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Abstract—The end-to-end path delay analysis is used to predict
timing behavior of multi-rate automotive embedded systems.
Some of the assumptions used by the existing analysis may not be
strictly followed by some legacy tools due to optimizations applied
during the development of these systems. As a result, the existing
analysis may not be applicable in some cases. In this paper we
identify one such case. That is, the case in which all the tasks in
a multi-rate task chain have equal priorities despite the fact that
they have different periods. Furthermore, the chain contains at
least one single-rate sub-chain. We also propose a preliminary
solution that makes the existing analysis applicable to this case.
However, the proposed solution is pessimistic. Currently, we are
working on minimizing the pessimism.

I. INTRODUCTION

Most of the automotive embedded systems are developed as
multi-rate systems [1]. A multi-rate system contains at least
one multi-rate task chain. A multi-rate task chain consists of
a connected sequence of tasks such that each task in the chain
is periodically activated with an independent trigger source
(clock). The activating clocks along the chain often have
different periods. These types of task chains can be realized in
uniprocessor as well as distributed embedded systems. These
task chains find their applications in many domains. However,
this paper focuses only on the automotive domain.

Often, real-time requirements are specified on multi-rate
automotive systems. This means, the time at which these
systems respond to some stimulus is equally important as
logical correctness of the response. Many of these systems
are of safety-critical nature, meaning that, missing a real-time
requirement may result in the system failure which can lead
to catastrophic consequences. Hence, the developer of such a
system has to provide guarantees that the actions by the system
are taken in a timely manner when it is executed. The end-to-
end path delay analysis [1] serves as one of the methods to
provide such guarantees. The analysis is pre-runtime, i.e., it
can validate end-to-end timing requirements specified on the
system without actually running the system and performing
exhaustive testing.

A. Motivation and Contribution

The motivation for this work comes from an activity of
implementing the end-to-end timing analysis in an existing
tool suite, Rubus-ICE [2], that is used to develop vehicular
embedded systems by several international companies includ-
ing Volvo. While implementing the analysis and performing
the testing, we identify that the existing end-to-end path delay
analysis [1] may not be applicable in the case where all tasks

in a multi-rate task chain have equal priorities despite different
periods; while the chain contains at least one single-rate sub-
chain. The existing analysis is not flawed at all, in fact, this
is due to the constraints used in the optimization tool that
is used for generating some task parameters. Consequently,
the tool may not strictly follow the assumptions used by the
analysis in some cases. We also discuss a preliminary solution
to use the existing analysis in this case. However, the solution
results in pessimistic end-to-end path delays. Minimization of
the pessimism from the analysis is an ongoing work.

B. Paper layout
In Section II, we discuss the background and related work.

Section III describes the end-to-end path delays. Section
IV presents the problem statement. Section V discusses the
preliminary solution and summary of current work.

II. BACKGROUND AND RELATED WORK

The timing behavior of a single-rate real-time system can
be predicted by calculating response times [3] of all tasks and
comparing them with corresponding deadlines. For example,
consider a single-rate real-time system consisting of only one
task chain shown in Fig. 1. There are three tasks in the chain
represented by τ1, τ2 and τ3. The tasks have equal priorities
and the Worst Case Execution Time (WCET) of each task is
equal to 1 time unit. There is only one activating source for
the chain that triggers τ1 periodically with a period of 8 time
units. The data read by τ1 from register1 Reg-1 is considered
as the input of the task chain. It may correspond to the data
that arrives from a sensor. Whereas, the data written by τ3 to
Reg-4 is considered as the output of the task chain. It may
correspond to the control data (or signals) for an actuator.
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Fig. 1. Example of a single-rate task chain.

Here is the sequence of events that occur as soon as
τ1 is triggered: it reads the data from Reg-1, executes its
functionality, writes the data to Reg-2 and immediately triggers
τ2. The tasks τ2 and τ3 follow similar execution steps with an
exception of the activation by their predecessor tasks unlike τ1.
Assuming no interferences, the response time of the chain can

1A register may correspond to a port of a software component which is
realized by the task at run-time.



be intuitively calculated by summing WCETs of all tasks in
the chain, i.e., 3 time units. In this case, there is only one path
through which the data can traverse through the chain from
input (Reg-1) and appears at the output (Reg-3). Intuitively,
the response time of the chain also represents the end-to-end
path delay.

However, the timing behavior of a multi-rate real-time
system cannot be completely predicted based on the response-
time analysis results. For these systems, different types of end-
to-end path delays should also be computed and compared
to corresponding end-to-end deadlines. Nevertheless, these
delays implicitly depend upon response times of the tasks. For
example consider a multi-rate task chain shown in Fig. 2. The
task chain consists of three tasks denoted by τ1, τ2 and τ3. The
tasks are triggered by independent periodic clocks with periods
of 8, 8 and 4 time units respectively. The WCETs of each task
is assumed to be 1 time unit. When the task τ1 is triggered,
it reads the data from Reg-1, executes some functionality
and finally writes the data to Reg-1. The tasks τ2 and τ3
follow similar operations on the corresponding input and
output registers. Since τ3 is triggered independently, the data
produced by it at Reg-4 at the time of its response corresponds
to the input data in Reg-3 and it may not correspond to the
fresh input data in Reg-1. Intuitively, the end-to-end delay can
be significantly higher than the end-to-end response time in the
multi-rate chains. These delays are discussed in detail in the
next section.

20

1
τReg-1

2
τReg-2

3
τReg-3 Reg-4

Period = 8 Period = 8 Period = 4

WCET = 1 WCET = 1 WCET = 1

1
τReg-1

2
τReg-2

3
τReg-3 Reg-4

Period = 8 Period = 4

WCET = 1 WCET = 1 WCET = 1

Fig. 2. Example of a multi-rate task chain.

The end-to-end timing constraints in automotive multi-
rate real-time systems are formally defined by Stappert et
al. [4]. Whereas, a framework for the calculations of end-to-
end path delays for these systems is developed by Feiertag et
al. [1]. These two works have been conducted in cooperation
with an EU project, TIMMO2USE [5], in which the Timing
Augmented Description Language (TADL2) [6] is developed
to provide AUTOSAR [7] with a timing model. AUTOSAR
is an industrial initiative to provide a standardized software
architecture for the development of software for automo-
tive embedded systems. Some timing constraints included in
TADL2 correspond to semantics of the end-to-end path delays
defined in [4], [1]. The corresponding end-to-end path delay
analysis has also been implemented in several industrial tools
including Rubus-ICE [8]. Alur et al. [9] developed a tech-
nique for the calculation of the end-to-end delays. However,
this technique is based on model checking. A compositional
scheduling approach based on event stream models has been
introduced in [10]. However, the approach focusses on FIFO-
based communication among components. On the other hand,
we focus on register-based (port-based) communication which
is very common in automotive systems [7], [11], [4], [1], [2].

In this paper, we consider the end-to-end path delay analysis
developed in [1] due to several reasons. First, it is build

upon existing response-time analysis. Second, it is flexible
in a sense that it is equally applicable to the single-node as
well as distributed multi-rate real-time systems. Finally, it is
the most recent analysis for multi-rate real-time systems in
the automotive domain. Moreover, it is acknowledged by the
AUTOSAR consortium including some tool vendors.

III. END-TO-END PATH DELAYS

In order to explain the meaning of end-to-end path delays,
consider again the task chain shown in Fig. 2. Since each task
in the chain is activated independently with a different clock,
there can be several paths through which the data can traverse
from input to output. In other words, there can be multiple
outputs (values in Reg-4) corresponding to one input (value
in Reg-1) of the task chain as shown by the uni-directional
curved arrows in Fig. 3. This results in different end-to-end
path delays. These delays in the task chain shown in Fig. 2
are graphically illustrated in Fig. 3. It should be noted that
the existing end-to-end path delay analysis [1] assumes fixed-
priority preemptive scheduling while the tasks are assigned
priorities according to rate-monotonic algorithm. The execu-
tion scenario shown in Fig. 3 is created for simplicity and may
not represent the exact worst-case scenario.
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Fig. 3. End-to-end path delays in a multi-rate task chain in Fig. 2.

1) Last In First Out (LIFO) Path Delay: This delay is equal
to the time elapsed between the current non-overwritten release
of τ1 (input of the chain) and corresponding first response of
τ3 (output of the chain).

2) Last In Last Out (LILO) Path Delay or Age Delay:
This delay is equal to the time elapsed between the current
non-overwritten release of τ1 and corresponding last response
of τ3. This delay finds its importance in many multi-rate
systems including the control systems where interest lies in
the freshness or age of the produced data. For instance, in a
multi-rate control system that initiates by acquiring a sensor
input and terminates by producing an actuation signal, it is
vital to ensure that the actuator signal does not exceed a
timing constraint such as maximum age of the data. That is
why this path delay is better known as the “Age” delay in the
automotive domain [6], [11], [1], [8]. We overload the terms
age and LILO to mean the same delay. It should be noted that
the last non-overwritten input that actually propagates through
the task chain towards the output is considered in both LIFO
and LILO path delays.



3) First In First Out (FIFO) Path Delay or Reaction Delay:
This delay specifies the longest allowed reaction time for the
data produced by the initiator to be delivered to the terminator.
Formally, it can be defined as the time elapsed between the
previous non-overwritten release of τ1 and the first response
of τ3 corresponding to the current non-overwritten release of
τ1. In order to understand this definition, assume that a new
value of the input is available in Reg-1 “just after” the release
of the first instance of τ1 (at time unit 0 in Fig. 3). Intuitively,
the first instance of τ1 “just misses” reading the new value
from Reg-1. The new data has to wait until the release of
the next instance of τ1 to propagate towards the output of the
task chain. The new data is read by the second instance of τ1.
The first output corresponding to the new data (arriving just
after time unit 0) appears at the output of the chain at 19 time
units. This delay represents the FIFO path delay as shown in
Fig. 3. This type of path delay is more obvious in distributed
real-time systems where a task in the receiving node may just
miss to read the fresh signals from a message arriving from the
network. In the automotive domain, this delay is better know
as the “Reaction” delay because it represents the first reaction
corresponding to the input data [6], [11], [1], [8]. This delay
is important in the button-to-reaction applications used in the
body electronics domain where the first reaction to input is
important. We overload the terms reaction and FIFO to mean
the same delay.

4) First In Last Out (FILO) Path Delay: This delay spec-
ifies the longest time elapsed between the previous non-
overwritten release of τ1 and the last response of τ3 corre-
sponding to the current non-overwritten release of τ1. The
explanation about “just missing” a fresh input data discussed
to explain the FIFO path delay equally applies here.

IV. PROBLEM STATEMENT

Before presenting the problem, first we briefly discuss a
few terms. A timed path is a sequence of task instances in a
multi-rate task chain whose sequential execution results in the
propagation of data from input to output of the chain. There
can be several valid timed paths in a multi-rate task chain.
Assume τ1(2) to denote the second instance of τ1. An example
of a valid timed path is τ1(2)→ τ2(3)→ τ3(7), i.e., data path
represented by the second, third and seventh instances of τ1,
τ2 and τ3 in Fig. 3. Let the end-to-end path delay for this timed
path be denoted by DelayE2E

(τ1(2)→ τ2(3)→ τ3(7))
. According to

the existing analysis, this delay is calculated as follows.

DelayE2E
(τ1(2)→ τ2(3)→ τ3(7))

= α3(7) +R3(7)− α1(2) (1)

α3(7) represents the activation time of the seventh instance
of τ3. Similarly, α1(2) represents the activation time of the
second instance of τ1. Whereas, R3(7) represents the response
time of the seventh instance of τ3. We refer the reader to [1]
for the detailed calculations of different types of delays.

Now consider a special multi-rate task chain in which all
tasks have equal priorities while the chain contains a single-
rate sub-chain as shown in Fig. 4. The sub-chain, consisting of
τ1 and τ2, is single-rate because there is only one independent
activating source along the sub-chain that triggers τ1 with a
period of 8 time units. Whereas, τ2 is activated only by its

predecessor τ1. Hence, there is a precedence relation between
τ1 and τ2. Overall, the task chain is a multi-rate chain because
τ1 and τ3 are triggered independently with different clocks.
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Fig. 4. Example of a multi-rate task chain with a single-rate sub-chain.

Due to the presence of a single-rate sub-chain, the timed
paths for the multi-rate chain in Fig. 4 are different from the
timed paths for the task chain in Fig. 2. For instance, the first
instance of τ2 cannot execute before the first instance of τ1
due to precedence relation between the two tasks. As soon as
τ1 finishes its execution, it activates τ2. This is in contrary to
the task chain in Fig. 4 where the first instance of τ2 can be
executed before the first instance of τ1 as shown in Fig. 3.
The end-to-end path delays for the task chain in Fig. 4 are
shown in Fig. 5 for the scenario where the smallest offset
(1 time unit) between τ1 and τ2 is used in the single-rate
sub-chain. Clearly, the offset between the two tasks cannot be
zero because τ2 cannot be activated before τ1 has finished its
execution.
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Fig. 5. End-to-end path delays of the multi-rate task chain in Fig. 4 with
the smallest offset between τ1 and τ2 in the single-rate sub-chain.

Some of the assumptions used by the existing end-to-end
path delay analysis may not hold in some legacy tools that
are used for the development of multi-rate automotive systems
such as Rubus-ICE [2]. The Rubus schedular applies the fixed
priority preemptive scheduling [12] to transactions. Each clock
trigger defines a transaction and all tasks along the trigger
chain (i.e., single rate chain) are allocated to the transaction.
For example, the task chain in Fig. 4 is allocated to two
transactions. The first transaction with a period of 8 time
units contains the two tasks τ1 and τ2. Whereas, the second
transaction with a period of 4 time units consists of only τ3.
Within a transaction consisting of more than one task, every
two neighboring tasks bear a precedence relation. The tasks
within a transaction are scheduled with offsets. The offset
assignment tool may apply optimizations based on response
times and not on the end-to-end path delays. As a result of
the optimization, a task in the single-rate sub-chain may not
be scheduled immediately after its predecessor, e.g., unlike
the first instance of τ2 that is scheduled immediately after the
execution of the first instance of τ1 in Fig. 5.



However, the optimization tool guarantees to schedule the
task such that it is able to complete its execution before
the start of the new period of its predecessor task within
the transaction. This can be observed in Fig. 6 where the
first instance of τ2 is scheduled as late as possible so that
it finishes its execution before time unit 8, i.e., before the
start of the next period of τ1. The tool assigns such offsets
within the transactions to accommodate event-triggered tasks
and external interrupts occurring at various priority levels. It
should be noted that the third instant of τ3 is preempted by the
first instance of τ2 because the optimization tool is constrained
to schedule each instance of τ2 within the period of τ1. In
comparison, if all tasks in the chain are assigned priorities
according to the rate-monotonic algorithm, the third instance
of τ3 cannot be preempted. However, the optimization tool
uses the arbitrary priority assignment. This can be seen from
the equal priorities assigned to all tasks in the chain despite the
fact that periods of all tasks are not equal. Since, the existing
end-to-end path delay analysis considers the rate monotonic
scheduling, it cannot be applied to those multi-rate task chains
in which all tasks have different periods but equal priorities;
and there exists at least one single-rate sub-chain. This is
because the legacy tool that is used for the task parameters
generation may optimize the tasks with equal priorities for
response times and not for the end-to-end path delays.
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Fig. 6. End-to-end path delays of the multi-rate task chain in Fig. 4 with
the longest offset between τ1 and τ2 in the single-rate sub-chain.

Discussion: Due to the optimizations and constraints used
in some legacy tools that are used for the development of
multi-rate task chains, the assumptions used by the existing
analysis [1] may be violated by the tools in some cases.
As a result, the existing analysis may not be applicable in
such cases. For example, the existing analysis assumes rate-
monotonic scheduling, whereas the tool may use arbitrary
priority assignment. We identified one such case where all
tasks in the chain have same priorities despite having different
periods and the chain contains at least one single-rate task
chain. It should be noted that this is not because of any flaw in
the existing analysis. In fact, it is because of constraints speci-
fied in the optimization tools that generate task parameters and
sometimes violate the assumptions used by the analysis. Apart
from the case identified, the existing analysis holds good.

V. PRELIMINARY SOLUTION AND ONGOING WORK

In a bid to reuse the existing analysis, a simple yet intuitive
solution to deal with the problem is to treat every multi-rate

task chain having at least one single-rate sub-chain similar to
an equivalent pure multi-rate task chain. That is, each task in
such a task chain is assumed to be activated independently.
Although some tasks in the task chain are actually activated
by their predecessor tasks, the analysis engines assume them
to be activated by independent clocks whose periods are equal
to the triggering clocks of their predecessors. For example, the
analysis engines treat the task chain in Fig. 4 exactly similar
to the task chain in Fig. 2. Although τ2 is triggered by τ1 in
Fig. 4, the analysis engines assume that τ2 is triggered by an
independent clock with a period of 8 time units. However, if
we use this assumption while analyzing the special multi-rate
task chain in Fig. 4, the calculated end-to-end path delays can
be pessimistic. For example, after using the assumption, the
end-to-end path delays (LIFO = 11, LILO = 15, FIFO = 19,
FILO = 23) shown in Fig. 3 are higher than the end-to-end
path delays (LIFO = 10, LILO = 12, FIFO = 18, FILO = 20)
in Fig. 6 where the longest offset (7 time units) between τ1
and τ2 in the single-rate sub-chain is considered.

Currently, we are working on extending the existing end-to-
end path delays analysis so that the pessimism in the calculated
end-to-end path delays can be minimized. After that, we plan
to implement the extended analysis in Rubus-ICE tool suite.
Moreover, we plan to provide a proof of concept by conducting
an industrial-application case study.
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