
Decision support for choosing architectural assets in the
development of software-intensive systems: The GRADE

taxonomy
Efi Papatheocharous

SICS Swedish ICT AB
Kista, Stockholm, Sweden

+46 705 28 63 76
efi.papatheocharous@sics.se

Séverine Sentilles
Mälardalen University

Västerås, Sweden
+46 21 10 70 38

severine.sentilles@mdh.se

Kai Petersen
Blekinge Institute of Technology

Karlskrona, Sweden
+46 455 38 58 77

kai.petersen@bth.se

Syed Muhammad Ali Shah
SICS Swedish ICT AB

Kista, Stockholm, Sweden
+46 725 03 94 72

syed.shah@sics.se

Antonio Cicchetti
Mälardalen University

Västerås, Sweden
+46 739 60 72 15

antonio.cicchetti@mdh.se

Tony Gorschek
Blekinge Institute of Technology

Karlskrona, Sweden
+46 455 38 58 17

tony.gorschek@bth.se

ABSTRACT
Engineering software-intensive systems is a complex process that
typically involves making many critical decisions. A continuous
challenge during system design, analysis and development is
deciding on the reference architecture that could reduce risks and
deliver the expected functionality and quality of a product or a
service to its users. The lack of evidence in documenting
strategies supporting decision-making in the selection of
architectural assets in systems and software engineering creates an
impediment in learning, improving and also reducing the risks
involved. In order to fill this gap, ten experienced researchers in
the field of decision support for the selection of architectural
assets in engineering software-intensive systems conducted a
workshop to reduce traceability of strategies and define a
dedicated taxonomy. The result was the GRADE taxonomy,
whose key elements can be used to support decision-making as
exemplified through a real case instantiation for validation
purposes. The overall aim is to support future work of researchers
and practitioners in decision-making in the context of architectural
assets in the development of software-intensive systems. The
taxonomy may be used in three ways: (i) identify new
opportunities in structuring decisions; (ii) support the review of
alternatives and enable informed decisions; and (iii) evaluate
decisions by describing in a retrospective fashion decisions,
factors impacting the decision and the outcome.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Taxonomy

General Terms
Documentation, Design.

Keywords
Software-intensive Systems, Strategic Decision Support, Software
Architectures, Taxonomy.

1. INTRODUCTION
Modern industrial systems are typically complex and software-
intensive. Software-intensive systems refer to any product or
service where software in an essential way contributes to the
design, construction, deployment and evolution of a system [1].
Systems refer to man-made systems, including software products
and services and software-intensive systems [1]. Making sure that
efficient and cost-effective ways of development are followed is a
vital issue for organisational longevity and typically involves
critical decision-making in many points along the engineering
process. It frequently faces the selection between more than one
development options and integrating a plethora of architectural
assets. An architectural asset is a valuable vehicle for capitalising
on work previously done by providing well-defined reusable
entities, from fine-grained programming idioms to large grained
off-the-shelf packaged solutions [2]. In this work, we regard an
architectural asset as any option for a decision-maker that contains
or is related to software. These options can be of any level of
granularity, such as a specification document, a software
component, a system, a system-of-system or a part of a system.

Constructing software-intensive systems from reusable
architectural assets is a form of development which is not newly
discovered [3]. There are many benefits of automating and
optimising architectural assets’ mass production, but these
benefits are not yet exploited fully by today's industries of
software-intensive systems, as many issues related to the technical
aspects of the development have not been entirely solved. For
instance, continuous integration of architectural assets, which
could reduce significantly time-to-market, is not simple, mainly
due to the complexity and uniqueness of the software-intensive
systems. Most products are synthesised from a plethora of
components into complex interlaced systems and dealing with
integration along the whole product lifecycle is complicated.
Organisational issues are often impediments to improving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’15, September 8, 2015, Dubrovnik, Croatia.
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.
 DOI: 10.1145/2797433.2797483

decision-making during the development. An illustrative example
of organisational complexity and challenges faced in a global
organisation are described by Crnkovic et al. [4] where the
introduction of a reuse approach into the organisations’
development process required considerable changes, that took a
period of almost 10 years to be implemented successfully (by
using their own technology “KOALA”) [5].

The aim of this work is towards supporting decision-making for
architectural assets in the development of software-intensive
systems. Decision support in our context is any combination of
means to support the decision-making process, where “means”
could be interpreted as any process, method, model, framework,
tool etc. that may support decision-makers. We recognise that the
above challenge has been sporadically explored until today and
will continue to be a wicked problem, as long as no
documentation, traceability and support exists on how to structure
decisions, review available alternatives, support informed
decisions, and evaluate decisions. Collecting evidence in a
structured way can be considered a starting point in enabling
retrospective learning from past architectural decisions and their
outcomes. In particular, it may reduce the severity of the technical
issues emerging during the construction process, and other risks
related to the decision. It could also enable transparent traceable
holistic view of the decisions made and identify new opportunities
for better decision support.

The lack of evidence, traceability and support in documenting
strategies supporting decision-makers in the selection of
architectural assets in software-intensive systems drives the
motivation for conducting the work described in this paper. To
fill-in this gap we have conducted a workshop to propose the
definition of a taxonomy, called GRADE that contains the key
elements of decision making. Although we expect in the future the
taxonomy to evolve, it represents a starting point to better
understand and consciously document the concrete factors
involved in decisions made in the development of software-
intensive systems.

The contribution of this paper is a taxonomy that may be used in
three ways: (i) identify new opportunities in structuring decisions;
(ii) support the review of alternatives and enable informed
decisions; and (iii) evaluate decisions by describing in a
retrospective fashion decisions, factors impacting the decision and
the outcome.

The rest of this paper is structured as follows: Section 2 briefly
associates our work to previous research, Section 3 discribes the
research process followed. Section 4 presents the GRADE
taxonomy and its use is demonstrated through one case, where the
taxonomy is instantiated and validated. Section 4 summarises the
contribution of the paper, describes the main conclusions, and
future research steps.

2. RELATED WORK
A brief summary of related work on the documentation of
decisions in designing software-intensive systems and utilising the
notion of taxonomies are presented in this section.

In [6] a documentation framework for architectural decisions is
presented using the conventions of ISO/IEC/IEEE 42010 [1]
consolidating different views. The four viewpoints, Decision
Detail, Decision Relationship, Decision Chronology and Decision
Stakeholder Involvement, satisfy several stakeholder concerns
related to architecture decision management. In [7] the ADDRA

approach is presented, that architects can use for recovering
architectural decisions made retrospectively. Very few works
combine explicit description of design decisions together with
architectural design [8]. In [8] a design map for recoding
architectural decisions and a meta-model focusing on the
relationships between non-functional properties and architectural
styles are described.

To support documentation other works in developing taxonomies
exist, they however do not explicitly serve the architectural
decision documentation literature. The work is limited in only
structuring knowledge areas in software engineering and using the
notion of taxonomies. Examples include the Guide to the Software
Engineering Body of Knowledge (SWEBOK) [9], which
describes the software engineering discipline in a structured way,
Glass et al. [10] describes a taxonomy on software engineering
research, Blum [11] describes development methods, Smite et al.
[12] describe a taxonomy for global software engineering and
Unterkalmsteiner et al. [13] describe a taxonomy associating
software requirements engineering and testing.

Based on the previous work and concerns raised regarding how to
effectively document architectural decisions, we have taken into
account the following: (i) Efforts in building taxonomies should
be driven by clearly defined goals (as recommended in [9]). (ii) A
systematic process needs to be followed in the taxonomy
construction. (iii) Taxonomies can be built bottom-up in cases
where relationships are not well understood (according to [13]).
(iv) Experts can be involved in the process of taxonomy
construction (as in [12]). Finally, (v) Taxonomies can be validated
against their purpose, either through classification based on the
literature [12], or through industrial case studies [13]. The strategy
used for validation highly depends on the purpose of the
taxonomy.

3. RESEARCH PROCESS
In our research we adopted the steps described in [14] to work in a
structured and iterative manner, taking into account grounded
theories for analysis. For example a number of standards and
taxonomies were used to derive the analysis of categories and sub-
categories for the different elements of the proposed solution. The
steps included: (a) identify problem and motivate, (b) define
objectives of a solution using brainstorming and theories, (c)
design/develop and generate new ideas, (d) describe and
demonstrate, (e) evaluate and review, which includes selecting
and describing a scenario, instantiate the solution and then
iteratively work to improve the suggested solution by performing
the sequence of steps (b)-(e).

The work was performed between January-May 2015. It involved
a targeted set of workshop of a focus group that provided their
perceptions, opinions and beliefs towards concrete factors
involved in decisions made in the development of software-
intensive systems and contributions of ten international
experienced researchers in software engineering were
documented. The work was coordinated by one of the first authors
of this paper. The participants first discussed the lack of
documentation of strategies supporting decision-making in the
selection of architectural assets in software-intensive systems
engineering. The need for improvements in terminology and
definitions for the elements of the decision making process was
identified. The participants worked collaboratively to define a
language for the key elements of a taxonomy that would help
making informed decisions in the selection of architectural assets
using scenarios from their personal experiences. Multiple views

on the elements were discussed openly, and in smaller groups, to
reach consensus. The researchers also worked in small groups,
described and categorised the elements using theories and
standards in order to indicate specification and generalisation
relationships. The final artefact of the process was a taxonomy
(described in the following section), called GRADE, which
identifies the key elements in architectural decision-making
process). An evaluation stage followed for the definitions of the
elements in the taxonomy: individuals’ and smaller groups’ views
were reviewed by members of the working group that did not
participate in the activity conducted in the smaller groups in the
previous stage. The GRADE key concepts were lastly validated
with a case to instantiate decision elements in a specific scenario.

4. THE GRADE TAXONOMY
The GRADE taxonomy is made up of the following elements: i)
Goals, ii) Roles, iii) Assets, iv) Decision methods and criteria, and
v) Environment, as explained in this subsection and illustrated in
Figure 1. They are an abstraction of basic decision theory
elements [15] and considered typically in decision structures like
induction tasks of decision trees [16]. These elements refer to:
Acts (the options considered by the decision-maker - in our case
the architectural assets), Events (the facts affecting the decision -
in our case we consider several factors to affect the decision, e.g.,
overall goal, decision criteria and external environmental factors),
Outcomes (the result of choosing each and every one Event - in
our case that we are defining a taxonomy this is not applicable),
and Payoffs (the values that the decision-maker at each
instantiation of the decision process puts on the Options - in our
case this is applicable in the validation stage of GRADE and is
reflected in the achievement of the overall goal of the decision).

Goals: Constitute an important type of architectural knowledge.
Goals refer to a set of useful and valuable targets that stakeholders
identify when making an architectural decision. Goals can deliver
value from different perspectives, such as to the customer (in
terms of functionality and other non-functional qualities),
financial, innovation and learning, benefits to the internal
business, market and external production. This key element is
similar to Payoffs based on the description given above.

Roles: Characterises decision-makers based on different attributes
and clarifies their contribution in relation to the decision made.
The role is defined based on the lifecycle-perspective of the
product (i.e., where within the lifecycle of the product does the
decision-maker stand), decision level perspective (i.e., what kind
of decisions can the specific role take), functional role (i.e., what
is the functional role of the decision-maker in a given
organisation), and function of the role (i.e., what is the decision-
making function or contribution of the decision-maker).

Assets: Represents artefacts developed or obtained at any level of
the engineering process containing software. They are
characterised by three attributes, namely: origin (i.e., where assets
come from and how are they developed), type (i.e., what kind of
assets they are), attributes (i.e., what are the assets’ most
important functional and non-functional properties). This key
element is similar to Acts based on the description given above.

Decision methods and criteria: Documents the methods used to
make a decision with the set of criteria used to establish this
decision. This key element is similar to Events based on the
description given above.

Environment: Includes contextual criteria, facts or occurrences
that take place in most cases outside the control of the decision-
maker and are more external in relation to the rest of decision
criteria described above.

4.1 Categories of GRADE Key Elements
The GRADE elements have been analysed into categories
explained in this section. Figure 2 presents an overview of the
elements of GRADE.

The detailed categories of the GRADE taxonomy are provided in
an online mind map1 due to its large size and to enable scalability.
The rest of this subsection provides the description of the main
categories.

4.1.1 Goals
Goals are categorised according to the value perspectives
identified for software-intensive product development [17]. These
value perspectives provide categorisations for the individual goals
a decision-maker might wish to achieve. They are particularly
suitable for classification as they are based on an exhaustive
assessment of literature- and industry-focused research. Six main

1 https://app.wisemapping.com/c/maps/306265/public

Figure 2. Overview of GRADE elements.

.

Figure 1. Key elements of GRADE taxonomy.

.

KrisWnuk
Highlight
should be :

categories are represented, namely the customer-perspective
(perceived value provided to the customer with the software
product), the financial-perspective (monetary or financial benefits
such as shareholder value), internal business value (increasing
efficiency and quality of internal work products), innovation and
learning value (building intellectual capital in terms of human
knowledge) and market-perspective (ability to create brand
identity). In the initial version of the taxonomy we have identified
34 goals. The main categories of goal element and some examples
are shown in Figure 3.

Value perspective
Goals

(11 out of 34 goals)

Customer

Financial

Internal business

External production

Improve Quality

Extend Functionality

Increase Profit

Entent new market

Increase competence

Save cost

Reduce techn. debt

Innovation & learning
Enter an ecosystem

Partnerships

Increase sales

Figure 3. Main categories of Goals element of GRADE.

4.1.2 Roles
The roles of the individuals involved in the decision-making
process can be viewed from different perspectives. These
perspectives have been identified as lifecycle, decision-level
perspective, decision-maker role and decision-making function.
The lifecycle perspective determines whether decision-makers
were involved from the supplier (provider of the asset), owner
(user or organisation owning the asset), or user (consuming the
asset) side. The decision-level perspective determines whether the
roles execute strategic (long-term, complex, non-routine), tactical
(strategic implementation, medium-term), or operational (running
the day-to-day business, more routine-like) decision-making.
Roles are also defined on the perspective of their position in an
organised sum, as described in [9] (e.g. software requirements
engineer, software designer, software tester, etc.). Finally, the
decision-maker function determines the purpose of the role, i.e.,
whether the person was the initiator, supported the decision in
some way, influenced the decision, or was the person finalising
the decision. The main categories of Roles are shown in Figure 4.

4.1.3 Assets
Assets are characterised based on their origin, type, and attributes.
The origin of an Asset is defined according to its base use (i.e.,
option to reuse an asset, buy, develop or adapt) and detailed
option of development. The combination of these two aspects of

Asset origin define where the asset originates from. For example
two assets with origins buy and develop would mean the decision-
maker is confronted with a make-or-buy decision. On the detailed
option of development option the taxonomy defines the following
origin options inner sourced (development is carried out in-
house), outsourced (a supplier was contracted to develop the asset
for an owner), crowdsourced (distributed development of the
assed by a crowd of networked people), open sourced (source
code of the asset originates from open source resources), inter
sourced (development is happening from a set of partners
connected in an ecosystem).

To facilitate the characterisation of asset further, we used the
categories proposed in [18] to define the type of an asset. In that
work, the type of an asset is distinguished as information assets
(any document that describes/specifies an asset), software assets
(any asset that is a modular piece of code, from a small
functionality to application software, e.g. library, functional
components, user interface), system assets (any asset which
functionality is realised by a combination of software and
hardware, e.g. navigation system), hardware assets (any asset that
is a physical device containing some kind of software, e.g. server,
sensor, actuator), and service asset (web-based service providing
functionality through an interface over a network).

The attributes of an asset, i.e. its functional and non-functional
properties, are according to the ISO 25010 standard [19]. An
additional category has been added to cover economical aspects
that need to be considered for the assets, such as price, level of
support, and different types of costs (cost to learn, integrate, use,
etc.). Assets main elements are illustrated in Figure 5.

4.1.4 Decision methods and criteria
For supporting decisions two types of elements are used in
GRADE, the decision methods and the decision criteria, as
illustrated in Figure 6. The decision criteria are categorised in
financial, product, project, risk/uncertainty and business, and in
the first version of the taxonomy in total 54 elements were
identified. The decision criteria are considered and used as input
to the decision methods. Decision methods are categorised, using
[20] in three types based on the type of support needed, i.e.,
Expert-based, Data-driven and Hybrid/Composite. Expert-based
methods rely on the expert opinions or judgments of one or more
(a group) of expert. Data-driven methods depend on large
amounts of data and they are distinguished in memory-based (e.g.,
Analogy), Parametric (e.g., Regressions), Non-parametric (e.g.,
Machine Learning), or Semi-parametric (combinations of the two
last types, such as Regression and Artificial Neural Networks).
Finally, Hybrid or Composite methods emerge when any of the

Figure 5. Main categories of Assets element of GRADE.

Figure 4. Main categories of Roles element of
GRADE.

.

above methods are combined, cross-cutting the main types (e.g.,
Expert judgement and a Parametric method are combined). A
typical instance of method is the analogous method of estimating
a property of an asset, and is frequently used to estimate the value
when there is a limited amount of detailed information about the
project (e.g., in the early phases). Analogous estimating uses
expert judgment. For decision methods a total of 52 methods were
identified in the first version of the taxonomy.

4.1.5 Environment
The environment characterises the context in which the asset is
chosen and relates to criteria, facts or occurrences that might take
place outside the control of the decision-maker, but affect the
outcome of decisions. Five categories have been identified: actor
(or individual), organisation, product, business and political types
of influences. The context mentioned in [1] was also taken into
consideration in making the categorisation. Figure 7 shows how
Environment element is structured. In the first version of the
taxonomy a total of 41 elements were identified. Actors comprise
of people involved in the decision-making process and several
factors related to their individual characteristics were listed here.
Organisational aspects are important and consist of factors
affecting the decision (e.g., maturity level of the organisation).
Product factors refer to aspects of the product not listed in the
previous elements of the taxonomy that refer to external
properties (e.g., maturity of a product, system type, etc.). Business
and political considerations are facts that need to be taken into
consideration when making a decision and might include for
example agreements, partnerships and Intellectual Property Rights
of the product, or other political considerations.

4.2 GRADE Application Example
Above we provided descriptions of the main categories of
GRADE. These were meant to be generic-enough so that their
content can be customised according to the situation and context.
For example, under a specific scenario and depending on how a

company defines Goals, Roles, Assets, Decision methods and
criteria and Environment within the decision scenario, these could
be instantiated differently. To better illustrate GRADE’s
applicability or feasibility we have instantiated GRADE through
areal case scenario.

The GRADE taxonomy has been instantiated as follows: we first
described a decision-making scenario based on a real industrial
case from a consultancy activity of one of the co-authors of the
paper and contributors of the work. Thereafter, we illustrate how
the scenario can be described using an instantiation of the
categories of the GRADE taxonomy.

The main purpose of the instantiation with a case study was to
exemplify and illustrate the use of the taxonomy. Thereby, other
researchers and practitioners should be enabled to classify their
own decision processes. As the instantiation was based on one
industrial case, it is at this point not feasible to infer the
generalisability of the taxonomy. Consequently, when adding
further cases extensions to the taxonomy are likely to occur. For
example, in this case study a new element had to be added to the
“Lifecycle” category (see Figure 8). Though, from a taxonomy
point of view no main categories were missed.

Scenario description: A company investigated if an open source
asset (MySQL) or a component off-the-shelf (Microsoft) should
be chosen for developing a high-performance human resource
management system. Following is a narrative description of the
key elements of the taxonomy; the instantiation using GRADE is
shown in Figure 8. In the figure, the grey elements are present in
the scenario, and the orange element had to be added as it was not
possible to classify the case based on the existing elements.

• Goals: The goal-prerequisites to be taken into account were
reduced cost, long-term scalability and feature capability. All
these were directly related to the selection of the architectural
asset option that would enable improvement in internal
business value, and no other goal-related statement beyond
that was made. Hence, the goals for the scenario were
described under elements found in the internal business value
element of GRADE.

• Roles: The Chief Technical Officer (CTO) was the person
who initiated the decision-making process. The stakeholders
in the decision-making were architects/technical experts,
developers, project managers, and external consultants. The
CTO was also the person who finally took the decision. The
Chief Financial Officer (CFO) was not involved in the
decision-making process, but it was mentioned that he should
have been. The roles described can be directly mapped using
GRADE. The type of roles within the organisation described
allows to implicitly determine whether the roles would be able
to make strategic, operational, or tactical decisions. For
instance, the CTO typically would operate on a more strategic
level, the architect on a more operational as well as tactical
level, and the developer on a tactical level. All decision-
making functions could be clearly described with GRADE.
The consultancy work of external consultants was not part of
GRADE taxonomy and hence a new element representing
“Support” in the lifecycle of roles was needed to be added.
Thus GRADE was extended to include it.

• Assets: The two asset options considered in the scenario were
development either using Component-off-the-Shelf (COTS) or
Open Source Software (OSS). The asset type considered was
software. The actual selection of the two asset options reflects

Figure 6. Main categories of Decision methods GRADE.

.

Figure 7. Main categories of Environment of GRADE.

.

the attributes of the selected asset (i.e., functional suitability
and economy).

• Decision methods and criteria: With regard to the decision
methods, a feature list comparison of the alternatives was used
in the scenario. A discussion took place, and estimations of
pros and cons for the alternative options have been made. The
decision criteria taken into consideration were financial- and
product-related, and specifically were performance, reliability,
security, cost, and scalability.

• Environment: The environment in which the decision took
place was defined based on organisation and product
constraints. The domain was Human Resource Management
(HRM). The requirements engineering process was considered

bespoke initially, and later was market-driven. The size of the
company was 400 people, the size of the development unit
was 32 people. The development methodology was hybrid
(combination of agile and plan-driven methodology).

The decision made from the company was to use MySQL, but
some of the desired features (i.e., distributed syncing of the
database) were not available in the solution taken. However, this
could have been solved in other ways by the company (i.e., using
smart hardware/software backbone). The cost of selecting the
other alternative COTS option (Microsoft) was much higher and
this made a difference in the decision.

5. CONCLUSIONS
In summary, the work we conducted is towards improving and
documenting decision-making and minimise risk in the topic of
selecting architectural assets in systems and software engineering.
The result of this study is a taxonomy, called GRADE. GRADE
contains the key concepts of the elements of decision-making

which were also categorised to indicate generalisation
relationships. The taxonomy was validated through a real case that
instantiated the concepts and provided support for structuring a
decision scenario. The taxonomy can be further used for
individual cases classification (observations of individual case
studies in a particular context) and also for future extensions of

Figure 8. Case study instantiation using GRADE.

.

the taxonomy (adding elements that were not identified yet). One
using the taxonomy should have in mind that while many possible
combinations can be realised, not all may be possible. Also some
categories may correlate to more than one elements at the same
time. In addition, some of the elements may appear in more than
one of the categories analysed. The categories assist in advancing
or improving of our understanding on defining aspects of
strategic, operational and tactical decision-making in the selection
of architectural assets in software-intensive systems engineering.

Two following main contributions were shown to be supported by
the taxonomy:

1) Support practitioners in structuring decisions. Practitioners
often make decisions on which architectural asset to choose
among many alternatives. However, how they structure their
decision-making process may not be conscious-enough or
well-reflecting the decision. GRADE is a taxonomy offering
alternatives on how to structure the decision-making process
and minimise the risk of overlooking some beneficiary
options.

2) Document current and hypothesised decision-making
scenarios: In order to improve existing decision-making
processes in practice we need to describe the facts in specific
cases to both keep the consistency of the decision rationale in
upcoming projects (e.g., taking into account the same goals
and same constraints) and to reflect on the outcome of a
decision. The GRADE taxonomy can support classification of
existing processes and comparison of their outcomes. This
enables (a) improving decisions within a specific context or
company; (b) collecting empirical data on a large number of
case studies irrespective of the output (successful or not).

Future work will focus on using the taxonomy for defining
decisions in various domains to support research and practice in
constructing software-intensive systems. Extended validation of
the taxonomy will also be included through interviews of
practitioners to compare the existing structure of GRADE and its
applicability in more real-world cases.

6. ACKNOWLEDGMENTS
Our special thanks to the rest of the ORION project members than
the authors that took part in this research. This work is partially
supported by a research grant for the ORION project (reference
number 20140218) from The Knowledge Foundation in Sweden.

7. REFERENCES
[1] ISO/IEC/IEEE 42010:2011, Systems and software

engineering — Architecture description, the latest edition of
the original IEEE Std 1471:2000, Recommended Practice for
Architectural Description of Software-intensive Systems.

[2] Eeles, P.: Understanding Architectural Assets. In: Software
Architecture. Seventh Working IEEE/IFIP Conference
on Software Architecture, pp. 267-270 (2008)

[3] Mcilroy, D.: Mass-produced Software Components. In:
Proceedings of Software Engineering Concepts and
Techniques, pp. 138–155 (1969)

[4] Crnkovic, I., Chaudron, M., Larsson, S.: Component-Based
Development Process and Component Lifecycle. Int. Conf.
Softw. Eng. Adv. (2006)

[5] van Ommering, R., van der Linder, F., Kramer, J., Magee,
J.: The Koala Component Model for Consumer Electronics
Software. Computer (Long. Beach. Calif), 33 (3) 3, 78–85
(2000)

[6] van Heesch, U., Avgeriou, P., Hilliard, R: A documentation
framework for architecture decisions. J. Syst. Software, 85
(4), 795-820 (2012)

[7] Jansen, A., Bosch, J., Avgeriou, P.: Documenting after the
fact: Recovering architectural design decisions. J. Syst.
Softw.,81 (4), 536-557 (2008)

[8] Sawada, A., Noro, M., Chang, H.M., Hachisu, Y., Yoshida,
A. 2011. A design map for recording precise architecture
decisions. In: 18th Asia Pacific Software Engineering
Conference (APSEC’11). IEEE.

[9] SWEBOK Guide V3.0,
http://www.computer.org/web/swebok/v3

[10] Glass, R.L., Vessey, I. Ramesh, V.: Resres: The story behind
the paper “research in software engineering: An analysis of
the literature”. Information & Software Technology, 51 (1),
68–70 (2009)

[11] Blum, B. I.: A taxonomy of software development methods.
Communications of the ACM, 37 (11), 82–94 (1994)

[12] Smite, D., Wohlin, C., Galvina, Z., Prikladnicki, R.: An
empirically based terminology and taxonomy for global
software engineering. Empirical Software Engineering, 19
(1), 105–153 (2014)

[13] Unterkalmsteiner, M., Feldt, R., Gorschek, T.: A taxonomy
for requirements engineering and software test alignment.
ACM Trans. Softw. Eng. Methodol., 23 (2), 16-54 (2014)

[14] Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.:A
Design Science Research Methodology for Information
Systems Research. Journal of Management Information
Systems, 24 (3), 45-77 (2007)

[15] A very fast intro to decision theory,
http://www.siue.edu/~evailat/decision.htm

[16] Quinlan, J.R.: Induction of decision trees. Machine learning
1 (1), 81-106 (1986)

[17] Khurum, M., Gorschek, T., Wilson, M.: The software value
map - an exhaustive collection of value aspects for the
development of software intensive products. Journal of
Software: Evolution and Process 25 (7), 711-741 (2013)

[18] ISO/IEC 27002:2005, Information technology-security
techniques–code of practice for information security
management (2005)

[19] ISO/IEC JTC1/SC7 N4098, CD 25010.2, Software
engineering-Software product Quality Requirements and
Evaluation (SQuaRE) Quality model, WG23, 25010, N3803,
N4008, N4097 (2008)

[20] Trendowicz, A., Jeferry, R.: Software Project Effort
Estimation: Foundations and Best Practice Guidelines for
Success. Springer Publishing Company, Incorporated (2014)

