
Semi-Partitioning under a Blocking-Aware Task
Allocation

Sara Afshar, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

Email: {sara.afshar, moris.behnam, thomas.nolte}@mdh.se

Abstract—Semi-partitioned scheduling is a resource efficient
scheduling approach compared to the conventional multiproces-
sor scheduling approaches in terms of system utilization and
migration overhead. Semi-partitioned scheduling can better uti-
lize processor bandwidth compared to the partitioned scheduling
while introducing less overhead compared to the global schedul-
ing. Various techniques have been proposed to schedule tasks in a
semi-partitioned environment, however, they have used blocking-
agnostic allocation mechanisms in presence of resource sharing
protocols. Since, the allocation mechanism can highly affect the
system schedulability, in this paper we provide a blocking-aware
allocation mechanism for semi-partitioned scheduling framework
under a suspension-based resource sharing protocol. We have
applied new heuristics for sorting the tasks in the algorithm
that shows improvements upon system schedulability. Finally, we
present our preliminary results.

I. INTRODUCTION

The interest of migrating towards multi core platforms as
the defacto processors in the industry has raised an inevitable
demand to investigate different aspects of multiprocessors
in terms of system performance. One concern within this
context is constraints on available resources in the system.
Embedded systems with limited resources are more subject
to performance degradation. For such systems, resource opti-
mization approaches play an important role. Semi-partitioned
scheduling approach is a resource efficient scheduling ap-
proach compared to the conventional multiprocessor schedul-
ing approaches, global and partitioned scheduling.

Under semi-partitioned scheduling which was first intro-
duced by Anderson et al. [3], during allocation phase tasks are
assigned to processors similar to partitioned approach. When
partitioned scheduling fails to assign tasks, semi-partitioned
approach will continue task allocation by splitting the task
that cannot completely fit into one processor and allocate it to
different processors. In this way the processors can be utilized
more efficiently.

Despite the fact that semi-partitioned scheduling benefits
from higher system utilization by allowing some tasks to
migrate among processors, yet it deals with task partitioning
problem where finding an optimal solution is known to be NP-
hard. The partitioning of tasks in the system can highly affect
the system performance. In all previous works done in semi-
partitioned context both without considering resource shar-
ing [7], [8], [10], [6] and in presence of resource sharing [2],
[1], conventional task allocation mechanisms has been used
to assign tasks to the processors such as first-fit or worst-fit.
To the best of our knowledge no work has studied advanced
allocation mechanisms for semi-partitioned scheduling where

the allocation is performed based on the guaranteed system
schedulability. In this work, we propose a new framework
for semi-partitioned approach that uses a smart allocation
mechanism which takes the effect of resource sharing into
account while keeping the system schedulable.

Previously, several blocking-aware task allocation tech-
niques have been proposed for partitioned scheduled systems.
Lakshmanan et al. have proposed a blocking-aware parti-
tioning algorithm called SPA [9]. Nemati et al. have pro-
posed a blocking-aware partitioning algorithm called BPA [12]
which showed higher performance compared to SPA. For
our proposed scheduling framework we have chosen one
recent partitioning heuristic proposed by Wieder and Branden-
burg [13] which is called Greedy Slacker and has shown better
results compared to the existing methods while providing
more transparency for the allocation algorithm. We leave
the comparison with other allocation techniques to find the
most proper allocation approach for semi-partitioning as future
work.

The key idea behind greedy slacker algorithm is to assign
a task to the processor with the maximum provided slack
during allocation phase. In order for the algorithm to work
more efficient, during each assignment of a task to a processor
the priorities of tasks on that processor are revised based on
OPA (optimal priority assignment) [4]. The algorithm has been
applied under a spin-based resource sharing protocol. In this
paper, we have extended the semi-partitioned scheduling under
a suspension-based protocol using a blocking-aware allocation
technique. We have proposed two new sorting mechanism
for the algorithm other than the one presented in [13] to
sort tasks prior to allocation which showed improvements
in system schedulability. Finally, we present our preliminary
experimental results.

II. SYSTEM MODEL

Our system consists of m identical processors with n spo-
radic tasks. Each task τi is identified by a worst-case execution
time Ci, the minimum inter arrival time Ti and a deadline Di,
in which Ci ≤ Di ≤ Ti. The priority of a task τi is denoted by
ρi. In our model a task τi has a higher priority than that of
task τ j, if i > j (ρi > ρ j).

Based on the semi-partitioned approach some tasks in the
system are assigned just to one processor that are referred
as non-split tasks. The tasks which cannot completely fit into
one processor are split during the partitioning phase and may
allocate on more than one processor depending on how many
processors they need. These type of tasks are denoted as split

tasks where each single part of a split task is called subtask.
For the sake of simplicity we refer to non-split tasks as tasks in
the rest of this paper. All subtasks of a split task are assumed as
a normal task in the system. However, since tasks execution
in our system model conforms to a serial execution model,
therefore each subtask of a split task should finish its execution
prior to its successive subtasks. A split task τi is modeled
by l subtasks (τ1

i , ...,τ
l
i) where each subtask is represented

by (Ck
i ,Ti,Ok

i ,ρ
k
i) and k = 1, ..., l. ρmax

Pk
denotes the maximum

priority level among tasks (or subtasks of split tasks) on a
processor Pk.

Ok
i denotes a constant offset for the kth subtask of a split

task τi which represents the delay that each subtask should take
into account before start executing. Assigning the maximum
response time of the former subtask’s as the offset guarantees
each subtask start executing after all previous subtasks are
finished. The first subtask of a split task does not need to wait
therefore O1

i = 0. The group of tasks (including subtasks of
split tasks) assigned to a processor Pk are represented by TPk .

Tasks may use local or global resources. Resources that are
accessed only by tasks on the same processor are denoted as
local resources and resources that are requested by tasks on
different processors are denoted as global resources. Based
on this definition all resources requested by split tasks are
assumed global resources since a request of a split task may
happen on any of its assigned processors due to the fact
that different instances of the same task may have different
execution lengths. Local and global resource requests by jobs
of task τi are denoted by R S L

i and R S G
i , respectively. Further,

we denote Csi,q as the worst-case execution time among all
requests of any job of a task τi on a resource Rq. We also
define nG

i and nG
i,q as the maximum number of requests for

any global resource and a specific global resource Rq by any
job of task τi, respectively. Nested access of resources is not
handled in the system model, however, it can be adjusted using
group locks similar to [5].

III. RESOURCE SHARING

We use the suspension-based resource sharing protocol as
in [11]. Next we briefly recapitulate the rules of this protocol.
Rule 5 has been provided due to semi-partitioned approach
and is similar to Rule 12 in [1].

Rule 1: Uniprocessor synchronization protocol, such as PCP
or SRP are used for handling request to local resources.

Rule 2: For each global resource one unique global queue
is dedicated. The task that is blocked on a resource, i.e., its
request is not satisfied since the resource is not available, is
suspended and its request is placed in the related resource
queue. The queue policy for handling resource requests is
FIFO.

Rule 3: When a global resource is released the task which
its request is at the head of the related resource queue resumes
and locks the resource and its priority is boosted to hasten the
release of the resource. The task retrieves its original priority
as soon as it finishes its global critical section gcs (the part of
task execution that uses a global resource).

Rule 4: A task τi’ priority is boosted to the highest normal
priority on its assigned processor Pk while keeping its relation

to its original priority i.e. ρmax
Pk

+ρi. The key idea is that a task
that accesses a global resource can preempt any task executing
a non-gcs part as well as tasks with lower priority executing
a gcs.

Rule 5: Migration to the next subtask of a split task will
be postponed if the subtask is holding a resource. The subtask
migrates as soon as the resource is released. The maximum
amount for such execution should be considered either by
inflating the execution time of the task with such amount or
including in the processor slack (see SectionIV-B) .

Rule 6: Whenever a task completes its gcs, it releases the
resource and the resource becomes available for the next task
in the resource queue if any.

IV. BLOCKING ANALYSIS RECAP

In this section we briefly recapitulate the blocking terms that
a task may experience under the suspension-based protocol
presented in [11] which is used here.

Whenever a task sends a request for a global resource and
the resource is not available the task gets blocked on the
resource. There are different situations in which a task may
experience blocking which we present briefly as below.

A. Local Blocking

Whenever a task τi is suspended due to requesting a
global resource which is held by another task (on a remote
processor) or before τi arrives, a lower priority task can
request a local resource. A local resource sharing proto-
col such as PCP assigns a ceiling to each local resource
ceil(R`) = max{∀ρi|τi ∈ TPk ∧R` ∈ R S L

i }. If the ceiling of
the requested local resource is higher than the priority of τi
then the lower priority task can contribute in delaying τi in
τi’s non-gcs part. This type of blocking is referred to as local
blocking due to local resources which we denote it as BLL and
is upper bounded as follows.

BLL
i = min

{
nG

i +1, ∑
ρ j<ρi

∧ τi,τ j∈TPk

(
(d Ti

Tj
e+1)nL

j (τi)
)}
× max

Rl∈R SL
j

∧ ρi≤ceil(Rl)

{Cs j,l}.

(1)
where nL

j (τi) denotes the number of the critical sections in
which τ j requests local resources with ceiling higher than ρi.

Similar to the scenario described above, whenever a task τi
is blocked on a global resource (and is suspended) or before
its arrival, a task with lower priority can get the chance to
request a global resource. According to Rule 4, the priority of
a task granted access to a global resource is boosted to higher
than any normal priority on the processor. As a result, τi can
be delayed by gcs of such task with a lower priority when τi
finishes its gcs and enters a non-gcs part. We refer to this type
of blocking as local blocking due to global resources which
is denoted by BLG and is upper bounded as follows.

BLG
i = ∑

∀ρ j<ρi
∧τi,τ j∈TPk

(
min{nG

i +1,(d Ti

Tj
e+1)nG

j (τi)}×max
Rq∈R SG

j

{Cs j,q}
)
.

(2)

1) Remote Blocking: The request of a task for a global
resource may not be satisfied since another task on a remote
processor has already locked the same resource which is
referred to as remote blocking and for a task τi is denoted
by BR

i . The maximum remote blocking delay is incurred to
a task τi under the worst case scenario where all tasks on
all remote processors that share resource with τi, request the
resource earlier than τi. The maximum time that a resource Rq
can be locked by a processor Pr is denoted by RLTq,r and is
the accumulative time that all tasks on Pr can hold Rq . Each
task τ j on Pr that uses a resource Rq can in the worst case
lock the resource for its maximum critical section on Rq and
the maximum interference from higher priority tasks that are
granted other global resources which is presented as follows.

RLTq,r = ∑
∀τ j∈TPr
∧Rq∈R SG

j

(
Cs j,q + ∑

∀ρh>ρ j∧τh∈TPr
∧Rs∈R SG

h ∧q6=s

Csh,s
)
.

(3)

Based on this, the maximum remote blocking that a task τi
on a processor Pk may experience is upper bounded as follows:

BR
i =∑
∀Rq∈RG

Pk
∧τi∈TPk

(
nG

i,q× ∑
∀Pr 6=Pk

RLTq,r
)
.

(4)

The total blocking that a task τi may experience is calculated
as follows:

Bi = BLL
i +BLG

i +BR
i . (5)

B. Smart Allocation mechanism
In this section we present our algorithm which uses two

rounds for task allocation. In the first round, the Greedy
Slacker algorithm presented in [13] is used to allocate tasks
until no task can be allocated based on a partitioned schedul-
ing approach. In the second round, tasks that could not be
allocated in the first round are allocated based on a semi-
partitioning approach. Next, we briefly explain the Greedy
Slacker algorithm first which is used in the first round. In
the first round of the algorithm tasks are sorted based on
decreasing order of their density (Line 3 in Alg. 1). We first
define the notion of task slack and processor slack that we
use in this paper. We denote slack of a task as the difference
between its worst-case response time and its relative deadline.
For the processor slack we use the minimum task slack among
the tasks assigned to that processor. For every task from
the ordered set, a processor is selected from the list of the
processors in the system to which the task is assigned. The
candidate processor is the one such that after allocation of the
task to all processors will provide the maximal slack (Line
12 in Alg. 1). To check if a task τi can be assigned to a
processor Pk, the tryAssign(τi,Pk) function of which the detail
explanation can be found in [13] is used (Line 5 in Alg. 1).
tryAssign(τi,Pk) by using OPA [4] reassigns priorities to all
tasks of Pk when it assigns a new task τi to Pk, starting from the
lowest priority to the highest priority level. For each assigned
priority level it is checked if all tasks on the allocated processor
and on remote processors are schedulable. Otherwise, tasks
are removed from that priority level and are checked for the
next priority level. The previous algorithm returned failure and

stopped if no processor with remaining slack is found to assign
a task whereas our algorithm will move to the second round.

When a task cannot be assigned to any processor in the
first round it is inserted to a queue called Qsplt (Line 10 in
Alg. 1) and is tried to be assigned to processors by splitting
the task in the second round. After all tasks are allocated in
the first round of the algorithm the remaining tasks are tried
to be assigned to the processors which have remaining slack
(Lines 18 to 23 in Alg. 1). findSlack(Pk) in line 19 returns
the processor slack of Pk. The first processor that is selected
to assign a candidate task for splitting is the one that has the
maximum remaining slack (Line 27 in Alg.1). The execution
time of the candidate task splits such that the first part uses
the whole remaining slack of the selected processor except the
amount equal to the maximum critical section of the task (Line
29 in Alg. 1). The reason for deducting the maximum critical
section from the slack to assign as task’s execution time is that
according to Rule 5 a split task may need to overrun just before
migrating to its next subtask. Therefore, a maximum amount
for such execution is predetermined from the processor slack.
In the second round, if no processor can be found that can
accommodate a subtask of a split task the algorithm returns
failure and stops (Line 25 in Alg. 1). For the sorting heuristic,
besides the one based on density, we have tried two other
sorting based on tasks’ execution time and execution time plus
remote blocking incurred to the task. In the next section, we
show under the examined experiment set up that the two new
sorting heuristics have better schedulability results compared
to the one based on density.

V. EVALUATION

In this section we demonstrate our preliminary experimental
results. In our experiments we have evaluated the schedula-
bility performance of the system for the proposed algorithm
(Alg. 1) based on three sorting heuristics which are based on
sorting tasks according to: (i) density, (ii) remote blocking and
(iii) remote blocking and execution time which are presented
in the graphs by Dens, Blk and BlkExc, respectively. In the
experiments, we randomly generate a set of multiprocessor
systems and task sets. The systems are evaluated based on the
suspension-based algorithm presented in Sections III and IV.

A. Experimental Setup

In each experiment we have randomly generated 100 plat-
forms. The number of processors are selected form a set {4,
8, 12, 16}. The number of used resources per platform is fixed
to 10, and the number of resources used per task is selected
from a set {2, 3, 4, 5}. Further, the length of each critical
section is randomly generated from the range [1, 100] µS. We
have generated each task set with per task utilization randomly
generated from the range [0.1, 1] and the per task inter arrival
time from the range [20,1000000] µS.

B. Results

We present our preliminary schedulability results based on
selection of task set cardinality n and the number of the critical
sections used per task CsNum under three applied sorting
heuristics. The results has been illustrated in Figures 1 and 2.

Algorithm 1 Blocking-aware semi-partitioning heuristic
1: Initialize C ←�
2: Initialize D ←�
3: for all τi ∈ order of decreasing density do
4: for all Pk do
5: s ← tryAssign(τi,Pk)
6: if slack ≥ 0 then
7: C ← C ∪ (Pk,s)
8: end if
9: if |C |==� then

10: Add τi to Qspilt
11: else
12: choose (Pk,s) from C such that s is maximal
13: assign τi to Pk
14: end if
15: end for
16: end for
17: for all τ j in Qsplt do
18: for all Pk do
19: s ← findSlack(Pk)
20: if slack > 0 then
21: D←D ∪ (Pk,s)
22: end if
23: end for
24: if |D|==� then
25: return Failure
26: else
27: choose (Pk,s) from D such that s is maximal
28: Split τ j into two parts τk

j and τ
k+1
j

29: Ck
j ← s−maxCs j

30: Ck+1
j ← Ci−Ck

j
31: assign τk

j to Pk

32: PushFront(τk+1
j ,Qsplt)

33: end if
34: end for
35: return true

The experiments show higher schedulability ratio under the
two sorting heuristics based on remote blocking, and remote
blocking plus execution time compared to the sorting based
on density.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15 20 25 30 35 40

Sc
h

ed
u

la
b

ili
ty

Task Set Cardinality

Dens

Blck

BlckExc

Fig. 1. Schedulability versus task set cardinality, m = 8, CsNum = 2.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a blocking aware task allocation
technique under a semi-partitioned approach. Our proposed
algorithm uses two rounds for task allocation. In the first round
we use a recently proposed blocking-aware approach that has
been introduced for partitioned scheduled systems and has
been applied under a spin-based resource sharing protocol. In
this paper, we have applied the algorithm under a suspension-
based resource sharing approach. The algorithm continues in
the second round using a semi-partitioning approach splitting

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5

Sc
h

ed
u

la
b

ili
ty

Maximum Critical Section Per Task

Dens

Blck

BlckExc

Fig. 2. Schedulability versus number of critical section per task, m= 8, n= 20
.

the tasks which could not be allocated in the first round.
We have proposed two new heuristics for sorting tasks which
have shown an increase in the system schedulability under our
preliminary experimental results. As future work we plan to
perform extensive evaluations to further elaborate the system
behavior. We also plan to compare our results with the existing
solutions by adjusting them for semi-partitioned scheduling.

REFERENCES

[1] S. Afshar, F. Nemati, and T. Nolte. Resource sharing under multiproces-
sor semi-partitioned scheduling. In 18th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 290–299, Aug. 2012.

[2] S. Afshar, F. Nemati, and T. Nolte. Towards resource sharing under
multiprocessor semi-partitioned scheduling. In 7th IEEE International
Symposium on Industrial Embedded Systems (SIES), Work-in-Progress
(WiP) session, Jun. 2012.

[3] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algorithm
for multiprocessor soft real-time systems. In 17th Euromicro Conference
on Real-Time Systems (ECRTS), pages 199–208, Jul. 2005.

[4] N. Audsley and Y. Dd. Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times, 1991.

[5] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 47–56, Aug. 2007.

[6] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor
scheduling with Liu and Layland’s utilization bound. In 16th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 165–174, Apr. 2010.

[7] S. Kato and N. Yamasaki. Portioned static-priority scheduling on
multiprocessors. In IEEE International Symposium on Parallel and
Distributed Processing (IPDPS’08), pages 1–12, Apr. 2008.

[8] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling
on multiprocessors. In 15th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 23–32, Apr. 2009.

[9] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In 30th

IEEE Real-Time Systems Symposium (RTSS), pages 469–478, Dec. 2009.
[10] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority

preemptive scheduling for multi-core processors. In 21st Euromicro
Conf. on Real-Time Sys. (ECRTS), pages 239–248, Jul. 2009.

[11] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-
time systems on multi-cores with shared resources. In 23rd Euromicro
Conference on Real-Time Systems (ECRTS), pages 251–261, Jul. 2011.

[12] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems on
multiprocessors with shared resources. In 14th International Conference
On Principles Of Distributed Systems (OPODIS), Dec. 2010.

[13] A. Wieder and B. Brandenburg. Efficient partitioning of sporadic
real-time tasks with shared resources and spin locks. In 8th IEEE
International Symposium on Industrial Embedded Systems (SIES’13),
Jun. 2013.

