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Abstract—As of today, AUTOSAR is the de facto standard in
the automotive industry, providing a common software architec-
ture and development process for automotive applications. While
this standard is originally written for singlecore operated Elec-
tronic Control Units (ECU), new guidelines and recommendations
have been added recently to provide support for multicore archi-
tectures. This update came as a response to the steady increase of
the number and complexity of the software functions embedded in
modern vehicles, which call for the computing power of multicore
execution environments. In this paper, we enumerate and analyze
the design options and the challenges of porting AUTOSAR-based
automotive applications onto multicore platforms. In particular,
we investigate those options when considering the emerging many-
core architectures that provide a more scalable environment than
the traditional multicore systems. Such platforms are suitable
to enable massive parallel execution, and their design is more
suitable for partitioning and isolating the software components.

I. INTRODUCTION

Nowadays, the AUTomotive Open System ARchitecture,
or AUTOSAR [1], is the de facto standard in the auto-
motive industry. It was conceived by a consortium of au-
tomotive vendors with the objective of standardizing the
Electrics/Electronics (E/E) architectures in modern cars, in
order to enable an easier cross-development and integration
of various software functions. This standard has seen various
revisions to keep pace and to accommodate new system
functionality and hardware platforms.

In the automotive industry, vehicles have transitioned from
being basic (mechanical-intense) transport utilities to sophis-
ticated (electronics-dominated) systems. The current trend is
towards vehicles that are now capable of self navigation and
maneuvering. This sophistication led to a steep increase of
the number of Electronic Control Units (ECU) embedded in
the vehicles and today’s cars can have up to 100 ECUs. Car
dynamics are getting more complex as well. For example, the
complexity of control algorithms used in a modern Engine
Management System (EMS) is steadily increasing in order
to yield low fuel consumption while meeting the emission
guidelines. All these trends lead to a rethinking of the E/E
architecture paradigm in future cars.

Architecture-wise, there is a clear shift away from the “one
ECU per function” design paradigm, which naturally resulted
in numerous single-core ECUs spread all over the vehicles.

Among the recent efforts to circumvent this issue of prolifer-
ation of the ECUs, one should cite the work of [2] in which
the authors proposed a new centralized architecture based on
Domain Control Units (DMU). In such an architecture, each
functional domain of the vehicle is controlled by one DMU
and a small number of ECUs to handle critical services such as
airbags. Consolidating the various functionalities seems to be
the way ahead and it is now technically feasible by replacing
multiple ECUs driven by low-performance processors with
a few more powerful processors. This advancement of the
computing elements aims at providing higher computational
power to applications that steadily demand higher perfor-
mance and it allows to better manage the internal car electro-
mechanics, including wiring issues, power consumption, form-
factor, etc. While most current ECUs are based on single-core
processors, a slow transition to multicore processors is already
in progress [2]. The AUTOSAR standard has already been
extended accordingly to cover these multicore platforms, and
multiple vendors are bringing forth their multicore operating
system implementations for AUTOSAR [3], [4], [5], [6].

At this juncture, it is important to analyze the new recom-
mendations and guidelines of the AUTOSAR standard regard-
ing a migration from single-core to multicore architectures,
and also it is highly relevant to start investigating newer mani-
festations of multicore architecture designs, i.e., the many-core
architectures. In many ways a many-core architecture is similar
to any multicore design in that it hosts several cores on the
same die, but it owns its different designation to a drastic shift
in the arrangement of the cores on the die and the structure
and topology of the inter-core communication technology
(typically Network-on-Chip (NoC) based). Because of their
distinct design, we believe that many-core architectures may
succeed where traditional multicore designs have difficulties
asserting themselves. In terms of performance, their flexible
NoC-based architecture enables them to host a larger number
of cores and offers evident enhanced computational capabilities
compared to the former (traditional) bus/ring-based multicore
platforms. This makes many-core platforms technically more
appropriate for applications that require intense computations
such as autonomous driving, object tracking, segmentation,
navigation, etc. Moreover, the organization of the cores in
separate and isolated structures (in tiles [9] or clusters [10]
for instance) interconnected by a NoC may eventually pro-
vide a more interference-free execution environment in which
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Fig. 1. AUTOSAR software architecture for single and multicore platforms as defined by the standard.

components may be truly isolated from each other. However
adapting AUTOSAR to best harness the capabilities of the
many-core platform is not straightforward and there are some
challenges to be addressed.

AUTOSAR in Many-Cores – Challenges: The main chal-
lenge in the transition arises from the need to sustain the
benefits achieved in the current single core architecture (in-
teroperability, abstraction, etc). To enumerate (i) System ser-
vices in AUTOSAR were designed for single core systems.
The shift to large platforms introduces possibilities but also
pitfalls trough the design of the system layer. This design
can influence the resulting overall performance of the platform
significantly. (ii) Parallelization of applications is one of the
major benefits of many-core platforms. However, programming
paradigms and sufficient support from the underlying software
architecture needs to be provided in order to achieve the
predicted performance gains. (iii) In addition to the functional
properties of the system, extra functional properties need to be
considered as well — most importantly, timing requirements
and the adherence of safety standards.

As a main contribution of this paper we analyze and
propose different design options of the AUTOSAR software
architecture for these many-core platforms. Additionally we
discuss the suitability of such systems to host diverse au-
tomotive applications and specifically address the issues of
parallelism, safety and analyzability. Having communication
between cores as an important part of a parallel system,
we present the implications of the NoC on the core-to-core
communication mechanisms defined in AUTOSAR. To the best
of our knowledge, this is the first work which analyzes the
AUTOSAR standard in respect to many-core platforms.

The remainder of the paper is organized as follows. Sec-
tion II gives background information about AUTOSAR and
its software architecture. Section III briefly outlines the type
of hardware architecture that we consider in this paper. Sec-
tion IV discusses the different AUTOSAR-compliant options
for the design of the software architecture on such many-core
platforms. Section V discusses benefits of parallelization of
applications and the support for it in AUTOSAR. In Section VI
we discuss, system analyzability and safety standards, as im-
portant extra-functional properties. Related work is presented
in Section VII, followed by the conclusion in Section VIII.

II. THE AUTOSAR ARCHITECTURE

The AUTOSAR standard defines a software architecture
for automotive applications. The application development in

AUTOSAR and the design methodology is defined in [11].
It is based on the principles of component based software
engineering [12]. This section summarizes the AUTOSAR
software architecture and describes each of its conceptual and
logical layers. Figure 1(a) shows the basic architecture and its
main components: the Software Components (SWC), the Basic
Software (BSW), the Run-Time Environment (RTE), and the
Operating System (OS).

A. The Software Components (SWC)

Within AUTOSAR, the application software is organized
in self-contained units called software components (SWC).
Located at the highest architectural level, these components are
platform-agnostic, meaning that at design time there is no need
to consider how they will eventually execute on a particular
ECU. Like many other component models, AUTOSAR defines
interfaces to connect components with each other, as well as
with the lower architectural levels [13]. These interfaces define
both the required and provided services and data, as well as
the communication protocol to be used, namely, trigger-based,
data-based, mode-based, or operation-based [14].

Conceptually a component can be composed out of a num-
ber of other components, which allows for hierarchical design
and reuse of complex subsystems. Such groupings, however,
are only meaningful during the design phase. During system
deployment to a specific ECU, all composite components are
broken down into their atomic components. Atomic compo-
nents have internal states and associated software functions
which are referred to as runnables. Those runnables are the
elementary parts of execution in the AUTOSAR world. They
are mapped on and executed by the tasks of the operating
system.

B. The Basic Software (BSW)

With more than 40 defined modules, the BSW constitutes
the largest part of the AUTOSAR system. The BSW provides
all services needed by the SWCs in order to fulfill their
functions, while their concrete implementation is hidden from
the application [15]. In contrast to the component-based SWC,
the BSW is structured in layers (see Fig. 1(a)) the Service
Layer, ECU Abstraction Layer, Microcontroller Abstraction
Layer, and Complex Drivers Layer.

Service Layer: It provides fundamental services to the SWCs,
and to other BSW modules. These services include the memory



management, communication, and diagnostics. Note that the
OS is part of this layer.

ECU Abstraction Layer: As the name suggests, this layer ab-
stracts the services provided by the hardware of the ECU. For
example communication services are mapped to the respective
buses.

Microcontroller Abstraction Layer: This layer provides ba-
sic drivers, abstracting the concrete microcontroller architec-
ture. All layers above are thus agnostic about the microcon-
troller that is used.

Complex Drivers Layer: This layer consists of special-
purpose functionality and drivers which are not compliant with
AUTOSAR. Legacy drivers can be used in this layer as well.
Since those drivers are not necessarily in the same layered
architecture than the rest of the BSW, the Complex Drivers
Layer spans all layers.

Additionally, the modules of the BSW can be divided into
several functional groups, namely, the system services, memory
services, and communication services.

C. The Runtime Environment (RTE)

The RTE is generated during system synthesis and real-
izes the connection between the SWCs and the BSW mod-
ules [16]. During the design phase, SWCs are interconnected
only through the abstract Virtual Functional Bus (VFB). At
a later phase, the SWCs are eventually mapped onto ECUs
and depending on that deployment, two communicating SWCs
can be located on the same ECU or on different ECUs. In
the former case they must use intra-ECU communication
mechanisms as a means to communicate whereas in the latter
they must use an inter-ECU communication protocols, which
requires the communication services offered by the BSW
modules. The RTE is therefore a abstraction layer that provides
a unified interface to the SWCs for their communication with
other SWCs or with the BSW.

D. The Operating System (OS)

AUTOSAR uses the real-time operating system defined
by the OSEK standard [17], [18]. The standard specifies a
fixed priority scheduled operating system. Based on the con-
figuration, the scheduling can be preemptive, non-preemptive
or a combination of both, with a subset of tasks executing
preemptively and non-preemptively. With the aim of facili-
tating temporal partitioning, two mechanisms are available in
AUTOSAR:

Static schedule tables [17]: These tables define the time at
which certain actions are performed (activation of a task, set
event, start timer, etc.). Each action is given a particular offset
relative to the start of the table.

Time monitoring: This mechanism is used to limit the time
for which tasks can make use of different resources (CPU
processor cycles, shared resources, interrupts). It ensures that
tasks do not over-shoot their preset time budgets during run-
time.

Spatial partitioning is another important requirement for
real-time automotive systems. The responsibility of the OS
is to protect the memory regions of OS-applications from
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Fig. 2. Architecture of a many-core processor using a 2D-Mesh NoC

other non-trusted OS-applications and also protect the address
spaces of individual tasks within the OS-application [19]. This
requires hardware support in form of a Memory Management
Unit or a Memory Protection Unit. Detailed descriptions can
be found in [17], [18].

E. Multicore Extensions of the standard

With AUTOSAR 4.0, multicore support is also considered
in the standard [20], [17]. The standard specifies that all cores
operate on the same (shared) code base in order to reduce
the footprint of the OS in the memory. The system shall
not be viewed as a collection of virtual ECUs, rather as one
distributed OS managing all cores. According to the standard,
scheduling is done in a partitioned way, with each core having
its own scheduler. Also, migration of tasks between cores is
not allowed. The limitation of having the same code base for
all cores implies that only one core executes the BSW modules
at a time. The only part executed by all cores is the OS, having
separate data structures for each core. Such an architecture is
depicted in Fig. 1(b).

An important extension for multicore support in the stan-
dard is the addition of the Inter OS-Application Communicator
(IOC) component, which is part of the OS. The RTE maps
communication across cores or memory partition boundaries to
the IOC module. The IOC operates using a sender-receiver pro-
tocol, where FIFO and unqueued (last is best) communications
are supported. The IOC module implementation is dependent
on the architecture and it also ensures data consistency. Inter-
core communication between BSW modules is managed in a
vendor-specific manner and is currently not standardized [20].

III. HARDWARE MODEL

The AUTOSAR extensions for multicore operations were
designed with a simple hardware model in which multiple
cores are connected to a shared bus in order to access shared
memory and other peripherals [17]. However, as the number
of cores in the same processor grows, new interconnection
mediums and hardware architectures have been proposed,
paving the emergence of “many-core processors”.

In typical many-core processors, cores and memories are
located on tiles, connected by a Network-on-Chip [21]. In
contrast to the bus/ring-based interconnection technology, the
NoC provides a higher bisection bandwidth and scales up
to a larger number of connected components. In this work,
we consider many-core processors containing identical tiles,
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interconnected by a 2-dimensional mesh-based NoC (see Fig-
ure 2(a)). Each tile contains one core, local memory, and a
network controller, as illustrated in Figure 2(b). The network
controller is used to connect to the router, which in turn
connects to the other routers, forming the network-on-chip.
Each core has a local memory with limited memory capacity
(32KB onwards), depending on different many-core configu-
rations. The access to local memory is faster in comparison
to the access to the relatively larger off-chip memory. This
architecture is similar to Tilera’s Tile-Gx processor family [9],
hosting 9, 16, 32 or 72 cores on one processor. While Tilera or
Adapteva with their Epiphany processor [22] implement one
core on each tile, Intel’s Single Chip Cloud Computer [23]
implements two cores per tile, and Kalray has 16 cores per tile
comprising a compute cluster [10]. From a time-predictability
point of view, the communication time between cores in a
many-core processor depends on their locality, and in particular
on the distance (in hops) between them, as a routing delay and
possible interference needs to be considered for each hop [24].

IV. DESIGN OPTIONS FOR THE SYSTEM LAYER ON

MULTI/MANY-CORE PLATFORMS

Having massively parallel architectures, such as described
in Section III, opens many opportunities for the deployment
and execution of an AUTOSAR system, in particular since
BSW clusters have been specified in the standard [20], [25].
The grouping of BSW modules into clusters, and assigning
them to different cores, can be highly beneficial to the system
in terms of performance. For example, all I/O modules can be
mapped on one core and all network modules on another core,
allowing for load balancing and parallel execution of those
modules.

The performance can also be improved by grouping BSW
modules of the same functionality into a BSW functional
clusters. If BSW modules need to be available on several
cores, the multicore extension of AUTOSAR [20] defines
the master/satellite-approach. The implementation of the BSW
modules is vendor-specific and thus the division of work
between the master and the slaves/satellites is not defined.
However, we can envisage only two approaches for that
division of work: (1) a slave redirects all the calls to the
master, i.e. the requests are remotely executed on the master
core, or (2) a slave executes the complete request locally
and communicate only the internal states to the master core.
The choice of implementation of the master/satellite approach
affects the performance of the system but does not affect the
upper layers.

states
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Fig. 4. Uniform distributed approach, having copies of all BSW modules in
the core local memory.

The next four subsection describe four different design
options for a basic AUTOSAR system on a multicore platform
and outline their respective benefits and drawbacks. It is
important to note that all presented design options are in line
with the AUTOSAR specifications.

A. Centralized Approach

The centralized approach allocates all the modules of the
BSW to only one core, as shown in Figure 3. Each core
runs its own OS and all the BSW calls are re-directed to
the core hosting the BSW. Although this approach keeps the
design simple and involves minimal changes from the existing
single-core design, it generates a massive amount of cross-
core communications, in particular if the platform contains
many cores. This leads to the problem that tasks on the non
BSW cores incur non-negligible blocking delays. Moreover,
continuous interrupts from other cores can prevent the tasks
running on the BSW core from having a continuous execution.
It has been shown in [26] that the performance degradation for
this design choice is significant, even considering two cores. In
short, this approach does not seem appropriate for a many-core
system considering the bottleneck at the BSW core.

B. Uniform Distributed Approach

As seen above, the centralized paradigm is inherently not in
sync with the underlying distributed architecture of the many-
core platform. The uniform distributed approach, which by
design better aligned to the platform, may therefore be an
interesting alternative. In this approach, the BSW is duplicated
on each core in addition to the OS.

Having the complete BSW duplicated on each core has
multiple advantages. First, BSW modules can be (in theory)
accessed from different cores without causing interference on
other cores. However, most of the BSW modules have critical
sections (or exclusive areas) and hence cannot be accessed by
different callers simultaneously. Therefore such BSW modules
can still only be executed on one core at any time. In contrast
to the centralized approach, when a SWC requests a BSW
service, the service is executed on the local core itself and
not on the remote core. In order to maintain the consistency
of the internal BSW states, it is very important to save the
states in a globally accessible data structure. This is to ensure
mutual exclusive access and to allow every core to check
whether the shared resource, i.e., the BSW module, is being
accessed by another core (see Figure 4). A locking mechanism
called the big BSW lock, similar to the Big Kernel Lock in
Linux, was proposed by [26] to implement the above. An other
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advantage of such a design is that it provides total flexibility
in the allocation of software components given the uniform
capabilities of all cores.

On the other hand, one major drawback of this architectural
alternative is the large footprint needed on the private memory
of each core. This memory requirement obviously increases
linearly with the number of cores. Another negative aspect is
the fact that in such large platforms, not all the cores will
have access to all hardware services, e.g. not all cores will
have access to CAN, I/O, or Ethernet interfaces. Therefore,
even though the execution of a BSW module is always carried
out at the core that initiates the call to that module (because
all the BSW modules are hosted by every core), there will
be cases where some modules will need to communicate with
other cores in order to access the requested hardware service.
This does not defeat the uniformity of this design approach
but must be considered for the lower protocol levels.

C. Non-Uniform Distributed Approach

The uniform distributed approach proposes local copies of
the code, while the states of all modules are located in shared
memory and thereby clearly improves upon the centralized
approach. However, it still introduces a bottleneck, namely the
shared states.

The non-uniform approach aims at mitigating that issue.
In this approach, each core has its own local copy of the
OS, stored in its private memory. From the geometry of the
many-core architecture illustrated in Figure 2(a), it can be seen
that hardware components such as the network modules for
instance, are connected to certain peripheral cores at the edge
of the NoC and to those cores only. Therefore, we can “break”
the uniformity and restrict the mapping of the corresponding
BSW modules (the network modules in this example) only
to those cores. This way the BSW modules responsible for
handling the communication over the CAN are only available
on the core[s] that has access to the CAN interface.

An obvious advantage of this non-uniformity is a reduction
in the code footprint, since a scaled down version of the BSW
is allocated to the local and private memory of each core.
Given that different modules are spread across the chip, the
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traffic is also distributed across and such a design decreases
the resulting interference between the cores.

This can be combined with BSW modules following the
approaches presented in Section IV-A and IV-B. Additionally
modules, where global state is not needed (for example the
module for cryptographic functionalities), can be allocated
on multiple cores, knowing that there will be no cross core
communication necessary in order to keep the state. Such a
mixed architecture is depicted in Fig. 5.

The mapping of the SWC to the cores, however, becomes
much more complex, since core affinities (a SWC is said
to have a core affinity with one core if it is only able to
execute on that core) need to be taken into account. The
decision of which BSW modules should be local to each
core and which BSW modules should be distributed becomes
complex and depends on both the application and the hardware
characteristics. As a consequence the mapping of the SWC to
the cores is less flexible as all cores are not equipped with the
same functionality, i.e. the same BSW modules.

D. Virtualization Approach

As an alternative to directly deploy an AUTOSAR soft-
ware on the system, virtualization techniques can be used to
consolidate multiple (existing) AUTOSAR ECU configurations
on a single platform [27]. In general, with virtualization, a
system can host several partitions where each partition acts
as an independent virtual machine (VM). Each VM can run a
different instance of the OS and has its own resources (cores,
memory, I/O, etc.), all managed by a hypervisor. In many-core
systems, the large number of cores can be exploited and one
partition can be executed on one core (see Figure 6).

Integrating AUTOSAR ECUs in this way has the advantage
that the former ECU configuration can be kept, as it is executed
as virtual ECU within one VM. This also implies that re-
validation and testing efforts are not necessary/reduced and
only the hypervisor needs to be additionally certified. Another
benefit arises from the fault containment and safety properties
that the isolated partitions provide. On the other hand, one of
the major drawbacks of virtualization is the complexity of the
hypervisor as it is responsible to abstract from the hardware
platform. Most current hypervisors are designed for multicore
platforms. The different architectures of many-core platforms
add additional challenges to the design of the hypervisor. This
is mainly due to the complexity of the NoC and the need to
access all hardware services from all cores.



V. IMPROVED PERFORMANCE THROUGH

PARALLELIZATION

In this section we first discuss the benefits of parallelizing
the execution of AUTOSAR applications and later focus on the
support in AUTOSAR through the IOC component, as it has
direct influence on the achievable performance improvements.

A. Parallelism at the Application Level

One of the major advantages of the many-core platform
is the provision for task-level parallelism. In the AUTOSAR
context this means executing SWCs of one application on
multiple cores in order to shorten the end-to-end computation
time of the application. The current problem in the industry
is to port the existing legacy sequential applications onto
multicore platforms. Additionally, newer applications (for ex-
ample in the computer vision domain) which naturally lend
themselves to parallelism are also an integral part of the
feature-suite in modern cars. To fully leverage the parallelism
offered by these systems, there is a need for standards which
not only define different parallel design patterns but also offer
clear guidelines for mapping, scheduling, synchronization and
communication. On the implementation side, the RTE will
have to be augmented with means to parallelize an application
into different threads and with scheduling techniques to ensure
that tasks exclusively access shared resources (when needed)
to minimize contention and maintain the state of the resources.
To our knowledge, such guidelines are not yet formally defined
in the latest AUTOSAR 4.2 standard [1].

A notable effort in this direction is taken by the EU project
ParMerasa [28]. The main recommendations for AUTOSAR by
these experts is to achieve the required speedup by minimizing
the blocking during communication by using non-blocking
buffers. A challenge in porting applications to a parallel
platform is to ensure that the behaviour of the system before
and after parallelizing the application is consistent — the
execution and communication order must stay intact. To ensure
this, experts in ParMerasa encourage time-triggered execution
of entities (runnables) in a manner that the sending entity must
always be scheduled before the receiving entities. They pro-
pose that the OS should support schedule tables for each core
that run synchronously within few clocks. An other outcome
of the project is presented in [29], where the authors present
the RunPar algorithm. RunPar parallelizes tasks of a former
single-core application as much as possible, while keeping
the sequential execution order of the single core application,
hence reducing the application execution time while avoiding
the need for re-validation.

B. Communication in AUTOSAR

Together with the extensions for multicore, the Inter-
OS-Application Communicator (IOC) was introduced in AU-
TOSAR [17]. Two intended use-cases are defined: (i) Commu-
nication between SWCs of different OS-Applications located
on different cores of a multicore processor, and (ii) Commu-
nication between SWCs of different OS-Applications located
on the same core, in order to guarantee memory protection
between them. Since the current version of the standard
does not allow OS-Applications to spread across multiple
cores, the inter core communication is also always an inter

S

buffer

R1R1

R2

Fig. 7. Example of the effect of the shared buffer placement for 1:N
communication via an underlying NoC.

OS-Application communication. As all other communication
services, the IOC is abstracted by the RTE and thus transparent
to the SWCs.

Communication is always done in a sender-receiver fash-
ion. The sending side writes data into a buffer, located in
memory accessible by the respective communicating partners.
One data item can be transfered via each IOC invocation,
where one to one (1:1), many to one (N:1) and many to many
(N:M) communication is possible. Communication itself can
be queued or unqueued, except for N:M communication, where
only unqueued communication is allowed. Different examples
for the intended use of each relationship are given in [17].
In all cases data consistency is guaranteed by the IOC. Data
transmission can be notification based, i.e. the sender notifies
the receiver about the new data available. In that case, after the
transmission of the data, the receiver is notified by a callback
method which it needs to supply and which is triggered by the
sender. The concrete mechanisms used to trigger the callback
on the receiver side depends on the microcontroller platform
that is used.

Several challenges arise when transitioning to a larger
massively parallel platform. In contrast to the shared memory
of todays multicore platforms, such many-core platforms pro-
vide a distributed memory architecture (see Section III). Thus,
the memory used for the communication buffer, associated
with a concrete message, can practically be located on all
tiles (see Fig. 2(a)). Having the NoC in the access path to
the communication buffer implies that the time taken for the
communication depends on the location of the sender, the
receiver, and the buffer itself. While this might be straight
forward for 1:1 communications, where the buffer can easily
be located within the receiver tile, it gets more complex if
a N:1 or even N:M communication is used. In Figure 7,
an example of 1:2 communication is shown. A sender S

sends data which is read by receiver R1 and R2. In the
example, the communication buffer as well as the sender and
the two receivers are located on different tiles. While the
communication path from buffer to R1 is two hops long, the
path from the buffer to R2 takes three hops.

To reduce these delays, and thus their impact on the
application performance, it seems beneficial to take the map-
ping of communication buffers into account when SWCs are
mapped to the cores. Another approach could be to rethink



the underlying paradigms of the IOC and adapt to the new
hardware platforms. Either way, a low overhead solution is
needed in order to effectively leverage the advantages brought
by the parallel hardware.

VI. EXTRA-FUNCTIONAL PROPERTIES

Automotive software design is complex due to the different
metrics for assessment. The core-functional behavior must not
only be in-line with the requirements, but also certain extra
functional requirements must be addressed. In this section,
we assess the suitability of many-core systems considering
two important parameters in this regard: safety standards and
timing analyzability of real-time systems.

A. Safety Considerations

An integral part of the automotive design is the adherence
to the safety norms stipulated by the ISO 26262 standards [7].
Within this, each functionality in an ECU is assigned an
ASIL (Automotive Safety Integrity Level) on the basis of the
likelihood of a failure (after a risk analysis), the impact of
that failure, and the likelihood of detecting that failure. The
standard also gives explicit guidance concerning interference
to other parts of the system, drawing particular attention to
risks associated with interference between software compo-
nents of different ASILs. The major reason for breaching
the safety norms and causing incorrect behavior is due to
interference in both the spatial and temporal domain. This
may involve different shared resources – software resources
like mutexes/locks and hardware resources like the shared
communication channel. Interference can be caused in the
spatial domain by memory corruption and by external data
from insecure sources.

The standard proposes isolation as a basic mechanism for
freedom from interference. By design, a many-core platform
provides multiple natural physical partitions which may pro-
vide exclusive execution spaces for applications with different
criticalites. While platforms like Kalray provide many clusters
so that applications of different criticalites can be separately
executed, Tilera provides “hardwalls” allowing groups of cores
to be isolated and controlled w.r.t. communication with the
external world. Another basic design merit arises from the
fact that each cluster/tile has access to some limited local
memory, which together with a memory management unit in
software/hardware can provide the required spatial isolation.
Each cluster or tile-group could host applications of a different
criticality and the source software can then be developed as
per the ASIL certification requirements only for that cluster. In
other words, it could not be necessary for the software (OS +
BSW) on each core to be certified to the needs of the highest
ASIL levels, while allowing a mix of applications to reside on
the same chip.

There are some advantages from the perspective of failover
and redundancy as well in these systems. A given pair of cores
can act as an active/backup core in order to have fail-safe
execution, allowing the back-up core to resume execution when
one of the core fails. A pair of cores can also be tuned to work
in a lock-stepped manner to cross verify results when required
in critical applications.

B. System Analysability

Many of the applications in a modern car have real-time
software components, meaning they need to adhere some tim-
ing requirements. The temporal properties of applications like
their Worst-Case Execution Time (WCET) must be determined
at design time by timing analysis, which not only depends
on the application code but also the execution eco-space
(the platform: hardware and software). Given this, AUTOSAR
describes the support for timing analysis in [30]. From the
many-core system architecture perspective, it is important to
consider the analyzability of these systems.

Today’s multicore processors are heavily tuned and com-
plex, designed for performance and not predictability, making
timing analysis difficult [31]. Many-core processors on the
other hand are generally equipped with simple cores. The
computing cores on Kalrays MPPA 256 for example are fully
timing compositional [10]. This means they do not exhibit
timing anomalies which allows for tight WCET calculations. A
second benefit of many-core processors is their memory layout.
Platforms like Kalray provide different modes of memory
bank accesses: interleaved bank accesses for highly parallel
applications, and blocked memory mode, specifically targeted
for embedded applications. With the blocked mode, application
data is laid out sequentially along the address in a given
bank, providing a kind of dedicated space for that application
(subject to the bank memory capacity).

One prominent issue is the complex NoC fabric present
in these systems, compared to the single shared bus which
brings forth the issue of bounding the communication delay
across the cores. Some vendors like Kalray claim that bounds
on the delays can be computed using data flow models and
sigma-rho calculus [32], but this issue must be taken care of.
Different traffic groups, like I/O traffic, core-to-core traffic,
or core-to-memory traffic, need to be handled by the NoC
fabric. Different requirements for the different groups lead chip
designers to implement separate networks for each group. This
also allows for simpler analysability. Since for example, the
traffic on the network used for core-to-core communication is
not affected by the requests to off-chip memory, because they
are handled by a different network.

Having the NoC as interconnection medium also introduces
locality as one important factor. As discussed in Section V-B,
placement of communication buffers affects the communica-
tion delays. Thus, the placement of software components on
cores as well as the placement of the IOC buffers must take the
locality aspects of those platforms into account. Additionally
to the placement of SWC, the design of the system architecture
(RTE and below) should consider the hardware characteristics.
Having the different design options of Section IV, we can see
that they introduce different degrees of possible blocking and
thus introduce different degrees of pessimism in the analysis.

VII. RELATED WORK

Several implementations of the AUTOSAR system for
multicore exist from the industry as well as from the academia.
In [4], Morgan and Borg outline the challenges encountered at
ETAS, when moving to a multicore platform. They additionally
present a prototype implementation of a multicore AUTOSAR
system, including the needed multicore OS, IOC and RTE



TABLE I. COMPARISON OF THE PROPOSED APPROACHES

Scalability Memory Footprint
Modification on

BSW modules
Time-Predictability Mapping

Centralized Approach

LOW

Blocking introduced

by the remote BSW

calls increases as the

number of cores grows

LOW

BSW only on one core

and all other cores

carry implementations

of the remote calls

BSW modules must

provide remote

call functionality

Timing analysis

becomes increasingly

pessimistic and complex,

since the BSW as a

shared resource is

frequently accessed by

all cores, increasing

the network traffic

Flexible: All SWCs can

be mapped to all cores

Uniform Distributed

Approach

MEDIUM

Low blocking but

footprint grows linearly

with the number of cores

HIGH

BSW is present on

all cores plus states

have to be kept in

global memory, need

for synchronization

BSW modules can

be used with minor

modifications, only states

need to be accessed

from global memory

Timing analysis needs to

account for delays due

to frequently accessed

shared resources by all

the cores; but message

passing is not necessary

SWCs can be

mapped to all cores

Non-Uniform Distributed

Approach

HIGH

Blocking and footprint

size can be controlled by

the selection of modules

MEDIUM

Footprint lies between

the centralized and

uniform distributed

approach, depending

on the modules used

BSW modules should

be provided in three

implementation variants:

Local exclusive, remote

call, shared states

Pessimism in the timing

analysis becomes

reduced, since placement

of BSW modules as well

as their different variants

reduce uncertainties

Mapping of SWCs

must take the

core dependencies

into account

Virtualization

MEDIUM

Having multiple guests

will result in increased

traffic on the NoC.

HIGH

Guests use different

implementations

(different versions or

even OS) independent

of each other

No modification required

Timing analysis becomes

complex due to the extra

layer of abstraction

(the hypervisor[s])

Mapping is already

done, since existing

ECU configurations

are integrated

by virtualization

support with cross task-activations. As the initial version of
the standard dictates, they adopt the centralized approach in
which the BSW is located on one core as described earlier
in Section IV. With this prototype they were able to validate
that the behavior on the multicore system did not vary from the
single core setup but their experimental results clearly highlight
the problem of workload distribution on the multicore.

An academic work was carried out by Böhm et al. [26].
They also evaluate an AUTOSAR multicore system with a
centralized architecture. Having the need to lock the BSW
while accessing it showed already performance degradation
on their dual core experimental setup. When transitioning to
a many-core platform, as considered in this work, multiple
bottlenecks arise. With increased core count, the core hosting
the BSW modules turns out to be the major bottleneck.

Bradatsch [33] compared two different implementation
strategies for OS service calls, message and lock based, in
a shared memory multicore implementation of AUTOSAR.
Evaluation on a 2 and 4 cores processor showed clear ad-
vantages of the lock-based approach. However, this approach
requires shared memory which is not implemented in the large
parallel platforms considered in this paper.

More recently, two trends are popular. On the one hand,
focus of most industrial implementations of the AUTOSAR
multicore system lies on functional safety, as described by the
ISO-26262. On the other hand, virtualization techniques are
exploited to consolidate multiple systems (of same or different
OS) on the same hardware platform.

An example for the former is EB tresos safety OS multi-
core from Elektrobit [5]; also the multicore operating system
described in [3]. Both implementations introduce additional or
refined functionality in order to cope with the requirements
for functional safety. [3] for example allows program flow
monitoring to supervise the execution of safety critical parts
and their right execution order and time. Brewerton [19]
discusses experience of an implementation of the steering

column lock functionality on a multicore ECU. Having highest
safety requirements (ASIL D), several hardware and software
based solutions are discussed.

Virtualization support for automotive systems is discussed
in [2], [27]. OpenSynergy, as an industrial example, provides
COQOS [6]. With an avionics grade hypervisor, based on
PikeOS [34], COQOS allows the execution of guests with
ISO-26262 requirements. In [34], a PikeOS based prototype
of a multicore based ECU, hosting multiple critical and non
critical OS is discussed. The coexistence of such a variety of
different safety and security levels is possible due to the SIL
4 certification of PikeOS.

VIII. CONCLUSION

All the works presented in the previous section target
current multicore architectures, i.e., a low number of cores and
shared memory, accessible by all cores. While the BSW imple-
mentations are optimized for multicore operation, the complete
BSW is located on one core. The four design choices discussed
earlier in this paper target much larger platforms without
global memory. In Table I we compare those approaches with
respect to scalability, required memory footprint, the need for
modifications of an existing BSW implementation, predictabil-
ity, and their influence on application mapping. Depending
on the target platform and system requirements, different
architecture choices are preferable. We believe it is possible to
use many-core processors in the AUTOSAR context, but it is a
challenging task. As discussed in this paper, different features
found on such processors can be used, making the whole
system more scalable and predictable. Many-core architectures
can therefore be seen as a promising candidate for the future
complex automotive systems. Future work will focus on the
problem of mapping SWCs and communication buffers to the
many-core architecture.
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