
Comparative Evaluation of Timing Model Extraction
Methodologies at EAST-ADL Design Level

Alessio Bucaioni∗†, Saad Mubeen∗, Federico Ciccozzi∗ Antonio Cicchetti∗ and Mikael Sjödin∗
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Abstract—There are various methodologies that support the
extraction of timing models from EAST-ADL design-level models
during the development of vehicular embedded software systems.
These timing models are used to predict timing behavior of
the systems by performing end-to-end timing analysis. This
paper presents a comparative evaluation of three methodologies.
We present an evaluation framework that consists of several
evaluation features. Using the framework, we compare and
evaluate the methodologies against each feature. Eventually, the
evaluation results can be used as guidelines for the selection of the
most suitable methodology with respect to the end-to-end timing
behavior of a given vehicular embedded system.

Keywords—EAST-ADL; RUBUS component model; timing
model; timing analysis; model transformations; comparative eval-
uation

I. INTRODUCTION

During the last two decades, the complexity of vehicular
embedded systems has increased considerably, negatively af-
fecting their development cost and time-to-market. In order
to mitigate these issues, the research community has defined
an architecture description language namely EAST-ADL [1].
It exploits the principles of Component-Based Software Engi-
neering (CBSE) [2] and Model-Driven Engineering (MDE) [3].
Basically, it defines a top-down methodology for the develop-
ment of these systems. It ensures the separation of concerns
by relying on four different abstraction levels. Each level
is provided with a specific modeling language and a set of
activities to be performed as shown in Fig. 1.

A high-level analysis can be performed at the analysis
level for consistency checking of the system requirements.
However, timing behavior of the system can be analyzed only
at the implementation level by performing, e.g., response-time
analysis [4] and end-to-end delay analysis [5]. Considering
the timing constraints typical of these systems, the industry is
currently pushing to anticipate their timing behavior at the de-
sign level for driving architectural refinements and improving
reuse [6].

A. Problem Statement

In order to support high-precision timing analysis of these
systems, end-to-end timing models need to be extracted from
their software architecture. Timing models consist of timing
properties, requirements, dependencies, control flows, data
flows and linking information of all tasks, messages and task
chains contained in the system. The problem is that this timing

Fig. 1. EAST-ADL abstraction levels and related activities.

information is not completely available at the design level.
This hampers the application of a high-precision end-to-end
timing analysis on the design-level models of the system. To
attack this problem, the research community, together with
the vehicle industry, has proposed several methodologies for
the extraction of the timing models from the design-level
models [7], [8].

B. Paper Contribution

In this paper, we present a novel comparative evaluation
of various methodologies that are used for the extraction
of timing models from EAST-ADL design-level models. To
this end, we i) identify three methodologies that support the
extraction of the timing models at the design level, ii) establish
a framework consisting of seven evaluation features and iii)
compare and evaluate the selected methodologies against the
elicited features composing the framework. Eventually, the
comparative evaluation can be used as a driver for application-
specific selection of the most appropriate methodology.

C. Paper Outline

The rest of the paper is organized as follows. Section II
discusses the compared methodologies. Section III presents
the evaluation framework, comparison of the methodologies
and evaluation results. Section IV discusses the related work
documented in the literature. Section V provides a short
summary of the contribution and planned future enhancements.

II. METHODOLOGIES FOR TIMING MODELS EXTRACTION

There are several documented approaches for dealing with
the transformation of EAST-ADL models into proper input



formats for timing analysis (see Section IV). Nevertheless,
none of them can deal with the extraction of the timing models
with the aim of supporting response-time analysis and end-
to-end timing analysis at the design level. To the best of our
knowledge, the methodologies that we take into account in this
work are the only ones attempting at tackling such a challenge.

A. The TIMMO2USE Methodology

TIMMO2USE [7] is a large European research project with
17 industrial and academic partners. It aims at the develop-
ment of novel languages, methodologies and tools capable of
annotating timing information at various abstraction levels as
shown in Fig. 1. It follows up on the TIMMO project and
its results including the methodology and Timing Augmented
Description Language (TADL).

The TADL language represents the first attempt in provid-
ing EAST-ADL with a language for expressing timing infor-
mation. Compared with TIMMO, the TIMMO2USE project
defines an extension of TADL together with the definition of
a development methodology. The TIMMO2USE methodology
consists of six activities that are performed for each EAST-
ADL abstraction level as shown in Fig. 2. The methodology
can be explained as follows.

Fig. 2. The TIMMO2USE methodology.

1) Create Solution: Given the timing requirements origi-
nating from the higher abstraction level, a solution1 is created
or an already existing solution is revised. The solution is
modeled according to the language provided for the considered
abstraction level.

2) Transform Timing Requirements: Considering the
elicited solution, timing requirements from the higher abstrac-
tion level are translated to suitable timing requirements for
the current level. This means that the timing requirements
are expressed using the timing information provided by the
language at the current level.

3) Find Timing Properties: Timing properties of the system
are specified based on the translated timing requirements.
These properties must be selected in such a way that they
can be evaluated against the timing requirements. At this stage,
timing properties can be estimated or reused from the previous
projects.

4) Analyze: Timing properties are assessed with the aim of
deciding whether to proceed with the next task or repeat the
previous tasks.

1Here the term solution refers to a design-level software architecture
modeling the vehicular embedded system.

5) Verify and Validate: In this task, the software architec-
ture and its timing properties are verified and validated against
the specified requirements.

6) Specify Timing Requirements: The goal of this task is
to identify which timing requirements must be considered for
the next abstraction level.

B. The Design-to-implementation Level Model Transformation
(DTILMT) Methodology

In [8] the authors proposed a semi-automatic methodology,
which exploits the principles of MDE and CBSE, for perform-
ing end-to-end timing analysis at the design level.

Due to lack of complete timing information, the timing
models can not be extracted from the design-level models. In
order to solve this issue, the methodology translates design-
level models to implementation-level models. In fact, the
implementation-level models contain the necessary timing
information (e.g., triggering information and control flows)
for building timing models on which timing analysis can be
performed.

The methodology generates a set of implementation-level
models enriched with timing elements whose properties are
set by the developer at generation time. This is due to the
timing information that is available in the implementation-level
model. In fact, the timing information represents variability
points in the translation mechanisms. This means that more
than one implementation-level model can be a valid translation
of a given design-level model. Once the implementation-
level models are generated, the end-to-end timing analysis
is performed. The analysis results (e.g., end-to-end response
times and delays) are compared and evaluated with respect
to the specified timing constraints. Based on the evalua-
tion, the methodology is able to select the most suitable
implementation-level model based on a better schedulability.
Finally, the analysis results are fed back to the starting design-
level model. The complete methodology is depicted in Fig. 3.

C. In-house and Tool-based (IH&TB) Methodologies

There are several academic and commercial tools that sup-
port modeling of a system using EAST-ADL. Some examples
include Mentor Graphics VSA, Papyrus, EATOP, MetaEdit+,
Enterprise Architect, Rubus-EAST, No Magic, System Weaver
and SE Tool [9]. These tools are used at the top three levels
including the vehicle, analysis and design levels as shown in
Fig. 1. Some of these tools are actually used in the industry,
e.g., VSA, System Weaver and SE Tool2 However, these tools
rely on other tools that support the software development at
the implementation level, e.g., AUTOSAR tool chain [10] and
Rubus-ICE [11].

The translation from design- to implementation-level mod-
els depends upon the in-house translation methods that are
exercised by each Original Equipment Manufacturer (OEM)
for the integration between the corresponding tools. Some of
the translation methods are semi-automatic, e.g., in the case
of integration of an EAST-ADL tool with the AUTOSAR tool
chain. Whereas, for the others, the translations can be close

2SE Tool is a version of System Weaver that is tailored for the development
of vehicle functionality at Volvo.



Fig. 3. Design-To-Implementation Level Model Transformation methodology.

to manual with a lot of human-in-the-loop interactions. For
example, consider the case of integration between the SE tool
and Rubus-ICE, both being commercial tools. The design-level
models are manually translated to the implementation-level
models by expert integrators using, e.g., MS Visio drawings.
Moreover, the translations are based on a lot of assumptions,
e.g., often a one-to-one mapping is considered between the
design- and implementation-level software components.

III. COMPARATIVE EVALUATION

In this section, we i) discuss the features comprising the
evaluation framework and ii) present a comparative evaluation
of the three methodologies (discussed in Section II) using the
aforesaid framework.

A. Evaluation Framework

¡¡¡¡¡¡¡ .mine The features, that comprise the evaluation
framework, have been elicited considering their relations to
the EAST-ADL principles and relevance within the industrial
domain. It may be argued that a different set of features
could affect the evaluation results. While this can be a valid
argument, we believe that a different set of features would lead
to a different, yet complementary, evaluation of the method-
ologies not in contrast with the one presented in this paper.
======= The features that compose the evaluation framework
have been elicited considering their relations to the EAST-
ADL principles and relevance within the industrial domain.
It may be argued that a different set of features could affect
the evaluation results. While this can be a valid argument,
we believe that a different set of features would lead to a
different, yet complementary, evaluation of the methodologies
not in contrast with the one presented in this paper. The
evaluation framework is composed of the following seven
features. ¿¿¿¿¿¿¿ .r7298

The evaluation framework is composed of the following
seven features.

1) Separation of Concerns: One of the first attempt to deal
with the complexity of software development has been the
establishment of views and viewpoints for ensuring separation
of concerns. This, in turn, raises the level of abstraction for
the software development.

EAST-ADL has been designed to implicitly ensure the
separation of concerns by developing the vehicular software
architecture at four abstraction levels. In this context, it is
crucial for any EAST-ADL-based methodology not to violate
such a principle. With respect to this feature, a methodology
can fully comply with it (F), partially comply with it (P) or
violate it (V).

2) Assumptions: A high-precision end-to-end timing anal-
ysis cannot be performed on the design-level models due to
lack of timing information that is needed to extract the timing
models.

One way to solve this issue is to derive the implementation-
level models from the design-level models. Then, the timing
models are extracted from the derived implementation-level
models. Another solution is to extract the timing models
directly from the design-level models. However, the extracted
timing models lack some timing information, such as trigger-
ing and linking information, that is necessary to perform high-
precision end-to-end timing analysis. Therefore, assumptions
are made to fill the missing timing information in the extracted
timing models.

Intuitively, a methodology can either rely (Y) or not rely
(N) on the assumptions.

3) Automation: The development cost and time-to-market
can be lowered by assembling a seamless tool chain. In this
context, the industry is seeking novel methodologies with



as little as possible human-in-the-loop interactions. Hence, a
methodology can be fully automated (FA), partially automated
(PA) or not automated at all (NA).

4) Maturity: This feature indicates whether or not the
methodology is mature enough for industrial exploitation. In
this respect, the features indicates if a methodology has been
already validated using industrial use cases (I) or academic
case studies (A).

5) Scalability: It is estimated that the software in modern
vehicles consist of nearly 100 million lines of code that run
on up to 100 Electronic Control Units (ECUs) [12]. Hence, a
methodology must be able to scale and adapt to these software-
extensive systems. With respect to this feature, a methodology
can be classified as easy to scale (ES), possibly scalable (PS)
or hard to scale(HS).

6) Number of Extracted Timing Models: The end-to-end
timing analysis relies on complete timing models. Hence, the
timing models must be extracted from the software architec-
ture. The way in which the timing models are extracted from
the design-level models can significantly impact on the analysis
results. In fact, due to the lack of timing information, more
than one valid timing model can be inferred from a design-
level model depending upon how the timing information is
assumed or annotated.

Assuming the underlying software architecture to be cor-
rect, the timing analysis results can vary depending on how the
timing model(s) is (are) extracted. That is, if a methodology
is able to extract a single timing model at a time (S), it might
happen that the timing analysis applied on it may result in the
unschedulable system. Contrariwise, if a methodology is able
to extract all the possible relevant timing models (A), then it
is highly likely that one of the timing models may correspond
to a schedulable system.

7) Trace: In software engineering, the term traceability
refers to the possibility to establish and use traces, i.e., links
between software artifacts throughout the process of software
development. Intuitively, given the problem of extracting tim-
ing models from the design-level models, a crucial aspect is
how the timing model can be traced back to the model where
it is extracted. To this end, a methodology can automatically
create traces which can be exploited for such a purpose (A).
Alternatively, a methodology does not support the automatic
creation of traces between the two models; therefore, manual
tracing is required (M).

B. Discussion

In Table I we illustrate the comparative evaluation of
the selected methodologies according to the features that
are included in the proposed evaluation framework. Using
the framework, the three methodologies have been evaluated
based on the authors’ experience (e.g., DTILMT and IH&TB)
and their interpretation of the technical specification of the
methodologies (e.g., TIMMO2USE).

1) The TIMMO2USE Methodology: This methodology fo-
cuses on timing analysis by establishing a set of activities to
perform at each EAST-ADL abstraction level. Since it is based
on the EAST-ADL methodology, it ensures the separation of
concerns by recognizing the EAST-ADL abstraction level.

In order to anticipate the timing behavior at the design
level, the engineer has to enrich the design-level models
with timing properties that are typical to the implementation-
level models. Consequently, this activity partially violates the
separation of concerns principle.

Most of the activities in this methodology rely on the
engineer’s expertise. For example, consider the ”Transform-
ing Timing Requirements” and ”Finding Timing Properties”
activities. Here, the engineer has to establish how timing
requirements from the previous level must be transformed to
the current level. In addition, which timing properties - and
their values - must be specified at the current level.

Clearly, this methodology is able to generate one timing
model per time. Since the methodology is based on the
engineer’s expertise, it can not be fully automated.

Intuitively, it is hard to scale. The methodology has been
evaluated on several validators and use cases from the industry
including the brake-by-wire system, steer-by-wire system and
adaptive cruise control system [13].

The TIMMO2USE methodology does not directly provide
any mechanism for tracing the timing models to the design-
level models. Nonetheless, the methodology is based on EAST-
ADL which provides metamodeling constructs to support the
tracing mechanisms. There are several tools that implement
the EAST-ADL metamodeling constructs [9]. However, some
of these provide automatic tracing support; while the others
provide manual tracing support.

In conclusion, the TIMMO2USE methodology may be
very suitable for less software-extensive vehicular embedded
architectures as they can be easily managed by an engineer
or a team of engineers. Moreover, it may be the favourable
choice in the case of legacy systems where a lot of information,
models and artifacts are often available for reuse.

2) The DTILMT Methodology: This methodology trans-
lates the design-level models to the implementation-level mod-
els from where the timing models can be extracted.

Using the principles of MDE, such a translation is automat-
ically performed by means of a model-to-model transformation
which generates the implementation-level models from the
design-level models. Model transformations make use of the
so-called trace model, i.e., a model that relates the elements
from the generated model to the corresponding elements from
the generating models.

The transformation generates the implementation-level
models containing the timing elements needed for the timing
model extractions. More precisely, considering the aforesaid
timing elements, the transformation generates the set of all
the meaningful implementation-level models. Therefore, the
methodology does not rely on assumptions. Also, the engineer
is not required to enrich the design-level models with timing
elements. This fully ensures the separation of concerns.

Intuitively, the methodology is easy to scale because it
does not have any human-in-the-loop interaction. However, the
performance for generating the implementation-level models
can downgrade as the set of meaningful implementation-level
models can grow significantly in the case of a software-



Evaluation Features
Separation of Concerns Assumptions Automation Maturity Scalability # Extracted Timing Models Trace

Methodology
TIMMO2USE P Y NA I HS S A/M

DTILMT F N FA/PA I/A ES A A
IH&TB P Y PA/NA I PS/HS S M

TABLE I. COMPARATIVE EVALUATION.

extensive system. The methodology has been validated using
an academic case study inspired from the industry.

In a nutshell, the DTILMT methodology proposes an
automatic solution to the problem of extracting the timing
models from the design-level models. Being an academic
methodology, it must be improved prior to its adoption by
the industry.

3) The IH&TB Methodology: This methodology does not
allow the extraction of timing models at the design level.
In the first step, the design-level models are translated to
the implementation-level model. In the second step, timing
models are automatically extracted from the implementation-
level models. Since, this methodology involves human-in-the-
loop interactions during the translation step, separation of
concerns can not be fully guaranteed.

Although there is a large number of in-house and com-
mercial tools and integrated tool chains, not all tools and tool
chains provide automatic tracing support between the timing
models and the design-level models. In addition, it relies on
several assumptions during the conversion of artifacts from the
design to implementation level.

Although the timing model extractions are fully automated,
the translation from design- to implementation-level models
is semi-automated or manual depending upon the in-house
integration method used by the OEM. Since this methodology
is used by several OEMs, it can be considered as mature.

The methodology is not very scalable because it is largely
dependent upon the judgments of expert integrators. Its scal-
ability varies depending upon the level of human-in-the-loop
interactions.

This methodology produces only one implementation-level
model corresponding to each design-level model. Hence, it
results in the automatic extraction of only one timing model
of the application.

IV. RELATED WORK

To the best of our knowledge there is no actual comparison
of timing model extraction methods from the EAST-ADL
design level models. A work which might be considered related
is the one presented in [14], where the authors show an analysis
of several modeling languages focusing on a brief comparison
between MARTE and EAST-ADL focusing on timing issues.
The comparison stresses though mainly modeling differences
between the two languages. Nevertheless, in the literature
there are several documented approaches that deal with the
transformation of EAST-ADL models into proper input formats
for timing analysis.

In [15] the authors present an integration of architectural
models, especially behavioral descriptions, defined in EAST-
ADL and formal verification techniques. More specifically,

the approach, called ViTAL, provides a way to transform
functional EAST-ADL behaviors to timed automata on which
model checking (i.e., timing constraints checking) can be
run through the UPPAAL PORT tool. The method makes it
possible to identify hidden dependencies and potential conflicts
between different vehicle functions before moving to the
implementation level.

The work presented in [16] provides another way for trans-
forming from EAST-ADL to timed automata. More specifi-
cally, it shows how EAST-ADL timing constraint specifications
and the execution behavior of a component can be transformed
into a network of timed-automata through a set of pre-defined
timed-automata templates; the final goal is, as for the previous
approach, model-checking.

While existing works focus on either model-checking or
on EAST-ADL levels that conceive timing information as part
of the model, our focus is mainly on high-precision end-to-
end timing analysis to be run as early as possible in the
development process (i.e., design level). Our research group
has introduced in [17] challenges and issues to be faced when
extracting timing models at various abstraction levels. The
comparative evaluation presented in this work represents a
natural continuation of that work towards the definition of an
effective solution.

V. CONCLUSION AND FUTURE WORK

In the context of software development for vehicular em-
bedded systems, anticipating its end-to-end timing behavior at
the design level is a common practice for mitigating develop-
ment issues such as cost and time-to-market. In this direction,
the research community has proposed several methodologies
for supporting timing analysis at the design level.

In this paper, we have proposed, for the first time, a com-
parative evaluation of some of the methodologies supporting
the extraction of timing models from the design-level models.
To this end, we i) select three methodologies, ii) identify
seven features for the comparative evaluation and iii) evaluate
the methodologies with respect to the aforesaid features. The
comparative evaluation results can be used to select the best
methodology for a given application. The evaluation also
emphasizes crucial problems in the current methodologies, thus
highlighting possible improvements.

In the future, we plan to extend the set of features that
compose the evaluation framework to conduct a more detailed
evaluation of the methodologies. Also, new methodologies can
be brought in to perform more extensive evaluation. Another
interesting future work is to compare the methodologies using
different case studies with the aim of complementing the
comparative evaluation with a quantitative analysis.
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