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Abstract 
Most software engineering courses focus exclusively on the software development 

process, often referring to problems related to the complexity of software products and 
processes. In practice, however, many problems of a complex nature arise in which 
system engineering and other engineering disciplines are important in the development of 
systems. In such cases software engineers may have difficulty in coping with the entire 
problem, in the same way that engineers in other fields may have difficulty in 
understanding the software part. This suggests that the software engineering education of 
today is inadequate in certain respects. This paper presents a case study of a software 
engineering course and discusses the difficulty for computer science students to 
understand and to develop a system which also requires skills in engineering of a non-
software nature. 
1. Introduction 

During recent years, as the use of software has increased and software has become 
more complex, there have been many discussions about education in software 
engineering, today and in the future [15,16]. The main challenge of such education is to 
prepare students for the “real world” [8,9,17], which is inconsistent, unpredictable, 
complex and always in a state of change. There are different approaches to meet this 
challenge; one example being the execution of projects based on real examples from 
industry [9]. Another approach is to “simulate” the real world by introducing a number of 
unpredictable obstacles into student exercises, the “dirty-tricks” method [10]. There are 
approaches which are focused on different areas of software engineering, such as 
requirements engineering, software design, validation and verification, others focused on 
the management of the complexity of products and processes. Surprisingly, the relation 
between software engineering and other engineering disciplines such as electrical 
engineering, mechanical engineering, different aspects of civil engineering is seldom 
discussed. In emerging as an independent discipline, software engineering has moved 
away from other classic engineering disciplines. The use of many classic engineering 
methods has been decreased or even removed from the software engineering curricula. 
While we can argue that this process is natural since there is no immediately apparent 
need for knowledge of classic engineering subjects for software development, we must 
also note that the frequency of project failure due to problems in software is significantly 
greater than that due to problems in other engineering disciplines. In too many cases the 
causes of failure originate in a misunderstanding of requirements, mismatches in system 
design and implementation, unrealistic expectations, and bad project planning [14]. The 
question is how much these problems are the results of a lack of formal engineering 
methods and procedures, and from the inability to manage the development of complex 
systems without using a systematic and analytical approach. 

We believe that software engineering education should also include the training of future 
software developers in understanding and using (at least to some extent) the methods of 



classical engineering. We also believe that software engineers will increasingly encounter 
problems which are not of a pure software character, the software being only one part of a 
complex system. To understand the entire system, knowledge from pure software engineering 
will not be sufficient. Finally, we suggest that it is important to develop a culture of a 
systematic and analytical approach to the solution of problems, widely absent in the software 
community. For this reason we have updated our software engineering course for computer 
science students with additional elements: an analysis and modeling of a non-software system 
[1]. This gave us the possibility of analyzing the student’s ability to cope with software and 
non-software related problems. This paper describes the experience from the course and 
suggests the importance of the inclusion of elements from other engineering disciplines in 
software engineering. 

2. System Engineering vs. Software Engineering 
In many products of today which embody the knowledge and skills of engineers from 

different fields, software is becoming the major and the most important part. Software 
increasingly controls the functionality and the overall behavior of the entire product. To 
develop these products successfully, extensive knowledge of software and of other 
engineering disciplines is required of the project team. However, understanding system 
requirements and their relation to software requirements remains one of the main 
difficulties in the development of computer-based systems [11]. It is not only because of 
the different nature of the requirements and characteristics of systems and software but 
also because of the different approaches to the development process [6]. A standard 
approach in a system development is a top-down approach; the system design beginning 
with the specification of the system architecture, the architecture defining the components 
and their interactions. Technologies and engineering methods from different engineering 
fields are then applied to the specification, design and development of components. While 
classical engineering disciplines follow this strict approach, software development 
process may be significantly differently. The top-down approach is often replaced by a 
bottom-up approach, sequential development processes are often experienced as non-
appropriate models, and evolutionary models (incremental, rapid-prototype, spiral model, 
etc.) are used. Software developers have no strong culture of exact and formal 
specification. This incompatibility of approaches causes the mismatching of 
requirements, specifications and finally in the products.  Our opinion is that this difficulty 
can be alleviated to a degree by making “system thinking” more explicit in software 
engineering courses, as we describe. 

3. Case Study: Software Engineering Course 
The software engineering course we analyze here [7] was attended by computer science 

students. They have attended basic courses in mathematics but very few courses that are parts 
of traditional engineering curricula, for example physics. The course concerned was presented 
during one semester and was divided into two parts: the first half of the course consisting of 
lectures and labs; the second half being devoted to project work.  In the project phase, the 
students worked in independent groups with large grade of freedom, but the milestones and 
final results were specified by the teachers who also were involved in the project as customers 
and a steering group. 

In the project, the two main elements given specially attention were a system analysis and 
architectural issues. The goal was to give the students an understanding of the need for a formal 
specification, based on the engineering methods associated with the system being developed. 

3.1 The System Engineering Problem 
The main idea of the project was to give students a problem not of a pure software 

character and which it would not be possible to solve by software development alone. The 



main assignment was to explain the capsize of the Vasa, a 17th century Swedish warship [2] 
and to develop a simulation model which would visualize the stability of the Vasa, or a user-
configured ship [1].  

Stability calculations are derived from basic forces of physics: gravity and buoyancy. Due 
to limited space, we do not explain the details, but Figure 1 visualizes the forces in action and 
the interaction between these. W denotes the wind force, G the gravity force, B the buoyancy 
force, and h the horizontal projection of the distance between the centers of gravity and 
buoyancy. The ship stops heeling in a position at which the forces and torques (leverage 
effects) are in a state of equilibrium. In case a) shown in the figure the resulting force will 
keep the ship in a stable position while in case b) the ship will capsize.  
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Figure 1. Stable and unstable attitudes of a ship 

3.2 The  Project Assignments 
During the project work period the students were required to analyze the problem to be 

solved, define and process requirements, and design and implement the system. The project 
work was focused on project planning, process measurement, teamwork, and an analysis of 
the work performed. In addition to “standard” assignments such as project management and 
negotiating with a “customer”, two specific requirements were added: 
− Modifiability. The system was required to be designed and implemented in such a way 

that it would be easy to modify. The students were expected to refine this requirement 
and describe how they intended to accomplish this, and analyze how well they succeeded. 

− Mathematical Model. The mathematical model used for stability calculations was to be 
documented, and its correctness and accuracy analyzed. 

The aim of these two additional requirements was to make the students familiar with long-
term requirements and with quality issues.  

 

4. The Students’ Project Work 
The project was to serve as an experiment. It was to indicate the ability of computer 

science students to cope with more complex problems related to a) software engineering and 
b) other engineering disciplines. The project was to show if the students are able to achieve 
similar results (i.e. a similar level of quality) in solving problems of a similar degree of 
difficulty but related to other domains than software engineering. It was also to investigate 
the student’s ability to cope with unfamiliar problems as is very likely in their professional 
life. We shall concentrate on these additional requirements in the following.   

4.1 Modifiability 
The students discussed modifiability in two senses: 

− In a general sense, by using e.g. a design pattern [12] and an architecture [3,5] that are 
believed to support modifiability, by using an object-oriented approach, or by 
establishing coding guidelines, structuring the code commenting it well etc. 



− In a more specific sense, by assuming particular future changes which are more probable, 
and preparing their design for these modifications (similar to the way scenarios are used 
in the Software Architecture Analysis Method, SAAM [3,13]). 

It was apparently difficult for the students to understand “modifiability” and the groups 
succeeded to different degrees. All of the groups had a modifiability requirement in their 
requirements document; however, when refining it, there were quite different approaches. 
Two groups explained modifiability with both a general description and a description of 
specific changes which could be used to test whether the system was modifiable.  

In the design documentation, we expected to see documentation of the design decisions 
that were motivated by the modifiability requirements, according to the groups’ own 
definitions in the requirements document. Three groups provided no explanation of how they 
had achieved modifiability, two groups showed how it was possible to implement the 
particular scenarios they had specified in the requirements document (although one group 
omitted their most interesting scenarios – making the system non-web-based and changing 
calculation model – and instead focused on “lower-level” scenarios, e.g. how to add a new 
deck), and one group explained that the system was modifiable both through their choice of 
architecture and through specific scenarios. Only one group discussed modifiability elsewhere 
than in a separate section, which might imply that they had a slightly deeper understanding of 
the issue. 

The groups’ achievements are summarized in Table 1. 
 

Table 1: A summary of how the six groups treated modifiability 
Group No: 1 2 3 4 5 6 

General x - - x - x Requirements 
Specification Specific scenarios - x x x x x 

General x - - - - - Design 
Specification Specific scenarios  x - - x x - 

 

We can conclude that the students achieved a certain understanding of modifiability. While 
they understood the requirements and to some extent their design was influenced by these 
requirements, they showed less ability in analyzing and explicitly documenting their 
decisions. The design was more “construction” oriented than property-oriented.  

4.2 Mathematical Model 
The most interesting, and complicated, part of the system was its ability to visualize the 

stability of a proposed ship. A part of the assignment was to develop the configuration of the 
ship: a ship can be built with different numbers of decks, different numbers of guns per deck, 
with or without ammunition and with different amounts of ballast. These configuration 
parameters and the form of the ship determine the center of mass of the ship. The center of 
buoyancy is defined by the shape, weight and heel angle of the ship.  

Given a certain wind speed, the resulting heel angle of the ship can be determined. At 
some wind speed, the ship will capsize. The students thus had to develop and implement a 
mathematical model of the physics involved. To help the students, we gave a separate lecture 
describing the model and the basic physical principles such as methods for calculating the 
center of mass and the equilibrium state of an object.  

 

4.2.1 The Models: The main difficulty was the determination of the center of buoyancy, 
which is at the center of the area of the displaced water. The shape of the cross section of that 
part of the ship under water when the ship is heeling may be quite complicated. However, it is 
possible to divide this area into a set of simple geometrical forms, and then its center can be 
calculated from the geometrical centers of these forms. The students thus had to model the 
ship’s shape, take into account the heel angle, and by geometrical means divide the area into 
a set of simple shapes, find their the geometrical centers and from them calculate the 
geometrical center of the complete area. 
The students specified basically three types of models: 



− Four groups approximated the shape of the ship to a rectangle and calculated the center of 
buoyancy in either of two different ways, as shown in Figure 2A and 2B. 

− One group approximated the shape to a rectangle with the corners “cut off”. To find the 
center of the area they approximated the area using vertical bars, as shown in Figure 2C. 
Using this strategy, it would have been possible to choose a more realistic shape and – 
with more subdivisions of the polygon – any level of detail of the area of displaced water, 
but the group chose this very simple shape without further analysis. 

− The last group also approximated the area as that specified by a set of points in the 
coordinate system, but used a simple but elegant method to approximate the shape of the 
ship: they superimposed a cross-section of the ship on a coordinate system and obtained a 
number of coordinates (arbitrarily chosen). The area was then divided into triangles, 
which made it easy to find the center of buoyancy. See Figure 2D. 
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Figure 2. The shapes and the calculation principles of the area of the ship’s crosscut. 
It is quite apparent that the calculations needed when using only three triangles (as in 2A) 

are not significantly less complex than those needed using several triangles (as in 2D), but 
that the latter approach will give a much more exact result. There were thus no 
implementation reasons for the students to choose a solution with a simple approximation of 
the shape of the ship – the calculations needed still required a sequence of calculations of 
coordinates. This observation leads us to believe that the students had decided that “just 
choosing a very simple shape of the ship will make the mathematics and the implementation 
easier” – which is a misconception. Furthermore, there are no signs that they even considered 
other alternatives. They had learned the basic physics from a lecture and then used the most 
direct method of approximating the shape of the ship in their determination of the center of 
buoyancy. 

 

5.2.2 Documenting the Models: As the projects proceeded, the steering group and the 
customer were somewhat surprised that no group documented their model – nor were there 
any descriptions given of how they approximated the shape of the ship nor of how they 
divided the area under water into simpler shapes. Therefore, in the middle of the project, we 
requested documentation of their model, and the performance of some kind of analysis or 
verification of the accuracy of their model. The most common reaction to this was that they 
were now assigned an additional task in the middle of the project – which they felt to be 
unfair. From project documentation and group meetings during the project, there is no sign of 
any group having begun their project work by even considering that they should evaluate the 
mathematical model they found or developed – many of them did not understand they had 
already developed a model. Only one group began immediately the documentation requested; 
presenting satisfactory documentation the next week; the other groups did not document the 
model until the very last week of the project. 

Three groups at first documented their model by describing the algorithm they had 
implemented, two groups using flowcharts and one group a pseudo-code. Although this was a 
good beginning, they did not perceive that they should also document the model as such.  

 

5.2.3 Analyzing the Models: We did not expect any major analysis or verification of their 
models; we considered it sufficient to use one example of a ship fully equipped (one 
particular set of cannons etc.), using the original Vasa data. The crucial approximation 
incorporated in the models is that of the ship’s shape, which affects the center of buoyancy 



and the center of mass. One means of verifying the model considered was to model the ship’s 
shape more exactly (for this single case) and to find the center of buoyancy and the torque 
through some advanced method, analytical or numerical, available in some powerful 
mathematics program. One would then expect the students to analyze the consequences of a 
set of heel angles by comparing the torque of their model with that of “reality” – or at least as 
close to reality as possible. It would then be easy to present the accuracy of their model in a 
plot such as that schematically shown in Figure 3 in which they would indicate the 
differences in calculation of their model with a “real” model. Additional analysis would 
include a study of the difference between the critical angles with different wind speeds and 
different configurations of the ship.  

Figure 3. A schematic plot showing an analysis of the model. 
The group that had approximated the ship’s shape most closely (Figure 2D) used another 

approach: they verified their method, not their model. They approximated another shape, a 
hull with a semicircular cross section shaped as a semicircle, with 10 points, and compared 
the exact area (simple to calculate for a semicircle) with the approximated shape, as a number 
of triangles. However, they did not analyze the effect of the number of points on the accuracy 
– how much would 20 points have improved the accuracy? But this example shows a typical 
engineering approach; if you cannot calculate (or do not know how to calculate), use 
measurements from a particular case. Similarly, the group using the shape presented in Figure 
2C did not analyze the effects of a larger number of coordinates on the accuracy. 

Two of the groups had a smarter and more scientific and engineering approach. Using a 
recognized formula for calculating the torque, given the wind speed [4], they compared the 
results thus obtained with those they obtained by their own method, one group used two 
different wind speeds, the other one only (4 m/s, that when the Vasa capsized). This should 
be considered a respectable analysis, although we would have preferred the analysis of a 
larger number of heel angles or wind speeds.  

One group performed a series of comparisons with different wind speeds, but compared 
their rectangular cross section hull not with a “real” ship but with a ship with a semi-circular 
cross section; they seemed to understand that this was not a verification, only a comparison 
between two crude approximations, but this was the best idea they had.  This approach would 
show how close are the different approximations and assuming that the real shape is 
something between these two shapes, the correct result would probably lie between these 
approximations.  

The other verifications did not reach this level. Two groups made a drawing of their 
rectangular ship and of the real ship (from a photo) on a graph paper, and counted the number 
of squares covered by the ship. Needless to say, this was a very inexact verification – perhaps 
more inexact than their model? One group performed no analysis or verification at all; they 
only discussed briefly the difficulty of modeling the ship sufficiently accurately.   

Our impression is that this task proved difficult for the students to understand. Not all of 
them seemed to understand the purpose of verifying the model in this way at all. Others 
understood the purpose of such an analysis, but had no idea of how it was to be performed.  
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And we daresay that not until the end did some of the students realize that such an analysis 
could have been used at the beginning of the project to choose a suitable model.   

The groups’ models and their verifications are summarized in Table 2. 
 

Table 2: A summary of how the six groups verified their mathematical models. 
Group No: 1 2 3 4 5 6 

Shape of ship 
Checked paper x x - - - - 
Center of Buoyancy1 x - - - x - 
Verification of method - - - x - x 

1The center of buoyancy was compared with the formula found in [4]. 

6. Conclusion 
The students knew quite well how to design and implement software to fulfill 

requirements; all groups produced design documents that were at least acceptable. The 
execution of the project was also satisfactory with very good teamwork. The issue of 
modifiability was seemingly harder; they understood that software should be easy to modify 
since one can always expect new requirements or changing environments, but it was hard for 
the students to know how to make the requirement of the software being modifiable more 
specific, and to show that they had succeeded. Finally, all groups certainly implemented a 
model of a ship; but its documentation and analysis was obviously a hard assignment. 

Of course, students of computer science have limited experience in physics, so it is perhaps 
unfair to expect them to perform equally well in the physical modeling as the software 
modeling. However, although a physics student could be expected to implement a better 
model or a better numerical algorithm (and probably have problems with the software part), 
our point is rather that the students easily lost sight of the software as (part of) a system. They 
happily performed a software design and implemented it, and we had in general no serious 
remarks on their project work, but they seemed to view the software without reflecting on the 
result from a system perspective. 

What are the lessons learned from the course result? We can discern at least two: 
− Previous education. Two and a half years of studying computer science or computer 

engineering at university level had not given them “system thinking”; they focused on the 
software and the project work. 

− Teachers. The assistants, at first, neither appreciated the importance of the model nor its 
documentation; they probably gave the impression that this was indeed a “new 
assignment” which turned up in the middle of the project. They had thus finished their 
education without sufficient awareness of system thinking! The main teacher, being also 
the customer, did not explicitly state the requirements of model and analysis and did not 
place them within the perspective of computer science students. This was an exemplary 
case of a misunderstanding between stakeholders due to different assumptions.  

Execution of a project is today an established part of most Software Engineering courses 
[1,7,8,10,14-17]. Such projects usually cover different phases, from the requirements 
elicitation and specification to the implementation, validation and verification. We can 
designate these parts as “Software Engineering centric” tasks, as opposed to what we would 
prefer to call “System-Engineering centric” tasks. We claim that the focus on modifiability 
(and on other non-functional properties) requires more of a holistic and system perspective. 
The tasks that require particular knowledge from other engineering or basic disciplines such 
as physics and mathematical modeling (and analysis) can be denoted as “Domain Engineering 
centric” tasks. We argue that these parts are even more difficult for software engineers (see 
Figure 4). 

When the students leave university, many of them will build software systems that are a 
part of larger systems – mechanical systems, electronics systems, web sites, etc. So, we arrive 
at a very serious question: are they prepared for this task? Will they be able to create “good 



systems”, or will they be limited to creating “good software”? We believe that software 
engineers and students of computer science should have more insight into engineering 
disciplines other than pure software engineering. 
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Figure 4. The difficulty of performing engineering tasks for software engineers 
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