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Abstract 
To predict the temporal impact of adding new 

functionality to large and complex real-time systems 
becomes more difficult the older the system gets. In this 
paper we describe the concept of analytical models and 
how we can use the analytical model for predicting the 
temporal impact of adding new or changing existing 
functions. We define tree levels of abstractions in the 
analytical model, requirements, components, and 
implementation. The concept has been applied on two large 
and complex industrial embedded real-time systems: a 
robot control system and a vehicle control system. The case 
studies unveil two different approaches to the construction, 
and maintenance of the analytical model of a system, “by 
construction” or “by re-engineering”. Moreover, we show 
that both static analytical methods and simulation-based 
methods are applicable when analyzing a real-time system. 
It is the characteristics of the system and the correctness 
criterion that determines the most appropriate method.  

1. Introduction 
Large and complex computer systems usually have long 

lifetime and history. Thus, they are exposed to many 
changes found necessary during maintenance and due to the 
introduction of new features. Further, software in general 
has a longer lifetime than the hardware (HW), and thus the 
software will during its lifetime run on different HW 
platforms and different operating systems. Predicting the 
impact on the system behavior that new features will 
impose becomes increasingly difficult as the complexity of 
the system grows. This does not only depend on the pure 
system complexity, it also depends on the fact that many 
engineers have been involved in the development of the 
system and many of these persons may have continued their 
careers. Newly employed engineer may have great 
difficulties to understand a certain function in the system 
without a proper system model. The software itself 
provides poor support for such analyses of a system. 
Consequently, additional models of the system must be 
constructed that provides the information necessary for 
analyzing and predicting a system’s behavior. As our focus 
is concerned with real-time systems, we are interested in 
the system’s temporal behavior, i.e. is the system temporal 
correct. A real-time system is considered temporal correct 
if all its temporal requirements are fulfilled, e.g. deadlines, 
latency. We refer to a system model that provides 

information to make temporal analysis feasible as an 
analytical model.  

The introduction of an analytical model of a system 
permits early predictions when adding new features or 
changing existing features in the system. The earlier the 
analysis is performed the more coarse-grained is the result. 
Nevertheless, early predictions are essential as they indicate 
whether the development is going in the right direction. 
Discovering that the system’s behavior is incorrect in a late 
phase of the development is often very costly. It is 
important to continuously analyze the system as more 
information emerges when moving towards the 
implementation. We propose an analytical model consisting 
of three different levels of abstractions, the requirements 
view, the component view, and the implementation view. 
Naturally, we have more detailed information about an 
existing implementation than a new feature that shall be 
implemented and integrated in the system. Thus, different 
level of abstractions is necessary. The contents of our 
analytical model are primarily suitable for real-time 
systems, i.e. the model is concerned with temporal behavior 
and resource utilization.  

As the system evolves, it is important that also the 
analytical model is updated to accurately reflect the system. 
The method outlined in this paper suggests a continuous 
maintenance of the analytical model as well as 
continuously feeding information back from the 
implementation view, via the component view, to the 
feature view. This will ensure a consistent high-level 
description of the systems architecture. 

In this paper we describe the concept of analytical models 
and how we can use the analytical model for predicting the 
impact of adding new or changing existing features. The 
concept has been applied on two large and complex 
industrial embedded real-time systems, a vehicle control 
system for large construction equipments at Volvo 
Construction Equipment in Sweden and a robot control 
system at ABB Robotics also in Sweden. The case studies 
unveil two different approaches to the construction, 
maintenance and analysis of the analytical model of the 
system. We refer the two different approaches to 
constructing an analytical model as “by construction” or 
“by re-engineering”. If a system is constructed and 
maintained on the basis of the analytical system model, we 
say that the model is constructed by construction, this being 
the case for the Volvo system. In the constructive approach, 

 



the model is a product of the development effort. On the 
other hand, if the models are constructed and populated by 
measuring an already existing implementation, it is 
constructed by re-engineering, this being the case with the 
Robotics system. We will elaborate further on the pros and 
cons of the different approaches in the following. 

The two systems do not only differ in terms of how their 
analytical models are constructed. The correctness criteria 
and, consequently, the methods for analyzing the systems 
also vary. Traditional real-time analyses have a strong 
focus on explicit stated temporal requirements. In other 
systems, the temporal requirements are implicit defined, 
such as a specific message queue is never allowed to be 
empty which is the case in the robotic system we have 
studied.  

In [7], impact analysis on real-time control systems is 
presented. Their approach analyzes the impact of changing 
a software component with respect to its input/output data 
ranges. The result from such an analysis is a set of affected 
components in the system. Li et. al. also propose a system 
model based on different level of abstractions. Other has 
also proposed methods for impact analysis [14][5]. 
However, these not consider impact on temporal behavior. 
The notion of analytical- and constructive models was 
introduced in [6]. They utilize analytical interfaces on 
components for predicting properties of component 
assemblies. There is only one level of abstraction in their 
model, which thus corresponds with our component view. 

The contribution of our paper with respect to related work 
is a more expressive temporal model and methods for 
analyzing the temporal impact of adding new functionality 
to a system. We have demonstrated our methods in two 
large and complex real-time systems with satisfactory 
results. From the traditional real-time theories point of view 
we also contribute with results from modeling a system not 
built for explicit temporal analysis, including a modeling 
language and an analysis tool.  

The outline of this paper is as follows: Section 2 
discusses analytical models and defines the architectural 
views formally. Moreover, different approaches to 
analyzing a system based on an analytical model are 
presented. Section 3 presents the two case studies. In 
Section 4 are the results from the case studies compared. 
Finally, Section 5 concludes the paper. 

2. Analytical models 
In this section we describe the concept of analytical 

models and present a brief discussion concerning system 
analysis using those analytical models. A software 
architecture consists of a constructive model and an 
analytical model. The constructive model describes how 
components are interconnected through their constructive 
interfaces, i.e. control-, and data flow whereas the 
analytical model provides information required for 
analyzing certain properties of an architecture. For instance, 
in order to verify the temporal correctness of a real-time 

system with periodic tasks, the frequency, and the worst-
case execution time (wcet), of the services are required in 
the analytical model.  

2.1 Architectural views 
We divide the system model into three different levels of 

abstractions: the requirements, the component view, and the 
implementation view. Each of the different views provides 
means for analyses and verification. Analyses are 
performed on an intra-view basis only, i.e. information 
from two different views is never utilized in the same 
analysis. Consequently, analyses performed based on 
information from the component view are more coarse-
grained than on the implementation level of abstraction. 
However, verification of the implementation will 
eventually be verified with respect to the requirements. 
Thus, verifying that the correct system, i.e. according to the 
requirements, has been implemented is done based on 
information from the implementation view and the 
requirements view.  

In Figure 1 is the different views depicted along with a 
workflow and brief descriptions of the activities performed 
in the process. Note that the evolutionary development may 
add new resources and new features may share components 
with other already existing features. 

Initial system 
requirements Add feature nSet of features Fs

and their temporal 
requirements

Set of components 
Cs implementing Fs
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Figure 1 The different level of abstractions in the 
analytical model 

Ideally, system construction starts at the requirement 
level of abstractions. The requirements are represented as a 
set of features. Each feature represents functional- as well 
as non-functional requirements. Hence, a feature defines a 
function’s explicit- and implicit temporal requirements. An 
explicit temporal requirement is a clearly expressed 
requirement such as an end-to-end deadline. An implicit 
temporal requirement is derived from, e.g. a functional 
requirement or the controlled environment as for example 
an accuracy requirement for a robot must be translated to 
timing requirements for the involved services and thus the 
accuracy requirement is an implicit timing requirement.  

As the requirements have been identified, the component 
view can be populated. Finally the system will be 
implemented; hence the implementation view is populated. 

 



Until the implementation exists, all models are based on 
estimates, even though these estimates are based on 
experiences from other similar systems.  

As the systems we have been studying are large and 
complex, they exhibit long service lives. Consequently, the 
cost of the initial development only contributes with a small 
fraction of the total cost. Maintenance is by far the major 
part of the cost as we include in maintenance such activities 
as error corrections, improving existing features, as well as 
implementing completely new features. Thus, the models 
proposed in this paper will also be utilized when evidence 
from an existing system already exists. The models are kept 
consistent with the implementation through feedback from 
testing and measuring the system.  

In order to formalize the component view and the 
implementation view we first define a system. Our view of 
a system is depicted in Figure 2. The system formalization 
described is based on the result from studying two different 
existing systems. Hence, the definitions provide 
abstractions that are suitable for describing and comparing 
these systems. Basically, we say that a system consists of 
interconnected nodes.  

A node n is a tuple 〈cpu, ms, md, mp, F, I/O〉, where  
• cpu is the computational resource of the node,  
• ms is the static non-volatile memory,  
• md is the dynamic memory,  
• mp is the persistent memory,  
• F is the set of features whose components C(F) is 

partially or completely allocated to the node n. 
Moreover, feature f ∈  F is a function as experienced 
by system users, and it collects the functional-, and 
non-functional requirements. 

• I/O is a set, possible empty, consisting of I/O-units.   
 
Definition 1. A system S ⊆  Node × Bus, where Node is the 
set of nodes in the system, Bus is the set of communication 
buses in case of a distributed system.    � 
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Figure 2 Our view of a system 

The component view identifies the components in the 
system and their analytical model. We assume a component 
to be an encapsulation of a service implemented in 
software. The encapsulated service can be utilized through 
the components interfaces. For a more exhaustive 
description of our component concept we refer to [17]. An 
essential part of a components analytical model in real-time 

systems is the temporal attributes, e.g. period times. We 
will refer to temporal attributes in the component view as 
the temporal analytical model, which we will hereafter 
refer to as the analytical model. In scheduling theory, such 
an analytical model is referred to as a task model. This 
level of abstraction is suitable for analytical system 
analyses and for simulations of the system. Thus, a 
system’s temporal requirements that initially were 
partitioned into features are implemented and verified in 
the component view. The appearance of the temporal 
analytical model corresponds with that of the real-time 
operating system (RTOS), and communication mechanisms 
in the system infrastructure. As the functional requirements 
are implemented in the chosen programming language, and 
non-functional requirements are implemented in the 
architecture, is the temporal requirements implemented by 
assigning temporal attribute in the task model provided by 
the RTOS. An example of such temporal attributes is 
period time and priorities. Consequently, the temporal 
attributes provided by the infrastructure are also part of the 
implementation view. 
 
Definition 2. The component view of a real-time system is 
a set Cs of tuples 〈c, ET(node), τanalytic, F〉, where c is a 
component which is part of the implementation of the set of 
features F,  ET(node) is the execution time for a component 
given a particular hardware architecture specified by node, 
and τanalytic is the temporal analytical model of the 
component � 

The implementation view consists of the actual 
implementation. Thus, it provides necessary information 
for testing the system, as well as measuring execution times 
and response times.  

When a real-time system is implemented on a particular 
hardware architecture, the model becomes valid for that 
particular instance only. The reason for this is that the 
temporal behavior of the components is affected when the 
hardware architecture is changed. Typically, the execution 
times will be affected. This phenomenon is typical for real-
time systems and is a problem for large and complex 
systems that have a long lifetime. 

As the temporal requirements are implemented through 
the task model provided by the RTOS, we consider it a part 
of the implementation view. However, task models in the 
RTOS may differ from the temporal analytical model. For 
instance, a task model in a RTOS may include priorities, 
period times, references to entry function, error handling, 
etc, while the analytical model may have deadlines, period 
times, etc.  
 
Definition 3. The implementation view of a real-time 
system is a set Is of tuples 〈imp, ET(node, imp), τinfrastructure, 
c〉, where imp is the implementation of component c in a 
programming language, ET(node, imp) is the execution 
time given a hardware architecture node,  and the 
implementation, imp, on that hardware, τinfrastructure is the 

 



task model provided by the RTOS, and c is the component 
implemented by imp. � 

The mapping of components onto features and 
implementation onto components are explicitly expressed 
in Definition 2 and Definition 3. The inverse relationship is 
also valid, i.e. features are implemented by a set of 
components which are implemented in some programming 
language.  

Until the implementation view exists, the model is 
constructed based on estimates and interpretations of the 
system’s requirements. Feedback from the implementation 
view is required in order to make the model, on every level 
of abstraction consistent with the implementation. The data 
that must be measured in the implementation are typically 
execution times of the components.  

So far in this section we have discussed the ideal case of 
system development, i.e. the system is constructed through 
the model. However, if no analytical model exists, the 
model presented in this paper can be populated in a reverse-
engineering manner starting by measuring the existing 
system. The absence of a correct system model could be 
due to, for instance, no model was ever constructed, or the 
initial model was never updated as the system evolved. The 
reverse-engineering activity starts at the bottom of the 
initial iteration depicted in Figure 1. Measured data is used 
for populating the component view and eventually also the 
requirements view.  

Adding new features to the system is equivalent to 
specifying a new system with the distinction that the pre-
existing system imposes restrictions on the new features in 
terms of available system resources. A rough analysis of 
whether the new feature indeed can be added is possible 
based on the existing component view and a decomposition 
of the added feature into components and their analytical 
models. It is also possible to perform such an analysis 
based on estimations of the resource utilization needed of 
the new feature and comparing that with the available 
resource capacity. The more details available, the more 
accurate are the system analyses. The scenario where new 
features are added is one of the main reasons for 
maintaining the model as the system evolves and keep it 
consistent through feedback from the implementation. 

2.2 Analyses based on the analytical model 
The main objective for introducing an analytical model of 

a system is to make possible early analyses of the system’s 
behavior. In this paper we focus on the temporal behavior 
of systems.  

We determine whether or not a system is temporal correct 
on the basis of the analytical model. To be temporal correct 
means that all temporal requirements are indeed fulfilled by 
the system. We will discuss two different approaches to 
analysis of the temporal behavior: the analytical approach 
and simulation. The two case studies presented in Section 3 
illustrate the two different types of analyses. Existing 
analytical methods determines if or not the temporal 

behavior of a system is safe, given that the analytical model 
is correct, e.g. that the estimates of the wcet of the 
components are safe [4][3][8]. Such a method, however, 
tends to over-constrain the system as the worst-case always 
is considered. In Figure 3 are a system’s temporal behavior 
depicted as sets. An analytical approach is pessimistic but 
safe, and simulation is realistic but not necessarily safe. 
Analytical models and analyses found in conventional 
scheduling theories are often too simple and therefore a real 
system cannot always be modeled and analyzed using such 
methods. Simulation is better from that point of view. By 
simulating the system with realistic distributions of the 
execution times, we can demonstrate that the system is 
correct. A disadvantage is that given the same correct 
analytical model, we cannot be confidant of finding the 
worst possible temporal behavior through simulation. 

 Analytical 
temporal 
behavior 

Real 
temporal 
behavior 

Simulated 
temporal 
behavior 

 
Figure 3 The confidence in analytical system 
analysis vs. simulation-based analysis 

Yet another reason for using simulation is that the 
temporal correctness of some systems can be expressed in 
criterion different from meeting deadlines as proposed by 
traditional real-time analyses. An example of such criteria 
is non-empty message queues as discussed in Section 3. If 
the message queue never becomes empty, the system is 
considered temporally correct.  The analytical approach as 
well as the simulation approach will be further discussed in 
conjunction with the two case studies.  

3. Case studies 

3.1 A Robotic control system  
We have investigated a robotic control system at ABB 

Robotics initially designed in the beginning of the 90’s. In 
essence, the controller is object-oriented and consists of 
approximately 2 500 000 LOC divided on 400-500 
components organized in 15 subsystems. The system 
contains three closely connected nodes, a main node that 
generates the path to follow, the axis node, which controls 
each axis of the robot, and finally the I/O node, which 
interacts with external sensors and actuators. In this work 
we have studied a critical part in the main node with respect 
to control. Maintaining such a complex system requires 
careful analyses to be performed prior to adding new 
features or redesigning parts of the system to not introduce 

 



unnecessary complexity and thereby increasing both the 
development and maintenance cost.  

The robot control system investigated was not initially 
designed primarily to support temporal analysis; the focus 
was instead on a flexible, open and extendible architecture. 
For example, the system was designed to support easy 
porting to new HW-architectures and to be open to permit 
customers to add advance functionality. The temporal 
behavior of the system could, however, be predicted 
because of its simple structure. As the system evolved, 
more and more functionality was added and when a new 
feature is added to the system today, the temporal behavior 
is very difficult to predict. This depends not only on the 
system complexity itself but also on the fact that many of 
the engineers involved in the development of the system 
have continued their careers elsewhere and their knowledge 
is no longer available.  

In studying the existing system we can identify a 
component view and the current implementation. In 
addition, the component view has no analytical model. We 
must therefore construct an analytical model by taking the 
re-engineering approach.  

Several existing task models were considered but none 
satisfied the requirements we stipulated. For instance, 
traditional fixed priority analysis assumes static execution 
times for each task in the system [3]. In our case this 
assumption is too pessimistic. Furthermore, the RTOS 
VxWorks provides support for priorities on messages, 
which no existing analysis method supports, and therefore 
an analytical approach is inadequate. Some of the 
components analyzed have large variations in their 
execution time, and always assuming the worst possible 
case would give an over-utilization of the resources. 
Moreover, as opposed to traditional analytical models 
where the correctness criteria is defined in terms of meeting 
deadlines we also had to consider correctness criteria such 
as a specific message queue not being allowed to be empty. 

We also studied different simulation tools such as 
STRESS [2], and DRTSS [15] but could use none of these 
because none of them provide support for execution time 
expressed as distributions. They, particularly STRESS, 
have however influenced our modeling language. The 
analysis we use is based on simulation since no analytical 
method, available today, can solve our problems. 

When the modeling language was developed we created a 
model of the controller that was populated with execution 
times from measurements from a running system. The 
system we took measurements was considered temporal 
correct.  

As mentioned above, there were wide variations in 
execution times for some components. The variations in 
execution times/response times are due to specific 
dependencies between components. Identifying those 
semantic relations and introducing them into the analytical 
model gave a more accurate model. Known dependencies 
between components reduce the amount of simulation 

necessary, i.e. the state space could be reduced. 
When applying simulation techniques it is always 

important to decide carefully how long the system is to be 
simulated. Existing real-time theory often assumes cycle-
times equal to a system’s least common multiple (LCM) of 
the tasks period times. The basic idea is that the system 
reaches the same state after an LCM execution. To take 
aperiodic tasks and interrupts into consideration, we must 
run the LCM several times with different scenarios from 
aperiodic tasks. However, in this case, a ”system cycle” is 
defined by the robot application and how long time it takes 
before a robot repeats the same movement again. Typical 
cycle times for a robot application are in the range from a 
few seconds to a couple of minutes. The cycle times varies 
between robot products and between robot applications.  

The temporal behavior of a specific robot is dependent on 
the programmed behavior and the specific application type, 
e.g. arc welding, spot welding. To be able to build realistic 
models we have measured data for different types of 
application programs for arc welding but the plan also 
includes measurement of data for spot-welding and 
assembly applications.  

The execution times were measured in order to determine 
their distributions. Moreover, the response times and 
message queue sizes was measured in order to validate our 
models and simulations. The measurement was obtained by 
recording required data at every task-switch through 
software probes in the source code. A tool was developed 
that extract information regarding execution times reported 
by the software probe and to calculate the execution time 
distributions accordingly [1].  

 
3.1.1. Analytical task model. A language designated ART-
ML (Architecture and Real-Time behavior Modeling 
Language) was developed to specify an analytical model 
[1]. The proposed analytical model supports multiple 
processors, inter-process communication, synchronization 
and fixed priority scheduling. Furthermore, the modeling 
language supports several different ways of activating 
components. Periodic and aperiodic terminating tasks can 
be described, as well as non-terminating tasks. It is possible 
to set a task to explicitly to be activated by an incoming 
message, and it is possible to assign a task a probability of 
activation. Such a task is activated by a certain probability 
every x’th time-unit in the simulation. A component’s 
behavior can be modeled on various levels of abstraction 
from resource utilization to execution time distributions.  
 

The construction of specific interest in ART-ML is  
chance-statement and execute-statement. The chance-
statement functions in the same way as an if-statement, but 
instead of evaluating an expression, it can define the 
probability of executing a specific statement and thus 
adding the ability of modeling stochastic behaviors of a 
component. For instance, it is possible to specify that there 
is a 19% chance of sending a message: 

 



chance(19)
send(mbox1, msg)

 
The execute-statement consumes time in accordance with 

a distribution specified as one or more pairs of probability 
and execution time. In the example below, the execute 
statement will execute 10 time units with the probability of 
19 % and 56 time units with the probability of 81 %: 
execute((19,10), (81, 56));  

The execute-statement is the only instruction which 
affects the simulation clock. It sets the clock to the time of 
the next event and thereby advances the simulation. 

A rough model of a typical component in a control 
system can be constructed from three statements. First a 
“receive” that waits for a message, next one or several 
“execute” that consumes time and finally, a “send” 
statement that sends some data to another mailbox. An 
example of a specification of an analytical model can be 
studied in example 1. We can see that a component has one 
part for static attributes such as task type, priority and 
deadline, and behavioral part for specifying the temporal 
behavior of the task. This specification can be run in the 
simulator for specified time and a log of vital events with 
respect to execution and, for example, message queue sizes, 
is created. 

 
Example 1: Specification of a toy system. 
system

processor MC
mailbox mbox1 20;

task tt_task_1
trigger period 3000
priority 0
deadline 3000

behaviour
execute( (50,200),(50,250) );
send(mbox1,2);

task mailbox_task
trigger startup
priority 5
deadline 10000

behaviour
variable incoming;

while(1)
execute ((100,70));
recv(incoming, mbox1);
execute ((50,1120),(50,1250));

endproc
endsys

 
The simulator is based on a discrete-event approach. The 

ART-ML model is compiled into an assembly language 
that executes on a virtual machine. A scheduler that is part 
of the simulator controls the execution of tasks. All events 
generated are logged. An event contains the event type, an 
identification of the component that generated the event 
and a time stamp. All statistical processing is performed 
off-line. For more information concerning the simulator 
and off-line tool see [1]. 

 
3.1.2. The robot model. We have modeled some critical 
components for the concrete robot system in the main node 
(see Figure 5). The main node generates the motor 
references and brake signals required by the axis computer. 
The axis node sends requests to the main node every 4’th 
millisecond and expects a reply in the form of motor 
references. This depends on three components: A, B and C. 
The tasks of two of these components, B and C have high 
priority, are periodic, and runs frequently. A executes 
mostly in the beginning of each robot movement and has 
lower priority. The final processing of the motor references 
is performed by C. C sends the references to the axis node. 
Moreover, C is dependent on data produced by B. If the 
queue between them becomes empty, C cannot deliver any 
references to the axis node. This state is considered as a 
critical system state and the robot halts. Component A 
sends data to B when a movement of the robot is requested. 
If the queue between A and B gets empty, the robot 
movement stops. In this state, B sends default references to 
C. The complete model is shown in [1]. All comments have 
been removed and variable names have been changed for 
business secrecy reasons. The model is not complete with 
respect to all components in the system. All components, 
other than A, B and C, have been grouped into two dummy 
tasks. One of the two dummy tasks has higher priority than 
A, and the other has lower priority than A. This is one way 
in which we can utilize different level of abstractions in our 
model.  c 

 

A task B task C task

Axis  
Computer Queue Queue 2 Queue 1 Queue 3 

Motor 
references 

 

τanalytic 

ET(MC) 

Figure 4 The task structure of the critical control 
part of the system 
 
3.1.3. Simulation results. Considering the coarseness of 
the model of the system, the results are really promising. 
We have measured a system and, based on these 
measurements, built an analytical model on a much higher 
level of abstraction. We have compressed approximately 2 
500 000 lines of code into two pages. While studying the 
system we observed that customization of each individual 
had great influence on temporal behavior of the system. 
The execution times and cycle-times, i.e. the time it takes 
for a robot to complete its task once, were particularly 
subject to variations. 

The validity of the model we built and ran in our 
simulator was verified by comparing the output from the 
simulator with response times measured on the real system. 
The graphs in Figure 6 show the response time distribution 
both measured (Figure 6.a), and simulated (Figure 6.b) for 
a critical task in the system. We can see that the correlation 

 



is quite close since there is two bands of response times, 
one approximately 12 ms and one approximately 1 ms. The 
real code, however, gives more variations in the response 
time, this being quite natural since we cannot capture all 
details of the code in the model. In particular, implicit 
dependencies between components in the system are not 
described in the model. Since the model will be refined 
during its lifetime, we expect a continuous improvement of 
the model as the system evolves. Several simulation and 
measurement results can be found in [1].  

We can analyze, on the basis of this model, the 
consequences of adding a new feature to the controller or 
analyzing the effect of a redesign with respect to the critical 
control part. For example, assuming that we add one more 
component to the system, we can check how response times 
of the existing components are affected by the new 
component and, by using an automated tool, can present the 
results of the analysis to the designer in various 
representations such as graphs or average response times. 
This is related to the sensitivity analysis provided by e.g. 
Punnekkat et.al [PUN97], Yerrabali et.al[18], and Vestal 
[16]  for fixed priority scheduling. These try to analyze the 
effects of an increase in the worst-case execution time on 
the schedulability. These techniques, however, are 
developed for systems on which it is possible to perform 
static analysis. Preliminary tests indicate that our approach 
is useful and adequate [1].  

3.2 A construction equipment vehicle control 
system 

The Volvo Construction Equipment AB (VCE) case study 
is an on-vehicle control system for heavy construction 
equipment. A construction equipment vehicle is equipped 
with a distributed computer system which controls and 
monitors gearbox, engine, brakes, hydraulics, etc. The 
systems are installed in volume products and the resources 
provided are therefore often limited. Typically, the system 
and its features have stringent requirements with respect to 
safety, reliability, and temporal behavior.  

VCE has introduced an architecture which includes an 
analytical model for improved management of temporal 
behavior in development and in maintenance. The objective 
of the model and method introduced is to support the 
development of a high level design, including specification 
of properties such as temporal constraints, communication 
and synchronization. The model and method also support 
formal verification of these properties, early system 
integration, and permit regression testing.  

As opposed to the Robotics case, the VCE case includes 
an analytical model as an integrated part of the 
development effort. Specifically, the temporal behavior of 
the system is addressed in the analytical model. 
Specification of high-level properties is an integrated 
activity in constructing the system and formal verification 
is automated in the build process. This is done to ensure 
that the analytical model is kept updated and that there is no 

discrepancy between design and implementation. Hence, 
the system is constructed largely using the constructive 
approach i.e. the system is constructed and maintained via 
the analytical model 
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Figure 5 a) Simulated response times  b) 
meassured response times 

 
System features are obtained as sets of software 

components that together implement the feature. In the 
VCE case, the component is specified through its data 
interfaces, and the encapsulated functionality. It specifies 
no temporal behavior except for the execution time 
inherited from the function it encapsulates. A component 
instance defines the task that controls the execution of the 
component in addition to its configuration of 
communication, synchronization, and temporal behavior. 
VCE uses the Rubus RTOS which supports hard- and soft 
real-time tasks [12]. A tool named Configuration Compiler 
(CC), supports formal verification of the requirements. 

The requirements are specified with a design language 
which supports the communication, synchronization, and 
temporal constructs described earlier. The formally 
described design can be checked for temporal correctness 
by using CC even if no actual implementation has been 
produced. The CC maps the design description to a 
resource structure. The CC is a pre-run-time scheduler 
which generates dispatch tables for running the tasks and 
the communication infrastructure for the system. This 
constitutes an application skeleton for the running and 
communication of the components. In addition to the 
mapping of the model, CC also supports specification of 
architecture-specific attributes such as HW-performance, 
resolution of the run-time dispatcher, communication times, 
and the number of nested preemptions permitted. The 

 



implementation of the CC is based on a heuristic tree 
search strategy, similar to the one presented in [11]. The 
major difference is that this scheduler takes into account 
interrupts, preemption and architecture-specific attributes 
[13]. Soft real-time tasks are scheduled on-line and use the 
processor’s spare capacity to execute. 

 
3.2.1. Analytical model.  In this section we describe the 
VCE analytical model and how the levels of abstraction 
introduced in Section 2 relate to VCE system development 
and maintenance. In VCE, the electronic system 
requirements are described in terms of abstract functions 
with no notion of hardware. When designing a new system, 
hardware is developed to achieve a high utilization given 
the system features. This process is based on experience 
from similar systems and therefore, in an early phase of a 
development project including a new hardware, the 
utilization estimates are approximate at best. The more 
frequent case, however, is to expand or change an existing 
system. In this case, the hardware has been chosen, and the 
CPU utilization is known through the analytical model. 
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Figure 6 Verifying temporal requirements 

In the development of volume VCE products, the 
utilization and estimates of resources are kept low to keep 
product cost down. There can be some slack to 
accommodate product variations, but generally very little 
slack for future features. Instead, when new features are 
wanted, the decision will be either to improve node 
hardware with more resources or to add another node to the 
system.  

When a feature is added to the existing system, the model 
provides CPU utilization and estimations can be made on 
the new features resource utilization. Normally, these 
estimations can be sufficient to predict whether or not a 
redesign of the hardware is needed. An indirect benefit 
from the model is that stakeholders are provided with an 
estimate of whether or not the feature can be introduced on 
existing hardware. Decisions related to resource slack to 
accommodate product variation are also considered. VCE 
products are often developed to support configurable 
functionality. This could mean that some configurations use 
less resource than others and this is of course not optimal 
with respect to hardware cost (and thereby also product 
cost). Reuse of functionality and hardware in different 
products could lead to less than optimum resource usage. 

Business trade-offs must be made on product cost vs. 
development cost, and time-to-market issues. The 
analytical model provides utilization figures that help in 
this process. 

Moving down to the component view, the feature is 
broken down to components. The analytical model is 
populated with components and their temporal 
requirements.   

Consider adding a fuel level feature to an existing system. 
Components to implement the feature could be a sampler, a 
filter, and two actuator components. Temporal-, 
communication-, and synchronization requirements are 
input to the model. The VCE method involves estimating 
wcet for components that are not yet implemented. 
Estimates are based on experience from earlier systems and 
this has proven to work well. The system can then be 
analyzed for temporal correctness before the actual 
implementation. Existing components do already have their 
temporal requirements in the model. The analytical model 
provides automatic feasibility testing of the complete set of 
components. If the added components and their temporal 
requirements require an excessive usage of resources, the 
model will show the system to be unfeasible. The 
requirements can then be re-negotiated or resources can be 
added to the system. It is important in this connection that 
the temporal properties are formally verified before 
implementation. When all features have been broken down 
to components and the temporal properties have been 
negotiated and proved feasible by the model, the 
components can be implemented. Note the separation of 
high-level system properties from actual implementation. 
The estimated wcet:s are used as requirements for the 
implementation. The component must not exceed its time-
budget when implemented. Given that the time-budgets are 
not violated during implementation, the system will fulfill 
its temporal requirements. If the time-budget for a 
component proves to be difficult to achieve, adjustments 
must be made in the component view of the model.  

In order to verify that the wcet:s do not exceed the 
estimated time budgets, the wcet:s are measured during the 
testing phase. The measurements are used to fine-tune the 
time budgets in the model so components have an equal 
margin between the actual wcet and the time-budget.  

Components communicate through communication ports 
which are defined by configuration language constructs. 
This make allowance for separation of communication from 
the implementation code.  

 
Example 2 – High-level specification language
PORT aPortType {
CTYPE = "yyy";
TYPE = COMPLEX or SCALAR;
SIZE = number of bytes;
USAGE = CONSTANT or SIGNAL;
} 
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Figure 7 Fuel meter components

A component specifies the general structure of the 
software components. It is general in the sense that it is not 
yet instantiated in a real environment. For instance, if a 
particular period time is required in every instance of a 
component, this is specified in the component description. 
The reason for that could be related to control performance. 
Otherwise, each instance of a component is assigned its 
own task, i.e. its own temporal behavior. The execution 
time is related to the encapsulated function. Hence, it is 
always specified in the general component description. 
// Definition of a Component
COMPONENT BrakeWarning {

aPortType OilLevel;
AnotherPortType Warning;

OilLevel.DIRECTION = IN;
Warning.DIRECTION = OUT;

ENTRY = aCfunction;
EXECUTIONTIME = 200;
PREEMPTION = DISABLED; }

The task definition specifies the run time instantiation of 
the component. The Component can be instantiated in 
several places in a system or in different systems. The task 
definition defines the run time specifics, like release time, 
and how a components communication ports are connected 
to other components in its environment. 
//Definition of a Task -.
TASK Brakewarning {

aPortType OilLevel;
AnotherPortType Warning;

Warning = "WARNING_NO";

Warning.DIRECTION = OUT;
OilLevel.DIRECTION = IN;

PERIODTIME = 100000;
RELEASETIME = 30000;
DEADLINE = 100000;

AnotherTask:::outputSignal->
BrakeWarning::OilLevel;

BrakeWarning::Warning->
AthirdTask::inputSignal;}

3.2.2. Benefits and limitations. The model used allows for 
specification of temporal requirements such as deadline, 
period time, wcet, as well as synchronization-, and 
communication- behavior. Execution time budgets are 
estimated and the system is tested for temporal correctness 
before implementation. A tool is used to verify the 
temporal correctness given the specified temporal 
properties and temporal requirements of each component 
(cmp. τanalytic in definition 2). If therefore, the system is 

temporal correct, the temporal requirements will hold 
during run-time. Temporally, the system is thus proved-by 
construction given that the execution-time estimates are 
valid. This means that almost no resource slack is needed in 
terms of CPU.  

One positive effect of using this model and method 
observed by VCE is the infrequence of timing problems 
and the ease with which such are solved. The model 
ensures effective control of system’s temporal behavior and 
of resource usage. This indirectly helps in predicting both 
project time consumption and provides a basis for 
communication with stakeholders. The analytical model 
provides updated measurements on CPU utilization 
resulting from changes in a system during its service life.  

4. Reflections from the case studies 
In this paper we have studied two industrial control 

systems which were originally designed with different 
objectives. The robot controller was designed to be open, 
flexible and easy to port and the Volvo system was 
designed to be easy to develop, maintain, port and formally 
analyzable. 

c 

The price Volvo had to pay when requiring an analyzable 
system is that it is difficult to add software that do not 
completely conform with the existing architecture. 
However, this may also be a benefit since resistance in the 
architecture itself will ensure that the initial design 
objectives implemented in the architecture is kept intact. In 
the robotics case the architecture is much easier to violate 
since only architectural guidelines exists. Moreover, there 
is no tool that checks that the architectural guidelines are 
followed.  

ET(ndoe) 

The Volvo system inherently supports temporal analysis 
and a structured way to do impact analysis. Furthermore, 
since it is required when generating the system, the 
analytical model is guaranteed to always be consistent with 
the system. It is impossible to add functionality without 
also changing the model.  

In the robotics case, we encountered classical problems 
such as discrepancy between the design documents and the 
implementation. The only true document we have for the 
system is the source code. Creating an analytical model as 
we did was quite a cumbersome task but the results we 
achieved, in addition to a model which describes the system 
in two pages, included a considerable increase in the 
knowledge of the system due to the re-engineering activity. 
The analytical model we developed is quit coarse in 
comparison with the precise Volvo model. Although the 
analytical model of the robot system can be used for impact 
analysis, it cannot be used for proving the temporal 
correctness of the system. However, by constructing a 
temporal analytical model of the complete system we can, 
with the assumptions discussed in Section 2.2, deem 
whether the system is correct or not from a temporal point 
of view. Note that the re-engineering approach is a 
continuous activity. To use this approach successfully the 

 



analytical model must be maintained during the life cycle 
of the system. 

From the perspective of temporal analyses, the Volvo 
approach is superior but from the flexibility point of view 
the Robotics approach has advantages. We can conclude 
that there exist a fundamental tradeoff between 
analyzability and flexibility. The more open and flexible 
the system is, the less analyzable it becomes and vice versa.  

As the architectural requirements differ we cannot say 
that either of the approaches, i.e. analytical models by 
construction or analytical models by re-engineering, is 
preferable. We can only conclude that both approaches are 
valid for different type of systems. Nor, as it depends on 
several parameters such as the correctness criterion, and the 
system’s characteristics in terms of its temporal behavior, is 
the question of using analytical methods versus simulations 
easily answered.  

5. Conclusions 
In this paper we have proposed an analytical model 

suitable for large and complex real-time systems, which 
was utilized for impact analysis on the temporal behavior. 
According to the proposed model, a real-time system can 
be described in three different level of abstraction: the 
requirement view, the component view, and the 
implementation view. The appropriateness of the proposed 
methods has been validated by two different case studies. 
As a result of these case studies we found that the model 
can be populated and maintained using two different 
approaches - either it is built by construction or by re-
engineering. The result from the case studies is that the 
method is indeed applicable to large real-world systems.  

We have also proposed two different approaches to 
analysis of temporal behavior and for impact analysis, 
analytical methods and simulation. Also when it comes to 
analysis method we cannot claim that any method is 
preferable. Suitability depends on several parameters such 
as the information available in the analytical model, the 
correctness criteria, and the system characteristics in terms 
of its temporal behavior. The two case studies demonstrates 
quite clearly that the fundamental architectural 
requirements will influence the choice of which approach 
to use for constructing an analytical model as well as what 
analytical method to use. 

Future work includes continuing the construction of the 
analytical model for the robotic control system. The 
analytical temporal model of the robotic system made as 
part of this case study is by no means complete. Moreover, 
we will extend ART-ML to encompass also complete 
product lines. Finally, the proposed methodology should be 
integrated into a development process. 
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