
Using Analytical Models of Complex Real-Time Systems for
Temporal Impact Analysis

Anders Wall

Mälardalen University
Västerås, Sweden

awl@mdh.se

Joakim Fröberg
Volvo Construction Equipment

 Eskilstuna, Sweden
joakim.froberg@volvo.com

Christer Norström
ABB Robotics

Västerås, Sweden
christer.e.norstrom@se.abb.com

Abstract
To predict the temporal impact of adding new

functionality to large and complex real-time systems
becomes more difficult the older the system gets. In this
paper we describe the concept of analytical models and
how we can use the analytical model for predicting the
temporal impact of adding new or changing existing
functions. We define tree levels of abstractions in the
analytical model, requirements, components, and
implementation. The concept has been applied on two large
and complex industrial embedded real-time systems: a
robot control system and a vehicle control system. The case
studies unveil two different approaches to the construction,
and maintenance of the analytical model of a system, “by
construction” or “by re-engineering”. Moreover, we show
that both static analytical methods and simulation-based
methods are applicable when analyzing a real-time system.
It is the characteristics of the system and the correctness
criterion that determines the most appropriate method.

1. Introduction
Large and complex computer systems usually have long

lifetime and history. Thus, they are exposed to many
changes found necessary during maintenance and due to the
introduction of new features. Further, software in general
has a longer lifetime than the hardware (HW), and thus the
software will during its lifetime run on different HW
platforms and different operating systems. Predicting the
impact on the system behavior that new features will
impose becomes increasingly difficult as the complexity of
the system grows. This does not only depend on the pure
system complexity, it also depends on the fact that many
engineers have been involved in the development of the
system and many of these persons may have continued their
careers. Newly employed engineer may have great
difficulties to understand a certain function in the system
without a proper system model. The software itself
provides poor support for such analyses of a system.
Consequently, additional models of the system must be
constructed that provides the information necessary for
analyzing and predicting a system’s behavior. As our focus
is concerned with real-time systems, we are interested in
the system’s temporal behavior, i.e. is the system temporal
correct. A real-time system is considered temporal correct
if all its temporal requirements are fulfilled, e.g. deadlines,
latency. We refer to a system model that provides

information to make temporal analysis feasible as an
analytical model.

The introduction of an analytical model of a system
permits early predictions when adding new features or
changing existing features in the system. The earlier the
analysis is performed the more coarse-grained is the result.
Nevertheless, early predictions are essential as they indicate
whether the development is going in the right direction.
Discovering that the system’s behavior is incorrect in a late
phase of the development is often very costly. It is
important to continuously analyze the system as more
information emerges when moving towards the
implementation. We propose an analytical model consisting
of three different levels of abstractions, the requirements
view, the component view, and the implementation view.
Naturally, we have more detailed information about an
existing implementation than a new feature that shall be
implemented and integrated in the system. Thus, different
level of abstractions is necessary. The contents of our
analytical model are primarily suitable for real-time
systems, i.e. the model is concerned with temporal behavior
and resource utilization.

As the system evolves, it is important that also the
analytical model is updated to accurately reflect the system.
The method outlined in this paper suggests a continuous
maintenance of the analytical model as well as
continuously feeding information back from the
implementation view, via the component view, to the
feature view. This will ensure a consistent high-level
description of the systems architecture.

In this paper we describe the concept of analytical models
and how we can use the analytical model for predicting the
impact of adding new or changing existing features. The
concept has been applied on two large and complex
industrial embedded real-time systems, a vehicle control
system for large construction equipments at Volvo
Construction Equipment in Sweden and a robot control
system at ABB Robotics also in Sweden. The case studies
unveil two different approaches to the construction,
maintenance and analysis of the analytical model of the
system. We refer the two different approaches to
constructing an analytical model as “by construction” or
“by re-engineering”. If a system is constructed and
maintained on the basis of the analytical system model, we
say that the model is constructed by construction, this being
the case for the Volvo system. In the constructive approach,

the model is a product of the development effort. On the
other hand, if the models are constructed and populated by
measuring an already existing implementation, it is
constructed by re-engineering, this being the case with the
Robotics system. We will elaborate further on the pros and
cons of the different approaches in the following.

The two systems do not only differ in terms of how their
analytical models are constructed. The correctness criteria
and, consequently, the methods for analyzing the systems
also vary. Traditional real-time analyses have a strong
focus on explicit stated temporal requirements. In other
systems, the temporal requirements are implicit defined,
such as a specific message queue is never allowed to be
empty which is the case in the robotic system we have
studied.

In [7], impact analysis on real-time control systems is
presented. Their approach analyzes the impact of changing
a software component with respect to its input/output data
ranges. The result from such an analysis is a set of affected
components in the system. Li et. al. also propose a system
model based on different level of abstractions. Other has
also proposed methods for impact analysis [14][5].
However, these not consider impact on temporal behavior.
The notion of analytical- and constructive models was
introduced in [6]. They utilize analytical interfaces on
components for predicting properties of component
assemblies. There is only one level of abstraction in their
model, which thus corresponds with our component view.

The contribution of our paper with respect to related work
is a more expressive temporal model and methods for
analyzing the temporal impact of adding new functionality
to a system. We have demonstrated our methods in two
large and complex real-time systems with satisfactory
results. From the traditional real-time theories point of view
we also contribute with results from modeling a system not
built for explicit temporal analysis, including a modeling
language and an analysis tool.

The outline of this paper is as follows: Section 2
discusses analytical models and defines the architectural
views formally. Moreover, different approaches to
analyzing a system based on an analytical model are
presented. Section 3 presents the two case studies. In
Section 4 are the results from the case studies compared.
Finally, Section 5 concludes the paper.

2. Analytical models
In this section we describe the concept of analytical

models and present a brief discussion concerning system
analysis using those analytical models. A software
architecture consists of a constructive model and an
analytical model. The constructive model describes how
components are interconnected through their constructive
interfaces, i.e. control-, and data flow whereas the
analytical model provides information required for
analyzing certain properties of an architecture. For instance,
in order to verify the temporal correctness of a real-time

system with periodic tasks, the frequency, and the worst-
case execution time (wcet), of the services are required in
the analytical model.

2.1 Architectural views
We divide the system model into three different levels of

abstractions: the requirements, the component view, and the
implementation view. Each of the different views provides
means for analyses and verification. Analyses are
performed on an intra-view basis only, i.e. information
from two different views is never utilized in the same
analysis. Consequently, analyses performed based on
information from the component view are more coarse-
grained than on the implementation level of abstraction.
However, verification of the implementation will
eventually be verified with respect to the requirements.
Thus, verifying that the correct system, i.e. according to the
requirements, has been implemented is done based on
information from the implementation view and the
requirements view.

In Figure 1 is the different views depicted along with a
workflow and brief descriptions of the activities performed
in the process. Note that the evolutionary development may
add new resources and new features may share components
with other already existing features.

Initial system
requirements Add feature nSet of features Fs

and their temporal
requirements

Set of components
Cs implementing Fs

Set of features Fs’
and their
requirements

Set of components
Cs’ implementing
Fs’

Implementation of
Cs on a particular
HW

Implementation of
Cs′ - Cs on a
particular HW

Identify components and
enforce temporal
requirements on them

Are the temporal
requirements fulfilled?
Implement Cs

Test and measure,
feedback result to
the component view

Are all requirements
met?

R
equirem

ents
Im

plem
entation

C
om

ponent

Figure 1 The different level of abstractions in the
analytical model

Ideally, system construction starts at the requirement
level of abstractions. The requirements are represented as a
set of features. Each feature represents functional- as well
as non-functional requirements. Hence, a feature defines a
function’s explicit- and implicit temporal requirements. An
explicit temporal requirement is a clearly expressed
requirement such as an end-to-end deadline. An implicit
temporal requirement is derived from, e.g. a functional
requirement or the controlled environment as for example
an accuracy requirement for a robot must be translated to
timing requirements for the involved services and thus the
accuracy requirement is an implicit timing requirement.

As the requirements have been identified, the component
view can be populated. Finally the system will be
implemented; hence the implementation view is populated.

Until the implementation exists, all models are based on
estimates, even though these estimates are based on
experiences from other similar systems.

As the systems we have been studying are large and
complex, they exhibit long service lives. Consequently, the
cost of the initial development only contributes with a small
fraction of the total cost. Maintenance is by far the major
part of the cost as we include in maintenance such activities
as error corrections, improving existing features, as well as
implementing completely new features. Thus, the models
proposed in this paper will also be utilized when evidence
from an existing system already exists. The models are kept
consistent with the implementation through feedback from
testing and measuring the system.

In order to formalize the component view and the
implementation view we first define a system. Our view of
a system is depicted in Figure 2. The system formalization
described is based on the result from studying two different
existing systems. Hence, the definitions provide
abstractions that are suitable for describing and comparing
these systems. Basically, we say that a system consists of
interconnected nodes.

A node n is a tuple 〈cpu, ms, md, mp, F, I/O〉, where
• cpu is the computational resource of the node,
• ms is the static non-volatile memory,
• md is the dynamic memory,
• mp is the persistent memory,
• F is the set of features whose components C(F) is

partially or completely allocated to the node n.
Moreover, feature f ∈ F is a function as experienced
by system users, and it collects the functional-, and
non-functional requirements.

• I/O is a set, possible empty, consisting of I/O-units.

Definition 1. A system S ⊆ Node × Bus, where Node is the
set of nodes in the system, Bus is the set of communication
buses in case of a distributed system. �

Node A Node B

cpu1 cpu2

mp mp

bus

I/O I/O

md

Ms

md

Ms

F2

F1

Figure 2 Our view of a system

The component view identifies the components in the
system and their analytical model. We assume a component
to be an encapsulation of a service implemented in
software. The encapsulated service can be utilized through
the components interfaces. For a more exhaustive
description of our component concept we refer to [17]. An
essential part of a components analytical model in real-time

systems is the temporal attributes, e.g. period times. We
will refer to temporal attributes in the component view as
the temporal analytical model, which we will hereafter
refer to as the analytical model. In scheduling theory, such
an analytical model is referred to as a task model. This
level of abstraction is suitable for analytical system
analyses and for simulations of the system. Thus, a
system’s temporal requirements that initially were
partitioned into features are implemented and verified in
the component view. The appearance of the temporal
analytical model corresponds with that of the real-time
operating system (RTOS), and communication mechanisms
in the system infrastructure. As the functional requirements
are implemented in the chosen programming language, and
non-functional requirements are implemented in the
architecture, is the temporal requirements implemented by
assigning temporal attribute in the task model provided by
the RTOS. An example of such temporal attributes is
period time and priorities. Consequently, the temporal
attributes provided by the infrastructure are also part of the
implementation view.

Definition 2. The component view of a real-time system is
a set Cs of tuples 〈c, ET(node), τanalytic, F〉, where c is a
component which is part of the implementation of the set of
features F, ET(node) is the execution time for a component
given a particular hardware architecture specified by node,
and τanalytic is the temporal analytical model of the
component �

The implementation view consists of the actual
implementation. Thus, it provides necessary information
for testing the system, as well as measuring execution times
and response times.

When a real-time system is implemented on a particular
hardware architecture, the model becomes valid for that
particular instance only. The reason for this is that the
temporal behavior of the components is affected when the
hardware architecture is changed. Typically, the execution
times will be affected. This phenomenon is typical for real-
time systems and is a problem for large and complex
systems that have a long lifetime.

As the temporal requirements are implemented through
the task model provided by the RTOS, we consider it a part
of the implementation view. However, task models in the
RTOS may differ from the temporal analytical model. For
instance, a task model in a RTOS may include priorities,
period times, references to entry function, error handling,
etc, while the analytical model may have deadlines, period
times, etc.

Definition 3. The implementation view of a real-time
system is a set Is of tuples 〈imp, ET(node, imp), τinfrastructure,
c〉, where imp is the implementation of component c in a
programming language, ET(node, imp) is the execution
time given a hardware architecture node, and the
implementation, imp, on that hardware, τinfrastructure is the

task model provided by the RTOS, and c is the component
implemented by imp. �

The mapping of components onto features and
implementation onto components are explicitly expressed
in Definition 2 and Definition 3. The inverse relationship is
also valid, i.e. features are implemented by a set of
components which are implemented in some programming
language.

Until the implementation view exists, the model is
constructed based on estimates and interpretations of the
system’s requirements. Feedback from the implementation
view is required in order to make the model, on every level
of abstraction consistent with the implementation. The data
that must be measured in the implementation are typically
execution times of the components.

So far in this section we have discussed the ideal case of
system development, i.e. the system is constructed through
the model. However, if no analytical model exists, the
model presented in this paper can be populated in a reverse-
engineering manner starting by measuring the existing
system. The absence of a correct system model could be
due to, for instance, no model was ever constructed, or the
initial model was never updated as the system evolved. The
reverse-engineering activity starts at the bottom of the
initial iteration depicted in Figure 1. Measured data is used
for populating the component view and eventually also the
requirements view.

Adding new features to the system is equivalent to
specifying a new system with the distinction that the pre-
existing system imposes restrictions on the new features in
terms of available system resources. A rough analysis of
whether the new feature indeed can be added is possible
based on the existing component view and a decomposition
of the added feature into components and their analytical
models. It is also possible to perform such an analysis
based on estimations of the resource utilization needed of
the new feature and comparing that with the available
resource capacity. The more details available, the more
accurate are the system analyses. The scenario where new
features are added is one of the main reasons for
maintaining the model as the system evolves and keep it
consistent through feedback from the implementation.

2.2 Analyses based on the analytical model
The main objective for introducing an analytical model of

a system is to make possible early analyses of the system’s
behavior. In this paper we focus on the temporal behavior
of systems.

We determine whether or not a system is temporal correct
on the basis of the analytical model. To be temporal correct
means that all temporal requirements are indeed fulfilled by
the system. We will discuss two different approaches to
analysis of the temporal behavior: the analytical approach
and simulation. The two case studies presented in Section 3
illustrate the two different types of analyses. Existing
analytical methods determines if or not the temporal

behavior of a system is safe, given that the analytical model
is correct, e.g. that the estimates of the wcet of the
components are safe [4][3][8]. Such a method, however,
tends to over-constrain the system as the worst-case always
is considered. In Figure 3 are a system’s temporal behavior
depicted as sets. An analytical approach is pessimistic but
safe, and simulation is realistic but not necessarily safe.
Analytical models and analyses found in conventional
scheduling theories are often too simple and therefore a real
system cannot always be modeled and analyzed using such
methods. Simulation is better from that point of view. By
simulating the system with realistic distributions of the
execution times, we can demonstrate that the system is
correct. A disadvantage is that given the same correct
analytical model, we cannot be confidant of finding the
worst possible temporal behavior through simulation.

 Analytical
temporal
behavior

Real
temporal
behavior

Simulated
temporal
behavior

Figure 3 The confidence in analytical system
analysis vs. simulation-based analysis

Yet another reason for using simulation is that the
temporal correctness of some systems can be expressed in
criterion different from meeting deadlines as proposed by
traditional real-time analyses. An example of such criteria
is non-empty message queues as discussed in Section 3. If
the message queue never becomes empty, the system is
considered temporally correct. The analytical approach as
well as the simulation approach will be further discussed in
conjunction with the two case studies.

3. Case studies

3.1 A Robotic control system
We have investigated a robotic control system at ABB

Robotics initially designed in the beginning of the 90’s. In
essence, the controller is object-oriented and consists of
approximately 2 500 000 LOC divided on 400-500
components organized in 15 subsystems. The system
contains three closely connected nodes, a main node that
generates the path to follow, the axis node, which controls
each axis of the robot, and finally the I/O node, which
interacts with external sensors and actuators. In this work
we have studied a critical part in the main node with respect
to control. Maintaining such a complex system requires
careful analyses to be performed prior to adding new
features or redesigning parts of the system to not introduce

unnecessary complexity and thereby increasing both the
development and maintenance cost.

The robot control system investigated was not initially
designed primarily to support temporal analysis; the focus
was instead on a flexible, open and extendible architecture.
For example, the system was designed to support easy
porting to new HW-architectures and to be open to permit
customers to add advance functionality. The temporal
behavior of the system could, however, be predicted
because of its simple structure. As the system evolved,
more and more functionality was added and when a new
feature is added to the system today, the temporal behavior
is very difficult to predict. This depends not only on the
system complexity itself but also on the fact that many of
the engineers involved in the development of the system
have continued their careers elsewhere and their knowledge
is no longer available.

In studying the existing system we can identify a
component view and the current implementation. In
addition, the component view has no analytical model. We
must therefore construct an analytical model by taking the
re-engineering approach.

Several existing task models were considered but none
satisfied the requirements we stipulated. For instance,
traditional fixed priority analysis assumes static execution
times for each task in the system [3]. In our case this
assumption is too pessimistic. Furthermore, the RTOS
VxWorks provides support for priorities on messages,
which no existing analysis method supports, and therefore
an analytical approach is inadequate. Some of the
components analyzed have large variations in their
execution time, and always assuming the worst possible
case would give an over-utilization of the resources.
Moreover, as opposed to traditional analytical models
where the correctness criteria is defined in terms of meeting
deadlines we also had to consider correctness criteria such
as a specific message queue not being allowed to be empty.

We also studied different simulation tools such as
STRESS [2], and DRTSS [15] but could use none of these
because none of them provide support for execution time
expressed as distributions. They, particularly STRESS,
have however influenced our modeling language. The
analysis we use is based on simulation since no analytical
method, available today, can solve our problems.

When the modeling language was developed we created a
model of the controller that was populated with execution
times from measurements from a running system. The
system we took measurements was considered temporal
correct.

As mentioned above, there were wide variations in
execution times for some components. The variations in
execution times/response times are due to specific
dependencies between components. Identifying those
semantic relations and introducing them into the analytical
model gave a more accurate model. Known dependencies
between components reduce the amount of simulation

necessary, i.e. the state space could be reduced.
When applying simulation techniques it is always

important to decide carefully how long the system is to be
simulated. Existing real-time theory often assumes cycle-
times equal to a system’s least common multiple (LCM) of
the tasks period times. The basic idea is that the system
reaches the same state after an LCM execution. To take
aperiodic tasks and interrupts into consideration, we must
run the LCM several times with different scenarios from
aperiodic tasks. However, in this case, a ”system cycle” is
defined by the robot application and how long time it takes
before a robot repeats the same movement again. Typical
cycle times for a robot application are in the range from a
few seconds to a couple of minutes. The cycle times varies
between robot products and between robot applications.

The temporal behavior of a specific robot is dependent on
the programmed behavior and the specific application type,
e.g. arc welding, spot welding. To be able to build realistic
models we have measured data for different types of
application programs for arc welding but the plan also
includes measurement of data for spot-welding and
assembly applications.

The execution times were measured in order to determine
their distributions. Moreover, the response times and
message queue sizes was measured in order to validate our
models and simulations. The measurement was obtained by
recording required data at every task-switch through
software probes in the source code. A tool was developed
that extract information regarding execution times reported
by the software probe and to calculate the execution time
distributions accordingly [1].

3.1.1. Analytical task model. A language designated ART-
ML (Architecture and Real-Time behavior Modeling
Language) was developed to specify an analytical model
[1]. The proposed analytical model supports multiple
processors, inter-process communication, synchronization
and fixed priority scheduling. Furthermore, the modeling
language supports several different ways of activating
components. Periodic and aperiodic terminating tasks can
be described, as well as non-terminating tasks. It is possible
to set a task to explicitly to be activated by an incoming
message, and it is possible to assign a task a probability of
activation. Such a task is activated by a certain probability
every x’th time-unit in the simulation. A component’s
behavior can be modeled on various levels of abstraction
from resource utilization to execution time distributions.

The construction of specific interest in ART-ML is
chance-statement and execute-statement. The chance-
statement functions in the same way as an if-statement, but
instead of evaluating an expression, it can define the
probability of executing a specific statement and thus
adding the ability of modeling stochastic behaviors of a
component. For instance, it is possible to specify that there
is a 19% chance of sending a message:

chance(19)
send(mbox1, msg)

The execute-statement consumes time in accordance with

a distribution specified as one or more pairs of probability
and execution time. In the example below, the execute
statement will execute 10 time units with the probability of
19 % and 56 time units with the probability of 81 %:
execute((19,10), (81, 56));

The execute-statement is the only instruction which
affects the simulation clock. It sets the clock to the time of
the next event and thereby advances the simulation.

A rough model of a typical component in a control
system can be constructed from three statements. First a
“receive” that waits for a message, next one or several
“execute” that consumes time and finally, a “send”
statement that sends some data to another mailbox. An
example of a specification of an analytical model can be
studied in example 1. We can see that a component has one
part for static attributes such as task type, priority and
deadline, and behavioral part for specifying the temporal
behavior of the task. This specification can be run in the
simulator for specified time and a log of vital events with
respect to execution and, for example, message queue sizes,
is created.

Example 1: Specification of a toy system.
system

processor MC
mailbox mbox1 20;

task tt_task_1
trigger period 3000
priority 0
deadline 3000

behaviour
execute((50,200),(50,250));
send(mbox1,2);

task mailbox_task
trigger startup
priority 5
deadline 10000

behaviour
variable incoming;

while(1)
execute ((100,70));
recv(incoming, mbox1);
execute ((50,1120),(50,1250));

endproc
endsys

The simulator is based on a discrete-event approach. The

ART-ML model is compiled into an assembly language
that executes on a virtual machine. A scheduler that is part
of the simulator controls the execution of tasks. All events
generated are logged. An event contains the event type, an
identification of the component that generated the event
and a time stamp. All statistical processing is performed
off-line. For more information concerning the simulator
and off-line tool see [1].

3.1.2. The robot model. We have modeled some critical
components for the concrete robot system in the main node
(see Figure 5). The main node generates the motor
references and brake signals required by the axis computer.
The axis node sends requests to the main node every 4’th
millisecond and expects a reply in the form of motor
references. This depends on three components: A, B and C.
The tasks of two of these components, B and C have high
priority, are periodic, and runs frequently. A executes
mostly in the beginning of each robot movement and has
lower priority. The final processing of the motor references
is performed by C. C sends the references to the axis node.
Moreover, C is dependent on data produced by B. If the
queue between them becomes empty, C cannot deliver any
references to the axis node. This state is considered as a
critical system state and the robot halts. Component A
sends data to B when a movement of the robot is requested.
If the queue between A and B gets empty, the robot
movement stops. In this state, B sends default references to
C. The complete model is shown in [1]. All comments have
been removed and variable names have been changed for
business secrecy reasons. The model is not complete with
respect to all components in the system. All components,
other than A, B and C, have been grouped into two dummy
tasks. One of the two dummy tasks has higher priority than
A, and the other has lower priority than A. This is one way
in which we can utilize different level of abstractions in our
model. c

A task B task C task

Axis
Computer Queue Queue 2 Queue 1 Queue 3

Motor
references

τanalytic

ET(MC)

Figure 4 The task structure of the critical control
part of the system

3.1.3. Simulation results. Considering the coarseness of
the model of the system, the results are really promising.
We have measured a system and, based on these
measurements, built an analytical model on a much higher
level of abstraction. We have compressed approximately 2
500 000 lines of code into two pages. While studying the
system we observed that customization of each individual
had great influence on temporal behavior of the system.
The execution times and cycle-times, i.e. the time it takes
for a robot to complete its task once, were particularly
subject to variations.

The validity of the model we built and ran in our
simulator was verified by comparing the output from the
simulator with response times measured on the real system.
The graphs in Figure 6 show the response time distribution
both measured (Figure 6.a), and simulated (Figure 6.b) for
a critical task in the system. We can see that the correlation

is quite close since there is two bands of response times,
one approximately 12 ms and one approximately 1 ms. The
real code, however, gives more variations in the response
time, this being quite natural since we cannot capture all
details of the code in the model. In particular, implicit
dependencies between components in the system are not
described in the model. Since the model will be refined
during its lifetime, we expect a continuous improvement of
the model as the system evolves. Several simulation and
measurement results can be found in [1].

We can analyze, on the basis of this model, the
consequences of adding a new feature to the controller or
analyzing the effect of a redesign with respect to the critical
control part. For example, assuming that we add one more
component to the system, we can check how response times
of the existing components are affected by the new
component and, by using an automated tool, can present the
results of the analysis to the designer in various
representations such as graphs or average response times.
This is related to the sensitivity analysis provided by e.g.
Punnekkat et.al [PUN97], Yerrabali et.al[18], and Vestal
[16] for fixed priority scheduling. These try to analyze the
effects of an increase in the worst-case execution time on
the schedulability. These techniques, however, are
developed for systems on which it is possible to perform
static analysis. Preliminary tests indicate that our approach
is useful and adequate [1].

3.2 A construction equipment vehicle control
system

The Volvo Construction Equipment AB (VCE) case study
is an on-vehicle control system for heavy construction
equipment. A construction equipment vehicle is equipped
with a distributed computer system which controls and
monitors gearbox, engine, brakes, hydraulics, etc. The
systems are installed in volume products and the resources
provided are therefore often limited. Typically, the system
and its features have stringent requirements with respect to
safety, reliability, and temporal behavior.

VCE has introduced an architecture which includes an
analytical model for improved management of temporal
behavior in development and in maintenance. The objective
of the model and method introduced is to support the
development of a high level design, including specification
of properties such as temporal constraints, communication
and synchronization. The model and method also support
formal verification of these properties, early system
integration, and permit regression testing.

As opposed to the Robotics case, the VCE case includes
an analytical model as an integrated part of the
development effort. Specifically, the temporal behavior of
the system is addressed in the analytical model.
Specification of high-level properties is an integrated
activity in constructing the system and formal verification
is automated in the build process. This is done to ensure
that the analytical model is kept updated and that there is no

discrepancy between design and implementation. Hence,
the system is constructed largely using the constructive
approach i.e. the system is constructed and maintained via
the analytical model

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

Series1

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

Series1

Figure 5 a) Simulated response times b)
meassured response times

System features are obtained as sets of software

components that together implement the feature. In the
VCE case, the component is specified through its data
interfaces, and the encapsulated functionality. It specifies
no temporal behavior except for the execution time
inherited from the function it encapsulates. A component
instance defines the task that controls the execution of the
component in addition to its configuration of
communication, synchronization, and temporal behavior.
VCE uses the Rubus RTOS which supports hard- and soft
real-time tasks [12]. A tool named Configuration Compiler
(CC), supports formal verification of the requirements.

The requirements are specified with a design language
which supports the communication, synchronization, and
temporal constructs described earlier. The formally
described design can be checked for temporal correctness
by using CC even if no actual implementation has been
produced. The CC maps the design description to a
resource structure. The CC is a pre-run-time scheduler
which generates dispatch tables for running the tasks and
the communication infrastructure for the system. This
constitutes an application skeleton for the running and
communication of the components. In addition to the
mapping of the model, CC also supports specification of
architecture-specific attributes such as HW-performance,
resolution of the run-time dispatcher, communication times,
and the number of nested preemptions permitted. The

implementation of the CC is based on a heuristic tree
search strategy, similar to the one presented in [11]. The
major difference is that this scheduler takes into account
interrupts, preemption and architecture-specific attributes
[13]. Soft real-time tasks are scheduled on-line and use the
processor’s spare capacity to execute.

3.2.1. Analytical model. In this section we describe the
VCE analytical model and how the levels of abstraction
introduced in Section 2 relate to VCE system development
and maintenance. In VCE, the electronic system
requirements are described in terms of abstract functions
with no notion of hardware. When designing a new system,
hardware is developed to achieve a high utilization given
the system features. This process is based on experience
from similar systems and therefore, in an early phase of a
development project including a new hardware, the
utilization estimates are approximate at best. The more
frequent case, however, is to expand or change an existing
system. In this case, the hardware has been chosen, and the
CPU utilization is known through the analytical model.

 Configuration
Specification

HW Resource
Specification

Configuration
Compiler

RUBUS
Schedule

Figure 6 Verifying temporal requirements

In the development of volume VCE products, the
utilization and estimates of resources are kept low to keep
product cost down. There can be some slack to
accommodate product variations, but generally very little
slack for future features. Instead, when new features are
wanted, the decision will be either to improve node
hardware with more resources or to add another node to the
system.

When a feature is added to the existing system, the model
provides CPU utilization and estimations can be made on
the new features resource utilization. Normally, these
estimations can be sufficient to predict whether or not a
redesign of the hardware is needed. An indirect benefit
from the model is that stakeholders are provided with an
estimate of whether or not the feature can be introduced on
existing hardware. Decisions related to resource slack to
accommodate product variation are also considered. VCE
products are often developed to support configurable
functionality. This could mean that some configurations use
less resource than others and this is of course not optimal
with respect to hardware cost (and thereby also product
cost). Reuse of functionality and hardware in different
products could lead to less than optimum resource usage.

Business trade-offs must be made on product cost vs.
development cost, and time-to-market issues. The
analytical model provides utilization figures that help in
this process.

Moving down to the component view, the feature is
broken down to components. The analytical model is
populated with components and their temporal
requirements.

Consider adding a fuel level feature to an existing system.
Components to implement the feature could be a sampler, a
filter, and two actuator components. Temporal-,
communication-, and synchronization requirements are
input to the model. The VCE method involves estimating
wcet for components that are not yet implemented.
Estimates are based on experience from earlier systems and
this has proven to work well. The system can then be
analyzed for temporal correctness before the actual
implementation. Existing components do already have their
temporal requirements in the model. The analytical model
provides automatic feasibility testing of the complete set of
components. If the added components and their temporal
requirements require an excessive usage of resources, the
model will show the system to be unfeasible. The
requirements can then be re-negotiated or resources can be
added to the system. It is important in this connection that
the temporal properties are formally verified before
implementation. When all features have been broken down
to components and the temporal properties have been
negotiated and proved feasible by the model, the
components can be implemented. Note the separation of
high-level system properties from actual implementation.
The estimated wcet:s are used as requirements for the
implementation. The component must not exceed its time-
budget when implemented. Given that the time-budgets are
not violated during implementation, the system will fulfill
its temporal requirements. If the time-budget for a
component proves to be difficult to achieve, adjustments
must be made in the component view of the model.

In order to verify that the wcet:s do not exceed the
estimated time budgets, the wcet:s are measured during the
testing phase. The measurements are used to fine-tune the
time budgets in the model so components have an equal
margin between the actual wcet and the time-budget.

Components communicate through communication ports
which are defined by configuration language constructs.
This make allowance for separation of communication from
the implementation code.

Example 2 – High-level specification language
PORT aPortType {
CTYPE = "yyy";
TYPE = COMPLEX or SCALAR;
SIZE = number of bytes;
USAGE = CONSTANT or SIGNAL;
}

Filter

Display

Sampler

Lamp

Figure 7 Fuel meter components

A component specifies the general structure of the
software components. It is general in the sense that it is not
yet instantiated in a real environment. For instance, if a
particular period time is required in every instance of a
component, this is specified in the component description.
The reason for that could be related to control performance.
Otherwise, each instance of a component is assigned its
own task, i.e. its own temporal behavior. The execution
time is related to the encapsulated function. Hence, it is
always specified in the general component description.
// Definition of a Component
COMPONENT BrakeWarning {

aPortType OilLevel;
AnotherPortType Warning;

OilLevel.DIRECTION = IN;
Warning.DIRECTION = OUT;

ENTRY = aCfunction;
EXECUTIONTIME = 200;
PREEMPTION = DISABLED; }

The task definition specifies the run time instantiation of
the component. The Component can be instantiated in
several places in a system or in different systems. The task
definition defines the run time specifics, like release time,
and how a components communication ports are connected
to other components in its environment.
//Definition of a Task -.
TASK Brakewarning {

aPortType OilLevel;
AnotherPortType Warning;

Warning = "WARNING_NO";

Warning.DIRECTION = OUT;
OilLevel.DIRECTION = IN;

PERIODTIME = 100000;
RELEASETIME = 30000;
DEADLINE = 100000;

AnotherTask:::outputSignal->
BrakeWarning::OilLevel;

BrakeWarning::Warning->
AthirdTask::inputSignal;}

3.2.2. Benefits and limitations. The model used allows for
specification of temporal requirements such as deadline,
period time, wcet, as well as synchronization-, and
communication- behavior. Execution time budgets are
estimated and the system is tested for temporal correctness
before implementation. A tool is used to verify the
temporal correctness given the specified temporal
properties and temporal requirements of each component
(cmp. τanalytic in definition 2). If therefore, the system is

temporal correct, the temporal requirements will hold
during run-time. Temporally, the system is thus proved-by
construction given that the execution-time estimates are
valid. This means that almost no resource slack is needed in
terms of CPU.

One positive effect of using this model and method
observed by VCE is the infrequence of timing problems
and the ease with which such are solved. The model
ensures effective control of system’s temporal behavior and
of resource usage. This indirectly helps in predicting both
project time consumption and provides a basis for
communication with stakeholders. The analytical model
provides updated measurements on CPU utilization
resulting from changes in a system during its service life.

4. Reflections from the case studies
In this paper we have studied two industrial control

systems which were originally designed with different
objectives. The robot controller was designed to be open,
flexible and easy to port and the Volvo system was
designed to be easy to develop, maintain, port and formally
analyzable.

c

The price Volvo had to pay when requiring an analyzable
system is that it is difficult to add software that do not
completely conform with the existing architecture.
However, this may also be a benefit since resistance in the
architecture itself will ensure that the initial design
objectives implemented in the architecture is kept intact. In
the robotics case the architecture is much easier to violate
since only architectural guidelines exists. Moreover, there
is no tool that checks that the architectural guidelines are
followed.

ET(ndoe)

The Volvo system inherently supports temporal analysis
and a structured way to do impact analysis. Furthermore,
since it is required when generating the system, the
analytical model is guaranteed to always be consistent with
the system. It is impossible to add functionality without
also changing the model.

In the robotics case, we encountered classical problems
such as discrepancy between the design documents and the
implementation. The only true document we have for the
system is the source code. Creating an analytical model as
we did was quite a cumbersome task but the results we
achieved, in addition to a model which describes the system
in two pages, included a considerable increase in the
knowledge of the system due to the re-engineering activity.
The analytical model we developed is quit coarse in
comparison with the precise Volvo model. Although the
analytical model of the robot system can be used for impact
analysis, it cannot be used for proving the temporal
correctness of the system. However, by constructing a
temporal analytical model of the complete system we can,
with the assumptions discussed in Section 2.2, deem
whether the system is correct or not from a temporal point
of view. Note that the re-engineering approach is a
continuous activity. To use this approach successfully the

analytical model must be maintained during the life cycle
of the system.

From the perspective of temporal analyses, the Volvo
approach is superior but from the flexibility point of view
the Robotics approach has advantages. We can conclude
that there exist a fundamental tradeoff between
analyzability and flexibility. The more open and flexible
the system is, the less analyzable it becomes and vice versa.

As the architectural requirements differ we cannot say
that either of the approaches, i.e. analytical models by
construction or analytical models by re-engineering, is
preferable. We can only conclude that both approaches are
valid for different type of systems. Nor, as it depends on
several parameters such as the correctness criterion, and the
system’s characteristics in terms of its temporal behavior, is
the question of using analytical methods versus simulations
easily answered.

5. Conclusions
In this paper we have proposed an analytical model

suitable for large and complex real-time systems, which
was utilized for impact analysis on the temporal behavior.
According to the proposed model, a real-time system can
be described in three different level of abstraction: the
requirement view, the component view, and the
implementation view. The appropriateness of the proposed
methods has been validated by two different case studies.
As a result of these case studies we found that the model
can be populated and maintained using two different
approaches - either it is built by construction or by re-
engineering. The result from the case studies is that the
method is indeed applicable to large real-world systems.

We have also proposed two different approaches to
analysis of temporal behavior and for impact analysis,
analytical methods and simulation. Also when it comes to
analysis method we cannot claim that any method is
preferable. Suitability depends on several parameters such
as the information available in the analytical model, the
correctness criteria, and the system characteristics in terms
of its temporal behavior. The two case studies demonstrates
quite clearly that the fundamental architectural
requirements will influence the choice of which approach
to use for constructing an analytical model as well as what
analytical method to use.

Future work includes continuing the construction of the
analytical model for the robotic control system. The
analytical temporal model of the robotic system made as
part of this case study is by no means complete. Moreover,
we will extend ART-ML to encompass also complete
product lines. Finally, the proposed methodology should be
integrated into a development process.

6. References
[1] J. Andersson and J. Neander. Timing analysis of a robot
controller. Master thesis at Mälardalen University August 2002.
[2] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings.

STRESS: A Simulator for Hard Real-Time Systems. Software-
Practive and Experience, 24(6):534,564, 1994.
[3] N. C. Audsley and A. Burns and R. I. Davis and K. W. Tindell
and and A. J. Wellings, Fixed priority pre-emptive scheduling: An
historical perspective,Real-Time Systems Journal, vol 8, no 2/3,
1995
[4] G. C. Buttazzo, Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications, Kluwer
Academic Publisher, ISBN 0-7923-9994-3, 1997
[5] A. Cimitile, A.R. Fasolino, and G. Visaggio, A Software
Model for Impact Analysis: a Validation Experiment, In
Proceedings of 6th Working Conference on Reverse Engineering,
Atlanta, USA, 1999
[6] S. A.Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau,
Packaging Predictable Assembly with Prediction-Enabled
Component Technology, report Technical report CMU/SEI-2001-
TR-024 ESC-TR-2001-024, 2001.
[7] J. Li, and P.H. Feiler, Impact Analysis in Real-time Control
Systems, In Proceedings of IEEE International Conference on
Software Maintenance, Oxford, UK, 1999
[8] C. L. Liu and J. W. Layland, Scheduling Algorithms for
Multiprogramming in hard-real-time environment, JACM, vol 20,
no 1, pp 46--61, 1973
[9] M. Lindgren, H. Hansson, C. Norström, and S. Punnekkat.
Deriving Reliability Estimates of Distributed Real-Time Systems.
In Proceedings of IEEE Real-Time Computing Systems and
Applications. Cheju Island, South Korea, 2000.
[10] S. Punnekkat, R. Davis, and A. Burns.
Sensitivity Analysis of Real-Time Task Sets. Asian Computing
Science Conference, Kahlmandu December 1997.
[11] K. Ramamritham. Allocation and Scheduling of Complex
Periodic Tasks. In 10th Int. Conf. on Distributed Computing
Systems, pages 108-115, 1990.
[12] Articus Systems, Rubus OS - Reference Manual, Stockholm,
Sweden 2002
[13] K. Sandström, C. Eriksson and G. Fohler. Handling
Interrupts with Static Scheduling in an Automotive Vehicle
Control System. In the 5th Int. Conf, on Real-Time Computing
Systems and Applications, Hiroshima, Japan 1998.
[14] H. M. Sneed, Impact Analysis of Maintenance Tasks for a
Distributed Object-Oriented System, In Proceedings of IEEE Int.
Conf. on Software Maintenance, Florence, Italy, 2001
[15] M.F. Storch and J.W. - S. Liu. DRTSS: a simulation
framework for complex real-time systems. In Proceedings of the
2nd IEEE Real-Time Technology and Applications symposium
(RTAS ’96). Dept. of Comput. Sci., Illinois Univ., Urbana, IL,
USA, 1996.
[16] S. Vestal. Fixed Priority Sensitivity Analysis for
Linear Compute Time Models. IEEE Transaction on Software
Engineering, April 1994.
[17] A. Wall, and C. Norström, A Component Model for
Embedded Real-Time Software product-Lines, In Proceedings of
4th IFAC conference on Fieldbus Systems and their Applications,
Nancy, France, 2001.
[18] R.Yerraballi et.al. Issues in Schedulability
Analysis of Real-Time Systems. Proceedings of Seventh
Euromicro Workshop on Real-Time Systems, June 1995.

