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Abstract

Many industrial real-time systems have evolved over a
long period of time and were initially so simple that it was
possible to predict consequences of adding new functional-
ity by common sense. However, as the system evolves the
possibility to predict the consequences of changes becomes
more and more difficult unless models and analysis method
can be used. Moreover, traditional real-time models, e.g.,
fixed priority analysis, may be too simple for accurately
capturing a complex system’s characteristics. For instance,
assuming worst-case execution time may not be realistic.
Hence, analyses based on these models may give an overly
pessimistic result.

In this paper we describe our approach to introduc-
ing analyzability into complex real-time control systems.
The proposed method is based on analytical models and
discrete-event based simulation of the system behavior
based on these models. The models describe execution
times as statistical distributions which are measured and
calculated in the existing system. Simulation will not only
enable models with statistical execution times, but also cor-
rectness criterion other than meeting deadlines, e.g., non-
empty communication queues. The simulation result is an-
alyzed by specifying properties in a probabilistic property
language. The result of such an analysis is either of proba-
bilistic nature or boolean depending on how the property is
specified. Having accurate system models enable analysis
of the impact on the temporal behavior of, e.g., customizing
or maintaining the software.

1 Introduction

Large and complex distributed real-time computer sys-
tems usually evolve during a long period of time. The evolu-
tion includes maintenance and increasing the system’s func-
tionality by adding new features. Eventually, if it ever ex-

isted, the temporal model of the system will become incon-
sistent with the current implementation. Thus, the possibil-
ity of analyze the effect of adding new features with respect
to the temporal behavior will be lost. For small systems
this may not be a big problem, but for large and complex
systems the consequences of altering the implementation
cannot be foreseen. Introducing, or re-introducing, analyz-
ability becomes the task of re-engineering the system and
constructing an analytical temporal model of it.

The work presented in this paper is the result from an ac-
tivity where we tried to re-introduce temporal analyzability
in a robot control system at ABB Robotics. In essence, the
controller is object-oriented and consists of approximately
2 500 000 LOC divided into 400-500 classes organized in
15 subsystems. The system contains three nodes that are
tightly connected: a main node that in essence generates the
path to follow, the axis node that controls each axis of the
robot, and finally the I/O node that interacts with external
sensors and actuators. In this work we have studied a crit-
ical part in the main node with respect to control. Details
about the case study can be found in [1].

Initially, we tried to apply traditional real-time analyses.
However, applying classical real-time models and analyses
to large and complex systems, e.g., fixed priority analysis
(FPA) [4] [3] [6], often results in a too pessimistic picture
of the system due to large variations in execution times and
semantic dependencies among tasks. FPA is based on the
fact that if a set of tasks, possible periodic with worst case
execution times (WCET), and deadlines less than or equal
to their periods, is schedulable under worst-case conditions
then it will always be schedulable. The result from such
an analysis is of a binary nature, i.e., it does not give any
numbers on probability of failure, it just tell if the system
is guaranteed to work or not. In this work, the result from
an FPA would be negative, i.e., assuming worst-case sce-
narios, the system will not be temporally correct in terms
of meeting all its deadlines. FPA assumes a task model
where deadlines are assigned to every task. In the robot



controller we have investigated is the temporal correctness
defined in terms of other criteria. Some of the tasks can have
their deadlines derived from these criteria, but not all tasks
can easily be assigned a deadline. An example of another
correctness criterion is a message queue that must never be
empty.

Furthermore, a task may execute sporadically and with
great variations in execution times. To be safe in an FPA,
the periodicity of sporadic tasks is modeled as having a fre-
quency equal to the minimum inter-arrival time. Using the
worst-case scenario in terms of both execution time (max-
imum) and periodicity (minimum), is not sufficient as the
result would be to pessimistic.

Since traditional temporal models and analysis do not
apply to the class of systems we have studied, we have
used a simulation-based approach. In this paper we de-
scribe our approach to analysis of complex real-time sys-
tem’s temporal behavior. The simulations are based on ana-
lytical models of the system made in our modeling language
ART-ML (Architecture and Real Time behavior Modeling
Language). By using simulations, we can define other cor-
rectness criterion than satisfying deadlines as mentioned be-
fore. Instead of always assuming worst-case scenarios, we
can use execution time distributions. ART-ML also permits
the behavior of tasks to be modeled, i.e., on a lower level
than the software architecture. This permits a more precise
model to be created as semantic relations among tasks can
be introduced.

The tool suit, in which the simulator is a part, also in-
cludes tools for measuring an existing system implementa-
tion, as well as tools for processing measurements and ana-
lyzing the results generated by the simulator. The analysis
is based on probabilistic properties. Temporal requirement
are specified in a query language, the probabilistic require-
ment property language. The result of such a query is the
probability of complying with a temporal requirement.

The introduction of a analyzable model of a system
brings a continuous activity of maintaining the model. The
model has to be consistent with the current implementation
of the system, i.e., the implementation should be a true re-
finement of the model. Consequently, our method must be
an integrated part of a company’s development process. In
this section we will briefly describe the activities associ-
ated with the analytical model. Figure 1 depicts the general
activities required in our method. Note that the process de-
scribed here only concerns the method we are proposing.
Important activities such as verification and validation of
the implementation are omitted.

The first activity in making an existing system analyz-
able with respect to its temporal behavior is re-engineering
of the system. Typically, the re-engineering activity in-
cludes identifying the structure of the system, measuring the
system, and populating the model. By comparing the result
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Figure 1. The process of constructing and
maintaining an analyzable system.

from analyzing the system using the analytical model with
the temporal behavior of the real system confidence in the
model can be established.This is exact the same procedure
as used in developing models for any kind of systems.

As the system evolves, each new feature should be mod-
eled and the impact of adding it to the existing system
should be analyzed. This enables early analysis, i.e., before
actually integrating the new feature into the system. De-
tecting flaws at an early stage is often more cost effective
than discovering the problem late in the testing phase of the
development process. Note, that such an approach requires
a modeling language that support models on different level
of abstractions. ART-ML has this property which will be
further described in Section 2. Modeling of new features
should be part of the company’s design phase.

Finally, when the new feature has been implemented and
integrated into the system the model of that feature can be
refined by feeding back information from the implementa-
tion into the model. Hence, a more précised model is im-
plemented. This activity is typically performed in conjunc-
tion with the verification phase of a company’s development
process.

We have studied other simulators such as STRESS and
DRTSS. The STRESS environment is a collection of CASE
tools for analyzing and simulating behavior of hard real-
time safety-critical applications [2] STRESS is primarily
intended as a tool for testing various scheduling and re-
source management algorithms. It can also be used to study
the general behavior of applications, since it is a language-
based simulator. STRESS has neither support for modeling
distributions of execution times or memory allocation nor a
requirement language.

Another simulation framework is DRTSS [9], which al-
lows its users to construct discrete-event simulators of com-
plex, multi-paradigm, distributed real-time systems. The



DRTSS framework is quite different from STRESS, al-
though they are closely related. DRTSS has no language
where the behavior can be specified. A language that de-
scribes the behavior of components is necessary for achiev-
ing the goals of our work and excludes DRTSS as a possible
solution. In this work there is no tool or language for spec-
ifying and analyzing requirements automatically.

In [7], an analytical method for temporal analysis of task
models with stochastic execution times is presented. How-
ever, sporadic tasks cannot be handled. A solution for this
could not easily be found. Without fixed inter-arrival times,
i.e., in presence of sporadic tasks, a least common divider
of the tasks inter-arrival times can not be found.

The outline of this paper is as follows: Section 2 de-
scribes our approach to measure the existing system, build
analytical models based on those measurements, using the
analytical models for simulating the system’s temporal be-
havior and specifying probabilistic properties that is to be
analyzed. Both the modeling language and the probabilistic
property language is described. Finally Section 3 concludes
the paper and gives indications of future work.

2 The method

When creating an initial model, M�, of an existing sys-
tem, S�, several distinct activities which are depicted in Fig-
ure 2, are required. First the structure has to be identified
and modeled, i.e., the tasks in the system and synchroniza-
tion and communication among them. In the next step, we
measure the system and populate the structural model with
data about the temporal behavior. Moreover, information
needed in the validation phase is collected, e.g., response
times. When tuning the model we simulate the initial model
and compare the results with the validation data collected
in the previous step. In this step we may have to introduce
more details about the tasks behavior in order to capture
the system’s behavior accurately. There is a potential risk
that we cannot model the system’s behavior without intro-
ducing too many details. For instance, there are so many
implicit relations among the tasks that we can not make a
valid model without modeling the complete behavior of the
tasks involved. This, however, unveils the complexity of the
existing architecture. Consequently, the solution is rather to
redesign the complex architecture. Up until this point, the
work of making a model is quite straightforward.

To validate the usefulness of the model we have to per-
form a sensitivity analysis. The sensitivity analysis should
be based on foreseen potential changes in the particular sys-
tem. In the system we have studied the following typical
changes were identified:

� change existing behavior of a task which results in
changes in the execution time distribution

� add a task to the system

� change the priority of an existing task

By introducing the changes in the model as well as in the
system and comparing their behavior, we can increase the
confidence in the created model. Any divergence between
the behavior of the simulated model and the system indi-
cates that more details must be introduced in the model. For
instance, a change of the execution time in a task may result
in a time-out for another task that waits for a semaphore.
This could indicate that the semaphore behavior has to be
introduced in the model as well.
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Figure 2. The process of constructing a
model.

Moreover, the accuracy of the model is dependent on
the quality of the measured data. The measuring of the
data should affect the system as little as possible. Too big
probe effect on the system will result in an erroneous model
and might cause wrong decisions regarding future develop-
ments.

A suitable notation is necessary for creating a system
model. The language has to support both the architecture,
i.e., nodes, tasks, semaphores, message queue, and the be-
havior of the tasks in different levels of abstractions. It
should be possible to compare the behavior of the created
model with the target system in an easy way in order to it-
eratively improve the model to satisfactory level, illustrated
in figure 3.

Our approach to analysis of the temporal behavior is sim-
ulation since our notation not only describes the architecture
of the target system, but also the behavior of the included
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Figure 3. The work flow of making an analyti-
cal model

tasks. Simulation allows execution times to be expressed
as distributions. We analyze the output from the simula-
tor by defining properties of interest. An example of such
a property is the probability of missing a deadline require-
ment on a task. Moreover, the simulation approach allow us
to define non-temporal related properties, e.g., non-empty
message queues.

��� Measuring and processing data

Measuring data in a software system requires the intro-
duction of software probes if no hardware probes are used
[8]. The data of interest is resource utilization, e.g., task ex-
ecution times, memory usage or sizes of messages queues.
We used software probes in order to log task switches and
message queues. The measured data is stored in static allo-
cated memory at runtime, in binary format. All formatting
of the output is done off-line, writing to a file at runtime is
too time consuming. This minimizes the probe effect, i.e.,
the part of the execution time that is caused by the probe.

The output from the system is a text-file containing task
switches, time stamps, and the number of messages in dif-
ferent queues. The size of the output can be very big, sev-
eral hundred kilobytes per monitored second of execution.
To manually analyze that data for developing a model would
be too time-consuming. We have therefore developed a tool
that extracts data from a log and computes the statistical dis-
tribution of each task’s execution time. In table 1 the result
of processing data from a task is shown.

In order to calculate the statistical distribution for a set
of execution times for a task, we divide all execution times
into instance equivalence classes (IEC). Formally we define
an IEC as:

Definition 1. An instance equivalence class IEC is a subset
of execution time instances of a task E, IEC � E, defined
by its upper bound max�IEC� � E and its lower bound
min�IEC� � E and a threshold that specifies the interval
between max�IEC� and min�IEC�.

A task instance’s execution time is a member of the IEC
In iff it is larger or equal to min�In� but less or equal than
max�In�. In the model are all instances in a IEC repre-
sented as the average execution time of the IEC which have

the probability of occurrence equal to the number of in-
stances in the IEC divided by the total number of measured
instances for a task. For example, consider the first entry in
table 1 which express that, with the probability of 61.5 %,
is the execution time for the task 360.097 time units. Con-
sequently, the execution time of tasks in our method is rep-
resented as a set of pairs consisting of the average execution
time of an IEC and its probability of occurrence.

Definition 2. The execution time for task t, t.exe, is a set of
pairs, hiec� pi where iec is the average execution time of an
IEC and p is its probability of occurance.

An algorithm was developed to automatically identify
the boundaries min�I� and max�I� for all IECs given a set
of execution times for a task and a threshold. The algorithm
is recursive. Initially all instances are sorted by their exe-
cution time using the quicksort algorithm. The sorted list
constitutes the initial IEC, I� for the task. Next, the largest
difference in execution time between two adjacent instances
in the sorted list is located. If the largest difference is larger
than a specified threshold, the list I� is split into two new
IECs and recursive calls are conducted with each of the two
new IECs. Consequently, the threshold specifies mathemat-
ically how big variations there can be between two consec-
utive execution times belonging to the same IEC. From the
system modeling point of view the threshold has two pur-
poses. First, it can be used to filter small variations in execu-
tion times due to cache memories or branch prediction units,
i.e., independent from the control-flow. Moreover, thresh-
old can also specify the level of abstraction with which the
temporal behavior is modeled. A large threshold results in a
more coarse-grained distribution, i.e., less number of IECs
for a task.

Below the equation for finding distinct IECs, given a set
of sorted execution times and a threshold, is displayed.

�hxi� xi��i�hxj � xj��i � I� �

abs�xj � xj��� � abs�xi � xi��� �

abs�xj � xj��� � threshold � i 	� j

As a result from applying the equation above for the
first time on a sorted set of execution time instances
we may get two new potential IEC, Ik and Ik�� where
min�Ik� � min�I��, max�Ik� � xj , and min�Ik��� �
xj���max�Ik��� � max�I��. If no gap is found greater
than the threshold, the final IEC is already found and the
recursion is stopped. When the recursion is stopped, the
largest and the smallest execution time in the list is consid-
ered to define the boundaries of an IEC.

This approach worked well with the characteristics of
our data. However, the distance between min and max in
a IEC could be quite big if no gap greater than the threshold



Min time Max time Average time n n/N
287.265 420.876 360.097 131 61.5%
577.448 604.320 590.884 2 9.4%
4176.659 1 4.7%
4797.058 5024.122 4911.885 12 5.6%
5177.941 6829.881 5829.924 65 30.5%

11962.947 1 0.47%
12814.769 1 0.47%

Table 1. An example of statistical distribution
of a task. N �

P
n, were n is the number of

instances in an IEC.

is found in the sorted list of execution times. Theoretically,
all measured execution times may end up in the same IEC.
We have three possible solutions for such a scenario:

� Reduce the threshold and try again

� Do not create any IECs (threshold = 0), use the entire
set of instances and assign each of them the probabil-
ity of �

no�ofinstances
. This solution results in a very

detailed model

� Model such a task as a linear distribution with a max-
and a min execution time and uniformly assign proba-
bilities in between them.

The measured data can also be graphically visualized in
a chronological order, see Figure 4. Studying such a graph
may reveal executional dependencies among tasks. Intro-
ducing those dependencies will make the model more accu-
rate with respect to the implemented system as they reduce
pessimism.
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Figure 4. An example of measured execution
times

��� The ART�ML language

The notation developed, ART-ML, is composed of two
parts, the architecture model, and the behavior model. The
architecture model describe the temporal attributes of tasks,
e.g., period times, deadlines, priorities. The architecture
model also describes what resources there are in the system.

The behavior model describes the behavior of the tasks
in the architecture model. Thus the behavior is encapsu-
lated by the architecture model. The behavioral modeling
language is an imperative, Turing-complete language close
to Basic and C in its syntax.

mainbox TASK_C_MAILBOX 4;
mainbox TASK_C_MAILBOX 6;

const msgcode_ref_request 1001;
const msgcode_ack 1002;

task APERIODIC_TASK_C
trigger mailbox TASK_C_MAILBOX
priority 2

behavior{
variable incoming;
incomming = 0;

recv(incoming, TASK_C_MAILBOX)
timeout 100;

if (incoming == msgcode_ref_request){
recv(incoming, TASK_C_MAILBOX)

timeout 10000;
execute((60,6200),(40,6750));
send(TASK_B_MAILBOX, msgcode_ack);

}else{
chance(80){

execute((63,400),(37,470));
}else{

execute((100,1000));
}

}
}

Two constructs make ART-ML unique compared to other
modeling languages that has been studied: the execute-
statement and the chance-statement.

The execute statement describe the partial execution time
of the code in the target system, i.e., the execution time for a
complete task or part of a task. The execution time for a task
is represented by a statistical distribution. A probability dis-
tribution is implemented as a list of pairs that corresponds to
the calculated IECs described in Section 2.1. Every pair has
a probability of occurrence and an execution time. When a
task performs an “execute” it supplies a probability distri-
bution as parameter. An execution time is picked according
to the distribution and the task is put into “executing state”.



When a task has been allowed to execute for that amount
of time, the next statement, if any, in that task’s behavior
description is executed. In the example below, the execute
statement will execute 10 time units with the probability of
19 % and 56 time units with the probability of 81 %:

execute((19,10), (81, 56));

The chance statement implements a stochastic selection.
Stochastic selection is a variant of an IF-statement, but in-
stead of comparing an expression with zero, the expression
is compared with a random number in the interval [1-100].
If the value of the expression is less than the random num-
ber, the next statement is executed. If not, the else-statement
is executed if there is one. Stochastic selection is used for
mimic tasks behavior observed as a black box. For instance,
we can observe that a task sends a message to a particular
queue with a certain probability by just logging the queue.
This can be model with stochastic selection such that we
send a message with the observed probability. For instance,
it is possible to specify that there is a 19 % chance of send-
ing a message:

chance(19)
send(mbox1, msg)

The language has also support for message passing through
the primitives send and recv. Both can be associated with
timeouts. Moreover, binary semaphores can be specified in
ART-ML through semtake and semgive. Semtake can be
used in combination with a timeout as well.

��� Modeling on di�erent levels of ab�
straction

When creating a model of the tasks in the target system,
a level of abstraction has to be chosen. That level defines
the accuracy of the model. The lower the abstraction level,
the more detailed and accurate model. There is no point in
using the lowest possible level of abstraction, i.e., a perfect
description. In that case, the actual code could be used in-
stead. Using an extremely high level of abstraction results
in a model that is not very accurate and therefore of lim-
ited use. The best result is something in between these two
extremes.

In the ART-ML language, very detailed models of task
can be made, theoretically perfect ones. By describing
blocks of code only by their execution time, i.e., an execute-
statement in the model), the abstraction level is raised to
a higher level. The more code that is described by an
execute-statement, the higher level of abstraction. The high-
est abstraction-level possible is if all code of the task is de-
scribed using a single execute statement.

It is possible to use any level of abstraction when de-
scribing a task using the ART-ML language. It is therefore

possible to describe different tasks at different levels of ab-
straction. This property of the language allows the model to
be improved (in terms of level of detail) task by task.

The execution time distributions used also have differ-
ent levels of abstraction. The measured data from the tar-
get system is somewhat filtered when creating the distribu-
tions. The recorded instances are grouped into equivalence
classes. This causes data to be lost. The level of abstraction
is in this case the number of intervals used to describe the
execution time of the task. This level of abstraction impacts
the accuracy of the model.

If there are multiple tasks in the system that is of no in-
terest and do not affect the behavior of other tasks, they can
be modeled as a single task at maximum abstraction level,
i.e., only by a single execution-time probability distribution.
This reduces the complexity of the model without affect-
ing the accuracy of the result regarding the tasks of interest.
However, it is required that all tasks in a group has the same
or adjacent priorities. Moreover, tasks can only be grouped
in such a way that no other modeled task, i.e., not part of
the group, has a priority within the range of a group. For
instance, consider a composed task consisting of two task,
a with high priority, and c having low priority. Moreover,
consider task b which is also part of the system and runs at
mid priority. Task a should be able to preempt task b, but
not task c should not. Thus, the composed task has to run
on different priorities in order to reflect the control flow of
the implemented system. We refer to such a group of tasks
as a composed task.

Formally we can express the rules of grouping tasks into
composed tasks, i.e., assigning execution time distribution,
period time and priority, in a way that preserves the utiliza-
tion of the CPU which the tasks in the group contributes.
First the set of tasks to compose, C, have to be normalized
with respect to the period times. The composed task will
run with the shortest period time among the participating
tasks. Consequently, the period time of the composed task
c is:

c�T � min
t�C

�t�T �

Normalizing the tasks in such a way that the CPU utiliza-
tion is preserved requires re-calculating the execution times
for all IECs described in Section 2.1, for all tasks in C.

�t � C�i � t�exe �
c�T

t�T
i�iec

The resulting execution time distribution for the com-
posed task is obtained by calculating the cartesian product,
V, of all t.exe where t � C, i.e., t��exe 
 t��exe 
 ��� 

tn�exe. Every n-pair which is part of the cartesian prod-
uct corresponds to an executional scenario. For instance,
hx�� x�� ���� xni corresponds to the scenario where task 1



executes for x��iec time units, task 2 executes x��iec time
units, and so on.

c�exe � fhiec� pij�v � V � iec �
X

�j�v

j�iec�p �
Y

�j�v

j�pg

The final c.exe is obtained by merging pairs in
c.exe that have equal iecs (cmp. the generation of
IECs described in Section 2.1). For the set of pairs,
fhiec� p�i� ���� hiec� pnig � c�exe, of all pairs having the
same execution time, the merged pair remaining in c.exe is
hiec�
Pn

i�� pii, where
Pn

i�� pi is the probability that task
c, executes iec time units.

Finally, the priority of the composed task c, c.p, is as-
signed the maximum priority of the tasks participating in
the composition.

c�p � max
forallt�C

�t�p�

As an example consider the composition of two
tasks: a and b. Task a executes with the distribu-
tion a.exe={(1,0.75),(2,0.25)}, and a.T=10. Task b ex-
ecutes with the distribution b.exe={(2,0.5),(3,0.5)} and
a.T=5. Normalizing the execution of task a, i.e.,
a.exe={(1 �

��
,0.75), (2 �

��
,0.25)} gives the cartesian product,

V, equal to ((0.5,0.75),(2,0.5)),((0.5,0.75),(3,0.5)),((1,0.25),
(2,0.5)),((1,0.25),(3,0.5))}. The cartesian product V results
in a execution time distribution for the composed task, c.exe
equal to {(2.5,0.375),(3.5,0.375),(3,0.125),(4,0.125)}, c.T
= 5.

The assignment of temporal attributes to composed tasks
described above is a coarse approximation of the system
behavior. Ideally, all tasks are modeled individually. How-
ever, in order to limit the modeling effort, and to prune the
state space, such approximations can be practical. The re-
sult from the case study presented in [1][10], indicates that
the use of composed tasks is quite adequate. The result of
applying the proposed rules may lead to situations where
execution times are longer than the period time. This corre-
sponds to a possible system overload in the implementation.

��� Simulating the system behavior

The simulation-based approach used in this work al-
lows correctness criterion other than meeting deadlines. An
example of other correctness criterion could be the non-
emptiness of a certain message-queue. The system studied
in this work had this criterion. If a certain message-queue
got empty, it was considered a system failure.

Simulation also allows us to specify arbitrary system cy-
cles. FPA assumes cycles equal to the Least Common Mul-
tiple of the period times in the task set (LCM). However,
there exists systems such as the robot controller investigated

as part of this work, where the cycle times are determined
by other criterion. For instance, in the robot case, the system
cycle is determined by the robot application, i.e., the cycle
time of the repetitive task of robot which it is programmed
to do.

When designing the simulator, two different approaches
were identified. The most intuitive was to let the simulator
parse the model and execute it statement by statement. The
other approach was to create a compiler that translated the
high level ART-ML model into simple instructions and con-
struct the simulator as a virtual machine that executes the
instructions. A test was made to compare the performance
of the two approaches based on two prototypes. The vir-
tual machine solution performed significantly better which
is crucial for an analysis tool.

The simulator engine is based on three parts, the instruc-
tion decoder, the scheduler and the event-processing. The
instruction decoder executes the instructions generated by
the compiler, i.e., it is the virtual machine. Some of the
instructions generate events when executed, e.g., execute,
send, semtake. The simulator engine acts upon the gener-
ated event, e.g., takesem is only possible if the semaphore
is free which only the simulator knows. An event contains a
time stamp, type of event, and an id of the source task. The
time stamp specifies when the event is to be fired. Conse-
quently, new decisions about what task to execute are taken
upon an event. The scheduler decides what task that is to
execute according to the fixed priority strategy.

The “execute” kernel-call, the consumption of time, is
what drives the simulation forwards.

First, an execution time is selected according to the dis-
tribution that is passed as an argument. The current time
is increased with that amount of time, or until an event in-
terferes with the execution. If an event occurs during the
execution of a task, the execution is suspended, the event is
taken care of and the scheduler makes a new decision. The
next time the preempted task is allowed to execute, it will
restart the execution of the execute-instruction, remember-
ing how much time it has left for execution.

Since an “execute” kernel call is necessary for pushing
the simulation forwards, there must always be a task that is
ready to execute and contains such a statement. Due to this
it is mandatory to have an idle-task in the simulation that
consumes time if no other task is ready.

��� The probabilistic property language

The impact of altering a component, or adding compo-
nents due to new features can be analyzed based on the
simulation results. Basically, we compare the result from
simulating the extended system with simulations performed
without the extension. The differences constitute the im-
pact. For real-time systems there exists an overarching



criteria somewhat parallel with the impact analysis. The
utilization of available resources must not exceed the up-
per limit and the temporal requirements must not be vio-
lated. Moreover, particular component may have temporal
requirements associated with their execution that must be
conformed to. Typically examples are deadlines and jit-
ter, i.e., variations in periodicity. The temporal behavior
can also affect other requirements. In the case study per-
formed at ABB robotics the correctness of the system was
partly dependent on the non-emptiness of a particular mes-
sage queue. The temporal behavior of components in the
system had influence on this requirement.

The result of an impact analysis is in the form of the
probability of violating a requirement due to the modeled
change of the system. If the system is in the class of hard
real-time systems, i.e., all temporal requirements must al-
ways be fulfilled. Thus, the probability of complying with
a requirement must be 1.

Even if all temporal requirements are fulfilled after
changing the system, there still is an impact. For instance,
the response times of a component may increase or de-
crease. The decrease and increase in response times cor-
responds to the differences in response time distribution ob-
tained by simulating before and after changes in the analyt-
ical model.

The requirements are specified in the simulation ap-
proach with a probabilistic requirement property language,
(PPL). PPL can specify probabilistic properties on tasks that
control the execution of components and on message queues
over which components communicate. Given the number of
times a requirement property has been violated the probabil-
ity of violating it can be calculated.

For every requirement property there must be a prop-
erty theory which is used for evaluating the simulation. As
the property theory for simulation is based on observations
from simulating the system, the property gets proportion-
ately simple compared to the correspondence in the analyti-
cal approach [5]. For instance, checking the deadline prop-
erty of a task is done by comparing every observed response
time, i.e., the response time distribution, with the required
deadline. If the response time is greater than the deadline,
the requirement is violated. Given a response time distribu-
tion we can calculate the probability of violating the dead-
line. As an example, consider the response time distribution
displayed in Figure 5. The probability of violating a dead-
line requirement of 24 ms is equal to 0.1.

The requirement property language supports the defini-
tion of properties as well as theories for calculating the
property, i.e., defining the property theory in terms of the
variables available after a simulation with a probabilistic
property language. The probabilistic property language
specifies properties based on the knowledge generated by
the simulator, and includes relation operators, �� ���� �

Figure 5. The response time distribution of a
task

��� 	�, the logical operators ��
, the binary operators +, -,
the functions max and min, and an instance operator. The
instance operator binds a task to instances of execution and
enables specifying properties where the relative mutual re-
lation among instances of tasks is of importance.

The output generated by the simulator determines the
properties available for every task and message queue. Cur-
rently the simulator generates the following temporal data
about tasks and message queues in a system:

� Size of message queues at task switches, q�size

� Time when a task starts an execution, ��start

� Time when the execution of a task was interrupted

� Time when the execution of a task was restarts after an
interrupt

� Time when a task has finished its execution, ��end

The response time for a task, ��response, is not gener-
ated as such but can be calculated as ��i��end� ��i��start.

Properties are specified as probabilistic statements.
Specifying an invariant property, i.e., a property that should
always be true, corresponds to a probability equal to 1. A
property that verifies that all instances i of task � , ��i�, al-
ways meet a deadline of 10 time units is:

P ���i��response � ��� � � �hard deadline�

If it is not critical that every instance of a task meet its
deadline, we say that the deadline is firm. In our probabilis-
tic property language we can express a firm deadline as:

P ���i��response � ��� � ���	 �firm deadline�

The instance operator is used to distinguish different in-
stances of the same task from one another, or to specify



properties over the same instance number for different tasks.
Separation is a property that specifies the minimum distance
in time between two consecutive instances of a task.

P ���i
 ���start� ��i��end � ��� � � �separation�

A precedence relation specifies the order in which two
tasks should execute.

P ���i��end �� ��i��start� � � �precedence�

The probabilistic statements may contain an unbounded
variable. For instance, the probability may be unbounded
which gives as result the probability of the statement being
true. A property that specifies the probability of meeting a
deadline equal to 10 time units is:

P ���i��response � ��� � X

We can also leave variables in the predicate unbounded.
This could, for instance, be used for feeding back tempo-
ral constraints to control engineers, e.g., the feedback loop
delay. The probabilistic property that answers with what
deadline will be met with a probability of 0.9 is:

P ���i��response � d� � ���

Specifying firm deadlines only in terms of the proba-
bility of missing them is not sufficient since the distribu-
tion of deadline misses can be nasty. For instance, we can
miss many consecutive deadlines and still fulfill the tempo-
ral requirement since sufficiently many deadlines are met
in between bursts of deadline misses. In the probabilistic
property below, we specify that two consecutive instances
of task � must not both miss their deadline.

P ���i��response � �� � ��i
 ���response � ��� � �

Correctness criterion for real-time systems may not only
be specified in terms of explicit temporal requirements. As
discussed earlier in this paper, the correctness of a system
may be defined in terms of non-empty message queues.
Such a invariant requirement expressed in our probabilistic
property language would be:

P �queue�size � �� � � �non� emptiness�

Calculating the properties of a system is done offline
from a simulation point of view, i.e., it is done when the
simulation has produced its output. Thus, it will not in-
fluence the simulation performance. Moreover, the output
generated by the simulator is in an equivalent format to the

data measured on the real system. This makes it possible to
apply the probabilistic properties on the implementation as
part of the verification. Consequently, confidence that the
implementation is a refinement of the model can be estab-
lished.

3 Conclusions

System complexity can be handled informally in early
phases of large software system’s life time. However, as the
system evolves due to maintenance and the addition of new
feature, the harder it gets to predict the temporal behavior.
Even though a formal model of the temporal domain was
initially constructed, it may become obsolete if it is not up-
dated to reflect the changes in the implementation.

The method proposed in this paper is intended for the
introduction, or re-introduction, of analyzability into com-
plex distributed real-time systems with respect to temporal
behavior. A suitable modeling language, ART-ML, was de-
veloped, as well as tools for measuring execution times and
the length of message queues in the existing system. More-
over, a tool for processing the measured data was devel-
oped. The data processing tool approximates the execution
time distributions for the investigated tasks.

A discrete-event based simulator was used when analyz-
ing the temporal behavior of systems described in ART-ML.
The simulation approach was chosen since no existing an-
alytical method for analyzing the temporal behavior of a
real-time system can express execution times as probabilis-
tic distributions. Furthermore, the simulation approach en-
ables us to define correctness criterion other than meeting
deadlines, e.g., non-empty message queues in the system.

The probabilistic requirement property language is used
for specifying the properties of a system that is to be ana-
lyzed. The analysis of a query specified in the probabilistic
requirement property language gives as a result the proba-
bility of complying with the specified property. The analy-
sis explores the output generated by the simulator.

The method has been successfully applied in a case study
of a robot controller at ABB Robotics where a model was
constructed and the temporal behavior was simulated. Even
though the model was rather abstract in terms of both func-
tional dependencies and temporal behavior, the results were
very promising. Based on this result we claim that our
method can be applied on a large class of systems.

ART-ML is still a prototype, thus many improvements
of the method and the language are possible. Currently we
are expanding ART-ML to also support the modeling and
analysis of multi-processor systems. Moreover, we are im-
plementing constructions in ART-ML to describe complete
product lines, i.e., a set of related products that share soft-
ware architecture and software components. If such con-
structions exist, the impact of altering the behavior of a soft-



ware component can be analyzed for all products that use it.
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