
1016 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

BASEMENT:
An Architecture and Methodology for

Distributed Automotive Real-Time Systems
Hans Hansson, Member, IEEE, Harold Lawson, Fellow, IEEE,

Olof Bridal, Christer Eriksson, Sven Larsson,
Henrik Lön,Student Member, IEEE, and Mikael Strömberg

Abstract —BASEMENT
TM

 is a distributed real-time architecture developed for vehicle internal use in the automotive industry.
BASEMENT covers application development, as well as the hardware and software that provide execution and communication
support. This paper gives an overview of the BASEMENT concept, as well as presenting two system realizations. The first
realization is based on the commercial real-time kernel Rubus, while the second is an ultra-dependable architecture (DACAPO) with
provisions for fault tolerance at various system levels.

BASEMENT is designed for the automotive systems of the future. These systems will be required to simultaneously handle
multiple safety critical functions and a large number of less critical functions. All of these features are to be provided at a production
cost substantially lower than that of current systems, and, at the same time, with a reliability allowing vehicles to be built without
mechanical backup systems, even for safety critical subsystems such as braking and steering.

The key constituents of the concept are: 1) resource sharing (multiplexing) of processing and communication resources, 2) a
guaranteed real-time service for safety critical applications, 3) a best-effort service for nonsafety critical applications, 4) a
communication infrastructure providing efficient communication between distributed devices, 5) a program development
methodology allowing resource independent and application oriented development of application software, and 6) a straightforward
and well-defined operation principle enabling efficient fault tolerance mechanisms to be employed.

Index Terms —Distributed real-time system, holistic approach, automotive application, software development, real-time kernel,
scheduling, fault-tolerance.

—————————— ✦ ——————————

1 INTRODUCTION AND REQUIREMENTS

HE development of new automotive functions based
upon the use of modern electronic, computer, and

communication technologies has been accelerated in recent
years. Several products have been developed; for example,
ABS (Anti-lock Brake Systems), Cruise Control, and Engine
Management Systems. In addition, experimental projects,
e.g., within the European PROMETHEUS and DRIVE pro-
grams, have resulted in the identification of a number of
interesting functions. Several of these have been realized in
prototype implementations. It now appears that a variety of
new functions based on multiplexed distributed processing
will be successively introduced during the 1990s and into
the next century. It is expected that this shift to a new tech-
nology in automobiles will alter the basic approach to
automotive design as indicated by Rivard [1]:

“Designers will escape from the mechanical function add-on
approach. They will seek to optimize total vehicle performance
through the use of electronics. º The design of the vehicle will
be approached from the perspective of the customer and will be
committed to improving ride quality, handling characteristics,
steering effectiveness, brake feel, information display format,
and to improving the power-train in terms of economy, emis-
sions and driveability.”

With this scenario in mind, the Vehicle Internal Architec-
ture (VIA) research project was launched within the Swedish
Road Transport Informatics (RTI) program (1991-1994),
which was supported by the Swedish National Board for
Industrial and Technical Development (NUTEK), as well as
the Swedish National Road Administration, the Swedish
Transport Research Board, Saab-Scania AB, AB Volvo, and
Swedish Telecom. The RTI program was coordinated with
the European programs DRIVE and PROMETHEUS.

In VIA, we developed BASEMENT, a vehicle internal real-
time architecture. The objective was to design a platform that
meets the stringent demands of the automotive industry.
BASEMENT is a pilot for future vehicle internal distributed
real-time systems. As such, it is required to provide

• A communication infrastructure, allowing cost-
effective communication between physically distrib-
uted units.

• An execution platform for application software, pro-

0018-9340/97/$10.00 © 1997 IEEE

————————————————

• H. Hansson is with the Department of Computer Systems, Uppsala Uni-
versity, Uppsala, Sweden. E-mail: Hans.Hansson@docs.uu.se.

• H. Lawson is with Lawson Konsult AB, Stockholm, Sweden.
 E-mail: bud@lawson.se.
• O. Bridal and H. Lönn are with the Department of Computer Engineering,

Chalmers University of Technology, , Sweden.
 E-mail: {olle, hlonn}@ce.chalmers.se.
• C. Eriksson is with the Department of Computer Engineering, Mälardalen

University, , Sweden. E-mail: cen.mdh.se.
• S. Larsson and M. Strömberg are with Mercel AB, Göteborg, Sweden.
 E-mail: {Sven.Larsson, Mikael.Stromberg}@mecel.se.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105217.

T

HANSSON ET AL.: BASEMENT: AN ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 1017

viding guaranteed services for safety critical applica-
tions, while giving acceptable response times for non-
safety critical applications.

• Resource sharing, i.e., permitting multiple vehicle inter-
nal applications to efficiently share communication in-
frastructure as well as computing resources (processors).

• A priori predictability for safety critical applications,
i.e., it should be possible to off-line (before runtime)
determine if sufficient resources are available to guar-
antee required behavior.

• Reliability, i.e., the probability that system failures are
avoided for a specified length of time should be very
high. The maximum allowed failure probability for a
one-hour time span is in the order of 10-8 for safety-
critical automotive applications.

• Facilities for communication with vehicle external
equipment.

• Open interfaces, i.e., the interfaces, connectors, and
communication protocols should be precisely defined.
This is to allow different vendors to develop compati-
ble equipment, and to facilitate the integration of
components from different vendors in one system.

• An application development environment and meth-
odology, providing engineers with an application ori-
ented interface, as well as tools for efficient develop-
ment and integration of applications.

• An architecture which allows large product series to
be implemented at a very low cost.

• Simplicity, both in terms of minimal run-time over-
head (i.e., minimal amount of nonproductive code), and
in terms of a simple and intuitive method for applica-
tion development. This simplicity facilitates valida-
tion and formal proof of correctness, as well as the
development and introduction of fault tolerance
mechanisms with high coverage and short recovery
latencies.

In this paper, we present the main results of the VIA
project. Its main contribution lies in the holistic and appli-
cation oriented nature of our approach to designing dis-
tributed automotive real-time systems and applications.
Our focus has been on how to design a working system
satisfying the above listed requirements, rather than solving
a very specific technical problem. The work is, of course,
based on state-of-the-art results, but to satisfy the, in many
cases, contradictory requirements, we were, as most engi-
neers, forced to compromise. For instance, to facilitate fault
detection and recovery, we use more traditional static-cyclic
scheduling, rather than more flexible (and less traceable)
dynamic scheduling methods such as Fixed-Priority/Rate-
Monotonic or Earliest-Deadline First.

This paper is based on the collective efforts of the BASE-
MENT design team, with members from the following or-
ganizations: Mecel AB, Arcticus Systems AB (in cooperation
with Mälardalen University), Swedish Institute of Computer
Science, Lawson Konsult AB, Chalmers University of Tech-
nology (Department of Computer Engineering), and Uppsala
University (Department of Computer Systems).

1.1 Outline
Section 2 provides an overview of the BASEMENT concept.

Section 3 introduces the principles of operation. In Section 4,
we present two prototype BASEMENT systems: one based
on the commercially available real-time kernel Rubus, and
the other being the ultra-dependable Basement architecture
DACAPO. In Section 5, we present a BASEMENT system
realization and its application: an Autonomous Intelligent
Cruise Controller. Section 6 discusses some design deci-
sions and reviews background and related work. Finally, in
Section 7, we summarize and present some new activities
that the VIA project has led to.

2 THE BASEMENT CONCEPT

The BASEMENT concept provides a holistic view of develop-
ing automotive applications in the sense that, not only the exe-
cution, but also the development, of application software is
considered. The structure and behavior of application software
can be described at a rather high level of abstraction. Such de-
scriptions are independent of the actual hardware on which it
will be executed. Tools are provided for mapping abstract de-
scriptions to a particular BASEMENT system.

The design of applications is based on a hardware meta-
phor in that software is built from a set of predefined (or
user-defined) software components which, in analogy with
hardware circuits, are termed Software Circuits. The main
motivation for using such a metaphor is that it allows a
structuring of the software which is conceptually close to
hardware design, and, thus, will be familiar to engineers in
the automotive industry. Also, the simple structure in-
creases provability and improves human to human com-
munication concerning designs. This reduces the risk of
specification and implementation errors.

Fig. 1 presents an idealized view of the design process.
The development of application software starts by defining
its abstract behavior, which essentially amounts to building a
network of software circuits. No information about timing
and location is included in the abstract behavior. Such in-
formation is provided in the subsequent phases: Adding
timing and other constraints yields the concrete behavior.
Resource information provided to the mapping tool de-
scribes the target system and indicates location constraints
(e.g., that a particular software circuit must execute on a
particular node). Based on the concrete behavior and this
information, the mapping tool generates code to be exe-
cuted on the various nodes.

2.1 The Hardware Architecture
A BASEMENT system consists of a set of nodes intercon-
nected with a communication network, as depicted in
Fig. 2. A node can be viewed as a computer (processor +
main memory) with a network interface and a set of in-
put/output devices (sensors and actuators) allowing inter-
actions with the “physical process” (the vehicle). The com-
munication network is required to be deterministic, i.e., it
should (in principle) provide error free transmission of data
with bounded and predictable delays. The communication
network also provides facilities for communication with
vehicle external equipment and networks.

1018 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

Fig. 1. Behavior–Mapping–Resources.

Fig. 2. The hardware structure.

It should be noted that Fig. 2 illustrates an abstract ar-
chitecture, in the sense that an actual system realization
might be more complex. For instance, due to reliability re-
quirements, each node might contain several redundant
processors and there might be redundant networks.

2.2 The Software Architecture
Automotive applications are either safety-critical or non-
safety-critical, e.g., braking is a safety-critical application,
whereas climate control is considered to be non-safety-
critical. Safety-critical real-time applications have stringent
timing constraints (deadlines) that must be fulfilled under
all circumstances. Also, for non-safety-critical applications,
there are usually timing constraints, but these constraints are
less strict, and a failure to meet such a constraint will not re-
sult in a hazardous situation (potentially leading to an acci-
dent). The terms hard and soft real-time applications are often
used to denote safety-critical and non-safety-critical applica-
tions, respectively. Applications are implemented by processes
(tasks) which contain program logic in the form of software
circuits. In analogy with applications, a process is character-
ized as either being hard or soft, depending on whether its
timing constraints are stringent or not. A soft real-time appli-
cation is implemented by one or more soft real-time proc-
esses, whereas a hard-real-time application is implemented
by at least one hard real-time processes, possibly together
with some additional soft and/or hard processes.

The basis for the software architecture is the fundamen-
tal difference between hard and soft processes. The color
Red is associated to hard processes, and Blue to soft proc-
esses. A Red and a Blue service is provided. A single proc-
ess, as well as the set of processes handling a particular ap-
plication, may be distributed over several nodes.

There is a strict separation between Red and Blue proc-
esses (see Fig. 3). Since both types of processes use the same
network, there is a shared communication service. To prevent
Blue processes from interfering with Red network accesses,
and thus violating the strict requirements on Red processes,

the communication service reserves a certain amount of net-
work accesses for Red processes.

The Sensor/Actuator access module provides functions for
accessing the physical sensors and actuators attached to the
node. Processes may share sensors, but actuators cannot be
shared, i.e., several processes may read the value of a sen-
sor, but only one process has the exclusive right to write a
value to a physical actuator.

The Red Runtime Service provides Red processes with
sufficient execution support to guarantee that their dead-
lines are always met. The Blue Runtime Service allows Blue
processes to efficiently share the remaining resources. That
is, the Blue subsystem only has at its disposal the resources
(e.g., processing power and network accesses) which are
not needed by Red processes.

2.3 Software Development
The software development methodology is an important
aspect of the concept, since it prescribes a way of develop-
ing application software for BASEMENT systems. The
methodology is based on developing sets of interconnected
Software Circuits (SCs). Each SC has a set of input connec-
tors where data is received, and a set of output connectors
where data is produced (see Fig. 4a). Communication be-
tween two or more SCs is achieved via connectors, as illus-
trated in Fig. 4b.

Fig. 4. (a) A Software circuit and its connectors. (b) Communication via
connectors.

The execution of a software circuit is enabled when ap-
propriate data is available at all input connectors, at which
time the circuit can perform its processing and produces
data at the output connectors. Conceptually, the operation
of a SC is partitioned into the three phases:

1) Read data from input connectors; this is an atomic
operation in the sense that exactly the data present in
the input connectors when the reading starts will be
read.

2) Perform processing. During this phase the SC cannot
interact with its environment, i.e., the results can only
be based on data read during phase 1, and, possibly,
some local data contained in the SC.

3) Write data to output connectors.

Fig. 3. Software structure in one node.

HANSSON ET AL.: BASEMENT: AN ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 1019

Software circuits can be combined to form larger software
circuits. Acyclic networks of interconnected SCs are used to
program the behavior of Red and Blue processes, as illus-
trated in Fig. 5.

Fig. 5. A process.

Processes are either periodic or aperiodic. A periodic
process is invoked regularly at fixed points in time,
whereas aperiodic processes are event driven and invoked
only when a particular event (or set of events) occur. Red
processes must be periodic, whereas Blue processes may be
either periodic or aperiodic.

More detailed descriptions of the Software Methodology
are provided in [2], [3], and [4]. Central properties of the
Methodology include:

1) The treatment of Software Circuits as transforms between
Connectors which hold Sensor and Actuator signals.

As a result, the abstract structure and behavior is viewed as
a signal flow graph, where the execution of transforms is
either time driven (Red) or event driven (Blue). Due to the
simplicity of the time and event driven approaches that are
employed, complex communication and synchronization
mechanisms are not required. The same abstract descrip-
tions suffice for both Red and Blue.

For Red software circuits, a static schedule guarantees the
execution order of the software circuits where produced sig-
nals are known to be available prior to their consumption.

Blue software circuits are typically initiated on an event
driven basis, including the receipt of new external signals,
as well as the internal production of a new Connector sig-
nals that trigger the execution of software circuit compo-
nent logic.

Software circuits are built from concrete behaviors de-
veloped via a restricted sequential programming style, in
which simple (pre-)Programmed OPerations (POPs) are
utilized. POPs are the simplest form of software circuits.
More complex SCs can be built from POPs.

2) Processes composed of software circuits can be organized
according to a hierarchy of levels.

Higher level processes consider lower level processes as
machines that they can observe and regulate (via sensor
and actuators).

A useful level structuring is composed of the following:

STRATEGIC CONTROL
PRIMARY CONTROL

INTERFACE AND CONDITIONING
TERMINATOR

Terminator Level—The physical level composed of
hardware sensors and actuators.

Interface and Conditioning—For sensors, the pro-
grammed behaviors at this level provide processing logic to
transform signals into processable quantities including A to
D conversions. For actuators, the programmed behaviors
transform digital values into actuation signals including D
to A conversions.

Primary Control—Programmed behaviors for funda-
mental control loops. The control loops provide both active
(continuous sampled) and passive (on demand event-
based) regulation. Primary control functions (SCs) always
process logical sensor and actuator values.

Strategic Control—Utilizes connector information
(logical sensors and actuators) to observe and regulate
lower level processes. Provides strategic higher level func-
tions including monitoring, fault detection, fault isolation,
fault tolerance measures, adaptive control (including fuzzy
and artificial neural net based). A strategic level control
elicits changes in the lower levels via access to logical sen-
sors and/or actuators.

All applications involve the utilization of the layers up to
and including Primary Control. Some applications will also
employ strategic control levels.

3) Component structure is attained via the use of standard
“Connectors” which are used as holding places (“latches”)
for signals.

Various partitionings of Software Circuits reflecting the
various levels of process (machine) control and various
granularities (coarse grain down to fine grain) can be em-
ployed in order to accommodate definition and utilization
of standard components and/or the development of or de-
livery of components from suppliers.

The software methodology is a key constituent of BASE-
MENT. It provides a straight-forward means of viewing the
functions to be provided as an advanced form of signal proc-
essing. Consequently, the complexities introduced by more
general purpose software methodologies are avoided.

The hypothesis is that this minimal, but sufficient, meth-
odology approach will yield increased understanding, pro-
vide a basis for verifiable solutions (even formally), and
lead to efficient implementations which minimize the usage
of nonproductive code (for the application and system
software). Further, the implementation of fault tolerant so-
lutions can be accommodated.

3 PRINCIPLES OF OPERATION

There is, as illustrated in Section 2.2, a clear separation be-
tween Red and Blue subsystems, e.g., the handling of proc-
esses in the two subsystems is independent, as will be fur-
ther explained in this section.

3.1 The Red Subsystem
The Red subsystem is based on the cyclic, off-line, sched-
uling paradigm. In this paradigm, a fixed schedule
(statically defining the sharing of resources at run-time) is
calculated off-line. That is, information about requirements
and demands (e.g., the CPU time needed for performing
processing) are fed into a tool which generates static sched-
ules; one for each node. These schedules define the execu-
tion order of processes at run-time. The generation of static

1020 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

schedules requires the scheduled processes to be periodic.
That is, the Red subsystem is tailored for handling periodic
safety critical processes. The length of the generated sched-
ules is denoted the systolic base time (ST), since it defines a
base frequency of a system.

It is the task of the Red kernel (one in each node) to guar-
antee that the off-line generated schedules are followed.
Since the run-time kernels are time driven by different
clocks, the precision of the clocks must be taken into ac-
count in the off-line scheduling, and a clock synchroniza-
tion algorithm must be used at run-time. The BASEMENT
concept does not prescribe or preclude any particular clock
synchronization algorithm, but it requires a known upper
bound for the maximal difference between local clocks. In
[5], we further discuss clock synchronization.

3.1.1 Modes and Mode-Shifts
It is assumed above that all Red processes are continuously
operating at fixed frequencies during the execution of the
system. This might be suitable for some applications, but
many applications are characterized by a set of distinct op-
erational modes with different requirements on the processes
to execute, as well as their frequencies. For instance, in the
automotive environment, modes can include Cold, Startup,
Idling, Moving, Emergency, Fault, and Diagnosis. For each
mode, the set of active processes and their frequencies must
be defined. A separate static schedule is then generated for
each mode, and facilities for dynamically moving from one
mode to another (a mode-shift) are provided.

3.2 The Network
The communication service is Time Division Multiplexed.
Fig. 6 illustrates that, in the scheduling of the network, a set
of (n) communication slots are statically allocated in each
ST, a slot being the unit of network scheduling in which one
node is given the exclusive right to send one Red message.1

Note that the slots may be placed anywhere in the ST, as
long as they are nonoverlapping. The off-line scheduler
statically assigns slots to particular nodes. Communication
time not allocated by the off-line scheduler is available for
Blue communication.

Some of the reasons for using a statically allocated com-
munication schedule are:

• to obtain predictable durations for the effects of tran-
sient message errors, i.e., until the next prescheduled
update,

• simplified analysis and testing of the communication
system,

• possibility for short latency between sensor readings
and message transmissions, as well as between mes-
sage reception and actuator output,

1. In an actual system implementation, a slot might—for efficiency rea-
sons—carry more than one message, i.e., each prescheduled slot might
contain a finite number of Red messages transmitted from one or several
nodes.

• rapid detection of faults which lead to a deviation
from the predetermined communication schedule,

• simplified implementation of a distributed clock, and
• no protocol related limitations of bit rate (as in colli-

sion arbitration protocols, such as CAN [6]).

A discussion of the information that should be contained
in the messages in order to support node synchronization
and fault tolerance can be found in [7].

3.3 The Blue Subsystem
The Blue subsystem is intended for processes that are “less
safety critical” than Red processes. Consequently, the re-
sources available to the Blue subsystem are those remaining
after (the static) allocation of resources to the Red subsys-
tem. In contrast with the time driven operation of the Red
subsystem, the Blue subsystem is event driven, meaning that
Blue processes are activated in response to the occurrence
of events (including time events).

On each node handling Blue processes, a preemptive pri-
ority driven scheduler is used for scheduling the Blue proc-
esses. The BASEMENT concept does not prescribe or pre-
clude any particular method for assigning priorities to Blue
processes, i.e., both dynamic priority assignments (e.g., Earli-
est Deadline First (EDF)) and static assignments (e.g., Rate or
Deadline Monotonic assignments) are possible.

To employ the hardware metaphor as a programming
style, Blue software circuits also use connectors as holding
places for sensor/actuator values. However, to allow reuse
of existing software, the use of semaphores and queued
message passing is allowed, though not recommended.

Blue and Red processes can interact via shared connec-
tors, as illustrated in Fig. 7. The process Red_P in Fig. 7
writes values in the connector A. The event of entering a
new value in A will trigger the release of the Blue process
Blue_P, which calculates a new value for the connector B.
Note that there is no precedence relation between B and
SC_A (indicated by []), since it otherwise would be possible
for Blue_P to prevent Red_P from executing SC_A.

Fig. 7. Blue-Red processes interaction.

A Blue process is either periodic or aperiodic, whereas
Red processes are all periodic. There is no guarantee that
deadlines of Blue processes are met, though it might, in some
cases, be possible to evaluate the schedulability of Blue proc-
esses (using, e.g., fixed priority scheduling theory [8]).

Fig. 6. Network scheduling.

HANSSON ET AL.: BASEMENT: AN ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 1021

4 PROTOTYPE SYSTEMS

In developing and evaluating BASEMENT, we have de-
signed and built several prototype systems focusing on dif-
ferent aspects of the concept. In this section, we will present
two such prototypes. The main component of the first pro-
totype is the commercial real-time kernel Rubus, while the
second is the ultra-dependable DACAPO architecture with
provisions for fault tolerance at various system levels.

In addition to these prototypes, we have developed
some design support tools in the VIA project, including a
system simulator and an associated off-line scheduling tool
[9], [2]. The Intelligent Cruise Controller presented in Sec-
tion 5 is yet another example of prototype development
within VIA.

4.1 The Rubus System
In this section, we will describe a BASEMENT prototype
system developed by the Department of Computer Engi-
neering at Mälardalen University in cooperation with Arc-
ticus Systems AB. The system consists of Intel 386 nodes
connected with a Controller Area Network (CAN) bus.
CAN [6] is a real-time communication bus developed by
Bosch for use in automotive systems. A configuration com-
piler is used to map application software (given as net-
works of interconnected software circuits, as outlined in
Section 2.3) to the resources in a particular target environ-
ment. We will first describe the used real-time kernel
(Rubus), thereafter, the communication system, and, finally,
the configuration compiler.

4.1.1 The Rubus Real-Time Kernel
Within the VIA project, Arcticus Systems AB has developed
the real-time kernel Rubus2 [10], [11]. Rubus combines
time-driven execution, as required by the Red subsystem,
with event-driven execution, as required by the Blue sub-
system. The objectives when developing the kernel were:

• Modular design, i.e., the kernel should be conven-
iently configurable for small single CPU (micro-
controller) configurations, as well as distributed sys-
tems where support for clock synchronization and
network communication is required.

• To support application development in C.
• To support the execution of off-line scheduled (Red)

processes.
• To support the execution of event-driven (Blue) processes.
• To guarantee the behavior of Red processes, while

allowing efficient execution of Blue processes.
• To allow, Red only, Blue only, and mixed configurations.
• To allow interrupt handling (while guaranteeing the

behavior of Red processes).
• To allow configuration of different degrees of error

detection. Currently, two levels are supported: one
checking validity of parameter values only, and the
other additionally performing extended checking of
data-structures and messages using, e.g., invariants
and checksums.

• To support communication between Blue and Red
processes.

2. Rubus Arcticus is Latin for cloudberries.

Rubus supports execution of Red threads, Blue threads,
and interrupt service routines. Conceptually, a thread cor-
responds (in terms of the application software) to the exe-
cution of one of the software circuits of a Red or Blue proc-
ess. Red threads are invoked according to a preruntime
generated schedule. A Red thread returns control to the
Red Executive (see Fig. 8) when terminating. A Blue thread
is invoked by the Blue executive as the result of some event,
and it returns control to the Blue executive by some system
service, e.g., by executing a delay statement.

Fig. 8. Overview of Rubus.

Rubus provides services supporting execution of appli-
cations programmed as sets of Blue or Red processes, or a
combination thereof. These services are provided by the
Rubus OS, shown in Fig. 8. The main components of Rubus
are:

• The Red Executive, which provides services for Red
threads. The temporal behavior of the Red Executive
is predictable due to its simplicity and minimal
amount of code. If an application uses both Red and
Blue services, the Red services will always be given
priority.

• The Blue Executive, which basically includes the
services provided by POSIX [12] compliant real-time
executives, including message handling, semaphores,
monitoring routines, and I/O handling.

• The Basic Services, which include common features
used by both the Blue and Red Executives, including
treatment of time and interrupt handling.

• The Hardware Adaptation Layer (HAL), which in-
cludes all processor dependent code. This is to facilitate
the porting of Rubus to different hardware platforms.

The main task of the Red Executive is to dispatch threads
according to the current schedule and time. The schedule is
defined by its period, the threads, the deadlines of the
threads, and thread activation times relative to the start of
schedule. The Red executive supports preemption between
threads. This is to enable handling of processes with large
differences in their temporal requirements. Such processes
are, as pointed out by Poledna [13], common in automotive
systems. As an illustration of the problem, consider the two
single thread processes A and B, having periods, deadlines,
and execution requirements of 10ms, 10ms, 2ms, and

1022 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

1000ms, 500ms, 30ms, respectively. A nonpreemptive exe-
cution of task B, would require the allocation of a 30ms
time slot, thereby making it impossible for A to perform its
required three 2ms executions during that time. With pre-
emption, on the other hand, A can preempt B and thereby
satisfy its timing requirements. The preemption is ac-
counted for in the schedule.

To minimize stack usage and increase performance, the
Red executive supports threads sharing the same stack.
This, together with the minimal size of the Red executive,
will make it possible to use a Red kernel on simple micro-
controllers which have only memory on-chip.

The Red Kernel has the following responsibilities:

• To execute the threads in the order specified in the
active schedule (this is handled by the Dispatcher).

• Change schedule upon request.
• Monitor the schedule to detect deadline violations.

An error handler is invoked if this occurs.

The Red Kernel is similar to the Mars Operating system
presented by Reisinger [14]. The main difference is that the
Red Executive in Rubus is integrated with a Blue executive.

The Blue Executive is a traditional event triggered ker-
nel, using a priority based preemptive scheduling algo-
rithm, which guarantees that the thread with highest prior-
ity, among the threads ready to run, will always be exe-
cuted first. The synchronization between threads is sup-
ported by message queues, signals, and semaphores, ac-
cording to the POSIX standard [12].

Rubus allows Red and Blue threads to interact in a con-
trolled manner, such that the communication mechanisms
do not influence the timing of Red threads. A Red thread
can make information available to a Blue thread either by
letting the Blue thread read a shared variable or by sending
an event to the Blue executive. The transfer of data from
Blue to Red threads is (following [15]) handled by special
attributed objects with two copies of the data: one active
and one passive. The Blue thread writes the data to be
transferred to the passive copy, and then it performs an
atomic commit operation to change the passive copy to ac-
tive. The Red thread always reads the active copy.

4.1.2 Communication System
The communication system is implemented as a protocol in
a layer above the CAN protocol. The protocol makes a dis-
tinction between hard and soft real-time messages. Hard
real-time messages are preruntime scheduled, whereas the
soft messages are scheduled on-line.

The protocol uses the TDMA scheduling outlined in
Section 3.2. Several frames can be sent in each communica-
tion slot. A frame is directly mapped to a CAN message.

To make it possible for the nodes to have a consistent
view of the communication slots, an approximate global
time base must be established. For details on the clock syn-
chronization used, see [16].

TDMA based protocols usually allocate each communi-
cation slot to a particular node. In its communication slot,
the node can either send a message or leave the communi-
cation slot unused. This might lead to an inefficient use of
channel bandwidth. We use a different approach, which

allows several nodes to send frames in a communication
slot. This could be implemented, since each CAN message
has a priority and CAN provides a suitable hardware arbi-
tration mechanism. The protocol also handles membership
agreement and mode changes. For a detailed description of
the protocol, we refer to [17].

4.1.3 The Configuration Compiler
When designing Red applications, it is very important to
have tools that automatically map application software to
resource structures (specific target environments). This sec-
tion briefly describes a Configuration Compiler performing
this mapping.

The Configuration Compiler requires both an architec-
ture specification and a configuration specification. The
former lists the number and types of nodes and buses, the
latter describes the involved Red and Blue processes.

The configuration compiler consists of two cooperating
tools: a communication handling tool and a pre-run-time
scheduler.

The communication handling tool inserts special communi-
cation handling system threads in the application software.
This is to achieve communication transparency from the
senders point of view, e.g., if a receiver executing on the
same node as the corresponding sender is reallocated to a
different node, then only the inserted communication
thread needs to be altered, such that the data will be sent
over the bus instead of being copied from one local variable
to another. For a detailed presentation of the communica-
tion handling tool, we refer to [18].

The preruntime scheduler generates, for each mode and
node, a schedule and some additional information needed
by the Red Executive, including clock synchronization in-
formation and information about the bus communication.
The scheduler uses a heuristic search to find a feasible
schedule for a set of Red processes. The scheduler supports
precedence and mutual exclusion relationships, but re-
quires threads to be preallocated to nodes. The scheduler
can be configured to support either preemptive or non-
preemptive execution. A detailed description of the sched-
uler can be found in [19].

The Configuration Compiler differs from similar work, e.g.,
by Fohler [20] and Ramamritham [21], in that BASEMENT
communications are not a priori included in the precedence
graphs. This allows synchronizations and communications
to be treated as orthogonal concepts. The Configuration
Compiler also supports mutual exclusion relationships to
handle shared resources. This is not handled by the sched-
uler developed by Fohler. In addition, the Configuration
Compiler takes communication delays into account, some-
thing which, e.g., the scheduler proposed by Xu [22] does
not handle. Also, the Configuration Compiler gives the user
a possibility to choose between generating a preemptive or
nonpreemptive static schedule.

4.2 DACAPO—A Fault-Tolerant Architecture
DACAPO (Dependable Architecture for Control of Appli-
cations with Periodic Operation) [23] is a version of the
BASEMENT architecture that has been developed with
particular attention paid to dependability aspects, such as

HANSSON ET AL.: BASEMENT: AN ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 1023

reliability and safety. The architecture is designed to have
the Fault-Operational3 (FO) property with respect to per-
manent and transient hardware faults. This property en-
sures that the system is fully operational when any perma-
nent fault is present, and that the system can recover from
any transient fault.

The two most important concerns in the development of
the DACAPO architecture have been to enforce the FO prop-
erty, such that there are virtually no single points of failure,
and to achieve a very high detection coverage for any nonre-
coverable fault. Assuming that any detected nonrecoverable
fault is manually repaired shortly after its occurrence, this
strategy results in an ultra-dependable system.

4.2.1 Node Architecture
A DACAPO system consists of a number of fault-tolerant
nodes interconnected by two buses. Every module inside
the node is duplicated as shown in Fig. 9.

Fig. 9. The DACAPO node architecture.

The abbreviations used in the figure are:

• PE: Processing Element (with local memory)
• PS: Power Supply
• GBI: Global Bus Interface
• SM: (State) Memory
• IO: Input/Output Interface

As indicated in the figure, all modules are fail-silent (FS),
with the exception of the cross-coupling unit that provides
the connection between any processing element and any
node bus. This unit is designed to be fault-operational (FO)
in the sense that at least one processing element can access
at least one node bus when a fault is present in the unit.
Furthermore, all modules are powered such that a failure in
either power supply does not cause two equivalent mod-
ules to fail simultaneously. Thus, the node as a whole is a
fault-operational (FO) entity. In fact, the modules are de-
signed such that the node is fault-operational/fail-silent
(FO/FS) for most fault combinations. This means that the
node does not fail when a first fault occurs and that a sec-
ond fault either causes the node to become silent toward
the network and the actuators or to remain operational.

3. Traditionally, fail-operational has been used in place of fault-operational,
but the latter corresponds better to present-day accepted taxonomy.

4.2.2 Communication
Every message transmitted on the buses includes an identifi-
cation of the message such that the receivers can verify that
they are synchronized with the transmitter with respect to
the prescheduled stream of messages. This schedule is de-
termined off-line and known by all nodes, thus facilitating
the rapid reintroduction of a temporarily unsynchronized
node. In addition to the message identifier and the actual
data transmitted, the message frame includes a number of
fields supporting the membership agreement procedure and
the detection of transmission errors and stale data.

At any point in time, the operational nodes should have
a consistent view of the system status with respect to which
nodes that are operational and which ones that are not. This
membership agreement is supported by the inclusion of a
membership field in each message. This field indicates
whether or not a certain node, uniquely identified by the
message number, is considered operational by the trans-
mitting node.

Each bus interface (GBI in Fig. 9) contains a dual-port
RAM, which is accessed by the node processors as well as
by the communication interface. Thus, data pass via this
memory in one direction for transmission and in the other
for reception. The dual-port RAM is used as a wrap-around
buffer and has the capacity to store all data transmitted in
an entire ST (systolic base time, see Section 3.2). Whenever
a processor writes to this RAM, an “update” bit in the cor-
responding memory cell is set. This bit accompanies the
data as it is subsequently read by the communication inter-
face, transmitted onto the bus, and stored in the dual-port
RAMs of the other nodes. Since the update bit is reset in the
dual-port RAM directly after the corresponding data is read
from memory, it indicates whether the data is stale or fresh.

While the interpretation of the messages associated with
Red processes is established a priori, Blue messages have to
include an identification of the message data.

4.2.3 Clock Synchronization
Communication in a BASEMENT system is time determi-
nistic in the sense that the start time of each message slot is
fixed. As first proposed by Babaglou and Drummond [24],
predefined events that are known in all nodes can be used
as implicit clock readings. The deviation from the expected
time of an event indicate the lead or lag of the clock in the
originating computer node. In DACAPO, the communica-
tion protocol has been tailored to support this synchroniza-
tion method. Nodes broadcast a message at the start of each
message slot, thus providing the implicit clock reading.
Clocks are then adjusted using the Daisy-Chain method [5].
With this method, all nodes adjust their clocks to comply
with the start of the last message slot. To exclude readings
from faulty clocks, the adjustments are omitted if the de-
viation exceed the tolerated clock precision. If, e.g., an aver-
aging clock synchronization algorithm is used, all nodes
have to deliver their clock readings before an adjustment
can be made. With the Daisy-Chain method, clocks are syn-
chronized on every message, and time-deterministic com-
munication is possible even with low-cost, low-accuracy
clocks. The simplicity of the algorithm also reduces the
complexity of the hardware.

1024 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

5 AN INTELLIGENT CRUISE CONTROLLER

In this section, we provide an example of a BASEMENT
system, used for implementing an Autonomous Intelligent
Cruise Controller (AICC). The AICC system can receive
information from road signs and adapt the speed of the
vehicle to automatically follow speed limits. Also, with a
vehicle in front cruising at lower speed, the AICC adapts
the speed and maintains safe distance. The AICC can also
receive information from the roadside (e.g., from traffic
lights) to calculate a speed profile which will reduce emis-
sion by avoiding stop and go at traffic lights (a “green
wave” function).

The AICC system described in this section is installed in
a Saab automobile, which was one of several AICC cars
demonstrated at the PROMETHEUS Board Member Meet-
ing in Paris, October 18-20, 1994. The system is imple-
mented on a distributed microcomputer platform following
the BASEMENT concept. Fig. 10 presents the system archi-
tecture. The microcontroller nodes are connected through a
CAN-bus. The communication protocols used in our sys-
tem incorporate a synchronization algorithm to allow the
nodes marked Red and Red/Blue to synchronously execute
their off-line generated schedules. Some of the used actua-
tor/sensor nodes are not equipped with CAN interfaces,
and are therefore connected to the CAN-bus through gate-
ways. This was a convenient way to obtain a flexible system
that enabled rapid prototyping of the AICC system.

All nodes in Fig. 10, except the System Control Unit node,
are mainly sensor/actuator nodes responsible for primary
control of the actuators and filtering of sensor values. The
Electronic Servo Throttle node maintains the desired speed
and acceleration provided by the System Control Unit. The
Electronic Brake node supplies the System Control Unit

with speed and acceleration information (in a future im-
plementation it will also be responsible for desired decel-
eration). The Distance Sensor detects and measures the
distance and relative speed of vehicles in front. The SRC
transponder communicates with roadside beacons to obtain
information about speed limits and traffic lights. The Main
Instrument Controller supplies the System Control Unit
with commands from the driver, as well as presenting se-
lected information on the main instrument. The System
Control Unit handles the strategic control of the AICC sys-
tem. It receives information from the other nodes, and cal-
culates (at predetermined times in the schedule) the Elec-
tronic Servo Throttle acceleration set-point and the infor-
mation to be presented to the driver. It is also responsible
for supervision and failure detection.

Fig. 11 shows a simplified model of the software circuits
used in the design of the AICC system (note that, connec-
tors are omitted to simplify the drawing and that [] denotes
communication without strict precedence). The Blue SRC
process polls the SRC transponder every 200ms. This is fast
enough considering the response times that are required for
the type of information received. The Red ICC Regulator
process calculates the desired acceleration set-points based
on current and future speed limits, distance to vehicle in
front, and green wave driving (if traffic light information
has been received). The calculated set-points are presented
to the Final control process, which decides with which
value the EST should be actuated. Since the EST is a Blue
process executing on a Blue only node not synchronized
with the rest of the system, it requires a higher rate of pa-
rameter updates. The Supervisor process decides the over-
all ICC strategy based on driver requirements. It also
monitors the AICC system and sends relevant information

Fig. 10. The architecture of the AICC system.

Fig. 11. Software Circuit model of the AICC system.

HANSSON ET AL.: BASEMENT: AN ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 1025

to the Main instrument controller for presentation to the
driver.

The AICC system described above follows the BASE-
MENT concept. It is based on a previous implementation
not following the new concept. From our experiences of the
two AICC system implementations, we conclude that there
are definite advantages of using BASEMENT. Some of the
reasons for this are

• that the synchronization provided by BASEMENT
decreased the communication bandwidth require-
ments, since the delays in the regulator loops are un-
der precise control and since the synchronization
makes over sampling unnecessary, and

• that the understandability of the system behavior has
increased, due to the clear and well defined prece-
dence relations between different processes and soft-
ware circuits.

6 DISCUSSION

One of the major overriding considerations in the develop-
ment of BASEMENT has been the question of safety. Vehicle
manufacturers must place this high on the requirements list.

When safety critical computer-based systems are to be
produced, specific properties of the system and surround-
ing engineering process activities must be scrutinized in
detail. There are a large number of known and buried risks
in all aspects of the underlying engineering activities and in
their interrelationships. Consequently, risk analysis, reduc-
tion, and minimization of all aspects are vital. As an im-
portant step toward risk minimization, a holistic view has
been taken. The need for a holistic philosophy, as well as
the impact of not having such a philosophy, has been de-
scribed by Lawson [25], [26].

With respect to the holistic view, risk reduction and
minimization in computer-based systems is accomplished
by a combination of various means: Via robust architectures
and design, via verifiable specifications, via thorough haz-
ard analysis and hazard elimination, via the incorporation
of safety mechanisms in software and hardware, via a well
controlled engineering processes, via quality control meas-
ures, via qualified personnel selection, via control of meth-
ods and tools, to name the more prominent.

It is important to observe that not only the product, but
also the means of developing and supporting the product,
must be minimized in respect to risk. Concerning Methods
and Tools for safety critical systems, Lawson [27] has indi-
cated the following:

“Ideally, a safety critical system should be developed with a small
set of well proven and well supported methods and tools that
only provide the analysis and design facilities and construction
mechanisms required for the safety critical Embedded Control
System product (no more, no less). The risks associated with
varying from this ideal position must be critically analyzed.”

It is our contention that the approach taken in BASE-
MENT leads to a requirement for a small set of well-
focused methods and tools, while satisfying the safety re-
quirements, as well as the various other requirements, such
as cost-effectiveness and short lead times.

We also claim that a supporting real-time kernel (such as
Rubus described in Section 4.1), due to the straightforward
application development mechanisms employed, can be
minimized thus leading to a more robust and manageable
solution to the dynamic run-time aspects.

The approach selected for the Red and Blue Services is
based upon relevant developments in the fields of real-time
systems and distributed processing.

As a starting point for the Red Service, the project ex-
ploited the concepts of Cy-Clone (see [28], [29]). Cy-Clone
addresses, in a holistic-resource-adequate manner, behav-
ior, mapping, and resource structure issues. The notion of
using a hardware paradigm (software circuits) for software
development has its origin in this work.

The concepts upon which Cy-Clone are based have been
successfully applied in other “motion control” applications;
for example, in the ATC (Automatic Train Control) system
developed by Standard Radio and Telefon AB in the late
1970s for the Swedish National Railways (SJ) (see [25]).
Further, we find somewhat related solutions in many time
and safety critical aircraft and space applications. An early
example is the SIFT (Software Implemented Fault Toler-
ance) computer developed at SRI International (see [30]).

Through distributed processing, the goals of providing
resource adequacy (sufficient parallel processing and com-
munication capacity) is accomplished. Further, a firm basis
is provided for the implementation of fault tolerant solu-
tions. In this regard, the project gained significant insight
by examining the MARS (Maintainable Real-Time System)
developed at the University of Vienna [31].

The advantages of time-driven over event-driven sys-
tems, in respect to predictability and many of the other es-
sential abilities, have been indicated by Kopetz [32]. Time-
driven processing, coupled with resource adequacy, pro-
vides for a reduction of mapping complexity (allocation
and scheduling of processing and communication) and re-
sults in deterministic predictable solutions.

For addressing the Blue Service, the project had the ad-
vantage of the participation of Arcticus, who has had many
years of experience in delivering event driven real-time
kernels (see [33]). Further, ideas concerning the distributed
nature of event-driven systems were derived from several
sources, including [34].

The notion of using a leveled approach to the develop-
ment of control systems has been inspired by the robotics
work of Brooks [35] at MIT. This notion has been proven in
practice in the development of the Saab Trionic Motor
Management System as reported in [3].

The development of software circuits by defining POPs
(preprogrammed domain relevant application operations)
has been described by Lawson [36].

The ideas concerning fault tolerant distributed comput-
ing have their origin in the work at Chalmers Technical
University. Torin [37] has characterized essential properties
for automotive electronics.

Reliability analysis is an essential part of the design of
any safety-critical system. A methodology for reliability
analysis of complex repairable fault-tolerant systems has
also been developed within the VIA project. This technique
allows analytic approximate expressions for the reliability

1026 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 9, SEPTEMBER 1997

of an architecture to be obtained. The methodology is de-
scribed in [38].

During the project, several other works in the area of
distributed real-time systems have been examined and have
influenced the thinking of the Team Basic group, for exam-
ple, the work on the Spring Architecture at the University
of Massachusetts [39].

The subject of distributed real-time systems is currently
the object of research and development in many academic
research projects, as well as in advanced industrial projects.
There are several points of view in regard to achieving a
suitable solution. There has been a tendency to focus on the
communication aspects (hardware, protocols, and sched-
ules) for distributed real-time environments. While these
aspects are important and interesting results have been at-
tained (see, for example, Tindell and Clark [40]), they rep-
resent one aspect of the goals of producing safe, reliable,
cost-effective real-time solutions. Attention must be given
to many other issues, as brought to the forefront in the
BASEMENT concept.

7 CONCLUSIONS

We have presented the BASEMENT distributed real-time
architecture and methodology. The architecture provides a
framework for building distributed multiplexed vehicle
control systems capable of satisfying the many demanding
requirements of future vehicular systems. The design
methodology and tools provide engineers with a simple
application oriented interface and support for generation of
efficient and reliable implementations. The main strength of
BASEMENT is, however, its holistic view: Both architecture
and methodology are encompassed.

The concept has been explored via a number of proto-
type system developments, including the Rubus, DACAPO,
and AICC systems presented in this paper. BASEMENT has
also had a catalytic effect on Swedish Real-Time Systems
research and development. Follow-up projects include:

• Participation in the European X-by-wire project
(Chalmers and Mecel). X-by-wire aims at developing
techniques and tools that make it possible to build
vehicles without mechanical backup systems, even for
safety critical functions such as braking and steering.

• ASTEC-RT, a project within the national Advanced
Software Technology center of excellence program
(Uppsala and Mecel) aiming at further develop-
ment of methods and tools for automotive software
development.

• design of a coprocessor implementation of a kernel
supporting mixed execution of Red and Blue BASE-
MENT processes [41] (Mälarden).

REFERENCES

[1] J.G. Rivard, “The Self Driving Car,” The Sab-Scania Technical J.,
1987.

[2] H. Hansson, H. Lawson, M. Strömberg, and S. Larsson,
“BASEMENT a Distributed Real-Time Architecture for Vehicle
Applications,” Real-Time Systems, vol. 11, no. 3, pp. 223-244, Nov.
1996.

[3] H. Lawson, B. Nilsson-Almstedt, and M. Strömberg, “Application
Function Development for Multiplexed Automotive Control Sys-
tems,” Proc. Vehicular Technology Conf. ’94, pp. 1,093-1,097, Stock-
holm, June 1994.

[4] H.W. Lawson, “Application Software Development Methodology
for Basement Platforms,” Technical Report ProVIA-93602, Law-
son Konsult AB, 1994.

[5] H. Lönn and R. Snedsbøl, “Synchronisation in Safety-Critical
Distributed Control Systems,” Proc. IEEE Int’l Conf. Architectures
and Algorithms for Parallel Processing, Brisbane, Australia, 1995.

[6] “Road Vehicles—Interchange of Digital Information—Controller
Area Network (CAN) for High Speed Communication,” ISO/DIS
11898, Feb. 1992.

[7] O. Bridal, L.-Å. Johansson, and R. Snedsbøl, “On the Design of
Communication Protocols for Safety-Critical Automotive Appli-
cations,” Technical Report ProVIA-93406, Dept. of Computer
Eng., Chalmers Univ. of Technology, Göteborg, Sweden, 1993.

[8] N.C. Audsley, A. Burns, and A.J. Wellings, “Deadline Monotonic
Scheduling Theory and Application,” Control Eng. Practice, vol. 1,
pp. 71-78, 1983.

[9] H. Hansson and M. Sjödin, “An Off-Line Scheduler and System
Simulator for the BASEMENT Distributed Real-Time Systems,”
Proc. 20th IFAC/IFIP Workshop Real-Time Programming (WRTP ’95),
P. Laplante and W. Halang, eds., Nov. 1995.

[10] C. Eriksson, K.-L. Lundbäck, and H. Lawson, “An RTOS Inte-
grated with an Off-Line Scheduler,” Proc. IFAC Workshop Algo-
rithms and Architectures for Real-Time Control, Ostende, Belgium,
May 1995.

[11] C. Eriksson and K.-L. Lundbäck, “Rubus OS Real-Time Operating
Systems, Tutorial,” technical report, Arcticus Systems AB, 1996.

[12] “IEEE STD 1003.1b-1993,” IEEE, ISBN 1-55937-375-X, July 1994.
[13] S. Poledna, “Replica Determination in Fault Tolerant Real-Time

Systems,” PhD thesis, Technishe Universität Wien, Institut für
Technische Informatik, 1994.

[14] J. Reisinger, “Time Driven Operating Systems—A Case Study on
the MARS Kernel,” technical report, Institut für Technische In-
formatik, Technischen Universität Wien, 1992.

[15] P.D.V. van der Stok and A. Engel, “Shared Data Concepts for
Dedos,” Proc. 10th IFAC Workshop Distributed Computer Control
Systems, H. Kopetz and M.G. Rodd, eds., Semmering, Austria,
Sept. 1992, vol. 3, IFAC Workshop Series, Pergamon Press.

[16] H. Thane, “Distributed Real-Time Clock Synchronisation on the
Can Bus,” master’s thesis, Uppsala Univ., Mar. 1995.

[17] C. Eriksson, M. Gustafsson, and H. Thane, “A Communication
Protocol for Soft and Hard Real-Time Systems,” Proc. Eighth
Euromicro Workshop Real-Time Systems, pp. 187-192, 1996.

[18] C. Eriksson and K. Sandström, “The Translation of an Application
Configuration to a Runable Application by Utilising a Pre Run-
Time Scheduler,” Technical Report CUS95RR04, Dept. of Real-
Time Computer Systems, Mälarden Univ., Västerås, Sweden,
1995.

[19] C. Eriksson, R. Hassel, and K. Sandström, “The RRT Off-Line
Scheduler,” Technical Report CUS94RR04, Dept. of Real-Time
Computer Systems, Mälarden Univ., Västerås, Sweden, 1994.

[20] G. Fohler, “Flexibility in Statically Scheduled Hard Real-Time
Systems,” PhD thesis, Technishe Universität Wien, 1994.

[21] K. Ramamritham, “Allocation and Scheduling of Complex Peri-
odic Tasks,” Proc. 10th Int’l Conf. Distributed Computing Systems,
pp. 108-115, 1990.

[22] J. Xu, “Mulitprocessor Scheduling of Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations,” IEEE Trans. Soft-
ware Eng., vol. 19, no. 2, pp. 139-154, Feb. 1993.

[23] O. Bridal, L.Å. Johansson, J. Ohlsson, M. Rimén, B. Rostamzadeh,
R. Snedsbøl;, and J. Torin, “DACAPO: A Dependable Distributed
Computer Architecture for Control of Applications with Periodic
Operation,” Technical Report no. 165, Dept. of Computer Eng.,
Chalmers Univ. of Technology, Göteborg, Sweden, 1993.

[24] Y. Babaglou and R. Drummond, “(Almost) No Cost Clock Syn-
chronisation,” Proc. 17th Ann. IEEE Int’l Symp. Fault-Tolerant Com-
puting (FTCS-17), Pittsburgh, Pa., pp. 42-47, June 1987.

[25] H.W. Lawson, “Philosophies for Engineering Computer-Based
Systems,” Computer, vol. 23, no. 12, pp. 1,859-1,874, Dec. 1990.

[26] H.W. Lawson, Parallel Processing in Industrial Real-Time Applica-
tions. Prentice Hall, 1992.

[27] H.W. Lawson, “Assessment of Safety Critical Embedded Control
Systems (‘A Safety Case Approach’),” Proc. Software Technology

HANSSON ET AL.: BASEMENT: AN ARCHITECTURE AND METHODOLOGY FOR DISTRIBUTED AUTOMOTIVE REAL-TIME SYSTEMS 1027

Conf. (STC ’95), U.S. Dept. of Army, Navy, and Air Force, Salt
Lake City, Ut., Apr. 1995.

[28] H.W. Lawson, “Cy-Clone—An Approach to the Engineering of
Resource Adequate Cyclic Real-Time Systems, Real Time Sys-
tems,” Real-Time Systems—The Int’l J. Time-Critical Computing Sys-
tems, vol. 4, no. 1, 1992.

[29] H.W. Lawson, “Engineering Predictable Real-Time Systems:
Lecture Notes for the NATO Advanced Study Inst. on Real-Time
Computing,” Real Time Computing, W.A. Halang and A.D. Stoy-
enko, eds. Springer-Verlag, 1992.

[30] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt,
P.M. Meliar-Smith, R.E. Shostak, and C.B. Weinstock, “SIFT: De-
sign and Analysis of a Fault-Tolerant Computer for Aircraft Con-
trol,” Proc. IEEE, vol. 66, no. 10, pp. 1,240-1,255, Oct. 1978.

[31] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabi, C.
Senft, and R. Zainlinger, “Distributed Fault-Tolerant Real-Time
Systems: The MARS Approach,” IEEE Micro, pp. 25-58, Feb. 1989.

[32] H. Kopetz, “Event Triggered versus Time Triggered,” Proc. Int’l
Workshop Operating Systems of the 90s and Beyond, vol. 563, Lecture
Notes in Computer Science, pp. 87-101. Springer-Verlag, 1992.

[33] K.-L. Lundbäck, “The Real Time Executive for Embedded Sys-
tems O’Tool (third edition),” Arcticus Systems AB, Järfälla, Swe-
den, 1991.

[34] A. Goscinski, Distributed Operating Systems. Reading, Mass.: Addi-
son-Wesley, 1991.

[35] R.A. Brooks, “A Robust Layered Control System for a Mobile
Robot,” Artificial Intelligence at MIT—Expanding Frontiers, P.H.
Winston and S.A. Shellard, eds. MIT Press, 1990.

[36] H.W. Lawson, “Application Machines—An Approach to Realiz-
ing Understandable Systems,” The Euromicro J., vol. 35, nos. 1-5,
pp. 5-10, 1992.

[37] J. Torin, “Dependability in Automotive Electronics Requirements,
Directions and Drivers,” Technical Report 112, Dept. of Computer
Eng., Chalmers Technical Univ., Gothenburg, 1991.

[38] O. Bridal, “A Methodology for Reliability Analysis of Fault-
Tolerant Systems with Repairable Subsystems,” Proc. IMA Conf.
Mathematics of Dependable Systems (MDS 95), Sept. 1995.

[39] J.A. Stankovic, “The Spring Architecture,” Proc. Second Euromicro
’90 Workshop Real-Time Systems, pp. 104-113, 1990.

[40] K. Tindell and J. Clark, “Holistic Schedulability Analysis for Dis-
tributed Real-Time Systems,” Microprocessing and Microprogram-
ming, vol. 40, pp. 117-134, 1994.

[41] J. Stärner, L. Lindh, J. Adomat, and J. Furunäs, “Scheduling
Coprocessor in Hardware for Single and Multiprocessor Real-
Time Systems,” Dept. of Real-Time Computer Systems, Mälarden
Univ., Västerås, Sweden, submitted for publication, 1996.

Hans A. Hansson received an MSc degree in
engineering physics, a licentiate degree in com-
puter science, a BA degree in business admini-
stration, a doctor of technology degree in com-
puter science from Uppsala University, Sweden,
in 1981, 1984, 1984, and 1992, respectively. He
is currently department chairman and senior
lecturer in the Department of Computer Systems,
Uppsala University, but was previously a re-
searcher at the Swedish Institute of Computer
Science in Stockholm, Sweden. His research

interests include timed and probabilistic modeling of distributed sys-
tems, real-time system design, scheduling theory, distributed real-time
systems, and real-time communications networks. He is president of
the Swedish National Association for Real-Time and coordinator for
ARTES, a national Swedish strategic real-time initiative.

Sven Larsson received an MSc degree in electrical engineering from
Chalmers University of Technology, Göteborg, Sweden, in 1988. He
has been employed by Mecel AB, Göteborg, Sweden, as a systems
engineer since 1988 and is working with distributed embedded real-
time systems for the automotive industry.

Harold W. Lawson received the bachelor of
science degree from Temple University
(Philadelphia, Pennsylvania) and the PhD de-
gree from the Royal Technical University, Stock-
holm. He has been active in the field of comput-
ing since 1958, with broad international experi-
ence in industrial and academic environments.
He is experienced in many facets of computing
and computer-based systems, including software
engineering, computer architecture, real-time,
programming languages and compilers, operat-

ing systems, various application domains, as well as computer related
education and training.

During his industrial career, he has contributed to several pioneer-
ing efforts in hardware and software technologies at Univac, IBM,
Standard Computer Corporation, and Datasaab. He has held perma-
nent and visiting professorial appointments at several universities,
including Polytechnic Institute of Brooklyn, University of California,
Irvine, Universidad Politecnica de Barcelona, Linköping University,
Royal Technical University, University of Malaya, and Keio University.

He has performed consulting and/or presented seminars for more
than 50 corporations and seminars at more than 60 universities and
colleges in North America, Europe, and the Far East. His publications
include several books, contributed chapters, and more than 80 techni-
cal contributions.

Dr. Lawson is a fellow of the IEEE, fellow of the ACM, ACM Na-
tional Lecturer, and IEEE European Distinguished Visitor. He was a
founding member of SIGMICRO, EUROMICRO, and the IEEE Com-
puter Society Technical Committee on the Engineering of Computer
Based Systems.

Olof Bridal received the MSc degree in electri-
cal engineering in 1985 and the licentiate in
computer engineering in 1989, both from Chalm-
ers University of Technology in Göteborg, Swe-
den. He is now a PhD candidate in the Depart-
ment of Computer Engineering at Chalmers.
Bridal’s primary research interests are the design
and analysis of ultra-dependable distributed real-
time systems, primarily for future automotive
applications.

Christer Eriksson received a BSc in mathematics
from Uppsala University in 1988 and a licentiate
degree from the Royal Institute of Technology,
Stockholm, Sweden, in 1994 and 1997, respec-
tively. He worked for ABB Automation from 1984
until 1988, primarily on the run-time system for
ABB Master. He is currently a lecturer at Mälar-
dalen University. His research interests are design
of real-time systems, object-oriented program-
ming, distributed architectures for real-time sys-
tems, and real-time operating systems.

Henrik Lönn is a PhD student in computer engi-
neering at Chalmers University of Technology.
He received the diploma of Imperial College in
Robotics in 1993 and an MSc in automation
engineering and lic. eng in computer engineering
from Chalmers in 1993 and 1995, respectively.
Recently, he spent six months at Volvo Techni-
cal Development working with real-time systems.
He is a student member of the IEEE.

Mikael Strömberg received an MSc degree in
electrical engineering from Chalmers University
of Technology, Göteborg, Sweden, in 1985. He
is a program manager at Mecel AB, Göteborg,
Sweden, and has been employed by Mecel AB
since 1986, where he is working with distributed
embedded real-time systems for the automotive
industry.

