
Integrating Response-time Analysis for Heterogeneous Networks with

Rubus Analysis Framework: Challenges and Preliminary Solutions

Saad Mubeen, Mohammad Ashjaei and Thomas Nolte
MRTC, Mälardalen University, Västerås, Sweden

{saad.mubeen, mohammad.ashjaei, thomas.nolte}@mdh.se

John Lundbäck and Kurt-Lennart Lundbäck
Arcticus Systems AB, Järfälla, Sweden

{john.lundback, kurt.lundback}@arcticus-systems.com

Abstract—In this paper we discuss the challenges that are faced
when the state-of-the-art research results are transferred to a
model-based tool chain for the industrial use. These challenges
are often overlooked when the research results are implemented
in an academic environment. In particular, we discuss various
challenges regarding the implementation and integration of the
response-time analysis for heterogeneous networks, comprising
of CAN and Ethernet AVB, as a plug-in for the Rubus Anal-
ysis Framework. Rubus tool suite is used for the model- and
component-based development of software for vehicular real-
time systems by several international companies. We also discuss
preliminary solutions to deal with the challenges.

I. INTRODUCTION

Nowadays, a high-end car contains more than five different
types of in-vehicle networks. Some of these networks are used
to connect Electronic Control Units (ECUs) in an in-vehicle
system that requires hard real-time network communication
(i.e., a deadline violation can result in the system failure).
For example, Controller Area Network (CAN) [1] is used to
connect ECUs in an adaptive cruise control system. On the
other hand, there are other networks that are used in those
in-vehicle systems that require soft real-time communication
among the ECUs (i.e., an occasional deadline miss may be
tolerated by the system). For example, Ethernet Audio Video
Bridging (AVB) [2] with a high-throughput support of up to
100 Mbit/s, has found its application in the vehicle domain,
e.g., in the infotainment system. In this paper, our main focus
is on the heterogeneous networks, where CAN and Ethernet
AVB are interconnected via a gateway.

The developers of real-time systems are required to provide
evidence for the system’s predictable behavior. The research
community has developed a plethora of a priori schedulability
analysis techniques to provide such an evidence. One of
the most powerful, well-established and industrially accepted
schedulability analysis techniques is the Response-Time Anal-
ysis (RTA) [3], [4]. It is a method to calculate upper bounds
on the response times of execution entities such as tasks and
messages in a real-time system and network respectively.

A. Problem Statement

When a new timing analysis technique such as RTA is
developed in an academic environment, a lot of issues con-
cerning its implementation and integration with a model-based
tool chain are overlooked. For instance, the input parameters
for the analysis are either hard coded or assumed to be
available as inputs (e.g., in a text file). There is no focus
on how the analysis interacts (extracts input information)

with the modeling environment that is used to develop the
software architecture of the system or with other models and
tools in a model-based tool chain. At best the analysis is
often implemented as a standalone tool that gets inputs either
directly from the user or from text files. In fact, there is not
much to gain by focusing on all these issues if the analysis is
meant to be used in the academic environment.

On the other hand, if the newly developed analysis is to be
transferred to the industry then several challenges related to its
implementation and integration with an industrial model-based
tool chain must be solved. Within this context, in addition
to the above mentioned issues, other challenges include, e.g.,
unambiguous extraction of timing information; extensions in
the existing modeling approach (used by the modeling tools)
to support a seamless integration of the new analysis with
the tool chain; handle the implementation requirements that
are dictated by the legacy tools that are included in the tool
chain; and various levels of testing. All these challenges must
be solved before the analysis can be used in the industry.

B. Motivation and Paper Contribution

In this paper we discuss the integration of RTA for het-
erogeneous networks including Ethernet AVB and CAN-AVB
gateway as a Rubus-ICE [5] plug-in. The Rubus-ICE tool
suite is used for model- and component-based development of
real-time systems in the vehicle industry. We discuss various
challenges that we face during the implementation of the RTA
in the tool suite. We also discuss preliminary solutions to deal
with these challenges. There are several commercial tools that
support RTA for Ethernet AVB, e.g., SymTA/S [6]. However,
to the best of our knowledge, none of these tools openly reveal
the implementation and integration related problems, solutions
and experiences. Whereas, this paper explicitly highlights such
challenges and their preliminary solutions. We believe, the
problems and corresponding solutions that we discuss in this
paper are equally applicable when any other real-time analysis
is transferred to any industrial model-based tool chain.

II. BACKGROUND AND RELATED WORK

A. Rubus Concept and its Analysis Framework

The Rubus suite, developed by Arcticus Systems1, provides
a collection of methods and tools for model- and component-
based development of vehicular real-time systems. It has been
in industrial use for over 20 years. Today, it is used by sev-
eral international companies, e.g., Volvo Construction Equip-
ment, BAE Systems, Knorr-bremse, Mecel and Hoerbiger.

1http://www.arcticus-systems.com978-1-4673-7929-8/15/$31.00 c© 2015 European Union

The Rubus concept is based around the Rubus Component
Model [7] and its development environment, called Rubus-
ICE, that includes modeling tools, code generators, analysis
tools and run-time infrastructure. Fig. 1 shows various tools
in the Rubus-ICE tool suite. A real-time application is modeled
in the Designer. The application is compiled by the compiler
to the Intermediate Compiled Component Model (ICCM). The
builder integrates a bunch of plug-ins that operate on the
ICCM model. The purpose of the Rubus plug-in framework
is to allow the implementation of any method or technique in
isolation and support its integration as an add-on plug-in with
the integrated development environment. The requirements on
a plug-in include the specification of supported system model,
required inputs, provided outputs, error handling support and
a user interface as shown in Fig. 2. Some of the plug-ins
constitute the Rubus Analysis Framework. The timing analysis
supported by the Rubus Analysis Framework includes RTA
for CAN and its higher-level protocols; RTA for tasks in a
single node; and end-to-end response-time and delay analyses
in distributed real-time systems [8]. Finally, the analyzed and
verified model of the application is used to automatically
generate code by the coder tool. It should be noted that there is
no support in Rubus for analyzing Ethernet AVB and multiple
networks that are connected by gateways.

!"#"$%&'()*$+$%,-(./01-2

3/$+4'/- 51.6+)/- 7"+)8/- 518/-

9:; 9:;>55: 518/

<)"4=+'%? <)"4=+'%'=? <)"4=+'%'<)"4=+'%@

!"#"$%&'"()*+%,-./012-3

44445

Fig. 1. Several tools in Rubus-ICE supporting design to code generation.� � � � � � � � � � � � � � 	 �� �
 � � 	 � � � � � � � � � � � � � 	 � �� � � � � � � � � � 	 �
� � � � � � � �
Fig. 2. Conceptual organization of the Rubus-ICE plug-in.

B. Related Analyses and Tools

Ethernet AVB relies on a Credit-based Shaping Algorithm
(CBSA), which regulates the traffic transmission. It categorizes
the traffic into two classes, class A and B, where class A
has higher priority than class B. If two or more messages
have the same priorities, the arbitration is carried out using the
FIFO policy. There are several timing analysis approaches that
have been proposed for the Ethernet AVB network, e.g., [9].
However, these analyses are restricted to the computation of
worst-case response time per class, without distinguishing the
messages response time. The RTA for messages in the Ethernet
AVB architecture is given in [10]. However, the work in [11]
shows that the RTA in [10] considers only one blocking factor
that results from lower priority messages, which is not the case
in Ethernet AVB due to the traffic shaper. Thus, it proposes
a new RTA that takes the new blocking term into account.
However, the analysis is limited to the constrained deadline
traffic model and a single-switch architecture. In this work we
implement the RTA for Ethernet AVB, developed in [11], as
a plug-in in Rubus-ICE.

In [8], [12], the authors discuss the issues and experiences
concerning the implementation of end-to-end timing analysis
in an industrial tool. However, the focus in these works is on
the support for CAN; multiple networks are not supported.
Whereas, in this paper we focus on the issues and challenges
that are faced when RTA for heterogeneous networks is
implemented and integrated with a model-based tool chain.

SymTA/S is a tool for model-based timing analysis and
optimization. It supports RTA of various vehicular networks
including CAN, Flexray, AFDX, and Ethernet AVB. py-
CPA [13] is a compositional performance analysis tool that
supports the end-to-end timing analysis. MPS-CAN Analyzer2

is an academic tool that supports RTA for CAN and Ethernet
AVB. To the best of our knowledge, none of these tools share
the problems, solutions and experiences of implementing and
integrating the analysis which they support today.

III. IMPLEMENTATION CHALLENGES, EXPERIENCES AND

PRELIMINARY SOLUTIONS

This section discusses the challenges that we faced during
the implementation and integration of the RTA as a plug-in
in Rubus-ICE. We also discuss the preliminary guidelines and
solutions to deal with these challenges.

A. Stringent Requirements Dictated by the Legacy Tools

The purpose of implementing the RTA for Ethernet AVB
is to not only support the analysis of Ethernet messages but
also allow the user to analyze distributed chains (composed of
tasks and messages) that span over several ECUs and multiple
networks including CAN and Ethernet AVB as shown in Fig. 3.
When end-to-end response times are calculated in distributed
real-time systems, the response times of network messages
depend upon the response times of tasks in the ECUs and vice
versa. The end-to-end response times are calculated using the
attribute (jitter) inheritance algorithm[14]. This means that the
difference between the worst- and best-case response times
of the sending task is inherited as a jitter by the message.
Similar attribute inheritance is performed on messages and
their receiving tasks. This algorithm is iteratively repeated until
converging response times are obtained in all the ECUs and
networks or the deadlines (if specified) are violated.

?*6-4 ?*6-4 ?*6-@ ?*6-4

!)+

A!B4 A!B@ !)+C)D3(E*$',*F

?*6-4

A$9'%#'$()D3

A!BG A!BH

?*6-4

Fig. 3. Multiple networks in a distributed real-time system.

Often there are stringent requirements, for the implemen-
tation and integration of new analysis, which are dictated by
the model-based tool chain. For instance, the Rubus Analysis
Framework allows the integration of new analysis as a plug-in
which is interfaced with the builder tool as shown in Fig. 1.
The plug-ins can only be executed in a sequence, i.e., the
next plug-in can execute only when the previous plug-in has
finished its execution and has provided the analysis results
back to the builder tool. The plug-in framework in Rubus-ICE

2https://github.com/saadmubeen/MPS-CAN

is very general and is similar to plug-in framework of any other
industrial tool. In order to calculate the end-to-end response
times, RTA of Ethernet AVB depends upon the previously
implemented analyses in Rubus-ICE that support RTA for
CAN and ECUs. Hence, the new plug-in must interact with
the existing plug-ins. We need to find out the most suitable
implementation approach that is able to minimize the running
time of the analysis framework.

From the implementation point of view, the most suitable
approach is to implement the new analysis as a standalone
plug-in; integrate it with the builder tool; and run it sequen-
tially with the other plug-ins as shown in Fig. 4(a). However,
there is another implementation overhead. That is, another
plug-in must be created that implements the attribute inher-
itance algorithm and glues the new and the related existing
plug-ins together. This plug-in is identified as the Holistic
Plug-in in Fig. 4(a). Another downside of this approach is
that several plug-ins need to run in a sequence iteratively
until converging response times of the messages are obtained.
As a consequence, the analysis framework may take several
minutes before it can provide the analysis results of a medium-
sized real-time application. It can take even longer for larger
applications. Such delays in the running time of the analysis
engines are highly undesirable in the industrial environment.

)-.-%(/-$#0*1

23245(6#-78$,

!"#$%&$"'()(

*+$'$,%-.

!"#$%&$/.(('0.($

*+$1#,

2+-34%3.+-$5.(6%+(.3

4*/.$'+-$-.7'8($'+'78(*(

2+-34%3.+-

"*/*+0$9+&%5/'4*%+

#+'78(*($

!.(:74(

;<=

!"#$%&$

/.(('0.($*+$

24>.5+.4$#?@

!"#$%&$1#,3#?@$

0'4.A'8

)-.-%(/-$#0*1

24>.5+.4$#?@$

"*/*+0$

9+&%5/'4*%+

23245(6#-78$,

2+-34%3.+-$

5.(6%+(.34*/.$'+-$

-.7'8($'+'78(*(

2+-34%3.+-

"*/*+0$9+&%5/'4*%+ #+'78(*($

!.(:74(

;'=

)95(:"1(5;/(

6#-78$,

#+'78(*($!.(:74(

!"#$%&$1#,3#?@$

0'4.A'8

!"#$%&$/.(('0.($

*+$24>.5+.4$#?@

!"#$%&$'(6#-78$,

#+'78(*($!.(:74(

#+'78(*($

!.(:74(

Fig. 4. Options to integrate the RTA for Ethernet AVB with Rubus-ICE.

In order to significantly reduce the running time of the
analysis engines, we select a more complicated approach for
the implementation of the RTA as shown in Fig. 4(b). Using
this approach, the RTA for Ethernet AVB is implemented
within the existing end-to-end response-time and delays analy-
sis (E2EDA) plug-in. This option does not support any reuse of
the existing standalone plug-ins. It requires relatively large im-
plementation time because the implementer has to understand
the analysis, implementation and code of the existing plug-in.
Moreover, this option requires higher amount of time-to-test
because the implementation of the existing plug-in must also
be verified after the integration of the new RTA.

B. Extensions Required in the Modeling Approach for a

Seamless Integration of the RTA

For a model-based tool chain to support the RTA for
Ethernet AVB, it should also support the modeling of the
network. Rubus-ICE already supports the modeling of real-
time networks by means of a modeling object called Net-
work Specification (NS). There are two parts of the NS: (1)
protocol-independent and (2) protocol-specific. The protocol-
independent part is independent of the properties and com-

munication rules of the network protocol. It specifies network
properties (e.g, network speed); message properties; data ele-
ments that are mapped to the messages; and a list of sender
and receiver ECUs. The protocol-specific part of the NS is
uniquely specified for each protocol. It defines the behavior
semantics of each message according to the protocol; cap-
tures frame properties; and specifies the information regarding
signal length; signal age; and mapping, encoding, packing
and decoding of signals from/to messages. In conclusion, we
provide the above information to Rubus-ICE for developing a
modeling profile that corresponds to the protocol-specific part
of the NS for the Ethernet AVB protocol.

C. Modeling and Timing Analysis of CAN-AVB Gateway

Various CAN-Ethernet gateways have been proposed in the
existing literature [15]. These gateways use different strategies
to forward the messages. In order to use the network resources
efficiently, the gateways collect several CAN frames and map
them to a single Ethernet packet. Recently, a CAN-AVB
gateway is proposed [16], that follows the characteristics of the
Ethernet AVB, such as periodic transmission and the CBSA.
The proposed CAN-AVB gateway uses different scheduling
policies to collect the incoming CAN frames, including FIFO,
fixed-priority and Earliest Deadline First (EDF) policies. The
information regarding the gateway strategies is required for
the RTA. In order to get this information, we build a modeling
profile for the gateway in the protocol-specific part of the NS.
The selection of the most suitable gateway strategy for CAN-
AVB gateway needs further investigation.

D. Unambiguous Extraction of Timing Information

This challenge is, often, a non-issue if the RTA is im-
plemented for academic use. This is because all the input
information required by the RTA is either hard coded or
assumed to be available as an input file. However, if the RTA
is to be implemented as a part of an industrial model-based
tool chain, all the inputs required by the RTA, specifically the
timing information, must be unambiguously extracted from
the software architecture of the real-time application that is
modeled in a separate tool within the tool chain. Hence, the
implementer of the analysis plug-in has to not only implement
the RTA, but also support the extraction of unambiguous
timing information automatically from the modeling tool. It
is possible that the modeling tool may contain redundant tim-
ing information. Often, the design model contains redundant
timing information, e.g., the message periods can be defined
by the user or inherited from the sender tasks in the case
of a standalone network or a distributed system respectively.
Such information duplication may lead to inconsistency in
the models. We implement special routines as part of the
newly implemented plug-in to check such redundant infor-
mation. Similarly, other timing attributes that are checked
for redundancy include worst- and best-case execution times,
minimum-update times (for sporadic transmission), offsets,
priorities (priority and ID of a message may or may not be
the same depending upon the network protocol) and jitter. In
order to extract the linking and mapping (between messages
and signals and vice versa) information within the distributed
chains, we use the method presented in [8].

E. Verification and Validation of the Implemented RTA

A significant part of the newly implemented plug-in consists
of error handling and sanity checking routines. These routines
detect and isolate faults and present them to the user during
the analysis. For example, these routines evaluate the validity
of all inputs, intermediate results that are iteratively inherited
as inputs, variable overflow and overload conditions. In order
to verify and validate the newly implemented analysis, our
test plan includes several levels of testing. At the first level
we perform the standalone testing, i.e., testing the RTA imple-
mentation (code) in isolation. At the second level, we integrate
the RTA implementation with the MPS-CAN Analyzer (which
is an academic tool) and perform testing to identify potential
errors and bugs. Finally, we perform the integration testing
which refers to the testing of the RTA implementation after it
has been integrated with the Rubus Analysis Framework. The
integration testing is a heavy weight and a time consuming
activity. The reason is that we have to not only test the RTA
for AVB but also test the implementation of the end-to-end
response time and delay analysis due to our choice of imple-
mentation approach (see Section III-A). At all these levels of
testing, the input test cases are hard coded; read from external
files; acquired from test generation engines; manually inserted
in the ICCM file (see Fig. 1); and automatically extracted from
the software architecture of the modeled application.

F. Collaboration between the Integrator and Implementer

In our experience, we have observed that there is a close
and continued collaboration required between the integrator
and implementer of the plug-in. This is because a plug-in
is developed in isolation by the implementer (with research
background). Whereas, it is integrated with the model-based
tool chain by an integrator from the industry with a limited
knowledge about the schedulability analysis. Consequently, the
two roles need to continuously communicate with each other
throughout the integration and verification process.

G. Feedback to Improve the Schedulability of the System

If the modeled system is unschedulable, as indicated by the
analysis results, the newly implemented plug-in can provide
suggestions to guide the user to make the system schedulable.
However, it is very difficult to provide such feedback because
there can be several reasons behind the system being not
schedulable. In particular, for the heterogeneous traffic, that
traverses from CAN to AVB, the gateway configurations affect
the timing analysis. For instance, the gateway may use a fixed-
size buffer to collect the CAN frames. In addition, Ethernet
frames can also be generated upon the expiry of a timer. These
two parameters affect the delay of the messages in the gateway.
We plan to implement an algorithm, based on the RTA, to find
the most suitable values for setting the gateway parameters in
order to decrease the response times of the messages. It should
be noted that the CAN-AVB gateway is normally implemented
within an ECU, hence it is possible to adjust the parameters
like the buffer size and timer using the algorithm.

IV. SUMMARY OF ONGOING WORK AND CONCLUSION

We have performed the standalone testing of the new plug-
in. The integration of the plug-in with the tool suite is ongoing.

Currently we are investigating various gateway strategies that
can be used in the CAN-AVB gateway. Our goal is to model
and implement the most suitable gateway strategy in terms
of lower gateway delays for the global traffic that traverses
through heterogeneous networks.

In this paper we have discussed various challenges that are
faced when state-of-the-art research results such as RTA for
the Ethernet AVB network and CAN-AVB gateway are im-
plemented and integrated with an industrial model-based tool
chain. We also discussed preliminary solutions and guidelines
to deal with these challenges. As a proof of concept, we
integrate the RTA as a plug-in for the analysis framework of
Rubus-ICE tool suite. Rubus-ICE is used for the model- and
component-based development of vehicular real-time systems
by several international companies. We believe, our findings
and experiences can be useful in guiding the implementer
during the implementation of other complex real-time anal-
ysis techniques in any industrial model-based tool chain that
supports a plug-in framework for the integration of new tools.

ACKNOWLEDGEMENT

The work in this paper is supported by the Swedish Foun-
dation for Strategic Research (SSF) and ARTEMIS within
the projects PRESS and CRYSTAL. The authors thank the
industrial partners Arcticus Systems AB and Volvo Sweden.

REFERENCES

[1] Robert Bosch GmbH, “CAN Specification Version 2.0,” postfach 30 02
40, D-70442 Stuttgart, 1991.

[2] “Audio/video bridging task group of ieee 802.1, available at
http://www.ieee802.org/1/pages/avbridges.html.”

[3] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[4] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling: an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[5] “Rubus ICE-Integrated Development Environment,”
http://www.arcticus-systems.com.

[6] A. Hamann, R. Henia, R. Racu, M. Jersak, K. Richter, and R. Ernst,
“Symta/s - symbolic timing analysis for systems,” 2004.

[7] K. Hänninen et.al., “The Rubus Component Model for Resource Con-
strained Real-Time Systems,” in 3rd IEEE International Symposium on
Industrial Embedded Systems, June 2008.

[8] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[9] J. Imtiaz, J. Jasperneite, and L. Han, “A performance study of ethernet
audio video bridging (avb) for industrial real-time communication,”
in IEEE Conference on Emerging Technologies Factory Automation,
September 2009.

[10] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing analysis of
ethernet topologies with strict-priority and avb switching,” in 7th IEEE
International Symposium on Industrial Embedded Systems, June 2012.

[11] U. Bordoloi, A. Aminifar, P. Eles, and Z. Peng, “Schedulability analysis
of ethernet avb switches,” in 20th International Conference on Embed-
ded and Real-Time Computing Systems and Applications, August 2014.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Implementation of Holistic
Response-Time Analysis in Rubus-ICE: Preliminary Findings, Issues
and Experiences,” in The 32nd IEEE Real-Time Systems Symposium
(RTSS), WIP Session, December 2011, pp. 9–12.

[13] pyCPA Tool, http://pycpa.readthedocs.org/, accessed Mar. 2015.
[14] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed

hard real-time systems,” Microprocess. Microprogram., vol. 40, pp. 117–
134, April 1994.

[15] A. Kern et al, “Gateway strategies for embedding of automotive CAN-
Frames into Ethernet-Packets and vice versa.” in Architecture of Com-
puting Systems. Springer, 2011, pp. 259–270.

[16] C. Herber, A. Richter, T. Wild, and A. Herkersdorf, “Real-time capable
can to avb ethernet gateway using frame aggregation and scheduling,” in
Design, Automation Test in Europe Conference Exhibition, March 2015.

