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Abstract—Cloud computing and Internet of Things (IoT) are
two notable concepts that have evolved significantly over the
past few years. In the automation industry, clouds are often
used for monitoring vast amounts of data generated on the
shop floor. Whereas, IoT is used to simplify the end devices
and their connections to the rest of the system. In this paper we
investigate the interplay of these two concepts and their use in
the control applications in the automation industry. We develop
a prototype in the industrial setup to explore the use of IoT
devices that communicate with a cloud-based controller. Using
the prototype, we perform a number of experiments to investigate
the consequences of having a cloud server between the end device
and the controller. Within this context we consider arbitrary jitter
and delays, i.e., they can be smaller, equal or greater than the
sampling periods. Moreover, we apply mitigation mechanisms to
deal with the delays and jitter that are caused by the local and
wide area networks (LAN and WAN).

I. INTRODUCTION

In recent years, cloud computing has drawn the interest of
industry. Many research works have been conducted on how
cloud infrastructures can be included in industry automation
systems eg., [1], [2]. Particularly, clouds have been used
for monitoring industrial process, creating short and long
term reports for different characteristics of the shop floor.
Cloud servers enable permanent storage of long historical data
and thus it can be utilized to prevent failures or monitor
productivity. Although cloud computing seems adequate to
monitor industrial process, it cannot be used to control indus-
trial machines, mainly, due to unpredictable WAN latencies.
Therefore, utilizing local resourceful servers, local clouds,
can alleviate unpredictable WAN latencies. While local clouds
seem to offer an attractive solution, it is expensive to acquire
and maintain such infrastructure.

Recent advantages in IoT can be leveraged to solve the
aforementioned cost problem. Accordingly, costly industrial
controllers can be replaced by cheaper components that can
sense the process and send data to the local cloud. Since
the devices in the context of IoT are not very resourceful,
they cannot handle intensive tasks. Hence, a local powerful
cloud infrastructure is needed. A main advantage of devices
in the IoT concept is that they can enter or leave the network
dynamically without influencing the rest of the system. As
a result, observability of the system can be increased or
decreased on demand. In addition, the centralized controller
running on the cloud can perform optimizations or changes
in the process that can instantly affect the entire system. Due
to the different services that are expected by local clouds,

Cisco proposed a 3-tier local cloud computing architecture
called fog computing [3]. Fog computing has been introduced
to overcome the drawbacks of cloud computing.

A. Problem Statement & Paper Contribution
IoT, fog computing and cloud computing can be combined

to form a new operational scheme that can benefit the indus-
trial applications in terms of scalability, flexibility and cost
effectiveness. In it, the IoT devices would be communicating
with the controller located on the local cloud server, providing
real-time control as a service. One of the main challenges that
is faced when a networked controller is included in the closed-
loop control system is how latencies affect the performance
of the system. Another challenge is how to mitigate or even
compensate these effects on the end device.

In order to address these challenges, we develop a control
system application prototype by exploiting the principles of
IoT, fog computing and cloud computing. Using the prototype,
we perform a number of experiments to investigate the impact
of local and wide area networked controller on the closed loop
control. In order to do the performance evaluation, we consider
arbitrary jitter and delays, i.e., they can be smaller, equal or
greater than the sampling periods. Additionally, we apply two
mitigation mechanisms for the end device. These mechanisms
do not use any internal information from the controller, in fact,
they rely only on the received data.

B. Paper Layout
The rest of the paper is organized as follows. Section 2

describes the related work. Section 3 describes the prototype
architecture. Section 4 presents the experimental evaluation.
Section 5 discusses the results. Section 6 concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background
Cloud computing is an operational scheme that provides

resources such as computational power and storage to users.
Cisco, introduced a new operational scheme called fog com-
puting in 2012. Fog architecture is organized in 3 tiers.
The first tier is responsible for Machine-to-Machine (M2M)
communication and supports up to sub-second responses. The
first tier can also filter or pre-process the vast amount of data
before it gets sent to higher tiers. That way the higher tiers
only get the selected information they need and can easily
communicate with multiple first tier fog nodes. The second
and third layers are mainly for Human-to-machine (H2M)



interactions and they can provide up to sub-minute responses.
The second and third tier can also filter data before sending
them to cloud for further processing. Fog computing is very
important in the IoT era.

Internet of things (IoT) [4] has gained wide popularity
recently. Research studies predict that IoT will bring around
26 billion devices to the connected world [5]. In IoT, devices
are connected through a network. They share data, information
and even resources to accomplish their goal or increase total
system intelligence. As a result, IoT has applications in a wide
range of areas, such as health monitoring, home automation,
environmental and agricultural applications, etc [6]. A report in
The Economist states that cows will be monitored to ensure the
quality of meat and each cow will produce 200MB of data each
year. Although this is not much data, USDA estimates that
there are around 1.2 billion cows around the world resulting
in 224 PB of data each year for cow monitoring only1. IoT
introduces a new data flow and fog computing can be used
to analyze and extract useful data. Since it is not possible to
store all this data in clouds for processing, fog servers will be
used for pre-processing to filter data.

The aforementioned data flow is also interesting for indus-
trial applications. The industries probably produce more data
than cattle and can take advantage of the full potential of fog
architecture. While the first tiers of fog can be used for closed
loops between industrial machines and fog server, the other
two layers can use data to monitor the machine and prevent
future hardware failures. While the latter has been investigated,
we focus more on the closed control loops over a network.

A typical closed control loop, as shown in Figure 1, con-
sists of a controller that controls a physical process through
sensors and actuators. The controller is usually located close
to the actual process. In our case we investigate the use of
a controller that is placed on a server, local or remote, as
shown in Figure 2. In this case there are latencies from the
network that are included in the control loop. Depending on
the system and on the duration of the latencies this can cause
various problems for the system, and make it unstable.

Fig. 1. Closed control loop

Fig. 2. Closed loop with networked controller

B. Related work
Utilizing cloud computing in industrial automation isn’t a

completely new idea. However, most of the existing works
focus on higher levels than the field-level, where clouds are
used for data monitoring and assisting in management, such

1http://www.ers.usda.gov/topics/animal-products/cattle-beef/statistics-
information.aspx

as [1], [7], [8], [9]. However, very little work is done so
far that involves cloud computing within control loops in the
industrial automation [8], [10]. The problem of Networked
Control Systems (NCS) has been adressed in 2001 in [11].
Plenty of work exists regarding this problem such as [12], [13].
In NCS the controller is tuned in order to compensate network
delays or data dropout. In our case the local tuned controller
is moved to the cloud and delay mitigation mechanisms are
utilized on the actuator-sensor side. These mechanisms are
aimed to mitigate the effects introduced by the network.
Hegazy et al. [14] consider an industrial scenario where
the controller is placed on the cloud. They consider having
redundant controllers for fault tolerance and to enable the use
of different cloud providers, and they provide an algorithm
for a smooth transition between the different controllers. They
also propose a delay compensator based on a smith predictor
to mitigate the delays of a remote server. However, the smith
predictor is a model based predictor, and in our case the goal
is to have a simple mitigating mechanism on the device side
that the IoT device can work with. Additionally, the cases they
consider the delays are considerably smaller than the sampling
period. We not only consider this case but also investigate
the cases where the delays are considerably longer than the
sampling period. In [10], Givehchi et al. investigate the use
of a virtualized Programmable Logic Controller (PLC). They
show that a virtualized PLC can provide similar behaviour to
a hardware PLC, but it’s performance decreases considerably
when the sampling frequency increases.

III. PROPOSED SYSTEM ARCHITECTURE

A. Prototype architechure
A prototype is built in order to create a representation of

the real case. The setup, shown in Figure 3, consists of an
end device connected to a switch through which it can reach
a local server (fog node) or a remote one (cloud node). Since
the setup is realised in a local environment, a delay emulator
is used for simulating the distance between the device and the
cloud node.

Fig. 3. Architecture overview

The fog and cloud nodes are set up as an Ubuntu server
each. For emulating the connection over WAN with the cloud,
a software solution called WANEM2 is used. WANEM is based
on the Linux kernel and it utilizes NetEm3, among other,
functionalities in a simple graphical user interface provided
on a live Knoppix4 disk. WANEM enables specifying typical

2http://wanem.sourceforge.net/
3http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
4http://knoppix.net/



network problems, such as delays, jitter, packet loss, packet
corruption, connection loss, etc. It also enables specifying the
bandwidth, setting a correlation percentage for each charac-
teristic and a few distributions for the delays (normal, pareto,
paretonormal) for simulating various realistic internet condi-
tions. All communication routed through WANEM is affected
by the set parameters. The end device is an Arduino Uno5

running a small program that involves sensing and actuating.
It sends the sensed value to the server (fog or cloud) where a
control value is calculated. The control value is then sent back
to the Arduino to actuate. The control loop consists of a photo
resistor and an LED. The controller can change the brightness
of the LED until it reaches the desired value (set to 700 in
the experiments). For the device-server communication, two
different approaches are used. The first one, called polling, is
listed in Algorithm 1. It involves the Arduino waiting for, or
polling, the server to establish the connection. In this case,
after sampling the sensor value and sending it to the server,
the device does nothing until the response from the server
is received and could potentially wait forever for it. This
approach could be used in a scenario where the sensor and
actuator are placed on the same device.

Algorithm 1 Polling
1: procedure POLLING CONTROLLER
2: begin:
3: sensorValue← readSensor();
4: sendMsgToServer(sensorV alue);
5: loop:
6: if resultAvailable() then
7: result← readResult();
8: applyValue(result);
9: goto begin;

10: goto loop;

The second approach, called non-polling, is listed in Algo-
rithm 2. In this case the device sends the sensed value and
checks if a reply is available. If there isn’t any message, it
does not wait for the server to reply, hence it is not polling
the server. Instead, it repeats its cycle, sending another value
and checking for a received message again. On the server side
this means that multiple messages with the same value will
be received. This might lead the controller to think that the
calculated values are taking no effect and thus respond more
aggressively, which is not a desired behaviour. This approach
suits a case where the sensor and actuator are on separate
devices.

B. Delay mitigation
In order to mitigate delays caused by the networked con-

troller, having some simple mechanism on the device side is
desirable. Typically, for control loops with time delays (also
referred to as dead time) in which the sensing needs to be done
a certain time after the actuating, a model based controller is
used. The controller then contains a model of the process it
is controlling and is able to time the adequate response based
on the models behaviour. However, these controllers are not
intended for variable delays and do not fit into the idea of the

5http://www.arduino.cc/en/Main/ArduinoBoardUno

Algorithm 2 Non-polling
1: procedure NON-POLLING CONTROLLER
2: begin:
3: sensorValue← readSensor();
4: sendMsgToServer(sensorV alue);
5: if resultAvailable() then
6: result← readResult();
7: applyValue(result);
8: goto begin;

desired simple mechanism. In our case the control is achieved
with a PI controller. Since the delays affect the integral term
of the controller, an adaptive PI controller [15] would be
sufficient to deal with the delays. The adaptive controller
can be tuned to adapt to the delays and is simple enough
for our purposes. Statistical prediction methods are also used
for predicting the delays [16] or, in dynamic offloading,
to asses the current state of network parameters (such as
bandwidth or loads on the server end) to avoid measuring
them too often which increases overhead [17]. This is another
method that was considered in our experiments, where the
predictions could be used to predict a missed value from the
controller. Due to the nature of the algorithms we use (polling
and non-polling) and the considered mitigation methods, the
adaptive PI controller suits the non-polling approach while
the prediction methods are used on the polling approach. In
order to improve the polling method, a timeout is added and a
prediction method is used in case no message is received from
the server before the timeout. This timeout is set to the average
round trip time (RTT) for the device-server communication,
which is 18 milliseconds. Two prediction methods are used:
exponential moving average and double exponential smoothing
model. Both of these prediction methods make use of all the
data collected, without having to store or manage a large
number of variables or the need to collect more than two values
to start off. The exponential moving average [18], also called
exponential smoothing, calculates a weighted average of the
previous data values xt, as presented in (1), where A is a value
between 0 and 1. The predicted value for the next cycle, Ft+1,
is the value calculated in the current cycle ((2)).

st = Axt + (1−A)st−1 (1)

Ft+1 = st (2)

The double exponential smoothing average model is calcu-
lated by the “Holt model” forecast [19]. It calculates two terms
in each cycle, as seen in (3) and (4), and has two smoothing
factors A and B, both of which take values between 0 and
1. The second term bt represents the change in the slope, or
the trend. This method calculates Ft+m, the predicted value
of xt+m at time t+m, m > 0, by using (5)

st = Axt + (1−A)(st−1 + bt−1) (3)

bt = B(st − st−1) + (1−B)bt−1 (4)

Ft+m = st +mbt (5)

In case of the non-polling approach, due to delays, the
controller receives the same value multiple times before a
change is registered. When the controller receives multiple



messages with the same value, it affects the integral factor
of the PI controller. In this case an adaptive PI controller is
suitable to mitigate the affects of the delays on the controller.
A smoothing factor, a, is calculated based on the sampling
period and the round trip time, as shown in (6) to lessen the
influence of these changes caused by delays.

a =
sampling period

sampling period+RTT
(6)

This smoothing factor is then applied to the received values
before they are used by the actuator.

IV. EXPERIMENTAL EVALUATION

We have conducted a large number of experiments in [20].
In this section we discuss the results obtained from both the
polling and non-polling approach, where delays and jitter are
added to the control loop. The sampling period is set to 14
ms. First the prototype setup is tested with delays and jitter
that are comparable to the sampling period, for both polling
and non-polling approach. Then the system is tested with
delays and jitter that are considerably larger than the sampling
period, again for both approaches. The results of these tests
are compared to the results where the system implements the
delay mitigation mechanisms proposed in Section III-B. The
results show that the system has no difficulties with small
delays and jitter, in any of the mentioned cases. Therefore,
the following results are of the tests where the longer delays
and jitter are used.

A. Case 1: Response without mitigation mechanisms
First we investigate the effects of delays and jitter that

exceed the sampling period. Delays and jitter are increased
until the system starts oscillating. In Figure 4a, the polling
approach is used and the system becomes unstable when the
delay exceeds 50 ms. The oscillation for 50 ms delay exceeds
the limit of the steady state error therefore the system is
considered unstable. In Figure 4c, the non-polling approach
is used. It can be noticed that the system tolerates smaller
delays compared to the polling approach. The system becomes
unstable for 23 ms of delay. Moreover, the systems’ response
downgrades significantly from 15 ms delay. The degradation
of system’s performance, for this approach, starts when the
sensor sends consecutive messages before the actuator receives
a message. That happens when delays exceed the sampling
period.

In Figures 4b and 4d, the effect of jitter in the control loop is
depicted for polling and non-polling approach respectively. As
it can be noticed, the overshoot increases as the jitter increases,
but the system manages to reach the steady state after some
time. Jitter does not affect the system in the same way that
constant delays do. Applying jitter means that there will be a
variable delay between 0 and the specified value of the jitter.
Because of this, the controller can receive some values before
the sampling period exceeds but also some that exceed the
sampling period for a small amount. Since jitter is a variable
delay, it may affect the control loop in a different way on
every run.

B. Case 2: Response with adaptive PI controller
In Figure 5a, the adaptive PI controller is used, and the

smoothing factor according to formula (6) is set to 0.31. Com-
pared to the behaviour of the controller before the smoothing

factor is applied, overshoot has been decreased from 142 to
56 and settling time from 1415 ms to 601 ms.

In Figure 5b, the system becomes unstable before the
smoothing factor is applied; whereas, when the smoothing
factor is applied it manages to settle after 686 ms with an
overshoot of 59. The smoothing factor is set to 0.26. In
Figures 5c and 5d, jitter is set to 25 ms and 75 ms respectively.
The smoothing factor is computed and RTT is set to the
maximum possible value. Smoothing factors are set to 0.26
and 0.1 respectively. In the first case, overshoot has decreased
from 134 to 0 and the settling time from 384 to 199. When the
jitter is set to 75 ms the system becomes unstable. Utilizing the
smoothing factor the system manages to stabilize after 1264
ms with an overshoot of 62.

C. Case 3: Response with prediction methods
Figure 6a shows the system is under a constant delay of 75

ms. In this case, the two prediction methods are compared with
respect to the response of the polling method when executed
with the same delay. While the exponential moving average
has a smoother transition, the double exponential smoothing
has a faster settling time. Both methods, however perform
better than than the original system.

Similar results are gained when a 100 ms delay is applied, as
shown in Figure 6b. We can notice that the responses of both
methods have disturbances in the beginning. This is because a
smaller number of messages is available in the message buffer
in the beginning compared to later, which means the system
has to rely on the prediction methods for input. However, the
prediction methods depend on the values from the server to
improve their accuracy. This is less of a problem later on once
the system becomes more stable, since changes in the slope
are smaller and therefore it is less likely to predict a value that
stands out significantly.

As for the jitter, the system performs much better as
compared to the constant delay. Figures 6c and 6d show the
prediction methods performing with 25 ms and 75 ms of jitter,
respectively. We can see that in both cases, there is barely any
overshoot, and compared to the tests with constant delays, the
curves are much smoother in the beginning. This is because
the length of the delay varies and the system performs better
when the system uses less predicted values in the beginning.
In the case of jitter there is barely any noticeable difference
between the two prediction methods, although the exponential
moving average settles slightly faster.

V. DISCUSSION

The controller is clearly affected by the longer delays and
jitter. However, the system manages to stabilize when the
latencies are smaller than the sampling period for both polling
and non-polling approaches. Introducing a local server in the
control loop adds a small delay of 2-3 ms and could be
considered. However, the setup should be tested with increased
load on the server to see how it would affect the response
time. The adaptive PI controller is an intuitive solution. It
manages to stabilize the response of the system, and offers
a great improvement to the non-polling approach in all cases.
However, it has no proof for the robustness of the algorithm.
It should be examined on a more complex system or have
a mathematical proof in order to prove its robustness. The
prediction methods perform better under jitter than under
constant delays. This is because both methods depend on



Fig. 4. Local response of the controller under delay and jitter, both polling (a and b) and non-polling (c and d) approaches

Fig. 5. Adaptive PI at different delays (a and b) and jitter (c and d)

updating their calculations, meaning they depend on getting
correct values from the server. In the case of constant delays,
most predictions happen in the start while the control values
change and before the system reaches its stable point. As
the delays increase, the system relies on more consecutive
predicted values, worsening the response of the system. In
the case of jitter, the total amount of predictions made is
roughly the same as for the delays, but the predictions are
more distributed over time rather than concentrated in the

start, and thus the response is much better. Even though the
delay mitigation mechanisms manage to improve the responses
under delays and jitter, none of the results are comparable to
the local control with no latencies. The system examined here
is a relatively simple case. However, the results are reasonable
considering the ratio of the sampling period of the process
and the delays applied. Most of the research regarding hosting
controllers on a cloud, as in [14], consider a more comfortable
difference between the sampling period and the network delay.



Fig. 6. Prediction methods under delays (a and b) and jitter (c and d)

VI. CONCLUSION AND FUTURE WORK

In this paper we have investigated the effects of offloading
the controller to a remote server. We built a prototype to create
a realistic scenario. Moving the controller to a remote server
degrades system’s performance. Even small delays affect the
control loop when they exceed the sampling period. The
forecasting methods that we have investigated, work better
with variable delays because the predicted values that are
used are more scattered, as opposed to constant values where
the predictions are concentrated at the beginning. However,
these methods are are challenged in the case when consecutive
predicted values are needed, especially in the start up of
the control system. Whereas, the adaptive PI controller uses
an intuitive idea for mitigating delays inside the network. A
formal proof for the robustness of such approaches is needed.

Since not much research has been conducted in this area,
there are many possibilities left to try out in the future. The
polling and non-polling approaches can be expanded into a
more sophisticated system. Moreover, loads can be introduced
on both ends to simulate a more realistic approach. These
methods can also be tested with a more complicated system,
described by a high-order differential equation.
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