Towards Classification of Concurrency Bugs Based
on Observable Properties

Sara Abbaspour Asadollah*, Hans Hansson*, Daniel Sundmark*, Sigrid Eldh'
*Milardalen University, Visterds, Sweden
{sara.abbaspour, hans.hansson, daniel.sundmark } @mdh.se
TEricsson AB, Kista, Sweden
sigrid.eldh@ericsson.com

Abstract—In software engineering, classification is a way to
find an organized structure of knowledge about objects. Classifi-
cation serves to investigate the relationship between the items to
be classified, and can be used to identify the current gaps in the
field. In many cases users are able to order and relate objects by
fitting them in a category. This paper presents initial work on a
taxonomy for classification of errors (bugs) related to concurrent
execution of application level software threads. By classifying
concurrency bugs based on their corresponding observable prop-
erties, this research aims to examine and structure the state of
the art in this field, as well as to provide practitioner support
for testing and debugging of concurrent software. We also show
how the proposed classification, and the different classes of bugs,
relates to the state of the art in the field by providing a mapping
of the classification to a number of recently published papers in
the software engineering field.

I. INTRODUCTION

Concurrent programming puts demands on software devel-
opment and testing. Concurrent software may exhibit prob-
lems, like deadlocks and race conditions, that may not occur in
sequential software. There are a variety of challenges related to
faults and errors in concurrent and multi-threaded application
[1], [2], [3]. So far, there has been some research on bugs
occurring in concurrent software (see e.g., [1], [2], [3]), but
the efforts have been partially scattered, and no common
terminology has been established. Since concurrent software
bugs are treated separately in different papers, to the best of
our knowledge this research is the first effort to provide a
bug classification as a basis for extracting and categorizing
the current knowledge in concurrent software bugs.

The purpose of the classification is to provide a common
terminology for distinguishing between different types and
classes of concurrency bugs. It will be useful in future research
to use the same name and label for a specific concept, thereby
facilitating communication among researchers and practition-
ers. Moreover, integrating and classifying concurrent software
bugs will be helpful in order to find the interaction between
separate elements and classes. The similarities and differences
become more apparent, allowing for identification of gaps in
the state of the art.

Another, more practical motivation for the classification
is for the purpose of supporting software practitioners in
finding the cause of different types of concurrency problems.
Due to repeatability issues caused by the non-determinism

inherent in most concurrent software, testing and debugging
of such software is challenging. There is no guarantee that a
repeated execution with the same input will yield the same
behavior over different runs of execution. By providing an
understanding the structure and distinguishing features of dif-
ferent concurrency bugs, a classification can provide benefits
for testers as well as designers and developers. Moreover, the
classification proposed in this paper is based on observable
static and dynamic properties of the concurrent software under
test. Thus, in case of erroneous program behavior, we seek a
way to support the deduction of the cause of this behavior
based on these observable properties.

A. Intended Practical Use of the Classification

Software testing plays an important role in the software
life cycle in order to produce high quality software with a
low maintenance cost. Considering a basic process model in
software testing like Fig. 1(a), bugs and defects are identified
during testing, and corrected during debugging. In other words,
the result of testing process will provide an indication of the
answer to the question: "Do we have bug(s) in the software
under test?” In case indications of bugs are found, the common
phase after testing phase would be debugging, with the purpose
of identifying and removing the causes of the problems (i.e.,
the bugs).

Following debugging, regression testing is commonly done
to check if any new errors are introduced during debugging.
Fig. 1(a) summarizes this process.

The intention of this research is for it to be used to clarify
and simplify the explained process by guiding practitioners
in testing and debugging of concurrent software. As shown
in Fig. 1(b), a practitioner can check the properties of bug(s)
found and compare them with the properties given for each
class of the proposed classification. Thereby, he/she can figure
out the potential types of concurrency bugs that may have been
encountered (or at least reject some classes of bugs that could
not possibly have occurred).

Since finding the cause of bugs is essential in exploring
corrections and selecting the correct solution for fixing the
errors therefor this classification can be useful as a guide to
find real cause of errors and it can be helpful in understanding
the type of bug by offering more information.

Debugging
Software | s bug
| Testing ‘ Bug identification ‘
No bug(s) l
Next ‘ Cause identification ‘
phase in
saftwarg ‘Exploring corrections‘
life cycle
Fixing error
A .

(a) A simple testing and debugging process

/ Debugging \
| Software |Has bug, ‘Properties identiﬁcation‘

Testing ! i

1 1 B Bug

— ‘Comparmg proplertles% { L

Next phase ‘ Type of bug identification ‘
in software
life cycle ‘ Cause identification ‘

!
‘ Exploring corrections‘

Fixing error
T

(b) A simple testing and debugging process with applying bug classification

\ /

Fig. 1: The testing and debugging process.

B. Contributions

In summary, this paper makes the following contributions:

¢ A summary of concurrency bugs addressed in software
testing, analysis and debugging, based on a review of
research literature over the last 10 years.

o A classification based on observable properties of these
concurrency bugs, intended to support testing and debug-
ging of concurrent software.

C. Paper Outline

This paper proceeds by presenting our research approach
in Section II. The assumed system model and terminology is
presented in in Section III. Concurrent software bugs are listed
in Section IV, and Section V presents the proposed classifi-
cation of concurrency bugs based on observable properties. In
Section VI we map the focus of recently published papers to
the proposed classification, and finally Section VII concludes
the paper and proposes future work.

II. RESEARCH APPROACH

To propose a classification that fulfills the objective stated
in the introduction, the following approach was used:

1) An exhaustive search for relevant articles on testing and
debugging the parallel and concurrent applications in
single and multicore platforms published in the period of
2005 - 2013 was conducted in the Web of Knowledge,
Scopus, and IEEE Xplore databases. After exclusion of
non-relevant articles, we ended up with a corpus of 282
relevant articles.

2) Information regarding concurrency bugs was extracted
from each article in the above corpus.

3) The concurrency bug terminology was harmonized, and
a common general list of concurrency bug types was
compiled.

4) For each bug in the above list, observable properties
were determined. Based on these observable properties,
the bugs were ordered and a bug classification was
established.

Regarding limitations in scope, note that we do not consider
performance issues, hence this paper does not address bugs
related to performance. In addition, we focus on application
level bugs, and do not consider bugs related to the operation
of the operating system.

III. PRELIMINARIES

The below subsections provide details on the system model
and the terminology used in this paper.

A. System Model

We consider concurrent, parallel, and multi-threaded pro-
grams running on a single- or multicore platform with:

a) A finite number of non-CPU resources, possibly par-
titioned into several resource types, such as memory,
les, printers, drives, and some other shared resources.

b) A set of threads T (T1,7%,7T5,...,Ty); Le., indi-
vidual instructions in different threads can execute
concurrently on different cores or be interleaved on
the same one.

c) Access to resources can be protected by some mech-
anism, which can enforce atomic access to a shared
resource.

d) The state of a thread in the system is defined by the
current activity of the thread and each thread may
at each point in time be in exactly one of the states
shown in Fig. 2.

The different thread states are defined as described below:

o Ready: The thread is prepared (ready) to execute when
given the opportunity.

« Executing: The thread is currently being executed.

o Blocked/waiting: The thread is waiting for a particular
event (e.g. release of a lock, the passage of time, avail-
ability of a contested resource) and cannot execute until
this event occurs.

« Terminated: The thread has completed its execution.

dispatch

interrupt/ time-out

Blocked/
waiting

Executing
release

Fig. 2: Thread states

B. Bugs, Faults, Errors, and Failures

It should be noted that the terminology concerning soft-
ware problems is not entirely consistent. In software testing,
debugging and troubleshooting, different terms like fault,
error, bug, failure, and defect exist and are sometimes used
interchangeably. Fault, error and failure are the most common
terms [4]. Swebok [5] describes a fault as the cause of a
malfunction, and Eldh et al. [4] define it as the static origin
of the problem in the source code.

Error is typically defined as an intermediate infection of the
code [4], or as a problem detectable during execution or at run
time that causes the program to perform incorrectly [6].

A failure will happen when a system or component cannot
perform its required functions as defined by the specified
requirements [7]. In other words, if an error propagates into
output and becomes visible during execution it has caused a
failure [4]. In this research we use the term bug to refer to
an observable malfunction in the concurrent program under
test. While this may not be entirely in line with the above
terminology, it is consistent with the terminology used in
related work on concurrency bugs.

IV. CONCURRENT SOFTWARE BUGS

In order to avoid omission of relevant bugs, we conducted
a literature review to identify faults, errors and bugs relevant
to parallel and concurrent application testing and debugging,
that have been covered in textbooks and in the scientific
literature over the last 10 years. The common properties of
bugs presented below are primarily extracted from references
(11, [31. [81, [91, [101, [111, [12], [13], [14], [15], [16], [17],
[18].

The explanation of each concurrent bug with their
observable properties are listed as follows:

A Data race occurs when at least two threads access the
same data and at least one of them write the data [9]. It
occurs when concurrent threads perform conflicting accesses
by trying to update the same memory location or shared
variable [1] [10]. If the memory accesses satisfy the four
following conditions, a data race bug has happened: (1) The
access were from different threads, (2) At least one of the
accesses was a write access, (3) The accesses were targeting
the same memory location and (4) The accesses were NOT

protected by a synchronization mechanism e.g. lock. There are
however a few subtle subcategories of data races, as described
below:

o Memory inconsistency is when different threads have
inconsistent views of shared variables [3]. In this case the
results of a write operation by one thread are not guaran-
teed to be visible to a read operation by another thread. If
the memory accesses satisfy the five following conditions
then a memory inconsistency bug has occurred: (1) The
access were from different threads, (2) The accesses were
related to the same memory location, (3) The accesses
were NOT protected by a synchronization mechanism e.g.
lock, (4) There were at least two accesses one of them
was write and the other was read and (5) The read access
has happened too early.

o Write-Write race is a data corruption caused by ac-
cessing a shared variable via at least two threads, which
one of them overwrites the data before any reads. If the
memory accesses satisfy the five following conditions
then a write-write race bug has occurred: (1) The access
were from different threads, (2) The accesses were related
to the same memory location, (3) The accesses were NOT
protected by a synchronization mechanism e.g. lock, (4)
There were at least two Write accesses and (5) The Write
accesses have happened without any Read in-between.

Deadlock is “a condition in a system where a process cannot
proceed because it needs to obtain a resource held by another
process but it itself is holding a resource that the other process
needs” [11]. It occurs when two or more threads attempts to
access shared resources held by other threads, and neither is
willing to give them up [1] [8]. The common properties for
this type of bugs are: (1) None of the threads are able to
proceed and progress, (2) All threads involved hold a lock,
(3) All threads involved are waiting for a lock held by another
involved thread and (4) At least one thread is in waiting for
an unacceptably long time.

Livelock is “a situation where a thread is waiting for a
resource that will never become available. It is similar to
deadlock except that the state of the process involved in the
livelock constantly changes with regards to each other, non
progressing” [12]. The common properties for this type of
bugs are: (1) At least one of the threads is executing on one
of the processor cores, (2) None of the threads are able to

proceed and progress and (3) All threads involved have read
and written to a spinlock variable (i.e., a shared variable used
to enforce synchronization between threads).

Starvation is “a condition in which a process indefinitely
delayed because other processes are always given preference”
[13]. Starvation typically occurs when high priority threads
are monopolising the CPU resources. The common properties
for this type of bugs are: (1) At least one of the threads is
executing on one of the processor cores, (2) At least one of
the threads is in the Ready state, (3) The number of involved
threads is larger than the number of free core and (4) At least
one thread is in the ready queue for an unacceptably long time.

A Suspension-based locking or Blocking suspension oc-
curs when a calling thread waits for an unacceptably long time
in a queue to acquire a lock for accessing a shared resource
[14]. The common properties for this type of bugs are: (1) At
least one of the threads is executing on one of the processor
cores, (2) The number of requests to a specific resource is
larger than the number of available resources of that type, (3)
At least one of the threads has acquired a lock and (4) At least
one thread is in waiting for an unacceptably long time.

Order violation is defined as the violation of the desired
order between at least two memory accesses [15]. It occurs
when the expected order of interleavings does not appear [18].
If a program fails to enforce the programmer’s intended order
of execution then an order violation bug will happen [16]. If
the memory accesses satisfy the four following conditions then
an order violation bug has happened. (1) The access were from
different threads, (2) At least one of the accesses was Write,
(3) The accesses were related to the same memory location
and (4) A specific (desired) execution ordering between the
access was required.

Atomicity violation refers to the situation when the exe-
cution of two code blocks (sequences of statements) in one
thread is concurrently overlapping with the execution of one
or more code blocks of other threads in such a way that the
result is not consistent with any execution where the blocks
of the first thread are executed without being overlapping
with any other code block. Atomicity violation can be further
subcategorized into single variable atomicity violation and
multi-variable atomicity violation, where:

o Single variable atomicity violation is when there is

a sequence of concurrent memory access to a single
variable, yields different result from the state of sequen-
tial memory accesses [17]. If the memory accesses are
satisfied by the five following conditions then a single
variable atomicity violation bug has happened. (1) The
access were from different threads, (2) At least one of
the accesses was Write, (3) The accesses were related
to the same memory location, (4) An atomic execution
of statements was required and (5) The accesses targeted
only one memory location.

o Multi-variable atomicity violation occurs when multi-
ple variables are involved in an unserializable interleaving
pattern [17]. If the memory accesses are satisfied by
the four following conditions then a multi-variable atom-

icity violation bug has happened. (1) The access were
from different threads, (2) At least one of the accesses
was Write, (3) An atomic execution of statements was
required and (4) The accesses targeted more than one
memory locations.

V. A CLASSIFICATION FOR CONCURRENT SOFTWARE
BuGs

In order to propose this classification, we first gathered
the common system states and symptoms properties of bugs
based on a literature review. In the following lists, when we
refer to threads ¢, we are referring to the threads in the set
Ty, C T, where Ty is the set of threads directly involved in the
bug. Similarly, when we refer to a shared resource r, we are
referring to a resource in the set R, C R, where Ry is the set
of resources directly involved in the bug.

Further, our conceptual standing point is that we have iden-
tified a concurrency bug and based on observable properties
directly related to the bugs we want to uniquely classify it into
one the introduced classes.

We divide the observable properties in properties related to
the system state, and properties related to the symptoms of
the concurrent program under test. All properties used for the
classification are listed in the below subsections:

A. System State Properties

The below list collects the properties related to the system
state at the time of the bug. We refer to the thread execution
states (shown in Fig. 2) in the properties list to present the
state of threads when the bugs occur. Most of these properties
are related to operations of the operating system and they can
be observable by available data structure in operating system
kernel such as Thread Control Block (TCB) or using the
suitable method(s) in source code to observe these properties
during debugging or tracing the software code.

1) At least one thread ¢ € T} is in the Waiting state.

2) At least one thread ¢ € T} is in the Executing state.

3) At least one thread ¢ € T} is in the Ready state.

4) All threads in T3 have read and written to a spinlock
variable (spinlock is “mutual execution mechanism in
which a process executes in an infinite loop waiting for
the value of lock variable to indicate availability” [13]).

5) All threads in T} are waiting for a lock held by another
involved thread.

6) At least one thread ¢ € T} is in the ready queue for an
unacceptably long time.

7) At least one thread ¢ € T; is in Waiting state for an
unacceptably long time.

8) All threads in 7} are in Executing state.

B. Symptom Properties

The below list collects the properties related to the ob-
servable output at the time of the bug. Based on the bug’s
symptoms one may recognize the cause of the problem and
the nature of the bugs. The following list thus shows some of
the typical symptoms that can be used to categorize bugs.

1) No thread ¢ € Ty, is able to proceed and progress.

2) The number of threads in 7} is larger than the number
of free processor cores.

3) There are incorrect or unexpected results.

4) The number of requests to a resource r is larger than
the number of available resources of that type.

5) All threads in Tp hold a lock.

6) At least one of the threads ¢t € Tj holds a lock.

7) Accesses to shared memory were made from different
threads in T}.

8) At least one of the accesses to the shared memory was
a Write.

9) Accesses to shared memory were targeted the same

memory location.

Accesses to shared memory were NOT protected by a

synchronization mechanism.

Accesses to shared memory targeted just one memory

location.

Accesses to shared memory targeted more than one

memory locations.

There were at least two accesses to the same shared

memory location, a Write and a Read, where the Read

has happened too early.

There were at least two Write accesses to shared mem-

ory, and they occurred without any Read in-between.

There was at least one correct execution ordering be-

tween the accesses to shared memory which the program

failed to enforce.

An atomic execution of statements was required.

10)
11
12)

13)

14)

15)

16)

C. Combination of System State and Symptom Properties

Based on the above lists of observable properties, we have
derived a classification of concurrency bugs. The resulting
classification is shown in Table I.

As shown in the table, the first column illustrates the
observable properties while the first row displays the different
types of concurrency bugs. The mapping between bugs and ob-
servable properties should be interpreted as Bug — property.
Thus, an “X” in the column of bug B and the row of property
p would mean that if you have come across bug B, then you
would inevitably be able to observe property p. Note that the
opposite implication (i.e., property — Bug) does not hold.

Different execution scenarios cause different sub-types of
bugs. For instance, “Order violation 17 happens if threads
execute on multicore platform and there are enough free cores
for executing threads on each core, but the order of access to
shared memory between the threads is incorrect.

In “Order violation 2 the order of execution is not as same
as desired order because of reasons of a lock mechanism. The
locking patterns force at least one of the involved threads to
stay in Waiting state when the bug has happened.

Moreover, “Order violation 3” happens when the number of
involved threads is larger than the number of free cores, and
at least one thread was forced to stay in the Ready state.

“Single variable atomicity violation 1” happens when in-
volved threads execute in two separate cores but the blocks

intended to be atomic are not adequately protected. In this
case the last state of at least one involved thread was Waiting
when the bug occurred. “Single variable atomicity violation
2” happens when the number of involved threads is larger
than the number of free cores, and at least one thread is
forced to change from Waiting to Ready state. The difference
between ‘“Multi-variable atomicity violation 1” and ‘“Multi-
variable atomicity violation 2” is equivalent to the difference
between “Single variable atomicity violation 1” and “Single
variable atomicity violation 2”.

VI. MAPPING THE CLASSIFICATION TO THE STATE OF THE
ART

In order to evaluate how the proposed classification relates
to recent work in the field, we selected fifteen relevant papers
from the original literature review corpus of 282 articles
(retrieved as explained in Section II). For selection criteria,
we focused on papers published between 2005 to 2013 in the
IEEE Transactions on Software Engineering (TSE) journal or
the proceedings of the International Conference on Software
Engineering (ICSE). These publication venues were chosen as
they are commonly viewed as the premier publication venues
in software engineering.

We then mapped each article onto our proposed concurrency
bug classification, based on the type of bug(s) focused on. As
can be seen from the resulting Table II, most recent work has
focused on data races and atomicity violations. Also, many
papers focus both on data races and atomicity violations.
However, contributions focusing on suspension, starvation and
deadlock are sparse, and livelock bugs are not regarded as an
open issue in development of concurrent software. This may
of course be due to the fact that management of these types of
bugs are considered to a resolved issue, but the question of to
what extent the managing techniques has spread to software
engineering professionals is still open. For example, in their
recent study on real-world bugs, Lu et al. [16] found that over
30% of the sample of bugs they studied were in fact deadlock
bugs.

It should also be noted that since papers [19], [20] and
[21] did not investigate any specific bugs and their topics
was mostly related on analyzing the system testing result,
establishing a framework for achieving good performance, and
testing strategy, they are not mapped to any particular bug type
in the classification.

Additionally, by mapping the result of an empirical
study [16] with our classification we found out all concurrent
bugs that they investigated in their study is mapped to our
classification.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose a bug classification for concurrent
and multithreaded applications. The classification has been de-
rived by first searching for relevant papers and extracting bug
information from them, making a list of bugs and determining
the observable properties for each bug, and then classifying

TABLE I: Concurrent software bugs properties

Property

Deadlock
Livelock
Starvation

Atomicity violation
Single variable | Multi variable

—

Order violation

)
2
Sy
-
5
o}
o

2
1
2

Suspension
Memory inconsistency
Write-Write race
Order violation 1
Order violation 3
Single variable-AV
Multi variable-AV

At least one thread t € T} is in the Waiting state X

At least one thread ¢t € T}, is the Executing state X

| ™| Order violation 2
| | Single variable-AV
>X| P4 Multi variable-AV

ike
>
>

| =<

At least one thread ¢ € T} is in the Ready state

X <
| =<
| =<

All threads in T} have read and written to a spinlock
variable

All threads in T} are waiting for a lock held by another X
involved thread

At least one thread ¢ € T}, is in the ready queue for an
unacceptably long time

At least one thread ¢t € T}, is in Waiting state for an X
unacceptably long time

All threads in T3 are in Executing state

No thread ¢ € Ty, is able to proceed and progress X | X

There are incorrect or unexpected results

The number of threads in T3 is larger than the number
of free processor cores

>
>
>

Potential request to a resource is larger than the number
of available resources of that type

All threads in 73 hold a lock X

At least one of the threads ¢t € T3 holds a lock X

Accesses to shared memory were made from different
threads in T

At least one of the memory accesses was Write

ke

Accesses to shared memory were targeted the same
memory location

>
Ll R Il
el R I
el R Il
Ll i e
Ll R I e
Ll i e

The memory accesses were NOT protected by a
synchronization mechanism

XX R X
XX R X
>

Accesses to shared memory targeted just one memory
location

Accesses to shared memory targeted more than one
memory locations

There were at least two accesses to the same shared
memory location, a Write and a Read, where the Read
has happened too early

There were at least two Write accesses to shared
memory, and they occurred without any Read
in-between

There was at least one correct execution ordering
between the memory accesses which the program failed
to enforce

An atomic execution of statements was required

these bugs in a common structure using these observable
properties.

The grouping and classification of concurrency bugs pre-
sented in this paper is structured based on properties that are
commonly observable in concurrent systems. In its design,
it is intended to serve as an aid for software developers
during debugging and testing of concurrent applications. By
using the knowledge on the connection between bug types
and observable properties, the bug classification helps users
to make appropriate decisions when they encounter problems.
The classification may also serve as a structure in which the
current body of knowledge can be arranged, thereby allowing
for identification of gaps in this knowledge.

As for future work, we intend to elaborate this classification,
adding more rigour to the definitions of the different bug types.
Further, we seek to empirically investigate the occurrence and
frequency of concurrency bugs in real-world software, as well
as what is done to prevent and remedy such bugs.

ACKNOWLEDGMENT
We acknowledge the Swedish Foundation for Strategic
Research (SSF) SYNOPSIS Project for supporting this work.
REFERENCES

[1] K. Henningsson and C. Wohlin, “Assuring fault classification agreement
- an empirical evaluation,” in 2004 International Symposium on Empir-
ical Software Engineering, 2004. ISESE '04. Proceedings, Aug. 2004,
pp. 95-104.

TABLE II: Mapping of the classification to the state of the art

< | E

S| =

Property = T$> 18| s RS

SlS|Z| 28|88

17 S| E

© | g

<

Park, S. et al. [18] X | X X

Araujo, W. et al. [19] - - - - - -

Oh, J. et al. [20] - - - - - - -

Rungta, N. and Mercer, E. [21] - - - - - - -

Ball, T. et al. [22] X[X [X[X[X
Bodden, E. and Havelund, K. [23] X

Chen, F. et al. [24] X X

Hammer, C. et al. [25] X X

Lai, Z. et al. [26] X X
Lei, Y. and Carver, R.H. [27] X

Liu, P. and Zhang, C. [28] X X

Lu, S. et al. [29] X
Pankratius, V. et al. [30] X
Sheng, T. et al. [31] X

Wang, L. and Stoller, S.D. [32] X X

[2]

[3]

[4]

[5]

[7]
[8]
[9]

[10]
[11]
(12]
[13]

[14]

[15]

C.-S. Park and K. Sen, “Randomized active atomicity violation detection
in concurrent programs,” in Proceedings of the 16th ACM SIGSOFT In-
ternational Symposium on Foundations of software engineering. ACM,
2008, pp. 135-145.

L. L. Wu and G. E. Kaiser, “Constructing subtle concurrency bugs using
synchronization-centric second-order mutation operators,” Tech. Rep.,
2011.

S. Eldh, S. Punnekkat, H. Hansson, and P. Jnsson, “Component testing is
not enough-a study of software faults in telecom middleware,” in Testing
of Software and Communicating Systems. Springer, 2007, pp. 74-89.
P. Bourque, R. Fairley, and eds., “Guide to the software engineering
body of knowledge, version 3.0,” 2014.

V. R. Basili and B. T. Perricone, “Software errors and complexity: an
empirical investigation,” Communications of the ACM, vol. 27, no. 1,
pp. 42-52, 1984.

“Systems and software engineering
24765:2010(E), pp. 1-418, Dec. 2010.
D. Gove, Multicore Application Programming: For Windows, Linux, and
Oracle Solaris. Addison-Wesley Professional, 2010.

N. Yoshiura and W. Wei, “Static data race detection for java programs
with dynamic class loading,” in Internet and Distributed Computing
Systems. Springer, 2014, pp. 161-173.

S. Akhter and J. Roberts, Multi-core programming.
Hillsboro, 2006, vol. 33.

Y. Bhatia and S. Verma, “Deadlocks in distributed systems,” Interna-
tional Journal of Research, vol. 1, no. 9, pp. 1249-1252, 2014.

B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable
shared memory parallel programming. MIT press, 2008, vol. 10.

W. Stallings, Operating Systems- internals and design principles. Pren-
tice Hall Englewood Cliffs, 2012, vol. 7th.

S. Lin, A. Wellings, and A. Burns, “Supporting lock-based multipro-
cessor resource sharing protocols in real-time programming languages,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 16,
pp. 2227-2251, 2013.

D. Jayasinghe and P. Xiong, “CORE: Visualization tool for fault
localization in concurrent programs.”

vocabulary,” ISO/IEC/IEEE

Intel press

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in ACM Sigplan Notices, vol. 43, no. 3. ACM, 2008, pp. 329-339.
S. Park, R. Vuduc, and M. J. Harrold, “A unified approach for localizing
non-deadlock concurrency bugs,” in Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference on. 1EEE,
2012, pp. 51-60.

S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: fault localization in
concurrent programs,” in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1. ACM, 2010, pp.
245-254.

W. Araujo, L. C. Briand, and Y. Labiche, “Enabling the runtime assertion
checking of concurrent contracts for the java modeling language,” in
Proceedings of the 33rd International Conference on Software Engineer-
ing, ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 786-795.
J. Oh, C. J. Hughes, G. Venkataramani, and M. Prvulovic, “LIME: A
framework for debugging load imbalance in multi-threaded execution,”
in Proceedings of the 33rd International Conference on Software En-
gineering, ser. ICSE "11. New York, NY, USA: ACM, 2011, pp.
201-210.

N. Rungta and E. Mercer, “Slicing and dicing bugs in concurrent pro-
grams,” in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE "10. New York, NY,
USA: ACM, 2010, pp. 195-198.

T. Ball, S. Burckhardt, J. de Halleux, M. Musuvathi, and S. Qadeer, “De-
constructing concurrency heisenbugs,” in 31st International Conference
on Software Engineering - Companion Volume, 2009. ICSE-Companion
2009, May 2009, pp. 403—404.

E. Bodden and K. Havelund, “Aspect-oriented race detection in java,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 509-527,
Jul. 2010.

F. Chen, T. Serbanuta, and G. Rosu, “jPredictor,” in ACM/IEEE 30th
International Conference on Software Engineering, 2008. ICSE ’08, May
2008, pp. 221-230.

C. Hammer, J. Dolby, M. Vaziri, and F. Tip, “Dynamic detection of
atomic-set-serializability violations,” in ACM/IEEE 30th International
Conference on Software Engineering, 2008. ICSE 08, May 2008, pp.
231-240.

Z. Lai, S. C. Cheung, and W. K. Chan, “Detecting atomic-set serializ-
ability violations in multithreaded programs through active randomized
testing,” in Proceedings of the 32Nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ser. ICSE 10. New York,
NY, USA: ACM, 2010, pp. 235-244.

Y. Lei and R. Carver, “Reachability testing of concurrent programs,”
IEEE Transactions on Software Engineering, vol. 32, no. 6, pp. 382—
403, Jun. 2006.

P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th Interna-
tional Conference on Software Engineering, ser. ICSE *12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 299-309.

S. Lu, S. Park, and Y. Zhou, “Finding atomicity-violation bugs through
unserializable interleaving testing,” IEEE Transactions on Software
Engineering, vol. 38, no. 4, pp. 844-860, Jul. 2012.

V. Pankratius, F. Schmidt, and G. Garreton, “Combining functional and
imperative programming for multicore software: An empirical study
evaluating scala and java,” Jun. 2012, pp. 123-133.

T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and
W. Zheng, “RACEZ: A lightweight and non-invasive race detection tool
for production applications,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE *11. New York, NY,
USA: ACM, 2011, pp. 401-410.

L. Wang and S. Stoller, “Runtime analysis of atomicity for multithreaded
programs,” IEEE Transactions on Software Engineering, vol. 32, no. 2,
pp- 93-110, Feb. 2006.

