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Abstract. A safety case contains safety arguments together with sup-
porting evidence that together should demonstrate that a system is ac-
ceptably safe. System changes pose a challenge to the soundness and
cogency of the safety case argument. Maintaining safety arguments is
a painstaking process because it requires performing a change impact
analysis through interdependent elements. Changes are often performed
years after the deployment of a system making it harder for safety case
developers to know which parts of the argument are affected. Contracts
have been proposed as a means for helping to manage changes. There has
been significant work that discusses how to represent and to use them
but there has been little on how to derive them. In this paper, we pro-
pose a sensitivity analysis approach to derive contracts from Fault Tree
Analyses and use them to trace changes in the safety argument, thus
facilitating easier maintenance of the safety argument.

Keywords: Safety Case, Safety Argument, Maintenance, FTA, Sensi-
tivity Analysis, Safety Contracts, Impact Analysis.

1 Introduction

Building a safety case is an increasingly common practice in many safety critical
domains [7]. A safety case comprises both safety evidence and a safety argu-
ment that explains that evidence. The safety evidence is collected throughout
the development and operational phases, for example from analysis, test, in-
spection, and in-service monitoring activities. The safety argument shows how
this evidence demonstrates that the system satisfies the applicable operational
definition of acceptably safe to operate in its intended operating context.

A safety case should always justify the safety status of the associated sys-
tem, therefore it is described as a living document that should be maintained
as needed whenever some aspect of the system, its operation, its operating con-
text, or its operational history changes. However, safety goals, evidence, argu-
ment, and assumptions about operating context are interdependent and thus,
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seemingly-minor changes may have a major impact on the contents and struc-
ture of the safety argument. Any improper maintenance in a safety argument
has a potential for a tremendous negative impact on the conveyed system safety
status by the safety case. Hence, a step to assess the impact of this change on the
safety argument is crucial and highly needed prior to updating a safety argument
after a system change.

Changes to the system during or after development might invalidate safety
evidence or argument. Evidence might no longer support the developers claims
because it reflects old development artefacts or old assumptions about opera-
tion or the operating environment. In the updated system, existing safety claims
might not make any sense, no longer reflect operational intent, or be contradicted
by new data. Analysing the impact of a change in a safety argument is not trivial:
doing so requires awareness of the dependencies among the argument’s contents
and how changes to one part might invalidate others. In other words, if a change
was applied to any element of a set of interdependent elements, then the as-
sociated effects on the rest of the elements might go unnoticed. Without this
vital awareness, a developer performing impact analysis might not notice that a
change has compromised system safety. Implicit dependencies thus pose a major
challenge. Moreover, evidence is valid only in the operational and environmental
contexts in which it was obtained or to which it applies. Operational or environ-
mental changes might therefore affect the relevance of evidence and, indirectly,
the validity and strength of the safety argument.

Predicting system changes before building a safety argument can be useful
because it allows the safety argument to be structured to contain the impact of
these changes. Hence, anticipated changes may have predictable and traceable
consequences that will eventually reduce the maintenance efforts. Nevertheless,
planning the maintenance of a safety case still faces two key issues: (1) system
changes and their details cannot be fully predicted and made available up front,
especially, the software aspects of the safety case as software is highly changeable
and harder to manage as they are hard to contain, and (2) those changes can
be implemented years after the development of a safety case. Part of what we
aim for in this work is to provide system developers a list of system parts that
may be more problematic to change than other parts and ask them to choose
the parts that are most likely to change. Of course our list can be augmented by
additional changeable parts that may be provided by the system developers.

Sensitivity analysis helps the experts to define the uncertainties involved
with a particular system change so that those experts can judge on the potential
change based on how reliable they feel the consequences are. The analysis can
deal with what aim for since it allows us to define the problematic changes. More
specifically, we exploit the Fault Tree Analyses (FTAs) which are supposed to
have been done by developers through the safety analysis phase and apply the
sensitivity analysis to those FTAs in order to identify the sensitive parts in them.
We define a sensitive part as one or multiple events whose minimum changes have
the maximal effect on the FTA, where effect means exceeding reliability targets
due to a change.
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In spite of the assumption we make that the safety arguments logic is based on
the causal pathways described in the FTAs, tracking the changes from the FTAs
of a system down to its safety argument still requires a traceability mechanism
between the two. To this end, we use the concept of contract to highlight the
sensitive parts in FTAs, and to establish a traceability between those parts
and the corresponding safety argument. In our work, we assume that safety
arguments are recorded in the Goal Structuring Notation (GSN) [6]. However,
the approach we propose might (with suitable adaptations) be compatible for
use with other graphical assurance argument notations.

Combining the sensitivity analysis together with the concept of contracts to
identify the sensitive parts of a system and highlight these parts may help the
experts to make an educated decision as to whether or not apply changes. This
decision is in light of beforehand knowledge of the impact of these changes on the
system and its safety case. Our hypothesis in this work is that it is possible to use
the sensitivity analysis together with safety contracts to (1) bring to developers’
attention the most sensitive parts of a system for a particular change, and (2)
manage the change by guiding the developers to the parts in the safety argument
that might be affected after applying a change. However, using contracts as a
way of managing change is not a new notion since it has been discussed in some
works, such as [2][5], but deriving the contracts and their contents have received
little or even no support yet. The main contribution of this paper is to propose
a safety case maintenance technique. However, we focus on the first phase of the
technique and explain how to apply the sensitivity analysis to FTAs and derive
the contracts and their contents. We also explain how to associate the derived
arguments with safety argument goals. The paper illustrates the technique and
its key concepts using the a hypothetical aircraft Wheel Braking System (WBS).

The paper is structured as follows: in Section 2 we present background infor-
mation. In Section 3 we propose a technique for maintaining safety cases using
sensitivity analysis. In Section 4 we use the WBS example to illustrate the tech-
nique. In Section 5 we present the related work. Finally, we conclude and derive
future works in Section 6.

2 Background and Motivation

This section gives background information about (1) the GSN, (2) the concept
of contract, (3) some of the current challenges that are facing safety case main-
tenance including a brief review of the state-of-the-art, and (4) the sensitivity
analysis including some possible applications.

2.1 The Goal Structuring Notation (GSN)

A safety argument organizes and communicates a safety case, showing how the
items of safety evidence are related and collectively demonstrate that a sys-
tem is acceptably safe to operate in a particular context. GSN [6] provides a
graphical means of communicating (1) safety argument elements, claims (goals),
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Fig. 1. Notation Keys of the Goal Structuring Notation (GSN)

argument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The principal symbols of the notation
are shown in Figure 1 (with example instances of each concept).

A goal structure shows how goals are successively broken down into (solved
by) sub-goals until eventually supported by direct reference to evidence. Using
the GSN, it is also possible to clarify the argument strategies adopted (i.e., how
the premises imply the conclusion), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated.

2.2 The Concept of Safety Contracts

The concept of contract is not uncommon in software development and it was
first introduced in 1988 by Meyer [12] to constrain the interactions that occur
between objects. Contract-based design [3] is defined as an approach where the
design process is seen as a successive assembly of components where a compo-
nent behaviour is represented in terms of assumptions about its environment
and guarantees about its behavior. Hence, contracts are intended to describe
functional and behavioral properties for each design component in form of as-
sumptions and guarantees. In this paper, a contract which describes properties
that are only safety-related is referred to as a safety contract.

2.3 Safety Case Maintenance and Current Practices

A safety case is a living document that should be maintained as the system,
its operation, or its operating context changes. In this paper, we refer to the
process of updating the safety case after implementing a change as safety case
maintenance. Developers are experiencing difficulties with safety case mainte-
nance, including difficulty identifying the direct and indirect impact of change.
Two main causes of this difficulty are a lack of traceability between a system and
its safety case and a lack of documentation of dependencies among the safety
cases contents. Systems tend to become more complex, this increasing complex-
ity can exacerbate safety case maintenance difficulties. The GSN is meant to
reduce these difficulties by providing a clear, explicit conceptual model of the
safety cases elements and interdependencies [10].

Our discussion of documenting interdependencies within a safety case refers
to two different forms of traceability. Firstly, we refer to the ability to relate safety
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argument fragments to system design components as component traceability
(through a safety argument). Secondly, we refer to evidence across system’s
artefacts as evidence traceability.

Current standards and analysis techniques assume a top-down development
approach to system design. When systems that are built from components, mis-
match with design structure makes monolithic safety arguments and evidence
difficult to maintain. Safety is a system level property; assuring safety requires
safety evidence to be consistent and traceable to system safety goals [10]. One
might suppose that a safety argument structure aligned with the system design
structure would make traceability clearer. It might, but safety argument struc-
tures are influenced by four factors: (1) modularity of evidence, (2) modularity
of the system, (3) process demarcation (e.g., the scope of ISO 26262 items [7]),
and organisational structure (e.g., who is working on what). These factors often
make argument structures aligned with the system design structure impractical.
However, the need to track changes across the whole safety argument is still
significant for maintaining the argument regardless of its structure.

2.4 Sensitivity Analysis

Sensitivity analysis helps to establish reasonably acceptable confidence in the
model by studying the uncertainties that are often associated with variables
in models. There are different purposes for using sensitivity analysis, such as,
providing insight into the robustness of model results when making decisions
[4]. The analysis can be also used to enhance communication from modelers
to decision makers, for example, by making recommendations more credible,
understandable, compelling or persuasive [13]. The analysis can be performed
by different methods, such as, mathematical, graphical, statistical, etc.

In this paper, we use sensitivity analysis to identify the sensitive parts of a
system that might require unnecessary painstaking maintenance. More specif-
ically, we apply the sensitivity analysis on FTAs to measure the sensitivity of
outcome A (e.g., a safety requirement being true) to a change in a parameter B
(e.g., the failure rate in a component). The sensitivity is defined as AB/B, where
AB is the smallest change in B that changes A (e.g., the smallest increase in
failure rate that makes safety requirement A false). Hence, a sensitive part is de-
fined as one or multiple FTA events whose minimum changes have the maximal
effect on the FTA, where effect means exceeding failure probabilities (reliability
targets) to inadmissible levels due to the change. The failure probability values
that are attached to the FTA events are considered input parameters to the
sensitivity analysis. A sensitive event is the event whose failure probability value
can significantly influence the validity of the FTA once it increases. A sensi-
tive part of a FTA is assigned to a system design component that is referred to
as sensitive component in this paper. Hence, changes to a sensitive component
cause a great impact to system design.
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Fig. 2. Process diagram of the proposed technique

3 Using Sensitivity Analysis To Facilitate The
Maintenance of A Safety Case

In this section, we build on the background information provided in Section 2
to propose a technique that aims to facilitate the maintenance of a safety case.
The technique comprises 7 steps that are distributed between the Sensitivity
ANalysis for Enabling Safety Argument Maintenance (SANESAM) phase and
the safety argument maintenance phases as shown in Figure 2. The steps of the
SANESAM phase are represented along the upper path, whilst the lower path
represents the steps of the safety argument maintenance phase. The SANESAM
phase, however, is what is being discussed in this paper.

A complete approach to managing safety case change would include both (a)
mechanisms to structure the argument so as to contain the impact of predicted
changes and (b) means of assessing the impact of change on all parts of the
argument [8]. As discussed in Section 1, system changes and their details cannot
be fully predicted and made available up front. Predicting potential changes to
the software aspects of a safety case is even harder than other parts because
software is highly changeable and harder to manage. Consequently, considering
a complete list of anticipated changes is difficult. What can be easier though is
to determine the flexibility (or compliance) of each component to changes. This
means that regardless of the type of changes the latter will be seen as factors
to increase or decrease a certain parameter value. Thus system developers can
focus more on predicting those changes that might make the parameter value
inadmissible.

The rationale of our technique is to determine, for each component, the al-
lowed range for a certain parameter within which a component may change
before it compromises a certain system property (e.g., safety, reliability, etc.).
To this end, we use the sensitivity analysis as a method to determine the range
of failure probability parameter for each component. Hence, the technique as-
sumes the existence of a probabilistic FTA where each event in the tree is spec-
ified by an actual (i.e., current) failure probability FPactyaljevent(z)- In addi-
tion, the technique assumes the existence of the required failure probability for
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the top event F'Prequired(Topevent); Where the FTA is considered unreliable if:
FPActual(Topevent) > FPRequired(Tope'uent)' The steps of the SANESAM phase
are as follows:

e Step 1. Apply the sensitivity analysis to a probabilistic FTA: In
this step the sensitivity analysis is applied to a FTA to identify the sensitive
events whose minimum changes have the maximal effect on the F' Propevent-
Identifying those sensitive events requires the following steps to be per-
formed:

1. Find minimal cut set M C in the FTA. The minimal cut set definition is:
“A cut set in a fault tree is a set of basic events whose (simultaneous)
occurrence ensures that the top event occurs. A cut set is said to be
minimal if the set cannot be reduced without losing its status as a cut
set”[14].

2. Calculate the maximum possible increment in the failure probability
parameter of event z before the top event F'Pactyai(Topevent) is N0 longer
met, where x € MC and

(FPIncreased|e'uent(a:) - FPActual\event(w)) id FPActual(Tope'uent) >
PRequired(Topevent)'

3. Rank the sensitive events from the most sensitive to the less sensitive.
The most sensitive event is the event for which the following equation is
the minimum:

(FPIncreased|event(:v) - FPActual|event(a:))/FPActual\event(w)

o Step 2. Refine the identified sensitive parts with system develop-
ers: In this step, the generated list from Step 1 should be discussed with
system developers (e.g., safety engineers) and ask them to choose the sensi-
tive events that are most likely to change. The list can be extended to add
any additional events by the developers. Moreover, it is envisaged that some
events may be removed from the list or the rank of some of them change.

e Step 3. Derive safety contracts from FTAs: In this step, the refined
list from Step 2 is used as a guide to derive the safety contracts, where each
event in the list should have at least one contract. The main objective of
the contracts is to 1) highlight the sensitive events to make them visible up
front for developers attention, and 2) to record the dependencies between the
sensitive events and the other events in the FTA. Hence, if any contracted
event has received a change that necessitates increasing its failure probabil-
ity where the increment is still within the defined threshold in the contract,
then it can be said that the contract(s) in question still holds (intact) and the
change is containable with no further maintenance. The contract(s), however,
should be updated to the latest failure probability value. On the contrary,
if the change causes a bigger increment in the failure probability value than
the contract can hold, then the contract is said to be broken and the guar-
anteed event will no longer meet its reliability target. We create a template
to document the derived safety contracts as shown in Figure 3a, where G
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and A stand for Guarantee and Assumption, respectively. Furthermore, each
safety contract should contain a version number (it is shown as V in Figure
3a). The version number of the contract should match the artefact version
number (as described in the next step), otherwise it will be considered out
of date. We also introduce a new notation to the FTA to annotate the con-
tracted events where every created contract should have a unique identifier,
see Figure 3b.

e Step 4. Build the safety argument and associate the derived con-
tracts with it: In this step, a safety argument should be built and the
derived safety contracts should be associated with the argument elements.
In order to associate the derived safety contracts with GSN arguments, we
reuse our previous work [8]. The essence of that work is storing additional
information in the safety argument to facilitate identifying the evidence im-
pacted by change. This is done by annotating each reference to a development
artefact (e.g. an architecture specification) in a goal or context element with
an artefact version number. Also by annotating each solution element with:

1. An evidence version number

2. An input manifest identifying the inputs (including version) from which
the evidence was produced

3. The lifecycle phase during which the evidence obtained (e.g. Software
Architecture Design)

4. A safety standard reference to the clause in the applicable standard (if
any) requiring the evidence (and setting out safety integrity level re-
quirements)

However, the approach description, just as it is, does not support associat-
ing our derived safety contracts in Step 8 with the safety argument without
proper adjustments. Hence, a set of rules are introduced to guide the reuse
of the approach in the work of this paper, as follows:

1. GSN element names should be unique.

2. At least one GSN goal should be created for each guarantee (i.e., for
each safety contract). Moreover, the contract should be annotated in the
goal which is made for it. The annotation should be done by using the
contract ID and the notation in Figure 3b.

ContractlD: <<ContractiD>>

G1: The Failure probability for <X> event is <Y>
A1: Only event <Z> increases its failure rate
A2: <Z> failure probability increases by < <P> <<ContractiD>>
A3: The failure of <Z> remains independent of any other event
A4: The logic in the fault tree <FTA_Name> remains the same
V: <Contract Version No.>

GSNRef: <GSN_ElementName.Module>

(a) (b)

Fig. 3. (a) Safety Contract Template (b) Safety Contract Notation for FTA
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3. Assumptions in each safety contract should be restricted to one event
only. If the guarantee requires assumptions about another event, a new
contract should be created to cover these assumptions.

4. An event in the assumptions list of a safety contract may be also used
as a goal in the argument. In this case, the goal name should be similar
to the event name.

5. Each safety contract should contain the GSN reference within it. The
reference is the unique name of the GSN element followed by a dot and
the name of the GSN module (if modular GSN is used). It is worth noting
that while documenting the safety contracts, the GSN references might
not be available as the safety argument itself might not be built yet.
Hence, whenever GSN references are made available, system developers
are required to revisit each contract and add the corresponding GSN
reference to it. GSN reference parameter is shown as GSNRef in Figure
Ja.

It is worth saying that the technique shall not affect the way GSN is being
produced but it brings additional information for developers’ attention.

4 An Illustrative Example: The Wheel Braking System
(WBS)

In this section, we illustrate the proposed technique and its key concepts using
the hypothetical aircraft braking system described in Appendix L of Aerospace
Recommended Practice ARP-4761 [1]. Figure 4 shows a high-level architecture
view of the WBS

4.1 Wheel Braking System (WBS): System Description

The WBS is installed on the two main landing gears. The main function of the
system is to provide wheel braking as commanded by the pilot when the aircraft
is on the ground. The system is composed of three main parts: Computer-based
part which is called the Brake System Control Unit (BSCU), Hydraulic part,
and Mechanical part.

The BSCU is internally redundant and consists of two channels, BSCU Sys-
tem 1 and 2 (BSCU is the box in the gray background in Figure 4). Each
channel consists of two components: Monitor and Command. BSCU System 1
and 2 receive the same pedal position inputs, and both calculate the command
value. The two command values are individually monitored by the Monitor 1
and 2. Subsequently, values are compared and if they do not agree, a failure is
reported. The results of both Monitors and the compared values are provided
to a the Validity Monitor. A failure reported by either system in the BSCU will
cause that system to disable its outputs and set the Validity Monitor to invalid
with no effect on the mode of operation of the whole system. However, if both
monitors report failure the BSCU is deemed inoperable and is shut down [11].
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Fig. 4. A high-level view of the WBS

It worth noting that Figure 4 shows high-level view of the BSCU implemen-
tation and it omits many details. However, the figure is still sufficient to illustrate
key elements of our technique. More details about the BSCU implementation
can be found in ARP-4761 [1].

4.2 Applying the Technique

Before we can apply the technique, both the required and actual failure proba-
bilities of the top event should be clearly defined, where F Prequired(Topevent) >
FPactual(Topevent)- Appendix L of the ARP-4761 states, as a safety requirement
on the BSCU, that: “The probability of BSCU fault causes Loss of Braking Com-
mands shall be less than 3.30E-5 per flight”. This means that: F'Prequired(Topevent)
< 3.30E-5. In line with this, we assumed that the F P4 ciyai(Topevent) ~ 1.50E-6.
Figure 5 shows the “Loss of Braking Commands” probabilistic FTA.

o Step 1. Apply the sensitivity analysis to the “Loss of Braking Com-
mands” probabilistic FTA: the following steps were performed to apply
the sensitivity analysis:

1. Find minimal cut set MC in the FTA: there are several algorithms to
find the M C. We apply Mocus cut set algorithm [14], as follows:

MC = {BSVMIRFCSTA + SWFSIIP + (BSS1EF « BSS2EF) +
(BSS1EF + BSS2PSF) + (BSS1EF « SWFSIS1P) + (BSS1PSF
BSS2EF) + (BSS1PSF x BSS2PSF) + (BSS1PSF « SWFSIS1P) +
(BSS2EF * SWFSIS2P) + (BSS2PSF « SWFSIS2P)}.
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2. A simple C program was coded to calculate the maximum possible failure
probability F' Prpcreased|event(x) for each event in the MC'. Subsequently,
the F'Pyctuatjevent(x) Was subtracted from the F Prycreased|event(z) 10 0b-
tain AF P for each event. Table 1 shows the calculated F'Pry,creqased|event (x)
and AFP.

3. Applying the sensitivity equation:
(FPIncreased|event(x)_FPActual|eUent(x))/FPActual\event(;c) determines the
sensitivity for « where x € M C. Table 1 shows the sensitivity values and
the ranking, where 1 indicates the most sensitive event.

e Step 2. Refine the identified sensitive parts with system developers:
the WBS is a hypothetical system and no discussions have been made with
the system developers. For the sake of the example, however, a pessimistic
decision was made to consider all the events in Table 1 as liable to change. It
is worth noting that in more complex examples the volume of sensitive event
lists will be quite big. Hence, discussing those lists with system developers
can lead to more selective events and thus alleviating the number of safety
contracts.

BSCU Fault Causes
Loss of Braking
Commands
BSFCLOBC

Actual FP 1.5E-06
Required FP 3.3E-05

BSCU System 1 and 2
Do Not Operate

4.71E-08| BSS1&2DNO

1
Switch Failure Contributes
to Loss of BSCU Braking
Commands
SWFCTLOBBC

6.56E-07

1
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Incorrectly Reports a Failure
Causing Switch to Alternate

BSVMIRFCSTA
8.00E-07
Contr_BSVMIRFCSTA

T
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Loss of BSCU || Loss of BSCU System 1 Position to System 2 Position in Intermediate
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BSSLEF | BSS1PSF BSS2EF | | BSS2PSF 17E-04 217E-04 O1-30E-0
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Fig. 5. Loss of Braking Commands FTA



12 Using Sensitivity Analysis to Facilitate The Maintenance of Safety Cases
Table 1. The results of the sensitivity analysis
Event FPjctuatlevent(z) = AFP FPrpcreasedlevent(z) Sensitivity Rank
BSVMIRFCSTA 8.00E-07 3.150E-05 3.2304E-05 39 1
SWEFSIIP 6.50E-07 3.150E-05 3.2154E-05 48 2
SWFSIS1P 1.30E-05 1.448E-01 1.4484E-01 51182 5
SWEFSIS2P 1.30E-05 1.448E-01 1.4484E-01 51182 5
BSS1EF 1.50E-04 1.448E-01 1.4498E-01 965 3
BSS1PSF 6.75E-05 1.448E-01 1.4490E-01 2145 4
BSS2EF 1.50E-04 1.448E-01 1.4498E-01 965 3
BSS2PSF 6.75E-05 1.448E-01 1.4490E-01 2145 4

Step 3. Derive safety contracts from “Loss of Braking Commands”
FTA: based on the list of the sensitive events from Step 2, a safety contract
was derived for each event in the list. The introduced safety contract tem-
plate in Figure 3a was used to demonstrate the derived safety contracts. For
lack of space, we show only one example of the eight derived safety contracts
(see Figure 6).

ContractID: Contr_BSVMIRFCSTA

G1: The Failure probability for the top event BSFCLOBC < 3.30E-05

A1: Only event BSVMIRFCSTA increases its failure rate

A2: BSVMIRFCSTA failure rate increases by < 3.2304E-05

A3: The failure of BSVMIRFCSTA remains independent of any other event

A4: The logic in the fault tree "Loss of Braking Commands" remains the same
V: V1.0

GSNRef: BSCUAIIFailures.WBSSafety

Fig. 6. A derived safety contract

Step 4. Build the safety argument for the BSCU and associate the
derived contracts with it: a safety argument fragment was built as shown
in Figure 7. The derived safety contracts are associated with the derived
safety contracts according to Steps 4 in Section 3. BSCUAIllFailures claims
that BSCU faults cause Loss of Braking commands are sufficiently man-
aged. The possible faults of BSCU, based on “Loss of Braking Commands”
FTA, are addressed by the subgoals below the ArgAllCaus strategy. Hence,
BSCUAIllFailures represents the top event of the FTA and thus the derived
safety contracts are associated with it. The single black star on the left refers
to the notation that is used to associate the contracts with BSCUAIlFail-
ures. It is important to note that goals in the gray color background rep-
resent assumptions in the safety contract. Each goal of those has the same
name of the event in the assumptions list of the corresponding contract. For
instance, BSVMIRFCSTA is a goal that represents an assumption within
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Contr_.BSVMIRFCSTA contract which, in turn, guarantees a property for
another event.

The double black stars in the lower right corner refer to that annotation
which is described in Section 3. It is important to make sure that contracts,
related artefacts and items evidence have the same version number. The
main idea of having the information within this notation is to pave the way
to highlight the impact of changes. However, this idea will be described for
the last three steps of the technique which is left for future work.

CxtWBSS18—
[Ref: S18 wheel Braking

CxtOperational context—
During aircraft landing or RTO
[Ref: system description]

Hazardldentified —
All hazards have been
identified

SolHzrdRprt:

S18AircraftWheelBrakingSafe —
<H S18 WBS is acceptably safe to operate in its
intended operating context

system (WBS) description]

CxtAcceptablysafe —
Acceptably safe means that the

AHazardAnalysisProcess —

failure probability of the wheel
braking systems is < 5E-7 per
flight hour

Hazard Analysis Process used to
identify Hazards and generate

<}_

HazardMitigated —
All hazards are adequately mitigated

azard Mitigation is adequate

CxtldentifiedHazards —

StArgOverHazards —
Argument over all identified hazards

Hazard log

=

Identified Hazards are
recoded in [Ref: hazard log]

HLossDecelerationCapability—
H1 "Loss of Deceleration Capability when required”

hazard is

> CxtBSCUDesc—
acceptably managed [Ref: BSCU description]

*

SWContld

ArgAllWCont—

The ways in which WBS contributes

I
I Ny
14 { Argument over all identified contributions ”|to H1 are completely and correctly
1 .‘ i identified
‘1 ContractiD: | BSCUAFailures — BSCU Fauits cause Loss of £ safety Analysis
Contr_BSVMIRFCSTA Braking Commands are sufficiently managed
—
BSCUContldent— SafetyRequirements—
The ways in which BSCU contributes | ArgAllCaus— - Aset of requirements is specified to
to Loss of Braking Commands are Ar?umer;tbovi_r BSCU cont(rjlbutlons mitigate BSCU contributions to H1
completely and correctly identified 10 loss of braking commands
5 Safety Analysis
CxtDefReq— BSS1&2DNO— SWFCTLOBBC— BSVMIRFCSTA—

BSCU is required to
operate upon the arrival
of braking commands

Switch failures cause
loss of BSCU Braking
Commands are managed

BSCU System 1 and
2 operate when they
are required

Incorrect reporting of
failures by Validity Monitor
is sufficiently managed

SolSRRprt:
Safety
Requirements

LOOBS1—

when it is required

BSCU System 1 operates

LOOBS2—
BSCU System 2 operate
when it is required

BSS1EF—
System 1 Electronics
failures are amanged

BSS2EF—
System 2 Electronics
failure are managed

SWFSIS1P—
Switch is not Stuck
in System 1 Position

SWFSIIP—
Switch is not stuck in
intermediate position

Report

ok

Evidence Version: <N>
Input Manifest: (X, Y)

BSS1PSF—

System 1 Power Supply
failures are managed

BSS2PSF— SWFSIS2P—
System 2 Power Supply

failures are managed

Switch is not Stuck in
System 2 Position

Lifecycle phase: <e.g., Requirement>
Safety Standard: (e.g., DO-178B)

Fig. 7. Safety argument fragment for WBS
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5 Related Work

A consortium of researchers and industrial practitioners called the Industrial
Avionics Working Group (IAWG) has proposed using modular safety cases as a
means of containing the cost of change. IAWGs Modular Software Safety Case
(MSSC) process facilitates handling system changes as a series of relatively small
increments rather than occasional major updates. The process proposes to divide
the system into a set of blocks [2][5]. Each block may correspond to one or more
software components but it is associated to exactly one dedicated safety case
module. Engineers attempt to scope blocks so that anticipated changes will be
contained within argument module boundaries. The process establishes compo-
nent traceability between system blocks and their safety argument modules using
Dependency-Guarantee Relationships (DGRs) and Dependency-Guarantee Con-
tracts (DGCs). Part of the MSSC process is to understand the impact of change
so that this can be used as part of producing an appropriate argument. The
MSSC process, however, does not give details of how to do this. The work in
this paper addresses this issue.

Kelly [9] suggests identifying preventative measures that can be taken when
constructing the safety case to limit or reduce the propagation of changes through
a safety case expressed in goal-structure terms. For instance, developers can use
broad goals (goals that are expressed in terms of a safety margin) so that the
these goals might act as barriers to the propagation of change as they permit a
range of possible solutions. A safety case therefore, interspersed with such goals
at strategic positions in the goal structure could effectively contain “firewalls” to
change. Some of these initial ideas concerning change and maintenance of safety
cases have been presented in [15]. However, no work was provided to show how
these thoughts can facilitate the maintenance of safety cases.

6 Conclusion and Future Work

Changes are often only performed years after the initial design of the system
making it hard for the designers performing the changes to know which parts
of the argument are affected. Using contracts to manage system changes is not
a novel idea any more since there has been significant work discusses how to
represent contracts and how to use them. However, there has been little work on
how to derive them. In this paper, we proposed a technique in which we showed
a way to derive safety contracts using the sensitivity analysis. We also proposed
a way to map the derived safety contracts to a safety argument to improve
the change impact analysis on the safety argument and eventually facilitate
its maintenance. Future work will focus on describing the last three steps of the
technique. Also, creating a case study to validate both the feasibility and efficacy
of the technique is part of our future work.
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