned
cases. The unsigned concretization function γu is defined as

γu(CLPw(b, s, n)) = {(b+ si) mod 2w : i ∈ [0..n)}. (2)

Thus, the concrete unsigned values generated by γu are the elements of an
arithmetic progression of length n, with the modulo operation applied to each
element. Due to this resemblance to a sequence, we will commonly refer to the
variable i as the index. The signed concretization function γs is similar, but
maps any bitstrings in which the sign bit is set to negative values:

γs(CLPw(b, s, n)) = {vi : i ∈ [0..n)}, where

vi =

{
(b+ si) mod 2w if (b+ si) mod 2w < 2w−1,

(b+ si) mod 2w − 2w otherwise.

(3)

An important fact to note is that these two functions are identical with respect
to the bitstring representations of the concrete values they generate. Thus, for
two CLPs c1 and c2, γs(c1) = γs(c2) implies γu(c1) = γu(c2) and vice versa.

Another difference is that our CLP definition allow the parameters b and
s to be any values in Z, since the transformation of the concrete values to
their wrapped counterparts is implicit in the concretization functions (although
some constraints will be imposed on all three CLP parameters in Section 2.1).
Sometimes, however, we want to reason about the untransformed values. We
therefore define the following additional concretization function that views a
CLP as a pure arithmetic progression without wraparound:

γ(CLPw(b, s, n)) = {b+ si : i ∈ [0..n)}. (4)
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Figure 3: CLPs abstracting the set {0, 40, . . . , 240} ∪ {24, 64, 104}, computed
using Sen and Srikant’s approach (left) as well as our new approach (right).
Shown for each value is the index i; the values included in the original abstracted
set are shown in parentheses.

For notational convenience, we also let c[i] stand for the element b + si of
γ(CLPw(b, s, n)). It should be pointed out that while γ(c1) = γ(c2) always
implies γs(c1) = γs(c2) and γu(c1) = γu(c2), the reverse does not necessarily
hold.

As an illustrative example of the benefits of our version of the CLP domain,
consider a value analysis performed on the following C code snippet:

1 uint8 t x , y ;
2 x = us e r i npu t ( ) ;
3 i f ( x < 10)
4 y = 40 ∗ x ;

On the line before the branch, the variable x is assigned an unknown value.
In the true branch, x must fall in [0..9], and thus 40x evaluates to a value in
{0, 40, . . . , 360}. Since y is 8 bits wide, its contents after the assignment is a value
in {0, 40, . . . , 240}∪{24, 64, 104}, where the second subset represents the values
that are wrapped around because they are larger than 28 − 1 = 255. There
is no way to represent the possible contents of y exactly using the definition
in [5], since the difference between the first value 0 and last value 360 in the
unwrapped concrete set is larger than 255. The resulting CLP with this method
is shown to the left in Figure 3 (for convenience, we use our notation for CLPs).
Using our CLP definition, on the other hand, the value set can be represented
exactly simply by using a stride of 40, as illustrated to the right in Figure 3.
Notice in this CLP that the values at i = 7, 8, 9 appear in-between values at
lower indices.

Although this type of deliberate use of wraparound in a program might be a
rare practice, such effects may find their way into the analysis for other reasons,
e.g., due to over-approximations earlier in the analysis, or when analyzing partial
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code where some variables and results cannot be known. It is also possible for
compilers to exploit properties of fixed-precision arithmetic for optimization
purposes. Furthermore, the strengths of our modified CLP domain are not
limited to the handling of wraparound. On a more general level, its increased
expressiveness enables more value sets to be abstracted with high precision,
regardless of whether these sets come from overflowing computations or not.

2.1 CLP canonization

To facilitate various operations such as equality comparisons between CLPs, we
now impose a few restrictions on the CLP parameters b, s, and n, to ensure
that for any pair of CLPs c1 and c2 where γs(c1) = γs(c2) (which also implies
γu(c1) = γu(c2)), it holds that c1 = c2. As noted by Cassé et. al [2], who also
employ the CLP domain in their analyses, using the cardinality parameter n
in place of an upper bound avoids the problem that several upper bounds may
give the same concrete set, since the upper bound is not required to coincide
with a value in the set. However, their claim that this measure alone guarantees
canonical CLP representations is incorrect, as can be seen below.

First note that if one were to enumerate the values (b + si) mod 2w for
i = 0, 1, . . . , eventually a previous value would be revisited, and from this point
on the sequence would cycle. Thus, we can calculate a cap k on the cardinality
n as the period of this sequence, so that no concrete value is represented more
than once in the CLP. Clearly, k satisfies

b+ si ≡ b+ s(i+ k) (mod 2w),

which can be simplified as

sk ≡ 0 (mod 2w).

It is straightforward to verify that the smallest positive solution to this con-
gruence is k = lcm(|s|, 2w)/|s| if s 6= 0, where lcm denotes the least common
multiple, and k = 1 otherwise. Thus, if n > k, at least one concrete value is
represented twice by the CLP.

To transform a general CLP object c = CLPw(b, s, n) into the canonical
CLP c′ = CLPw(b′, s′, n′), we distinguish between the following cases regarding
n and k:

1. If n = 0 (the bottom case), we set b′ = s′ = n′ = 0.

2. If n = 1, we set b′ = b mod 2w, s′ = 0, and n′ = 1.

3. If n ≥ k ≥ 2, we set n′ = k as per above. Furthermore, in this case the
gap length between adjacent concrete values is constant, as illustrated by
the example in Figure 4a. We set b′ to the smallest unsigned value and
s′ to the constant gap length, which is given by gcd(s, 2w) mod 2w. Note
that this rule implicitly covers the top case, i.e., where |γu(c)| = 2w, where
it gives b′ = 0, s′ = 1, and n′ = 2w. It also covers singletons where n > 1
and s is a multiple of 2w, and gives the same result as the previous rule.
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(a) Canonization of an 8-bit CLP c with b = 216, s = 48, and n = 19. In this case,
k = lcm(48, 256)/48 = 16. Since n = k + 3, the last three values overlap with the
first three values (shown in red), and the gap length between all adjacent values is
constant. The base b′ of the canonical CLP c′ is set to the smallest unsigned value 8,
and the stride s′ is set to the constant gap length 16.
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set to the last value of c (at i = 6) and s′ is set to (−s) mod 2w. Intuitively, c′ is the
“reversed” c.

Figure 4: CLP canonization examples. The numbers along the circumference
show the index i for each value.
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4. If n = k − 1 ≥ 2, then there are exactly two gap lengths, the larger of
which occurs only once, as in the example in Figure 4b. In this case, we
set b′ to the first value after the larger gap, and s′ to the smaller gap
length, given by gcd(s, 2w). Since n < k, we set n′ = n.

5. In all other cases, there are either three gap lengths, or there are two gap
lengths with multiple occurrences of both. In these cases, we restrict b′

to the range [0..2w) and s′ to the range [0..2w−1). If s mod 2w < 2w−1,
we simply set b′ = b mod 2w and s′ = s mod 2w. Otherwise, we “reverse”
c by setting b′ to the last concrete value, i.e., b′ = c[n − 1] mod 2w, and
negating the stride: s′ = (−s) mod 2w = 2w − (s mod 2w). An example
of this is shown in Figure 4c.

2.2 Computing gap lengths

We are frequently interested in the order in which the elements of a CLP are
laid out along the number circle. Since we allow a CLP to span more than one
revolution of the number circle, elements from one revolution may be interleaved
with elements from previous and/or subsequent revolutions. Thus, the order of
the elements in terms of their signed or unsigned interpretations is not neces-
sarily reflected by their indices. A related problem is that of determining the
gaps between adjacent elements, which, for the same reason, are not necessarily
given by the stride. We solve these two problems by adapting results from the
study of fractions to the context of CLPs (see, e.g., [7, 8]).

To be precise, an element c[j] of c = CLPw(b, s, n) immediately succeeds
another element c[i] in this ordering if the gap length from c[i] to c[j], given
by (c[j]− c[i]) mod 2w, is smaller than that from c[i] to any other element of c
(excluding c[i] itself, of course). Conversely, c[i] then immediately precedes c[j].
Intuitively, the gap length can be seen as the clockwise increment needed to get
from c[i] to c[j] along the number circle. Thus, the gap length is noncommuta-
tive, i.e., the gap length from c[i] to c[j] is not equal to that from c[j] to c[i] in
general.

Denote by ia and ib the indices of the elements immediately succeeding and
preceding the base b, respectively, and let α be the gap length from b to c[ia], and
let β be the gap length from c[ib] to b. Then the Three Gap Theorem, adapted
for our purposes, states that the gap length between any two adjacent elements
of c is either α, β, or α+ β. Furthermore, it always holds that ia + ib ≥ n, and
that the gap length α occurs exactly n− ia times, β occurs exactly n− ib times,
and α+β occurs exactly ia + ib−n times. Consequently, in the case ia + ib = n,
no gaps of length α+ β occur at all. Thus, there are at most three gap lengths
and at least two, although it may be the case that α = β.

Given an index i ∈ [0..n), the following rules give the index of the immediate
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successor, c[succ(i)], and predecessor, c[pred(i)], of the element c[i]:

succ(i) =


i+ ia if i < n− ia (gap length α),

i+ ia − ib if n− ia ≤ i < ib (gap length α+ β),

i− ib if ib ≤ i (gap length β),

(5)

pred(i) =


i+ ib if i < n− b (gap length β),

i− ia + ib if n− ib ≤ i < ia (gap length α+ β),

i− ia if ia ≤ i (gap length α).

(6)

These rules are quite intuitive. For example, since doing ia steps with stride
s from b gives a successor at gap length α from b, doing the same from any
element c[i] should give a successor of c[i] at the same gap length. However,
such a stepping is valid only if i < n− ia, because otherwise succ(i) would give
an index outside of c. The same reasoning holds for stepping by −ib to end up at
a successor at gap length β, which is valid only if ib ≤ i. When n− ia ≤ i < ib,
neither of these steppings are valid on their own, but stepping by both ia and
−ib simultaneously is valid, and gives the gap length α+ β.

Algorithm 1

Input: c = CLPw(b, s, n) in canonical form
Output: ia = succ(0), ib = pred(0), α, β
1: if n = 1 then
2: return 0, 0, 2w, 2w

3: end if
4: ia ← 1; ib ← 1
5: α← s;β ← 2w − s
6: while ia + ib < n do
7: if α < β then
8: k ← min(b(β − 1)/αc, b(n− 1− ib)/iac)
9: ib ← ib + kia

10: β ← β − kα
11: else
12: k ← min(b(α− 1)/βc, b(n− 1− ia)/ibc)
13: ia ← ia + kib
14: α← α− kβ
15: end if
16: end while
17: return ia, ib, α, β

While the rules (5) and (6) give constant-time access to the closest neighbors
of any element of a CLP, they depend on the indices ia and ib being present.
Therefore, we now present an algorithm for computing these indices as well as α
and β. Interestingly, this algorithm, shown in Algorithm 1, turns out to be very
similar to the Euclidean algorithm for computing the greatest common divisor.
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On Lines 1–3, the special case that c is a singleton is handled. In fact, this is
the only case when any of ia and ib become 0. For all other cases, both indices
are initialized to 1, and α and β are initialized accordingly (Lines 4 and 5).
The task of the loop starting on Line 6 is then to search through the remaining
elements of c, in order of increasing indices, to find ia and ib. At the beginning
of each iteration, the current ia and ib give the closest successor and predecessor,
respectively, of b from the prefix of c that has been processed so far, the length
of which is given by max(ia, ib). The smallest of the current gap lengths α and
β is then used to shrink the other gap length. For example, if α < β in an
iteration, β is shrunken by α until β ≤ α by incrementing ib several times by ia.
The number of such increments is given by k, which is computed in a way that
ensures β > 0 and ib < n. Since now β ≤ α, the roles are reversed in the next
iteration. When ia + ib ≥ n, the loop terminates, and the final values of ia, ib,
α, and β are returned. As mentioned above, this condition always holds for the
final values of ia and ib. However, intuitively, this condition also means that
it is no longer possible to step ia by ib or vice versa without stepping beyond
n− 1, so the process must be finished.

Note that one can apply the Three Gap Theorem to the current prefix of c
in each iteration to see that the smallest of α and β must be the smallest gap
length in this prefix. Thus, this is the only candidate available to use to shrink
the larger of the gaps.

3 Abstract operations

This section defines abstract versions of a majority of the integer operations
found in ALF in terms of operations on CLPs. These operations in ALF follow
the conventional semantics found in many other languages and architectures,
so the definitions presented here should carry over directly also to other pro-
gram formats than ALF. Similarly to the abstract operations described in [5, 6],
some of the operations in this section require that no wraparound occurs in the
operand CLPs. Of course, the meaning of wraparound depends on whether the
operation in question interprets its operand bitstrings as signed or unsigned.
Under signed interpretation, wraparound occurs in a CLP c if the most signif-
icant bit (sign bit) flips from 0 to 1 between some element c[i] and the next
element c[i + 1]; under unsigned interpretation, wraparound occurs if said bit
instead flips from 1 to 0.

For clarity, we refer to CLPs in which no wraparound occurs as arithmetic
progressions (APs), and denote them using the alias AP(b, s, n), with analogous
meanings of the parameters b, s, and n to the CLP parameters. We say that
c = AP(b, s, n) is w-bit signed when c[i] ∈ [−2w−1..2w−1) holds for i ∈ [0..n), and
we call it w-bit unsigned when c[i] ∈ [0..2w) holds for i ∈ [0..n). Equivalently,
c is signed if it satisfies γ(c) = γs(c), and unsigned if it satisfies γ(c) = γu(c).
Of course, an AP can be simultaneously w-bit signed and unsigned, when c[i] ∈
[0..2w−1) holds for i ∈ [0..n). It should be noted that for signed APs, the base b
necessarily falls in the signed range [−2w−1..2w−1) as opposed to the unsigned
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range [0..2w), which is a slight deviation from the canonization rules described
in Section 2.1.

Whenever wraparound does occur in a w-bit CLP, it must first be split into
several w-bit signed or unsigned APs as mandated by the invoked operation.
Then the operation is carried out in isolation on each of the resulting APs to
produce the same number of results. The final output is then computed by
merging these results into one using the union operation to be described in
Section 3.2.1. For binary operations, the splitting into APs is done for both
operands, and then the partial results are computed by applying the operation
to all combinations of APs from the two operands. For all the operations de-
scribed in this section, this split-compute-merge procedure gives sound results
because these operations distribute over the union operation (as discussed in [5,
Section 4]). The splitting step is described in detail in the next subsection.

The reason for this no-wraparound policy on operands is to simplify the
design of the abstract operations. For a given AP c = AP(b, s, n), it is known
that each c[i] represents the real signed/unsigned concrete value at index i.
This further means that the concrete values are monotonically increasing with
i, and that they all differ by multiples of the stride s (which, for the reasons
discussed in Section 2.2, is not always the case for a general CLP). Furthermore,
a proper handling of general CLPs in some of the operations would likely require
something similar to the above split-compute-merge strategy anyway, so this can
as well be factored out into a separate procedure.

However, while this policy is imposed on all operations except for a few
in [5], we note that it is unnecessary in several cases. In other words, for some
operations no splitting is required because a sound result is guaranteed even if
treating general CLP operands as though they were APs. To motivate this, we
first establish more formally the simplifications that are made possible when the
operands are APs. Let fw be a concrete unary operator over bitstrings of width
w. Assuming for the moment that fw is an unsigned operator, its function can
be modeled in terms of an underlying mathematical operator f over Z as

fw(x) = f(x mod 2w) mod 2w. (7)

Given a CLP c = CLPw(b, s, n), the corresponding abstract operator Fw is
sound if and only if it simulates the application of fw to all elements from γ(c).
This requirement can be expressed as

γu(Fw(c)) ⊇ {fw(c[i]) : i ∈ [0..n)},

which can be rewritten using (7) as

γu(Fw(c)) ⊇ {f(c[i] mod 2w) mod 2w : i ∈ [0..n)}. (8)

If c is in fact a w-bit unsigned AP, we can do away with the modulo operation
applied to c[i] in (8), and get the simplified requirement

γu(Fw(c)) ⊇ {f(c[i]) mod 2w : i ∈ [0..n)}. (9)
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Furthermore, since the modulo operation is now only applied after f , we can
exploit the fact that γu too applies the modulo operation to each generated
element, and simplify one step further:

γ(Fw(c)) ⊇ {f(c[i]) : i ∈ [0..n)}. (10)

Note the use of γ in place of γu here.
If fw is instead a signed operator, its definition in terms of the mathematical

operator f becomes

fw(x) =

{
f(x′) mod 2w if f(x′) mod 2w < 2w−1,

f(x′) mod 2w − 2w otherwise,

where

x′ =

{
x mod 2w if x mod 2w < 2w−1,

x mod 2w − 2w otherwise.

This gives a soundness condition for Fw that is analogous to (8), with γu replaced
by γs, and the alternative definition of fw substituted. It is quite easy to verify
that if c is a w-bit signed AP in this case, analogous simplifications can be made
to end up with (10).

Our insight is that simplifying (8) into (10) is possible also for general CLPs,
if f satisfies, for all m ∈ N, the following associativity-like property with respect
to the modulo operation:

f(x) mod m = f(x mod m) mod m. (11)

This is the case for, e.g., negation and bitwise NOT, and also the reason why
no separate signed and unsigned versions of these operators are needed. The
transformation of (8) into (9) then follows directly from (11) for unsigned fw,
and the step from (9) to (10) follows from the definition of γu as before. The
corresponding simplifications for signed fw are also valid when (11) is satisfied.

Now consider instead a binary unsigned operator f ′w, defined in terms of a
mathematical operator f ′ over Z× Z as

f ′w(x, y) = f ′(x mod 2w, y mod 2w) mod 2w.

Given two operands c1 = CLPw(b1, s1, n1) and c2 = CLPw(b2, s2, n2), the
soundness condition for the corresponding abstract operator F ′w becomes

γu(F ′w(c1, c2)) ⊇ {f ′(c1[i] mod 2w, c2[j] mod 2w) mod 2w}, (12)

where i ∈ [0..n1) and j ∈ [0..n2). If both c1 and c2 are w-bit unsigned APs, the
same arguments as above simplify this condition into

γu(F ′w(c1, c2)) = {f ′(c1[i], c2[j]) mod 2w}, (13)
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and then, using the definition of γu, into

γ(F ′w(c1, c2)) = {f ′(c1[i], c2[j])}. (14)

As in the unary case, the same simplifications are valid also for signed f ′w.
For the binary operator f ′w, the “shortcut” for general CLPs described above,

is valid if f ′ is such that the modulo operator distributes over its operands, i.e.,
if it satisfies

f ′(x, y) mod m = f ′(x mod m, y mod m) mod m. (15)

This property holds for, e.g., addition and subtraction, and it is again this
property that obviates the need for separate signed and unsigned versions of
these operators. Using (15), the simplification of (12) to (13) follows directly,
and (14) follows from the definition of γu. Again, it is straightforward to show
that (14) is a sufficient soundness condition also for signed f ′w.

3.1 Splitting CLPs into APs

When splitting a CLP c into a number of APs a1, a2, . . . , ar, we want to keep
intact as much precision as possible; ideally, we want the resulting APs to
satisfy

⋃r
j=1{γ(aj)} = γs(c) (assuming signed aj ; substitute γu for γs otherwise).

However, at the same time we strive to keep the number of APs low. This owes
to the fact that the subsequent operation is then carried out on each of the APs,
after which the union of all the partial results must be computed. For binary
operations, it is particularly critical to keep the number of APs low, as these
operations are invoked for all pairs of APs from both operands. This gives a
quadratic time complexity in the number of APs resulting from the splitting of
each operand.

In many cases a näıve strategy is sufficient, whereby an “incision” is made at
each point on the CLP that passes over the wraparound point, resulting in APs
that have the same stride as the original CLP. Figure 5 illustrates this. This
is a simple and straightforward strategy that is also used by Sen and Srikant.
In their case, at most two APs are generated in any given case. Unfortunately,
since we place no restrictions on the number of times a CLP can overlap with
itself, for us this strategy generates O(2w) APs in the worst case. While the
canonization rules in Section 2.1 aim to reduce the number of overlaps by keep-
ing the stride below 2w−1, no such rules can reduce this worst case without
introducing imprecision.

The worst input CLP in any precision w is arguably one on the format
CLPw(b, 2w−1 − 1, 2w − 2), where b is either 2w−1 − 1 or 2w − 1 depending on
whether signed or unsigned APs are to be generated, respectively. Due to the
large stride s = 2w−1 − 1, at most two concrete values occur in each “lap” of
such a CLP (as 3s ≥ 2w). Furthermore, since the cardinality n = 2w − 2 is
smaller than k− 1 (as k = lcm(|s|, 2w)/|s| = 2w) none of the canonization rules
reduce the cardinality, and since s mod 2w < 2w−1, the last rule does not reduce
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(a) Splitting an 8-bit CLP c into 8-bit signed APs. Wraparound occurs after 127, and
thus an incision is made in c after i = 2, resulting in two APs a1 and a2. Note that
no imprecision is incurred here, i.e., γ(a1) ∪ γ(a2) = γs(c).
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(b) Splitting the CLP from (a) into 8-bit unsigned APs. Since wraparound occurs
after 255, c is split after i = 6, again resulting in two APs a3 and a4 satisfying
γ(a3) ∪ γ(a4) = γu(c).

Figure 5: Example CLP where the näıve splitting strategy is sufficient, because
only two APs are generated in both the signed and unsigned case.
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Figure 6: Splitting CLP8(10, 124, 20) into signed (left) and unsigned (right)
APs using the fallback strategy. The outlines mark which elements are grouped
together into distinct APs. In the signed example, we start at the smallest
signed value, which is at i = 1, and add i = 18 to the same group. After i = 18,
however, the gap length changes, so the current sequence is closed and a new
one is started at i = 16. This next sequence ends after i = 0, when the gap
length changes again, and so on. In the unsigned example, we start with the
smallest unsigned value at i = 2, and then proceed in a similar manner. Using
the näıve strategy, 10 APs would result in both cases.

the stride. The above splitting strategy thus produces O(2w) APs containing
at most two concrete values each from such a CLP.

For this reason, we fall back to an alternative splitting strategy for such
difficult cases. This strategy utilizes the fact that there typically are sequences
of adjacent values that have a common gap length, that can be collected into
APs with the stride set to that gap length. With this strategy, a single scan is
performed along the circumference of the number circle, and all values are col-
lected into such sequences using a variant of rule (5) from Section 2.2 that allows
several steps to be performed in one go. For signed splitting, the scan starts
at the smallest signed value, otherwise it starts at the smallest unsigned value.
An example is given in Figure 6. The choice between the two strategies is made
dynamically for each input case, by first computing in constant time the number
of APs that would result with the simple strategy, and then proceeding with a
“trial run” using the second strategy. If the number of APs generated ever ex-
ceeds the number computed initially, this procedure is terminated prematurely
and then the simple splitting procedure is used instead.

As with the näıve strategy, this strategy maintains full precision and takes
time proportional to the number of APs generated. Unfortunately, it is harder
to analyze to determine its worst-case input in terms of the number of resulting
APs. However, investigations of a number of cases suggest that the two strate-
gies complement each other, so that inputs where one strategy is inefficient
are handled more successfully by the other strategy. A more rigorous analysis
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remains as future work.
In the following subsections, we specify for each operation the expected

format of the input CLPs, i.e., whether they are assumed to be general CLPs
or signed/unsigned APs. All general CLPs are assumed to be in canonical
form, and all APs are assumed to be generated from canonical CLPs. Also,
an implicit canonization is performed after each operation, which means that
when an operation is defined in terms of other operations, the results from those
operations are assumed to be in canonical form as well.

3.2 Set operations

The operations described in this subsection do not correspond to actual concrete
operations found in the ALF language, but are needed in many analyses to,
e.g., merge abstract program states and to restrict program states according to
constraints derived by the analysis.

3.2.1 Union

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2). Let ∪′ be a function
defined for two CLPs c′1 = CLPw(b′1, s

′
1, n
′
1) 6= ⊥w and c′2 = CLPw(b′2, s

′
2, n
′
2) 6=

⊥w as

c′1 ∪′ c′2 = CLPw(b, s, n),

where

b = min(b′1, b
′
2),

s = gcd(s′1, s
′
2, |b′1 − b′2|),

n =

⌊
max(c′1[n′1 − 1], c′2[n′2 − 1])− b

s

⌋
+ 1.

Note that ∪′ is undefined if n′1 = n′2 = 1 and b′1 = b′2, because then s = 0 in the
definition of n, assuming c′1 and c′2 are in canonical form.

The union operator ∪ for CLPs is defined in terms of ∪′ as

c1 ∪ c2 =


c1 if c2 = ⊥w,

c2 if c1 = ⊥w,

CLPw(min(b1, b2), |b1 − b2|, 2) if n1 = n2 = 1,

c1 ∪′ CLPw(b2 + 2wm, s2, n2) otherwise,

(16)

where

m = arg min
m′∈Z

|γu(c1 ∪′ CLPw(b2 + 2wm′, s2, n2))|.

In other words, m is the value of m′ that minimizes the cardinality of c1 ∪′
CLPw(b2 + 2wm′, s2, n2).
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3.2.2 Intersection

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2). Let

d = gcd(s1, 2
w), s = the Bézout coefficient of gcd(s1, 2

w) for s1,

e = gcd(s2, d), t = the Bézout coefficient of gcd(s2, d) for s2,

j0 = t(b1 − b2)/e mod (d/e),

I = CLPlog2(2
w/d)(s(b2 − b1 + s2j0)/d, s2s/e, b(n2 − j0)/(d/e)c),

and let i0 be the smallest value of γu(I) and i1 the largest value of γu(I) that is
smaller than n1. An efficient procedure to compute the latter two parameters
is given in Section 3.5.2. The intersection operation for CLPs is then defined as

c1 ∩ c2 =



⊥w if c1 = ⊥w or c2 = ⊥w,

⊥w if e does not divide b1 − b2,

⊥w if j0 ≥ n2,

⊥w if i0 ≥ n1,

CLPw(b, s, n) otherwise,

(17)

where

b = c1[i0],

s = s1 gcd(|I[k]− I[k′]|, . . .) for all k, k′ such that i0 ≤ I[k], I[k′] ≤ i1,

n =

⌊
c1[i1]− c1[i0]

s

⌋
+ 1.

3.2.3 Subset-of

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2). Let

d = gcd(s2, 2
w),

s = the Bézout coefficient of gcd(s2, 2
w) for s2,

J = CLPlog2(2
w/d)(s(b1 − b2)/d, s1s/d, n1),

j1 = max γu(J).

The parameter j1 can be computed efficiently using the procedure described in
Section 3.5.2. The subset operation for CLPs is then defined as

c1 ⊆ c2 =



true if c1 = c2 = ⊥w,

false if n1 > n2,

false if d does not divide b1 − b2 and s1,

false if j1 ≥ n2,

true otherwise.

(18)
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3.3 Arithmetic operations

3.3.1 Unary negation

Input: c1 = CLPw(b1, s1, n1).

−c1 =

{
⊥w if c1 = ⊥w,

CLPw(−c1[n1 − 1], s1, n1) otherwise.

3.3.2 Addition

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2).

c1 + c2 =


⊥w if c1 = ⊥w or c2 = ⊥w,

CLPw(b, 0, 1) if n1 = n2 = 1,

CLPw(b, s, n) otherwise,

where

b = b1 + b2,

s = gcd(s1, s2)

n =

⌊
c1[n1 − 1] + c2[n2 − 1]− b

s

⌋
+ 1.

3.3.3 Subtraction

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2).

c1 − c2 = c1 + (−c2).

3.3.4 Signed multiplication

This operator abstracts a concrete multiplication operator where the bit width
of the result is the sum of the bit widths of the operands. Although the mod-
ulo operator distributes over multiplication, i.e., it holds that (x mod m)(y mod
m) mod m = xy mod m, the operand CLPs need to split into APs for this
reason. If one were to define an abstract multiplication operator where the
operands and the result have the same precision, the input could be CLPs in-
stead. Also, it would then be unnecessary to have separate signed and unsigned
multiplication operators.

Input: w1-bit signed AP c1 = AP(b1, s1, n1), w2-bit signed AP c2 = AP(b2, s2, n2).

c1 ×s c2 =


⊥w1+w2

if c1 = ⊥w1
or c2 = ⊥w2

,

CLPw1+w2(b1b2, 0, 1) if n1 = n2 = 1,

CLPw1+w2(b, s, n) otherwise,
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where

b = min(b1b2, b1c2[n2 − 1], c1[n1 − 1]b2, c1[n1 − 1]c2[n2 − 1]),

s = gcd(|b1s2|, |s1b2|, s1s2),

n =

⌊
max(b1b2, b1c2[n2 − 1], c1[n1 − 1]b2, c1[n1 − 1]c2[n2 − 1])− b

s

⌋
+ 1.

3.3.5 Unsigned multiplication

Similar remarks about the operands as for the signed operator apply here.
Input: w1-bit unsigned AP c1 = AP(b1, s1, n1), w2-bit unsigned AP c2 =

AP(b2, s2, n2).

c1 ×u c2 =


⊥w1+w2 if c1 = ⊥w1 or c2 = ⊥w2 ,

CLPw1+w2(b, 0, 1) if n1 = n2 = 1,

CLPw1+w2
(b, s, n) otherwise,

where

b = b1b2,

s = gcd(b1s2, s1b2, s1s2),

n =

⌊
c1[n1 − 1]c2[n2 − 1]− b

s

⌋
+ 1.

3.3.6 Signed division

This operator abstracts a concrete integer division operator ÷s that rounds
towards 0, i.e., x÷s y = bx/yc when x/y ≥ 0 and x÷s y = dx/ye when x/y < 0.
Let ÷ denote the mathematical counterpart to this operator.

Input: w-bit signed APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2), where all
c2[j] have the same sign.

c1 ÷s c2 =


⊥w if c1 = ⊥w or c2 = ⊥w,

>w if 0 ∈ γ(c2),

CLPw(b1 ÷ b2, 0, 1) if n1 = n2 = 1,

CLPw(b, s, n) otherwise,
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where

b = min(b1 ÷ b2, b1 ÷ c2[n2 − 1], c1[n1 − 1]÷ b2, c1[n1 − 1]÷ c2[n2 − 1]),

s =


gcd(b1 ÷ c2[j]− b, |s1 ÷ c2[j]|, . . .) for j ∈ [0..n2)

if all c2[j] divide both s1 and b1, or

all c2[j] divide s1, and c1[n1 − 1] < 0 or 0 < b1,

1 otherwise,

n =


max(b1 ÷ b2, b1 ÷ c2[n2 − 1],

c1[n1 − 1]÷ b2, c1[n1 − 1]÷ c2[n2 − 1])− b
s

+ 1.

When both c1 and c2 are singletons, the operation is of course trivial. How-
ever, the above definition simplifies in some regards also when only c2 is a
singleton. Firstly, we then have b2 = c2[n2− 1], which means that the there are
only two candidate extrema of the result instead of four, and the definition of b
is either b = b1÷ b2 or b = c1[n1− 1]÷ b2. Also, the gcd expression simplifies to
gcd(b1 ÷ b2 − b, |s1 ÷ b2|). If b = b1 ÷ b2, the first argument to the gcd becomes
0, so the gcd is simply |s1 ÷ b2|. If b = c1[n1 − 1] ÷ b2, the first argument can
be rewritten as

b1 ÷ b2 − b = b1 ÷ b2 − (c1[n1 − 1]÷ b2)

= b1 ÷ b2 − ((b1 + s1(n1 − 1))÷ b2)

= b1 ÷ b2 − (b1 ÷ b2 + s1(n1 − 1)÷ b2)

= −s1(n1 − 1)÷ b2.

The third equality follows from the assumption that b2 divides s1. Since we
assume s1 6= 0, clearly |s1 ÷ b2| is a divisor of the last form, and consequently
also of b1 ÷ b2 − b. Thus, for both possible definitions of b, the gcd expression
further simplifies to |s1 ÷ b2|.

It should also be pointed out that our definition of this operation differs
somewhat from that described by Sen and Srikant. Firstly, whereas they pes-
simistically set the stride of the result to 1 whenever c2 is not a singleton,
our design gives a larger stride when possible. Also, their handling of the
case when c2 is a singleton is unsound, because they always set the stride to
s = |s1 ÷ b2|, which is only valid under the conditions discussed above. For
example, consider the division of c1 = CLP8(5, 5, 3) by c2 = CLP8(2, 0, 1). We
have γs(c1) = {5, 10, 15} and γs(c2) = {2}, and a sound result c = CLP8(b, s, n)
must satisfy γs(c) ⊇ {2, 5, 7}. Their division operator gives b = 5 ÷ 2 = 2,
s = |5 ÷ 2| = 2, and an upper bound corresponding to n = 3, which gives the
incorrect result γs(c) = {2, 4, 6}. With our definition, s is instead set to 1, since
b2 = 2 does not divide the base of c1 nor its stride, and n is set to 6.
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3.3.7 Unsigned division

Similarly to the operator ÷s, this division operator rounds towards 0.
Input: w-bit unsigned APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2).

c1 ÷u c2 =


⊥w if c1 = ⊥w or c2 = ⊥w,

>w if 0 ∈ γ(c2),

CLPw(b1 ÷ b2, 0, 1) if n1 = n2 = 1,

CLPw(b, s, n) otherwise,

where

b = b1 ÷ c2[n2 − 1]

s =


gcd(b1 ÷ c2[j]− b, s1 ÷ c2[j], . . .) for j ∈ [0..n2)

if all c2[j] divide s1,

1 otherwise,

n =

⌊
c1[n1 − 1]÷ b2 − b

s

⌋
+ 1.

3.3.8 Signed modulo

This operation abstracts the modulo operation given in § 6.5.5 of the C99 stan-
dard, where x = x÷s y×s y + x%s y. Thus, the sign of the result is that of the
dividend.

Input: w-bit signed APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2), where all
c2[j] have the same sign.

c1 %s c2 = c1 − c1 ÷s c2 ×s c2.

3.3.9 Unsigned modulo

Input: w-bit unsigned APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2).

c1 %u c2 = c1 − c1 ÷u c2 ×u c2.

3.4 Bitwise operations

In the following, the bitwise operators NOT, AND, OR, and XOR are denoted
by “∼”, “&”, “|”, and “̂”, respectively. The left shift, logical right shift, and
arithmetic right shift operators are denoted by “�”, “�”, and “ ·�”, respec-
tively.

3.4.1 NOT

Input: c1 = CLPw(b1, s1, n2).

∼c1 =

{
⊥w if c1 = ⊥w,

CLPw(∼c1[n1 − 1], s1, n1) otherwise.
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3.4.2 AND

Input: w-bit unsigned APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2).

c1 & c2 =



⊥w if c1 = ⊥w or c2 = ⊥w,

CLPw(b1 & b2, 0, 1) if n1 = n2 = 1,

CLPw(b1 & b2, (b1 & c2[n2 − 1])− (b1 & b2), 2) if n1 = 1 and n2 = 2,

CLPw(b1 & b2, (c1[n1 − 1] & b2)− (b1 & b2), 2) if n1 = 2 and n2 = 1,

CLPw(b, s, n) otherwise,

where b, s, and n are computed as follows. If n1 > 1, let L1 be the position
of the least significant bit that is set in s1, and let U1 be the most significant
bit position where b1 and c1[n1 − 1] differ (i.e., the most significant bit set in
b1 ̂ c1[n1−1]). The range [L1..U1] then gives the bit positions where the values
in γ(c1) may differ. Note that L1 ≤ U1 is guaranteed to hold. If n1 = 1, simply
let L1 = w and U1 = −1 to represent that all bits are constant. Define L2 and
U2 analogously for c2.

If L1 < L2, then let L be the position of the least significant bit that is set
in bits [L1..L2) of b2, or let L = L2 if no such bit exists. Conversely, if L2 < L1,
let L be the position of the least significant bit that is set in bits [L2..L1) of
b1, or let L = L1 if there is no such bit. If L1 = L2, let L be equal to the
common value. Note that L gives the least significant bit position where the
concrete values of the result may differ. Similarly, we can find the position U of
the most significant bit in which the result varies. If U1 > U2, let U be the most
significant bit that is set in bit positions (U2..U1] of b2, or let U = U2 if no such
bit exists. Conversely, if U2 > U1, let U be the most significant bit that is set
in bit positions (U1..U2] of b1, or let U = U1 if there is no such bit. If U1 = U2,
let U be equal to the common value. If L ≤ U , the range [L..U ] gives the bit
positions in which the elements of the result differ. Otherwise, the result is a
singleton, so

b = b1 & b2, s = 0, n = 1.

If U1 > U2 and U = U1, let U ′ be the least significant bit in the range
(U2..U1] such that bits [U ′..U1] of b2 are all 1. If U1 6= U , no such bit can exist;
then let U ′ = U + 1. The significance of U ′ is that bits [U ′..U1] of the result are
identical to the same bits of c1 (if U ′ < U1), and thus increase monotonically
with the index of c1. Furthermore, bits [L..U ′) of the result vary possibly non-
monotonically. Conversely, if U2 > U1 and U = U2, let U ′ be the least significant
bit in the range (U1..U2] such that bits [U ′..U2] of b1 are all 1s, or let U ′ = U+1
if U 6= U2. Then bits [U ′..U2] of the result are instead identical to the same bits
of c2.

Define a safe lower bound l = (b1 & b2) & ∼m and a safe upper bound
u = min((c1[n1−1]&c2[n2−1]) |m, c1[n1−1], c2[n2−1]), where m is a bit mask
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with 1 in bit positions [L..U ′) (if L < U ′) and 0 in all other positions. Then

s =


max(s1, 2

L) if U1 > U2, U = U1, and U ′ = L,

max(s2, 2
L) if U2 > U1, U = U2, and U ′ = L,

2L otherwise,

b = (b1 & b2) + s

⌈
l − (b1 & b2)

s

⌉
,

n =

⌊
u− b
s

⌋
+ 1.

3.4.3 OR

Input: w-bit unsigned APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2).

c1 | c2 = ∼(∼c1 &∼c2).

3.4.4 XOR

Input: w-bit unsigned APs c1 = AP(b1, s1, n1), c2 = AP(b2, s2, n2).

c1 ̂ c2 = (∼c1 & c2) | (c1 &∼c2).

3.4.5 Left shift

Input: c1 = CLPw1
(b1, s1, n1), w2-bit unsigned AP c2 = AP(b2, s2, n2).

c1� c2 =

{
⊥w1 if c1 = ⊥w1 or c2 = ⊥w2 ,

CLPw1
(b, s, n) otherwise,

where

b = b1� b2,

s =

{
s1� b2 if n2 = 1,

gcd(b1, s1)� b2 otherwise,

n =

⌊
(c1[n1 − 1]� c2[n2 − 1])− b

s

⌋
+ 1.

3.4.6 Signed (arithmetic) right shift

Input: w1-bit signed AP c1 = AP(b1, s1, n1), w2-bit unsigned AP c2 = AP(b2, s2, n2).

c1 ·� c2 =


⊥w1

if c1 = ⊥w1
or c2 = ⊥w2

,

CLPw1(b1 ·� b2, 0, 1) if n1 = n2 = 1,

CLPw1(b, s, n) otherwise,
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where

b =

{
b1 ·� c2[n2 − 1] if b1 ≥ 0,

b1 ·� b2 otherwise,

s =



gcd(s1 ·� c2[n2 − 1], (b1 ·� (c2[n2 − 1]− s2))− (b1 ·� c2[n2 − 1]))

if s1 is divisible by 2c2[n2−1] and n2 = 1, or

both s1 and b1 are divisible by 2c2[n2−1], or

s1 is divisible by 2c2[n2−1] and bits [0..c2[n2 − 1]) of b1 are all 1,

1 otherwise,

n =


⌊
(c1[n1−1] ·�b2)−b)

s

⌋
+ 1 if b1 ≥ c1[n1 − 1],⌊

(c1[n1−1] ·�c2[n2−1])−b)
s

⌋
+ 1 otherwise.

3.4.7 Unsigned (logical) right shift

Input: w1-bit unsigned AP c1 = AP(b1, s1, n1), w2-bit unsigned AP c2 =
AP(b2, s2, n2).

c1� c2 =


⊥w1 if c1 = ⊥w1 or c2 = ⊥w2 ,

CLPw1
(b1� b2, 0, 1) if n1 = n2 = 1,

CLPw1
(b, s, n) otherwise,

where

b = b1� c2[n2 − 1],

s =



gcd(s1� c2[n2 − 1], (b1� (c2[n2 − 1]− s2))− (b1� c2[n2 − 1]))

if s1 is divisible by 2c2[n2−1] and n2 = 1, or

both s1 and b1 are divisible by 2c2[n2−1], or

s1 is divisible by 2c2[n2−1] and bits [0..c2[n2 − 1]) of b1 are all 1,

1 otherwise,

n =

⌊
(c1[n1 − 1]� b2)− b

s

⌋
+ 1.

3.5 Comparison operators

All the comparison operators in ALF return the outcome as a 1-bit value, where
0 means false and 1 means true. In the abstract semantics, the result may be
both false and true, or neither.
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3.5.1 Equality/inequality

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2).

(c1 == c2) =


⊥1 if c1 = ⊥w or c2 = ⊥w,

CLP1(1, 0, 1) if n1 = n2 = 1 and b1 = b2,

CLP1(0, 0, 1) if c1 ∩ c2 = ⊥w,

>1 otherwise,

(c1 != c2) = ∼(c1 == c2).

3.5.2 Order relations

ALF defines signed as well as unsigned versions of the usual order relations
less-than, less-then-or-equal-to, etcetera. For brevity, we describe here only the
abstract version of the signed less-than operator, <s, as the remaining abstract
operators are designed using similar principles.

Input: c1 = CLPw(b1, s1, n1), c2 = CLPw(b2, s2, n2).

c1 <s c2 =


⊥1 if c1 = ⊥w or c2 = ⊥w,

CLP1(1, 0, 1) if max γs(c1) < min γs(c2),

CLP1(0, 0, 1) if min γs(c1) ≥ max γs(c2),

>1 otherwise.

This definition is quite straightforward, and any of the other order relations
can be designed similarly. However, the question remains how to compute the
minimum and maximum values of γs(c1) and γs(c2) (or γu(c1) and γu(c2) for
the unsigned operators) in an efficient way. As we do not require the operands
to be APs, their extrema are not necessarily given by their endpoints b1, b2,
c1[n1− 1], and c2[n2− 1]. Furthermore, for the reasons discussed in Section 2.2,
iterating through the full sets of concrete values to find the extrema does not
suffice in general, as this takes O(2w) time in the worst case.

It turns out that Algorithm 1 can be modified slightly to help with this. The
modified algorithm, shown in Algorithm 2, takes as an additional parameter a
point l on the number circle, not necessarily an element of the input CLP c, and
returns the index ic of the element at the smallest gap length ζ from this point.
If l coincides with an element of c, the returned ic is the index of this element
and ζ is 0.

The first difference from Algorithm 1 is found in the handling of the case
that c is a singleton on Line 2, where also ic and ζ should be given suitable
values. Clearly, b must be the closest element to l, so ic = 0 is returned as well
as ζ = (b − l) mod 2w. On Lines 6–12, ic is initialized for the general case to
either 0 or 1, depending on which of the elements b and c[1] is closest to l, and
ζ is assigned accordingly.

The next addition to the algorithm is found on Lines 15–19, where ic and ζ
are updated before ib and β. Conceptually, ic is first stepped once by ib, which
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Algorithm 2

Input: c = CLPw(b, s, n) in canonical form, l ∈ Z
Output: ia = succ(0), ib = pred(0), ic, α, β, ζ
1: if n = 1 then
2: return 0, 0, 0, 2w, 2w, (b− l) mod 2w

3: end if
4: ia ← 1; ib ← 1
5: α← s;β ← 2w − s
6: if (b− l) mod 2w < (c[1]− l) mod 2w then
7: ic ← 0
8: ζ ← (b− l) mod 2w

9: else
10: ic ← 1
11: ζ ← (c[1]− l) mod 2w

12: end if
13: while ia + ib < n do
14: if α < β then
15: k′ ← d−(ζ − β)/αe
16: if k′ ≤ b(n− 1− (ic + ib))/iac and −β + k′α < 0 then
17: ic ← ic + ib + k′ia
18: ζ ← ζ − β + k′α
19: end if
20: k ← min(b(β − 1)/αc, b(n− 1− ib)/iac)
21: ib ← ib + kia
22: β ← β − kα
23: else
24: k′ ← min(bζ/βc, b(n− 1− ic)/ibc)
25: ic ← ic + k′ib
26: ζ ← ζ − k′β
27: k ← min(b(α− 1)/βc, b(n− 1− ia)/ibc)
28: ia ← ia + kib
29: α← α− kβ
30: end if
31: end while
32: return ia, ib, ic, α, β, ζ
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reduces ζ by β to a negative value, and then stepped by ia (and ζ increased by α)
the minimum number of times to make ζ ≥ 0 again. Note that in the beginning
of each iteration of the loop, ζ ≤ min(α, β) holds; thus, since α < β here, it
means that ζ < β. The number of steps by α, denoted by k′, is computed on
Line 15. The update to ic is thus ib + k′ia and the update to ζ is −β + k′α.
On Line 16, it is checked whether ic can in fact be stepped by ib + k′ia without
appearing beyond n− 1 (first condition), and that ζ is actually reduced by the
update (second condition), which is not necessarily the case. If not, ic and ζ
are left unchanged.

The next new block of code appears on Lines 24–26. Here ic and ζ are
updated using only ib and β. The number of increments of ic by ib, given by
k′, is computed very similarly to how k is computed on Line 27. The main
difference is that ζ is allowed to become 0 (if l coincides with an element of c),
whereas α must be positive.

Now, to get the extreme values of γs(c), we call Algorithm 2 with l = −2w−1.
The returned index ic then gives

min γs(c) =

{
c[ic] mod 2w if c[ic] mod 2w < 2w−1,

c[ic] mod 2w − 2w otherwise,

max γs(c) =

{
c[pred(ic)] mod 2w if c[pred(ic)] mod 2w < 2w−1,

c[pred(ic)] mod 2w − 2w otherwise.

Similarly, to get the extrema of γu(c), we call Algorithm 2 with l = 0, and
compute

min γu(c) = c[ic] mod 2w,

max γu(c) = c[pred(ic)] mod 2w.

4 Implementation

SWEET is written entirely in C++, and being a research tool, its architecture
is designed specifically for extensibility. By exposing only high-level interfaces
to the different analysis engines, these are kept largely oblivious of aspects such
as the actual abstract domain used. Thus, modifying the existing analyses to
make use of the new CLP domain simply amounted to adding implementations
of a few of these interfaces. The choice between the previous interval domain
and the new CLP domain is made using a command-line parameter to SWEET.

Figure 7 shows a conceptual image of the interaction between a SWEET
analysis and these interfaces. During analysis of an ALF program, any constants
encountered in the program are abstracted into objects implementing the Value
interface, by calling the method CreateValue() in the interface ValueFactory .
The type of underlying object returned from this method depends on the cur-
rent user-selected domain. Furthermore, if a constant occurs as the leaf in a
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analysis

Value

GetWidthInBits() : Integer

Interval

GetLowerBound() : Integer
GetUpperBound() : Integer

Clp

GetAp() : Ap

Ap

GetBase() : Integer
GetStride() : Integer
GetCount() : Integer

Operations

Add(x : Value, y : Value) : Value
Sub(x : Value, y : Value) : Value

.

.

.

IntervalOpers ClpOpers

ValueFactory

CreateValue(concrete : Integer) : Value

IntervalFactory ClpFactory

Figure 7: Any analysis in SWEET associates only with high-level interfaces such
as Value, Operations, and ValueFactory . This allows the underlying abstract
domains to be interchanged as specified by the command-line parameters to
SWEET. Each CLP object is represented as an underlying AP, with a width
parameter defining the wraparound behavior.

larger expression tree in the code, the (abstract) result of the expression is com-
puted by calling the appropriate methods in the Operations interface, starting
with the leafs and working upwards to the root. Again, the actual method
implementations invoked depends on the current domain setting.

The data structures used to represent the CLP objects, as well as the func-
tions corresponding to the abstract operations, reside in their own files in
SWEET’s source tree. Each CLP object internally stores an arithmetic pro-
gression object as well as a width parameter, the latter corresponding to the
w parameter in the CLP definition. The internal AP object, in turn, has data
members corresponding to the parameters b, s, and n. Thus, a CLP is in a sense
viewed as an AP with the wraparound effects superimposed. All the data mem-
bers are encapsulated and accessible only through member functions, to ensure
that each CLP remains in canonical form at all times, in accordance with the
rules in Section 2.1.

Unlike most programming languages, ALF does not limit the possible widths
of its data types. Instead, all data types—integers, floats, pointers, etcetera—
are parameterized with respect to an arbitrary positive integer specifying their
width in bits. Thus, data types with bit widths such as, e.g., 1, 6, 24, or
1024 are supported in ALF. Unfortunately, this renders the basic data types
in C++ too inflexible to use for representing any general quantities occurring
in an analyzed ALF program. We therefore use an arbitrary-precision integer
(“bignum”) library to represent the CLP parameters b, s, and n, as well as any
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other runtime quantities.

5 Evaluation

All abstract operations and their surrounding functionality were rigorously tested
throughout development by adding unit tests to the existing automated testing
framework in SWEET. These unit tests, which amount to several hundreds in
number, were written such that the abstract result from each tested operation is
first compared against an expected abstract result, and then this assumption is
itself verified by invoking the concrete computation on all the concrete elements
of the operands.

The following simple example C code serves to illustrate both the correctness
of the implementation, and the immediate benefits of the new CLP domain
compared to the previous interval domain in SWEET.

1 volat i le int32 t top ;
2
3 int32 t main ( ) {
4 int32 t arr [ 5 ] = { 110 , 140 , 100 , 130 , 120 } ;
5 int32 t i = top , r e t ;
6 i f (0 <= i && i < 5)
7 r e t = arr [ i ] ;
8 else
9 r e t = 90 ;

10 return r e t ;
11 }

This code was first translated into ALF through our LLVM-based translator
AlfBackend, and then run through the Abstract Execution (AE) analysis in
SWEET [4]. Using the output annotations functionality, the possible return
values of the program that were derived using the two domains could then be
inspected and compared.

On Line 4, the array arr is initialized to 5 integers that differ by multiples
of 10. The index i is then initialized to >32 by assigning the contents of the
volatile variable top to it. This simulates a situation where the contents of
i depend on, e.g., code that is unavailable to the analysis, or some unknown
input. Although the same could be achieved with an auxiliary code annotation
setting i to >32, the “trick” used here makes the program self-contained. When
analyzing the true branch of the conditional, the AE prunes the possible values
of i to i ∈ [0..4]. Thus, although i has an unknown value before the branch,
it can be determined to stay within the bounds of arr at this point. In the
false branch, ret is instead assigned the value 90, whose difference to any of the
array elements is also a multiple of 10. The program point immediately after
the branch is a join point, which means that the AE then merges the abstract
values of ret from the two branches.

When loading the element arr [i ] on Line 7, the difference in abstraction
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accuracy between the CLP and interval domains manifests itself: i ∈ [0..4]
multiplied by the size of the array elements, which is 4 bytes, is abstracted
in the interval domain as [0..16], whereas in the CLP domain its abstraction
is exactly {0, 4, 8, 12, 16}. Thus, with the interval domain, the AE derives the
result by loading a 4-byte value from each of the (byte) offsets 0, 1, 2, . . . , 16 and
then computing the upper bound of these values. The following table shows the
concrete values loaded from each of these offsets.

offset value
0 110
1 −1946157056
2 9175040
3 35840
4 140
5 1677721600
6 6553600
7 25600
8 100
9 −2113929216

10 8519680
11 33280
12 130
13 2013265920
14 7864320
15 30720
16 120

As can be seen, a majority of these values are simply garbage values. Fur-
thermore, the program was translated to assume a little-endian memory model
in the ALF program; using big endian would give different garbage values at
the offsets in-between the multiples of 4. As expected, the resulting output an-
notation reported an interval with l = 1677721600 and u = 2156658688, which
represents the signed values [1677721600..231)∪ [−231..9175040]. With the CLP
domain, the corresponding output annotation represented the tightest possible
result, namely {90, 100, . . . , 140}.

It should also be noted that even if the values in the array were stored as
1-byte integers, in which case the array offsets would be accurately represented
by an interval, the possible return values from the program would still be over-
approximated as [90..140]. Thus, even in this short example code the strengths
of the CLP domain show on multiple levels.

6 Conclusions

This report described our version of Sen and Srikant’s CLP domain that is
currently implemented in the SWEET tool. By removing the restriction that
a CLP may span an interval no larger than 2w − 1, our CLPs are able to
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abstract more value sets with high accuracy. To avoid the issues arising from
allowing the CLPs to overlap with themselves an unlimited number of times, we
developed new canonization rules (Section 2.1) as well as a procedure that keeps
the number of APs low when splitting a CLP (Section 3.1). Furthermore, we
are able to skip the splitting step altogether for several operations, thanks to the
insight that it becomes unnecessary if the underlying mathematical operation
satisfies certain properties with respect to the modulo operation.

The are a number of subjects for future work. For example, the abstract
operations in Sections 3.2–3.5 that were defined in terms of other abstract op-
erations would likely improve in terms of accuracy if they were instead given
tailor-made definitions, as each added computation step tends to increase the
over-approximation of the result. Also, as mentioned in Section 3.1, the split-
ting strategy based on collecting subsequences with constant gap lengths needs
a theoretical analysis to determine its worst-case in terms of the number of APs
generated.

Another open question that seems particularly important is how to design
a union operation that computes the optimal fit of a CLP to the elements of
its operands, which the operation described in Section 3.2.1 does not achieve.
As the abstract operations that do require the incoming operands to be split
into APs rely on this operation to merge their partial results into a final re-
sult, their accuracy is tightly connected to the accuracy of the union operation.
Furthermore, when invoking the union operation for this purpose, there are
typically more than two partial results to be merged, while the union operation
described here is binary. In the current solution, the operation is therefore in-
voked repeatedly on pairs of CLPs in a reduction-style manner until only one
CLP remains. However, as the union operation is not associative in general,
the accuracy of this reduction is also affected by the order in which it is carried
out. The ideal would be a general union operation that takes a set of CLPs and
finds an optimal fit to all of them.

Also, it remains to conduct a thorough experimental evaluation on real codes.
The short code example in Section 5 gave clear indications of the strengths of the
CLP domain compared to the interval domain, and even larger benefits should
appear in more large-scale codes where the imprecision of the interval domain
risks to propagate further. Such an evaluation could also be used to illustrate
the benefits of our modified CLP domain compared to the original domain.
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