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Abstract—A majority of existing techniques and tools, used
in the vehicular industry, support the extraction of end-to-end
timing models. Such models are used to perform timing analysis
of distributed embedded systems at an abstraction level that is
close to their implementation. This paper takes a first initiative to
provide such a support at a higher level of abstraction. At such
a level, the system can be modeled with inter-connected black-
box models of nodes whose internal software architectures may
not be available. However, most of the design decisions about
network communication are available. This represents a typical
scenario in the vehicular industry where most of the artifacts
are reused from either legacy systems, other projects or previous
releases of the vehicle. In this paper we present an approach
for the extraction of end-to-end timing models at the highest
level of abstraction used in the vehicular domain. Using these
models, end-to-end path delay analysis of the systems can be
performed at a higher abstraction level and at an early phase
during the development. As a proof of concept we implement this
technique in an industrial tool suite, Rubus-ICE, that is used
for the development of these systems by several international
companies. Using the extended tool, we conduct a vehicular-
application case study.

I. INTRODUCTION

The amount of computer controlled functionality in the
vehicular domain has significantly increased over the past few
years. As a result, software in vehicular embedded systems has
also drastically increased in size and complexity. For example,
the embedded software in modern heavy trucks may consist of
as many as 2000 software functions which may be distributed
over 45 ECUs (Electronic Control Units) [1]. In order to
deal with such complexity, the model- and component-based
development approach has emerged as an attractive option for
these systems [2], [3]. This approach employs the principles of
Model Based Software Engineering (MBSE) and Component
Based Software Engineering (CBSE). It uses models to de-
scribe functions, structures and other design artifacts. It raises
the level of abstraction for software development by reuse
and integration of software components and their architectures.
An abstraction level provides a complete definition of the
system for a given purpose during the development process.
Within the segment of construction-equipment vehicles and
similar segments for heavy special-purpose vehicles, model-
based development of software architectures for embedded
systems has had a surge the last few years [4], [5], [6], [7].

Most of the vehicular distributed embedded systems have
real-time requirements. This means, the time at which these
systems respond to some stimulus is equally important as

logical correctness of the response. Hence, logically correct
but late response may be considered as bad as logically
incorrect response. The providers of such systems must ensure
that the actions by the systems are taken at a time that is
appropriate for their environment. One way to guarantee this
is to perform end-to-end timing analysis of the system [8], [9].
It can validate timing requirements, specified on the system,
without performing exhaustive testing. In order to perform
the timing analysis, the end-to-end timing model should be
extracted from the component-based software architecture of
the system.

A. Objectives and Problem Statement

The majority of existing model- and component-based de-
velopment approaches, methodologies and analysis tools that
are used in the vehicular domain support the extraction of
end-to-end timing models at an abstraction level that is close
to system implementation. As a result, the end-to-end timing
analysis can be performed only at the implementation level.
This, in turn, hampers the reuse and refinement of models from
legacy systems (previously developed) with respect to timing
requirements at higher abstraction levels and earlier phases
during the development. Moreover, timing behavior of the sys-
tem cannot be verified at higher abstraction levels. There are
some initiatives that aim to provide end-to-end timing analysis
at one abstraction level above the implementation [10], [11],
[7]. However, these are ongoing works.

None of the existing modeling techniques and tools that
are used in the vehicular industry for the development of
legacy distributed embedded systems support end-to-end tim-
ing analysis at the highest abstraction level (also known as
the vehicle level) [12], [5]. At this level, the internal software
architecture of the nodes may not be available. Intuitively, it
may not be possible to extract the end-to-end timing model to
perform the timing analysis. This brings up a question: why are
we interested in extracting the end-to-end timing model and
performing the end-to-end timing analysis at the vehicle level?
The motivation for this activity comes form the development
processes for distributed embedded systems that are used in
the vehicle industry, especially in the segment of construction
equipment and heavy vehicle architectures.

In the industry, most often, the bottom-up development
approach is used as a lot of information, models, artifacts and
solutions are reused from other projects and legacy systems.
According to an estimate, up to 90% of the software can be



reused from other projects or previous releases of the vehi-
cle if model- and component-based software development is
used [1]. The infrastructure and platform (e.g., machine, types
of ECUs, networks) for the system to be developed are already
known. The traditional process for the development of these
systems in the industry starts with designing the bus/network
communication. At the early stage of the development, usually
the focus is on finding answers to the following questions.
How many busses will there be in the system? Which nodes
will be connected to which bus? How many messages will
there be in the system? Which messages will be sent by each
node? After finding answers to these questions, the focus is
shifted towards the development of functions.

Our vision is that the end-to-end timing model can be
extracted and corresponding end-to-end timing analysis can be
performed on the models of vehicular distributed embedded
systems at the highest abstraction level if design decisions
about network communication are already made. However, the
precision of the analysis depends upon the level of details
about the internal software component architecture of the
nodes. Based on such information, we classify the models of
nodes into three categories as follows.

1) White-box models of nodes: If the internal software
component architecture of nodes is completely reused
from other projects, earlier releases or previous iterations
(during the development), then the end-to-end response-
time and delay analyses [9] can be performed with a high
precision. This type of analysis support can be easily
provided by applying slight modifications to the existing
analysis engines, e.g. [13], [14], that already support the
end-to-end timing analysis at the implementation level
where a complete software architecture is available.

2) Black-box models of nodes: If only crude models of
nodes are available, the end-to-end delay analysis can be
performed with a low precision. This may correspond to
earlier stages during the development where the internal
software component architecture of nodes is not available.
It may also correspond to the case where the complete
models of nodes are provided by different tier-1 suppliers
and these nodes may be available at a later stage during
the development. Whatever may be the cause of un-
availability of the internal software architecture of nodes,
the design decisions about network communication must
be available for the timing analysis to work. In order to
support the analysis of such models, a technique is needed
to extract the end-to-end timing models.

3) Gray-box models of nodes: If partial software archi-
tectures of nodes are available then relatively less pre-
cise end-to-end response-time and delay analyses can
be performed. This could be the case when extended
functionality is required compared to a previous release
of the vehicle. The timing model extraction technique in
the case of black-box models of nodes should be general
and robust enough to support the gray-box node models.

In the second and third categories, because the complete timing
information may not be available at the highest abstraction
level, the end-to-end timing analysis results may not represent
accurate timing behavior of the final system. However, these
results can provide useful hints on setting and refining the tim-
ing requirements in the next iterations and at lower abstraction
levels. In the recent few years, one of the focuses of several

large EU research projects, that involve both academia and
industry, has been on supporting the timing analysis at various
abstraction levels and parts of the development process [5],
[6], [7]. To the best of our knowledge, none of the existing
techniques and analysis tools support extraction of timing
models and corresponding timing analysis at the vehicle level
in the second and third categories discussed above. In this
paper, we take the first step to provide such a support during
the model- and component-based development of distributed
embedded systems at the vehicle level of abstraction.

B. Paper Layout
The rest of the paper is organized as follows. In Section II,

we discuss background and related work. Section III revisits
the black-box modeling technique. Section IV discusses the
proposed timing model extraction approach. In Section V, we
discuss the adaptation of existing timing analysis which is
now applicable to the black-box models of nodes. Section VI
presents the proof-of-concept implementation and a case study.
Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

There are several frameworks that can be used for software
development of embedded systems. However, the focus in
the vehicle industry today is on EAST-ADL [12] and AU-
TOSAR [4]; the Rubus Component Model (RCM) [15] is
also being used. In this work, we focus only on the vehicular
domain.

A. Abstraction Levels Considered by Various Methodologies
There are several software development methodologies and

languages for vehicular embedded systems [12], [16], [4], [17]
that mainly describe four abstraction levels as shown in Fig. 1.
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Fig. 1. Abstraction levels considered during the development.

The highest abstraction level, also known as the vehicle or
end-to-end level, captures the features and requirements on
end-to-end functionality of the vehicle. The information cap-
tured at this level is informal and independent of the solution.
The requirements are formally captured at the analysis level.
The information at this level is independent of the allocation of
functions to software/hardware platforms. Further, a high-level
analysis may also be performed for functional verification.
The artifacts at the design level are developed independent
of implementation details. These artifacts also contain middle-
ware abstraction, hardware architecture and software functions
to hardware allocation. The implementation level contains a
software-based implementation of the system functionality.
Basically, it contains the software component architecture of
the system. The EAST-ADL methodology defines a system at
this level in terms of the AUTOSAR software architecture.
Within the vehicle industry, especially in the segment of
construction equipment vehicles, RCM is also used at the



implementation level complementary to EAST-ADL at the top
three levels.

B. The Rubus Concept
Rubus [18] is a collection of methods and tools for model-

and component-based development of embedded real-time
systems. It is developed by Arcticus Systems1 in close col-
laboration with several industrial partners. It has been in the
industrial use for over 20 years. Today, Rubus is mainly used
for the development of control functionality in vehicles by
several international companies, e.g., BAE Systems, Volvo
Construction Equipment, Knorr-bremse, Mecel and Hoerbiger.
The Rubus concept is based around RCM and its development
environment Rubus-ICE [19] which includes modeling tools,
code generators, analysis tools and run-time infrastructure. The
main goal of Rubus is to be aggressively resource efficient and
to provide means for developing predictable, timing analyzable
and synthesizable control functions in resource-constrained
embedded systems. The timing analysis supported by Rubus-
ICE includes distributed end-to-end response-time and delay
analyses [9]. Rubus methods and tools mostly focus at the
implementation level in Fig. 1. The lowest-level hierarchical
component in RCM is called Software Circuit (SWC) which is
used to encapsulate basic functions. Fig. 2 shows an example
of a software architecture in RCM composed of SWCs;
interconnections between them; and their interactions with
external events and actuators. It can be seen in Fig. 2 that
RCM clearly separates data flow from control (or trigger) flow.
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Fig. 2. Example of the software architecture of a system modeled with RCM.

C. AUTOSAR
AUTOSAR is an industrial initiative to support develop-

ment of a standardized software architecture for automotive
embedded systems. It is used at the implementation level. It
describes software development at a higher level of abstraction
compared to RCM. The timing model in AUTOSAR is intro-
duced fairly recently compared to RCM. AUTOSAR is more
focused on the functional and structural abstractions, hiding
implementation details about execution and communication.
AUTOSAR hides the details that RCM highlights. The timing
information required to perform the end-to-end timing analysis
can only be extracted at the implementation level in Fig. 1.

D. Related Initiatives and Approaches
TIMMO [5] is an industrial initiative to provide AUTOSAR

with a timing model. It is based around a methodology
and a language called the Timing Augmented Description
Language (TADL) [17] which expresses timing requirements
and constraints. It is inspired by MARTE [20] which is
a UML profile for model-driven development of real-time
and embedded systems. According to the methodology, the
EAST-ADL language is used for structural modeling; whereas,

1http://www.arcticus-systems.com

AUTOSAR is used at the implementation level. Both TIMMO
and EAST-ADL focus at the top three levels in Fig. 1. TADL
is redefined and released in the TADL2 specification [16]
of the TIMMO-2-USE project [6], [21]. TADL2 is able to
specify timing information at all abstraction levels as shown
in Fig. 1. Most of these initiatives lack the support for
expressing low-level details at the higher levels such as linking
information in distributed chains. These details are necessary
to extract the end-to-end timing information from the software
architecture. Furthermore, there is no support on how to
extract this information from the model or how to perform
timing analysis. In our view, the end-to-end timing information
includes enough information from the systems to be able to
perform end-to-end timing analysis. There are several other
related model- and component-based development approaches
such as COMDES-II [22], ProCom [23] and TECS [24]. To the
best of our knowledge, all these languages, methodologies and
accompanying tools do not support end-to-end timing analysis
at the higher levels of abstraction.

E. End-to-end Timing Model
An end-to-end timing model consists of timing properties,

requirements, dependencies and linking information of all
tasks, messages and task chains in the distributed embedded
system under analysis. It can be divided into system timing and
linking models. For instance, consider a task chain distributed
over three nodes connected by a network as shown in Fig. 3.
The system timing model contains all the timing information
about the three nodes and the network. Whereas the system
linking model contains all the linking information in the
task chains, including control and data paths. A method for
extracting end-to-end timing models is discussed in [25].
In [10], the translation from the design- to the implementation-
level models is provided. However, the translation is done
manually. Moreover, the translation is limited by the constraint
that it only considers that implementation-level model which
results in worst-case response times and delays.

F. End-to-end Timing Analysis
The end-to-end response time of a task chain is defined as

the amount of time elapsed between the arrival of an event at
the first task and production of the response by the last task
in the chain. Consider the end-to-end response time of a task
chain as shown in Fig. 3. In this example, arrival of an event
corresponds to the brake pedal sensor input in the sensor node,
whereas, production of the response corresponds to the brake
actuation signal in the actuation node. However, if tasks within
a chain are triggered by independent sources (e.g., clocks) then
different types of path delays such as age and reaction should
also be calculated. The age delay corresponds to freshness of
data and is important in the control systems domain. Whereas,
the reaction delay corresponds to the first reaction for a given
stimulus and is crucial in button-to-action applications in the
body electronics domain.
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Fig. 3. Example demonstrating end-to-end response time.



In order to explain the meaning of the age and reaction
delays, consider a task chain consisting of two tasks τ1 and τ2
which are triggered by independent clocks of periods 25ms and
5ms respectively as shown in Fig. 4. Let the first and second
instances of τ1 be denoted by τ1(1) and τ1(2) respectively. Let
the Worst Case Execution Time (WCET) of τ1 be 2 ms. When
τ1 is triggered it reads data from register Reg-1, performs its
computation and then writes data to Reg-2. Similarly upon
triggering, τ2 with WCET of 1 ms reads data from Reg-2,
carries out its computation and finally writes data to Reg-
3. Since, the tasks are activated independently with different
clocks, there can be several paths through which the data can
traverse from input (Reg-1) to output (Reg-3) of the chain.
We call these data paths as timed paths (a concept borrowed
from [26]). These timed paths are shown by several uni-
directional arrows in Fig. 5. An example of one of the valid
timed paths is τ1(1)→ τ2(2), i.e., a data path represented by
the first and second instances of τ1 and τ2 in Fig. 5. On the
other hand, τ1(1)→ τ2(1) in Fig. 5 represents an invalid timed
path because the data cannot traverse through it from input to
output. The age delay is equal to the time elapsed between
the current non-overwritten release of τ1 and corresponding
last response of τ2 among all valid timed paths. Whereas,
the reaction delay is equal to the time elapsed between the
previous non-overwritten release of τ1 and the first response
of τ2 corresponding to the current non-overwritten release of
τ1. The age and reaction delays are identified in Fig. 5.
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Fig. 4. Example of a task chain with independent activations of tasks.
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Fig. 5. Example demonstrating end-to-end path delays.

G. Tools Supporting End-to-end Timing Analysis
SymTA/S [13] is a tool by Symtavision for model-based

timing analysis and optimization. Among other analyses, it
supports end-to-end timing analysis in both single-node and
distributed real-time systems. pyCPA [27] is a compositional
performance analysis tool that supports the end-to-end timing
analysis. CANalyzer [28] supports the simulation, analysis
and data logging for systems that use CAN for network
communication. The MAST tool suite [29] supports worst-case
response-time analysis of distributed systems. It also provides
modeling support by integrating itself with a model-based tool
chain that is compliant with the MARTE standard. Rubus-ICE
is a commercial tool suite that supports end-to-end response
time and delay analyses [9]. To the best of our knowledge,
all timing analysis tools used in the vehicular domain support

end-to-end timing analysis at the implementation level. There
is an ongoing work to support the end-to-end timing analysis
at the design level in Rubus-ICE [11], [7]. In comparison, this
paper provides a support to perform end-to-end timing analysis
at the vehicle level. As a proof of concept, we implement the
corresponding timing models extraction method and the end-
to-end timing analysis in Rubus-ICE.

H. Relation with the Authors’ Previous Works
In [30], we presented a method to extract end-to-end timing

models from distributed embedded systems at the implemen-
tation level. Using the extracted models, we provided analysis
engines to perform end-to-end timing analysis [9]. In [10],
[11], we explored the timing model extractions using model
transformations at the design level. As a proof of concept, we
extracted timing information from the systems developed with
EAST-ADL using the TIMMO methodology; and annotated
with timing information using TADL2. At the implementation
level, the method exploits RCM and Rubus-ICE to extract
the timing information that cannot be clearly specified at the
design level. In [31], we proposed an approach to support mod-
eling of legacy distributed embedded systems at the vehicle
level. However, the approach does not support the extraction
of end-to-end timing models. In comparison, our current work
provides an approach to extract and support end-to-end timing
models and analysis respectively at the vehicle level. It is a
step towards the development of a seamless tool-chain for
model-based development of vehicular embedded systems; and
support for inter-operation of various modeling and analysis
tools, including the AUTOSAR-based tool chain [4], [7].

III. REVISITING THE BLACK-BOX MODELING APPROACH

There are a number of techniques that are used for modeling
of vehicular distributed embedded systems at the vehicle
abstraction level such as [12], [6]. However, a majority of these
techniques have limited support for modeling legacy systems.
In this section, we briefly revisit the black-box modeling
approach [31] that provides a comprehensive support to model
not only crude or black-box nodes but also legacy nodes whose
internal software architectures are available for reuse.

This approach proposes to use a black-box node model to
represent the node whose internal software architecture is not
yet available or developed. However, the modeling approach
assumes that the design decisions about the communication
between the node and its environment are available. That
is, the information about sampled data read from external
sensors; control signals sent to external actuators; and network
messages sent and received by such a node, is available. It
communicates with its environment by means of Sensor Ports
(SPs), Actuator Ports (APs), Network Input Ports (NIPs) and
Network Output Ports (NOPs). The model of a black-box
node is general enough to encapsulate the internal software
architecture of a legacy node that is available for partial or
complete reuse. In the former case the same node model is
called gray-box node model, whereas it is called white-box
node model in the later case. In the case of the gray- and white-
box node models, the internal software architectures that are
reused from legacy nodes communicate with the environment
of the nodes via SPs, APs, NIPs and NOPs.

For example, a distributed embedded system modeled with
this approach at the vehicle abstraction level is shown in Fig. 6.



The system contains four black-box models of nodes that
communicate with each other via the model of a network.
It should be noted that if the partial or complete software
architecture from the legacy nodes is encapsulated in the nodes
as shown in Fig. 6, the node models represent gray- or white-
box node models. The network model shown in the figure
contains models of all messages that are sent over the network.
Moreover, it contains the models of all the signals that are
mapped to each message. In addition, it also contains the
model of a Signal Database that contains information about the
network protocol; signal-to-message mapping and vice versa;
encoding and decoding of data in signals and messages.

m1
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m2 m3 m4

s1 s2 s3 s4

s5 s6 s7 s8

Network Model

Node A Node B Node C Node D

Actuator PortSensor Port Network Input Port Network Output Port

SignalMessage Signal Database Data flow

m5

   
  

Fig. 6. Model of a network and inter-node communication using the black-
box modeling approach.

IV. EXTRACTION OF THE END-TO-END TIMING MODELS

In this section, we discuss the extraction of various models
comprising the end-to-end timing model when a distributed
embedded system is modeled with the black-box node models.

A. Extraction of the Node Timing Model
The node timing model considered in this work is inspired

by the transactional task model [32], [33], [34]. In this model,
the tasks are assumed to be scheduled with offsets. The
timing model of a node consists of a set of transactions.
Each transaction is activated by mutually independent events.
This means, the phasing between the events is arbitrary. The
activating events can be (1) a periodic sequence of events, or
(2) a sporadic sequence of events with a Minimum Inter-arrival
Time (MIT) between two consecutive events.

Each transaction contains a number of tasks with each task
having an individual priority. A task may not be activated
(released for execution) until a certain time, called an offset,
elapses after the arrival of the event. Associated to each task
are the worst-, best- and average-case execution times. A task
may also have a jitter that represents variation or difference
between the earliest and latest points in time when the task
starts to execute. A task may have a blocking time which
is the maximum time it has to wait for a resource that is
locked by a lower priority task. It can be determined by using a
resource sharing protocol, e.g., the Stack Resource Policy [35]
or the Priority Ceiling Protocol [36]. Other timing information
associated to a task includes precedence relations, trigger
dependencies, and real-time requirements such as deadlines.

When the system is developed using the gray- and white-box
models of nodes at the vehicle level, the partial or complete
internal software architecture of the nodes is available. In

such a case the node-level timing information can be extracted
by adapting the timing model extraction approaches that are
used at the implementation level such as [30]. On the other
hand, extraction of timing models from the black-box node
models is challenging due to unavailability of the internal
software architecture of the node. Intuitively, the existing
methods cannot be applied. We extract the node timing model
by leveraging on the black-box modeling approach from the
previous section. Although response-time analysis cannot be
performed based on the extracted timing model, the extracted
timing information is sufficient enough to perform end-to-
end timing analysis with relatively low precision. It should
be noted that the precision of the analysis is higher in the
case of gray- and white-box models of nodes.

1) Extraction of Control Flows: Since the end-to-end tim-
ing analysis is performed on distributed chains consisting of
tasks and messages, the control flows within these chains
should be extracted. By control flow we mean how each task
or message within the chain is activated. When a distributed
embedded system is modeled with the black-box node models,
the control flow is extracted from the node ports. There are
three pieces of information associated to control flow that must
be extracted from each node port. The first information con-
cerns the source of triggering, i.e., whether the port is triggered
by another port or by an independent trigger source (e.g.,
clock, event or interrupt). The second information specifies
if the trigger source is periodic or sporadic. Finally, the third
information concerns the period or MIT of the trigger source.

In order to extract such triggering information, we associate
a Trigger parameter with each node port. We attach three
attributes with this parameter namely Trigger.source, Trig-
ger.type and Trigger.value. If a port is triggered by an inde-
pendent trigger source then the corresponding Trigger.source
attribute is assigned “independent”, e.g., all node ports except
AP2 and NOP3 in Fig. 7. Whereas, if a port is triggered
by another port then the Trigger.source attribute is assigned
“dependent”, e.g., AP2 and NOP3 in Fig. 7. If a node port is
triggered by a clock, the corresponding Trigger.type attribute
is assigned “periodic” while the Trigger.value attribute gets
the clock period. For example SP1, NIP1, NIP3, AP1, NOP1

and AP2 in Fig. 7. However, if a node port is triggered by a
sporadic event or interrupt, the corresponding Trigger.type at-
tribute is assigned “sporadic” while the Trigger.value attribute
gets the corresponding MIT. For example NIP2, SP2, NOP2,
and NOP3 in Fig. 7. It should be noted that a periodic or
sporadic source for sensor and network input ports corresponds
to polling- or interrupt-based sampling or message receiving
routines respectively.

2) Extraction of Data Flows: In a black-box node model,
the data flow refers to the way that the data connections are
established within the node between its input ports (SPs and
NIPs) and output ports (APs and NOPs). There can only be
three sources of data that are produced at each output port.

(i) The data is initiated and produced at the node output port,
i.e., the data is not associated to any NIP or SP. In this
case, the data producer would correspond to the SWC
directly connected to the port as if the internal software
architecture were available. However, this SWC is not
available in the black-box node model. This scenario is
depicted in Fig. 8 where AP1 and NOP1 do not possess
a data connection with any other port within the node.
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Trigger
.source = Independent
.type = Periodic
.value = Source Period

Trigger
.source = Independent
.type = Sporadic
.value = Source MIT

Trigger
.source = Dependent
.type = Periodic
.value = Source Period

Trigger
.source = Dependent
.type = Sporadic
.value = Source MIT

Trigger
.source = Independent
.type = Periodic
.value = Polling Period

Trigger
.source = Independent
.type = Periodic
.value =Polling Period

Trigger
.source = Independent
.type = Sporadic
.value = Interrupt MIT

Trigger
.source = Independent
.type = Periodic
.value = Polling Period

Trigger
.source = Independent
.type = Sporadic
.value = Interrupt MIT

Black-box node model



















Network Input Port (NIP) Network Output Port (NOP) Control / trigger flow

Fig. 7. Extraction of control flows from the black-box node model.

(ii) The data arrives from one of the SPs belonging to the
same node. In this case, the node output port is connected
to the corresponding SP. This situation is shown in Fig. 8
where AP2 and NOP2 receive data directly from SP1.

(iii) The data arrives from the network through one of the
NIPs belonging to the same node. In this case, the node
output port is connected to the NIP within the node. This
scenario is shown in Fig. 8 where AP3 and NOP3 receive
data directly from NIP1.

In order to extract the data flow, each AP and NOP is
associated with the Data Path(Port) attribute. This attribute
can get one of the three values as shown below.

Data Path(Port) = {INIT |SP|NIP}
INIT means that the data is initiated at the corresponding AP
or NOP, e.g, AP1 and NOP1. On the other hand, SP and NIP
means that the data at the output port arrives from one of the
SPs or NIPs as shown in Fig. 8.

Black-box node model

Actuator Port (AP)Sensor Port (SP)

Network Input Port (NIP) Network Output Port (NOP)
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Fig. 8. Extraction of data flows within the black-box node model.

3) Extraction of the Internal Delays in a Node: In order
to improve the precision of end-to-end timing analysis of the
black-box node models, we introduce a delay object to capture
the jitter received at each node port. If there is a possibility to
predict or estimate the internal delays in the black-box models,
they can be specified on the delay objects which can be
connected to the node ports. For example, such a delay object

connected to a NOP represents the difference between the
worst- and best-case response times of the task corresponding
to the software component that would be directly connected
to the NOP once the internal software architecture of the node
is available. Similarly, such delays can be captured from the
NIPs, sensor and actuator ports. If these delays are specified
and subsequently extracted in the timing model, the analysis
engines take them into account and provide the timing analysis
results with a better precision.

B. Extraction of the Network Timing Model

Most of the timing information about network messages can
be extracted from the attributes that are explicitly specified
on the model of a message that is shown in Fig. 6. The
message model is general as it allows the specification of both
priority and ID. However in order to be unambiguous in some
protocols such as CAN, where message priorities are unique
and equal to corresponding IDs, the analysis engines extract
the message priority from its ID. The size of a message can
be equal to or higher than the size of the frame in the message
model. However, a one-to-one mapping is considered between
a message and a frame in the case of CAN and its higher-
level protocols. This means, we consider the message size
such that it is able to fit one CAN frame. Some of the timing
information about the messages should be either extracted
from the modeled application or calculated/estimated based on
other attributes. For instance, the worst-case transmission time
is calculated based on the Data Length Code (DLC) parameter
and the network speed specified on the model of the network
as shown in Fig. 6.

The transmission type of each message is extracted from
the Trigger.type attribute associated to the NOP that queues
the message for transmission. Similarly, depending upon the
transmission type, the period or MIT of a message is extracted
from the Trigger.value attribute associated to the NOP that
queues the message for transmission. Another timing param-
eter is message jitter that is generally inherited from the
task corresponding to the sender software component. Since
this information is not available in the black-box model, this
parameter is inherited from the delay specified on the delay
object that is connected to the corresponding NOP. In the case
of a data connection between the NOP and one of the NIPs
or SPs within the same node, this delay corresponds to the
time elapsed from the triggering of the NIP or SP to the
triggering of the NOP. If this delay is not specified, its default
minimum value can be considered as 1 µs that corresponds to
the transmission time of one bit of data on the CAN bus at
its maximum operating speed of 1 Mbps (currently, we don’t
consider CAN-FD [37]). It should be noted that the precision
of the analysis results partly depend upon the accuracy of the
specified delay.

C. Extraction of the Linking Model

The linking model captures the end-to-end real-time re-
quirements and linking information within each distributed
chain that is composed of components, messages, data flow
and control flow. The real-time requirements such as end-to-
end deadlines, age and reaction constraints are specified at the
system level, i.e., outside of the node models. If a distributed
embedded system is modeled using the gray- and white-box
node models, such constraints specified on distributed chains



may reside either inside or outside of the nodes. However,
these constraints must be specified outside of the black-box
node if it is located along the path of the distributed chain
under analysis. Each such constraint has a start object and an
end object. The real-time requirements are extracted from the
end object of each constraint. The placement of these objects
determine the length of the distributed chain to analyze.

1) Extraction of Distributed Chains: The references to
all the NIPs, NOPs, SPs, APs and messages along each
distributed chain are collected in a data structure denoted by
Constrained Chain(ID, type). Where, ID denotes a unique
identification of the chain on which a timing constraint is
specified. Whereas, type denotes the type of timing constraint
that is specified on the chain. For example, assume that the
start and end objects for the age constraint are specified before
the sensor port belonging to Node A (denoted by SPA

1 ) and
after the actuator port belonging to Node D (denoted by
APD

1 ) respectively in Fig. 6. This represents a distributed chain
whose input data is sensed from the sensor port in Node A,
while the corresponding output appears at the actuator port
of Node D after traversing through Node B, Node C and the
network. The sequence of ports and messages captured in the
linking model from the corresponding Constrained Chain(1,
Age) in Fig. 6 is given below.

Constrained Chain(1, Age) := SPA
1 → NOPA

1 → m1 →
NIPB

1 → NOPB
1 → m2 →

NIPC
1 → NOPC

1 → m5 →
NIPD

1 → APD
1

In order to extract the data flows in each
Constrained Chain(ID, type), one of the three possible
sources of data produced at the NOP or AP within a
node along the chain is captured from the corresponding
Data Path(Port) attribute. The data connections of each
message from the sender NOP and receiver NIPs are
extracted from the signal database object as shown in
Fig. 6. Moreover, the mapping, encoding, packing and
decoding information of signals from/to messages along a
Constrained Chain(ID, type) is also extracted from the signal
database. The control flow along each distributed chain is
captured by extracting the Trigger.dependency, Trigger.type
and Trigger.value attributes associated to each port along
Constrained Chain(ID, type). These attributes for each NOP
capture the trigger flows related to network messages. The
size of data arriving from a sensor or delivered to an actuator
is assumed to be equal to 1 byte if it is not specified on the
optional parameter associated to each sensor or actuator port
respectively.

2) Extraction of Mode-related Information: Based on the
requirements specified on the system, each node may have
more than one mode. In essence, a mode is an applica-
tion of its own. The system may switch from one mode
to another during its execution. In the case of the black-
box node model, we assume that there is only one mode
because the internal software architecture is not available.
However, the gray- and white-box node models may have more
than one mode. This complicates the extraction of distributed
chains that span over more than one node if the nodes along
the chain have more than one mode. For example, assume
that the distributed embedded system as shown in Fig. 6 is

modeled with the white-box node models and that there are
2, 2, 3, and 2 modes in Node A, Node B, Node C and
Node D respectively. Also assume that the age constraint is
specified in a similar fashion as in Section IV-C1. There are
24 (2 ∗ 2 ∗ 3 ∗ 2 = 24) different distributed chains that are
extracted in this case. All these extracted chains correspond
to the single Constrained Chain(1,Age) in Section IV-C1 if
only the black-box node models are used in Fig. 6.

V. SUPPORT FOR END-TO-END TIMING ANALYSIS

When a distributed embedded system is developed using the
black-box models of nodes, the internal software architecture
of nodes is not available. Intuitively, timing properties of the
tasks are also not available. Hence, the response times of tasks
cannot be calculated. However, most of the timing information
about the network communication is assumed to be available,
therefore, response times of messages can be calculated. The
end-to-end response times of distributed chains depend upon
the timing properties of all tasks and messages. Due to lack
of complete timing information about distributed chains, the
calculated end-to-end response times may not be of significant
values, especially in the case where internal delays connected
to the node ports (see Section IV-A3) are not specified.

On the other hand, the age and reaction delays can be
calculated with relatively higher precision. This is because
the contribution of clock periods along the chain have the
lion’s share in the delays compared to the contribution of the
response times of tasks along the distributed chain [9], [26].
For example, the end-to-end response time of the chain in
Fig. 5 is 3 time units (for simplicity, we do not consider any
interference other than the one imposed by the two tasks on
each other). Whereas, the age delay is 24 time units. Although
the reaction delay is equal to the end-to-end response time in
this case, the delay can be significantly higher if the number of
tasks along the chain increases. In conclusion, the calculations
for the age and reaction delays in the case of black-box
models is valuable because the calculated delays can be used
to provide initial validation or refinement of the system model
with respect to timing requirements.

The end-to-end path-delay analysis of the system modeled
with the black-box node models can be performed using
Algorithm 1. The algorithm is adapted from the existing
analysis [26], [9]. The purpose of this algorithm is not to
revisit the existing analysis [26] but to show how it can be
adapted to calculate the age and reaction delays when black-
box models of nodes are used. The number of timed paths can
be determined in relation to the times when each port along the
chain is triggered; instead of determining it from the activation
and execution times of the tasks along the chain. For example,
the first triggering of a port is assumed to be equivalent to the
activation of the first instance of the task corresponding to the
software component that would be connected to the port if the
internal software architecture of the node is available.

It can be seen on line 4 in Algorithm 1 that the age delay in
a timed path not only depends upon the response time of the
current instance of the last task but also on the activation times
of the current instances of the first and last tasks in the chain.
The calculations for the reaction delay depend upon the last
in first out delay; the activation time of the current instance
of the first task; and the activation time of the previous non-
written instance of the first task belonging to the previous valid



Algorithm 1 Algorithm for end-to-end path-delay analysis of
the systems developed using the black-box node models.

1: begin
2: FIND ALL VALID TPS() . TP: Timed Path
3: procedure COMPUTE AGEdelay(LL TP) . LL: Last in

Last out
4: Agedelay = αn(inst) + δn(inst) - α1(inst) . αn(inst)

and δn(inst): Activation and response times of the corre-
sponding instance “inst” of nth task in TP respectively.

5: return Agedelay
6: end procedure
7: procedure COMPUTE LFdelay(LF TP) . LF: Last in

First out
8: LFdelay = αn(inst) + δn(inst) - α1(inst)
9: return LFdelay

10: end procedure
11: procedure COMPUTE REACTIONdelay(FF TP) . FF:

First in First out
12: Reactiondelay = LFdelay + α1(inst) - α1,Pred(inst)

. α1,Pred(inst): Activation time of the previous non-
overwritten instance of nth task in TP.

13: return Reactiondelay
14: end procedure
15: for all Constrained Chain(ID, type) do
16: Age ← 0, Reaction ← 0 . Initialization
17: Age TPcount ← GET ALL LL TPS()
18: Reaction TPcount ← GET ALL FF TPS()
19: for i:=1 to LL TPcount do
20: if COMPUTE AGEdelay(i) > Age then
21: Age ← COMPUTE AGEdelay(i) . Age delay

is the maximum delays among all LL TPs.
22: end if
23: end for
24: for i:=1 to FF TPcount do
25: if COMPUTE REACTIONdelay(i) > Reaction then
26: Reaction ← COMPUTE REACTIONdelay(i) .

Reaction delay is the maximum delay among all FF TPs.
27: end if
28: end for
29: end for
30: end

timed path. Since some of these parameters are not available
per se in the black-box models, the response time of a task is
assumed to be equal to the delay specified on the delay object
connected to the corresponding NIP, NOP, sensor or actuator
port (discussed in Section IV-A3). Similarly, the activation
time of the task can be extracted from the activation time
of the clock which is directly connected to the corresponding
port. Using these assumptions and Algorithm 1, the existing
analysis is applicable to the system that is developed with
the black-box models of nodes. It should be noted that the
algorithm is also applicable to the system that is modeled with
the gray- and white-box node models. However in such a case,
depending upon the number of modes in each node, several
Constrained Chains(ID,type) corresponding to one end-to-end

timing constraint are analyzed. In this case, the analysis results
not only include the end-to-end delays for each combination of
distributed chains due to multiple modes, but also the worst-
case end-to-end delay among all combinations.

VI. PROOF OF CONCEPT AND A CASE STUDY

In order to show the proof of concept, we implement the
proposed timing model extraction approach in the existing
industrial tool suite Rubus-ICE. Moreover, the adapted end-
to-end timing analysis algorithm is implemented on top of
the existing end-to-end timing analysis plug-in in Rubus-
ICE [9]. The existing analysis supports the analysis at the
implementation level. With the extensions, the plug-in now
supports the analysis at the vehicle level. In order to show
the applicability of our approach, we conduct a vehicular case
study by using the extended implementation in Rubus-ICE.

A. Modeling of an Adaptive Cruise Control System using
Black-box and Legacy Models

We mimic a typical industrial scenario by reusing most
of the artifacts from earlier releases or previous iterations
during the development of a vehicular distributed embedded
system. Intuitively, most of the design decisions about network
communication can be made early during the development.
The objective is to model and analyze an Adaptive Cruise
Control (ACC) system using previously developed models of
the Cruise Control (CC) system at the vehicle level. The CC
system allows a vehicle to automatically maintain a steady
speed to the preset speed. It controls the engine throttle
depending upon the velocity feedback from the speed sensor.
The ACC system is an extension of the CC system such that it
provides the cruise control functionality by adapting itself to
the traffic. It uses proximity sensors such as radar to create a
feedback of distance to and velocity of the preceding vehicle.
Based on the feedback, it either reduces the vehicle speed to
keep a safe distance and time gap from the preceding vehicle
or it accelerates the vehicle to match the preset speed.

The legacy CC system that is available for reuse has been
modeled with four nodes namely Cruise Control (NodeCC),
Engine Control (NodeEC), Brake Control (NodeBC) and User
Interface (NodeUI ). The nodes communicate among each other
via one CAN bus. The ACC system can be modeled by reusing
models of four nodes from the CC system and introducing a
fifth node denoted by Adaptive Cruise Control (NodeACC) that
provides the adaptive functionality. We assume that NodeACC

communicates only with NodeCC via the CAN bus. Hence,
we consider only NodeACC and NodeCC for simplicity. We
also assume that the internal software architecture of NodeCC

can be partially reused. Hence, it is modeled with a gray-box
node model. On the other hand, NodeACC is modeled as a
black-box node model.

The model of the ACC system in Rubus-ICE is shown
in Fig. 9. The system consists of a black-box node model
NodeACC , a gray-box node model NodeCC and a CAN bus.
The speed of the CAN bus is 250 Kbit/s. The model of
CAN contains eight messages whose models and attributes
are shown in Fig. 10. The model of signal database that
encapsulates the signal-to-message mapping and vice versa
is shown in the figure. There are three NIPs in NodeACC for
receiving three CAN messages containing vehicle speed, RPM
value and status of manual brake respectively. We assume that



the delays associated to these NIPs cannot be estimated. It
has one sensor port that receives sampled radar signals. We
assume that a delay object is connected to the sensor port with
an estimated delay of 500 µs. The main purpose of this node
is to calculate the control information regarding presence of
other vehicles in its proximity. It has only one NOP that sends
a CAN message, carrying proximity control information, to
NodeCC . We assume that a delay object is connected to the
NOP with an estimated delay of 700 µs. All the node ports
are triggered independently by periodic clocks, each having a
period of 10 ms.
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Fig. 9. Model of Adaptive Cruise Control at vehicle level in Rubus-ICE.
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Msg DLC Prio Period

m1 6 0 10 ms

m2 6 1 10 ms

m3 4 2 10 ms

m4 8 3 10 ms

m5 4 4 10 ms

m6 2 5 10 ms

m7 8 6 10 ms

m8 8 7 10 ms

m2

m4

m6

m8

m1

m3

m5

m7

Fig. 10. Models of CAN messages in Rubus-ICE.

The gray-box model of NodeCC as shown in Fig. 9 has
five NIPs for receiving five CAN messages containing vehicle
speed, RPM value, status of manual brake, user interface and
proximity information respectively. The main purpose of this
node is to compute the control information that is used to
adjust the speed of the vehicle with respect to the cruising
speed or clearing distance from the preceding vehicle. There
are three NOPs that send CAN messages carrying control
information about engine actuation, brake actuation and user
interface control. The internal software architecture of NodeCC

that is partially reused is shown in Fig. 11. It contains only one
mode. There are five SWCs: one performs input processing;
one carries out the computation of control information; while
the remaining SWCs send CAN messages carrying engine,
brake and user interface control information. The WCETs of
these SWCs are 200 µs, 180 µs, 80 µs, 80 µs and 80 µs
respectively.
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Fig. 11. Software architecture of gray-box model of NodeCC in Rubus-ICE.

B. End-to-end Timing Analysis
We are interested in the calculations of end-to-end path

delays from the arrival of radar sensor values at NodeACC until
production of brake control signals in NodeCC . We specify
the start objects for the age and reaction constraints namely
AgeRadar and ReactionRadar at the sensor port of NodeACC

in Fig. 9. Whereas the end objects for the age and reaction are
specified in NodeCC as shown in Fig. 11. The values of the
specified age and reaction constraints are 20 ms and 30 ms
respectively. Accordingly, the extracted distributed chain to
be analyzed under the specified timing constraints consists
of node ports, messages and SWCs (only in NodeCC) is as
follows.

Constrained Chain(1, Age&Reac) := RadarNodeACC →
Proximity Cont InfoNodeACC → m4 → Proximity InfoNodeCC

→ IN Processing SWCNodeCC → Computation SWCNodeCC

The response times of messages m1, m2, m3, m4, m5, m6,
m7 and m8 calculated by the analysis engines are 1620 µs,
2000 µs, 1840 µs, 3880 µs, 2760 µs, 3060 µs, 3600 µs
and 4600 µs respectively. Whereas, the calculated network
utilization is 36%. The age and reaction delays calculated by
the analysis engines are equal to 13960 µs and 23960 µs.

C. Discussion
It can be seen that the age and reaction delays meet the spec-

ified end-to-end deadlines of 20 ms and 30 ms respectively.
This means that the specified constraints are good enough to
be used at the lower abstraction levels. It should be noted that
the internal delays associated with the node ports in the black-
box node models are assumed to be based on judgements by
the industrial experts. If it can be estimated that the specified
delays are sufficient enough to correspond to WCETs of the
SWCs that are connected to the corresponding node ports, the
end-to-end timing requirements can be refined based on the
calculated delays.

On the contrary, if the age and reaction constraints are not
met then some useful information can be provided which can
help the user to perform a refinement of models and timing
requirements as follows.

(i) The periods of independent clocks along a distributed
chain have a significant impact on the path delay. It may
or may not be possible to change the clock periods in
legacy nodes. However, reducing the periods associated
to the node ports in black-box nodes could reduce the age
and reaction delays. Such modifications could be more
helpful in the case of under-utilized nodes.

(ii) Another way to lower the delays is by decreasing the
number of independent clocks along the chain. For
example, the age and reaction delays may be lowered
if Proximity Cont InfoNodeACC NOP is triggered by
RadarNodeACC SP instead of an independent clock. This
information may be useful at a lower abstraction level or
at a later stage during the development when the internal
software architecture of the black-box node is modeled.

(iii) It may be possible that the internal delays associated with
the node ports in the black-box node models are over-
estimated. Reducing these estimations can lower the age
and reaction delays.



(iv) It may also be the case that end-to-end timing require-
ments specified by the user are very tight. By making a
comparison with the calculated age and reaction delays,
the user may be able to refine the timing requirements.

VII. CONCLUSION

In this paper we have introduced a new approach for
the extraction of end-to-end timing models from vehicular
distributed embedded systems. The proposed approach is
applicable at a high level of abstraction where the system
contains crude models of nodes that lack their internal software
architectures. Moreover, the system may also contain legacy
nodes whose internal software architectures can be partly or
fully reused. We have also provided an adaptation to the
existing analysis engines to support the end-to-end timing
analysis of these systems at a high abstraction level and at an
earlier phase during their development. The analysis results
can provide guidelines to perform optimizations; improve
timing requirements; and do model refinements at such a high
level of abstraction. In order to provide a proof of concept,
we have implemented the timing model extraction approach
and have adapted analysis in the existing industrial tool suite
Rubus-ICE. Using the extended tool we have conducted a
vehicular-application case study to show the applicability of
the proposed approach.

The timing model extraction approach is applicable to any
component technology that uses a pipe-and-filter style for
components interconnection and supports separation between
control and data flows. We believe, the tools implementing the
timing model extraction approach and adapted analysis may
prove helpful for the software development organizations in
the vehicular domain to decrease the costs for development
and testing.

In the future, we plan to conduct a comprehensive case
study on a use case from our industrial partners. The aim is to
model and timing analyze a vehicular application consisting of
multiple networks (e.g., CAN and Switched Ethernet) or net-
work segments (e.g., CAN-CAN) at the vehicle level. Another
interesting future work is to perform sensitivity analysis on
end-to-end timing of a vehicular distributed embedded system
that is modeled with only (a) the white-box node models, (b)
the gray-box node models, or (c) the black-box node models.
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