
Software architecture for next generation hyperparallel
cyber-physical hardware platforms:

challenges and opportunities

Moris Behnam, Federico Ciccozzi, Mikael Sjödin
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

[name.surname]@mdh.se

Fredrik Bruhn
Bruhnspace AB

Uppsala, Sweden
f@bruhnspace.com

ABSTRACT
We present what is destined to become the de-facto standard
for hardware platforms for next generation cyber-physical
systems. Heterogeneous System Architecture (HSA) is an
initiative to harmonize the industry around a common ar-
chitecture which is easier to program and is an open stan-
dard defining the key interfaces for parallel computation.
Since HSA is supported by virtually all major players in the
silicon market we can conjecture that HSA, with its capa-
bilities and quirks, will highly influence both the hardware
and software for next generation cyber-physical systems.

In this paper we describe HSA and discuss how its nature
will influence architectures of system software and applica-
tion software. Specifically, we believe that the system soft-
ware needs to both leverage the hyperparallel nature of HSA
while providing predictable and efficient resource allocation
to different parallel activities. The application software, on
the other hand, should be isolated from the complexity of
the hardware architecture but yet be able to efficiently use
the full potential of the hyperparallel nature of HSA.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous (hy-
brid) systems; D.2.11 [Software Architectures]: Languages

Keywords
HSA, software architecture, cyber-physical systems, model-
driven engineering

1. INTRODUCTION
Currently the silicon market for embedded and Cyber-

Physical Systems (CPS) is standing in front of a revolution
with the newly launched standard for next generation hyper-
parallel systems (HSA) being put into manufacturing. How-
ever, the software communities has, yet, paid remarkably

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

little attention to the impact this new generation hardware
will have on future software architecture and structure.

HSA stands for Heterogeneous System Architecture and
the standard is managed by the HSA Foundation1, which
is supported by virtually all major players on the silicon
market. HSA defines the key constituents and interfaces
needed to harmonize use and programming of tightly in-
tegrated CPUs, GPUs, DSPs and other programmable ac-
celerators (e.g., FPGAs). Thus programmers need only to
learn one set of APIs for programming parallel applications
and do not need to re-learn vendor-specific APIs for silicon
from different manufacturers [1].

HSA is royalty free and hence attractive for many ven-
dors of both hardware and software platforms. Some of the
founding companies are AMD, ARM, Qualcomm and Texas
Instruments. The HSA Foundation seeks to create applica-
tions that seamlessly blend scalar processing on the CPU,
parallel processing on the GPU, and optimized processing
on a DSP or FPGA via high bandwidth shared memory ac-
cess enabling greater application performance at low power
consumption. An important point for our research interest
is that the HSA Foundation members are building a hetero-
geneous compute software ecosystem built on open, royalty-
free industry standards and open-source software. For in-
stance, the HSA runtimes and compilation tools are based
on open-source technologies such as LLVM2 and GCC3.

Heterogeneous computing seems to be an emerging tech-
nology for power-efficient system design of modern platforms
that no longer rely on a single general-purpose processor, but
instead benefit from dedicated processors tailored for spe-
cific tasks. These specialized processors have traditionally
been difficult to program due to separate memory spaces,
kernel-driver-level interfaces, and specialized programming
models. HSA aims to bridge this gap by providing a com-
mon system-architecture and a basis for designing higher-
level programming models for all devices and hence is an
interesting option for development of next generation CPS
to be used in computationally demanding, safety critical,
real-time applications for automation, aerospace, smart grid
control etc.

In this paper we describe some of the unique features of
HSA and outline some of the resulting research challenges
and opportunities with respect to defining suitable archi-

1http://www.hsafoundation.com/
2http://llvm.org/
3https://gcc.gnu.org/

tectures for application- and system-software for using HSA
in next generation CPS. In these challenges we also include
design-time tools for platform-independent design and auto-
mated code generation from such tools.

The remainder of the paper is organized as follows. In Sec-
tion 2 we provide an introduction on the exclusive charac-
teristics of HSA, while in Section 3 and Section 4 we present
challenges and opportunities related to the definition of suit-
able architectures for application- and system-software for
HSA, respectively. The paper is concluded with a summary
in Section 5.

2. HSA
The main aspects characterizing HSA are the following:
• Unified memory-space across all processing elements;
• Operation in pageable system memory;
• Full memory coherency;
• Hardware queuing model;
• Scheduling and context switching;
• HSA Intermediate language (HSAIL);
• High level language support for GPUs;

HSAIL is an explicitly parallel virtual instruction-set archi-
tecture for parallel programs with support for high level lan-
guage features such as exceptions and virtual functions. It
can support widely used high level languages and program-
ming models like OpenMP, C++, and Python. The HSA
memory model defines visibility ordering between all threads
in the HSA enabled system and is also designed to be com-
patible with C++, OpenCL and .NET memory models with
a relaxed consistency memory model for parallel computa-
tion performance. HSAIL and its place in the architecture
of the compilation-chain is shown in Figure 1. The figure
shows that the LLVM IR (Intermediate Representation) is
used as target for the off-line part of the compilation-chain
and that an on-line part converts to HSAIL which is then
refined to target-specific code when a computational task is
dispatched.

The HSA queuing model is an important feature that
consists of user mode queuing for low latency hardware-
dispatching where applications dispatch directly without OS
or driver required in the dispatch path. With HSA enabled
hardware, applications can create data structures in a sin-
gle unified address space and can initiate work items on the
most appropriate computational element for a given task.
Sharing data between computational elements is as simple
as sending a pointer. Multiple computational tasks can work
on the same coherent memory, utilizing barriers and atomic
memory operations as needed to maintain data synchroniza-
tion.

As seen in the past, it is not sufficient to ask applica-
tion vendors to change their software to fit a new kind of
hardware. To reach the mainstream developers, it must be
easy for everyone to participate. The HSA approach tries
to bring such simplicity by bringing the hardware to the ap-
plication programmer. HSA includes hardware, interfaces,
common intermediate language, and standard runtime com-
ponents to do all the necessary work. HSA maintains mem-
ory coherency and manages work queues under the hood,
without exposing the underlying system complexity to the
application developer and hence is attractive to the users.
However, this also causes concerns for real-time applications
due to, e.g., issues with on-line compilation, delays caused
by cache-coherence protocols, hardware based dispatching

Figure 1: HSA compilation process

and scheduling. Thus, to use HSA in safety critical and/or
dependable applications, more research is needed on how to
leverage these powerful hardware mechanisms, while main-
taining control of execution, separation of different critical-
ity levels, allocation and policing of resource usage in differ-
ent co-existing applications, and so forth.

HSA example implementation.
Researchers at Mälardalen University (MDH) have, to-

gether with industry, developed a fault tolerant heteroge-
neous computing module for industrial applications [2]. The
AMD “Steppe Eagle” G-series System-on-Chip was selected
as the HSA reference architecture together with a Microsemi
SmartFusion2 FPGA in an industrial standard Qseven form
factor. This hardware allows MDH researchers to work
on real hardware exposing the power of CPU, GPU, and
FPGA/DSP. Ongoing hardware upgrades are being pursued
using the new AMD Carrizo platform.

3. APPLICATION SOFTWARE
In several domains (e.g., medical, automotive, aerospace)

CPS are expected to process massive amounts of data in
real-time. Aiding in fulfilling these expectations, the de-
velopment of hardware technologies towards heterogeneous
configurations makes CPS able to handle, e.g., very high in-
put data rates [3]. A typical scenario would be represented
by video-input data coming into a CPU, which in turn may
exploit one or more GPUs as coprocessors for parallel pro-
cessing of large blocks of data. In this scenario other pro-
grammable accelerators (e.g., DPSs or FPGAs) can be ex-
ploited for switching among data transmission settings, per-
forming non-vectorized signal processing, or other types of
parallel processing. This ongoing technology shift from ho-
mogeneous (i.e., unicore or multicore platforms) to heteroge-
neous platforms raises a number of new research challenges
and opportunities on how to design application-level soft-
ware to be deployed on hyperparallel heterogeneous hard-

ware.
As aforementioned, one of the main goals of HSA is to

close the gap between hardware and software by making
complex hardware-related mechanisms transparent to the
software developer. In other words, it advocates abstrac-
tion from the intricacy of the underlying system-complexity
and allows the developer to focus on the software-related
issues. Advances and lessons learned in software develop-
ment for homogeneous platforms should be built upon when
designing the application-development support for this next
generation software. More specifically, we advocate the ex-
ploitation of Model-Driven Engineering (MDE) [4], that has
been attracting an increasing amount of industrial attention
for the last 15 years due to its ability to shift the develop-
ment focus from hand-written code (which is too close to
the underlying computation technology), to models (which
are closer to the problem domain and thereby more suitable
for most application engineers) from which the implemen-
tation can be automatically generated through model ma-
nipulations. MDE aims at easing development by promot-
ing models as primary artifacts. By dealing directly with
domain-specific abstractions, models can reduce complexity
and allow the developer to focus on the concepts that matter
in the design of the application [5].

Moreover, through separation of concerns and platform-
independence, same application-level software models, or
parts of them (e.g., components), might be deployed to dif-
ferent hardware configurations. By means of MDE it is pos-
sible to systematically focus on different levels of abstrac-
tions at which all involved developing teams can (i) be re-
lieved from the idiosyncratic intricacy of CPS low-level soft-
ware, (ii) focus on improving the quality of CPS in terms
of, e.g., safety, timeliness, and reusability, and (iii) promote
the reuse of software components across different hardware
configurations as well as different CPS. However, a research
challenge here is that contemporary modelling techniques
and tools are very seldom designed to allow modelling in
a way that is suitable for later implementation on hyper-
parallel heterogeneous platforms. For instance modelling
of parallelizable algorithms (e.g., [6]) are typically done in
languages quite far from those suited for large scale system-
development.

In this direction, the Unified Modeling Language (UML),
which represents the de-jure standard for MDE in indus-
try, and its profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) [7] have been leveraged
for development and early analysis of parallel systems [8],
system-on-chip [9], and safety-critical systems [10]. There
exists some initial work towards the exploitation of UML
and MARTE for the development of heterogeneous plat-
forms too [11]. However, it is a big challenge to define a
suitable architecture for modelling languages that allow all
important concerns for next generation CPS-applications to
be catered for (including, but not restricted to, concerns
like parallelism, timeliness, energy-consumption, safety and
security).

In the context of HSA, UML could be used for modelling
the application software architecture in terms of, e.g., soft-
ware components, while the MARTE profile could be lever-
aged to model schedulable and executable resources as, e.g.,
tasks and the allocations of software components to them,
as well as memory partitions when needed. Moreover, the
employment of other formalisms of the UML family of lan-

guages, such as Foundational UML (fUML)4 and the Action
Language for Foundation UML (ALF)5 would enable the
definition of complex algorithmic specifications within the
modelled application software. In particular, ALF provides
annotation mechanisms to define portions of behaviors (e.g.,
parallelizable constructs such as the for loop) as possibly
parallel. “Possibly”, since it would not enforce any paral-
lelism but rather leave that possibility open at implementa-
tion or code generation time where this information is taken
into account and, depending on the actual deployment con-
figuration, can drive the generation of either parallel or se-
quential code. Doing so, no hardware-specific decision needs
to be taken when modelling the application software and
this transparency embodies one of the idiosyncratic pillars
of the HSA initiative. A research challenge in this context
is how to leverage the defined compilation chain in HSA,
where intermediate languages like LLWM and HSAIL are
exploited. While these languages provide some degree of
hardware independence, they are also likely to be sources of
unpredictability (e.g., due to online-compilation) if not used
in a wise manner. In this matter, we foresee the opportu-
nity of leveraging ALF in combination with HSAIL, where
synergies between the two languages possibility to express .
Also the interaction with the system-software (described in
Section 4) needs to be automatically generated from models
in a way that the application engineer, e.g., do not need to
know the details of how to allocate resources and monitor
for resource violations.

4. SYSTEM SOFTWARE
Most CPS are real-time embedded systems that must sat-

isfy certain timing requirements. Depending on the type
and the design of the CPS, the timing requirements might
be meeting deadlines, bounding end to end delays/response
times, bounding jitters, bounding deadline misses, etc. To
satisfy these requirements sufficient system resources should
be provided to each software application6. Furthermore,
to reduce system-complexity and -cost of CPSes, a current
trend is to integrate more software applications into a lower
number of computing nodes. This implies that multiple ap-
plications share the node-local resources and thus it makes
the execution of the real-time applications unpredictable.

Virtualization has been proposed as an attractive tech-
nique to solve the problem of sharing the system resources
by creating a set of Virtual Machines (VMs), each of which
is dedicated to executing a single application (or a small sub-
set of the applications) on the physical system. Each VM
can allow its associated application to access the system re-
sources within a predefined bandwidth in order to manage
the sharing of system resources among different applications.
During runtime a middleware is responsible to provide the
required resources to the VMs according to the specifications
of their associated applications. This middleware is called
Virtual Machine Monitor (VMM) or hypervisor.

Many commercial and open source solutions have been
proposed to support virtualization on complex embedded

4http://www.omg.org/spec/FUML/1.1/
5http://www.omg.org/spec/ALF/1.0.1/
6Here we use the term application to denote a course grained,
semi-independent, potentially reusable, architectural element. It
typically includes a set of tasks or processes. An application will
often be a top-level component in a component assembly if a
component-based development strategy is employed.

systems such as VxWorks 6537, LynxOS-1788, Integrity Mul-
tiVisor9, Real-Time Hyper Hypervisor10, Enea Hypervisor11,
Xen12, KVM13, OKL414, to mention a few. However, these
target unicore and/or homogenous multicore processor ar-
chitectures and they are not directly applicable for HSA.

In homogenous multicore processor architectures, other
computation units such as GPUs do not support preemp-
tive scheduling and are usually modelled as mutual exclu-
sive shared resources since context switches in these units
introduce huge runtime overhead. This can introduce long
blocking-times for other real-time applications that need
these resources and make their execution unpredictable. Due
to the enhanced architecture of HSA, preemptive schedul-
ing is enabled for all computation processor units with low
runtime overhead and thus they can be managed in a way
similar to the CPU cores. This implies that the hypervisor
might control the scheduling in these units in addition to
the CPU cores and VMs can also be executed in all pro-
cessing units. Furthermore, HSA improves the scheduling of
computation processor units by providing efficient hardware
queue management. The hypervisor can use the hardware
queue management to schedule requests to computation pro-
cessor units in order to significantly decrease the runtime
overhead for scheduling. In addition, by providing hetero-
geneous computation processors (CPU, GPU, DSP, etc.),
different resource allocation strategies can be applied to op-
timize the resources usage and improve the timing behavior
of the software applications. For instance, one VM can be
assigned to each application in each of the computation pro-
cessor units to execute tasks from that specific application.
The main advantage of this solution is that the application
can use any available computational unit among those that
it is allowed to use. However, dependencies among tasks
running in different units might introduce long delays. An-
other alternative might be allocating only one VM for each
application that manages the execution of tasks in different
processor units. However, the application tasks would not
execute until all required processor units are available. A
research challenge is to combine the above mentioned alter-
natives and to strike the right balance between them to get
the most out of HSA platforms.

An overall challenge is represented by investigating the
possibilities to define novel virtualization mechanisms specif-
ically for heterogeneous configurations. But we foresee the
need to have abstract virtual machines where the exact con-
figuration of CPUs, GPUs, DPSs, etc. is not concretized.
This would allow the VMM to insatiate a concrete alloca-
tion of hardware units at run-time. Today it is unknown
what a suitable architecture and design for such a heteroge-
neous virtual machine might be.

Furthermore, developing new offline and/or online algo-
rithms that allocate HSA resources efficiently will be a sig-
nificant research direction. These algorithms will require
proper mathematical models that can evaluate the required

7http://www.windriver.com/
8http://www.lynuxworks.com/
9http://www.ghs.com/

10http://www.ni.com/
11http://www.enea.com/
12http://www.xen.org/
13http://www.linux-kvm.org/
14http://www.ok-labs.com/

resources for each application and test the feasibility of the
applications integrated in a HSA platform.

5. SUMMARY
In this paper we have presented some of the opportunities

provided by the novel standard HSA (Heterogeneous Sys-
tems Architecture), which is likely to be a dominating stan-
dard for next generation high-performance cyber-physical
systems. These opportunities include massive parallel ex-
ecution, energy efficient execution and simplified program-
ming through unified interfaces and intermediate languages.

However, to leverage the computational power of HSA in
safety critical and/or dependable real-time systems, signif-
icant research challenges need to be tackled. In this paper
some of these challenges have been discussed, with focus on
those related to future architectures for application devel-
opment and system software for HSA. These challenges in-
clude architecture of modelling support and transformation
as well as architecture for resource abstraction, allocation
and policing by the system software.

6. REFERENCES
[1] Rogers, P. and Sander, B. and Chung, Y.-C. and

Gaster, B.R. and Persson, H. and Hwu, W.-m. W.
Heterogeneous System Architecture (HSA):
Architecture and Algorithms Tutorial.
http://www.hsafoundation.com/isca-2014-tutorial-2/.

[2] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, and
M. Norgren. Introducing Radiation Tolerant
Heterogeneous Computers for Small Satellites. In
IEEE Aerospace Conference 2015. IEEE, March 2015.

[3] D. Hallmans, M. Asberg, and T. Nolte. Towards using
the Graphics Processing Unit (GPU) for embedded
systems. In Procs of ETFA, pages 1–4, 2012.

[4] J. Bézivin. On the Unification Power of Models.
Software and System Modeling, 4, 2005.

[5] D. C. Schmidt. Guest editor’s introduction:
Model-driven engineering. Computer, 39(2):25–31,
February 2006.

[6] E. Axelsson, K. Claessen, G. Devai, Z. Horvath,
K. Keijzer, B. Lyckeg̊ard, A. Persson, M. Sheeran,
J. Svenningsson, and A. Vajda. Feldspar: A domain
specific language for digital signal processing
algorithms. In Procs of MEMOCODE, pages 169–178,
July 2010.

[7] S. Taha, A. Radermacher, S. Gérard, and J.-L.
Dekeyser. MARTE: UML-based Hardware Design
from Modelling to Simulation. In Procs of FDL, pages
274–279, 2007.

[8] A.W.O. Rodrigues, F. Guyomarc’h, and J.-L.
Dekeyser. An MDE Approach for Automatic Code
Generation from UML/MARTE to OpenCL.
Computing in Science Engineering, 15:46–55, 2013.

[9] I.R. Quadri, S. Meftali, and J.-L. Dekeyser. Designing
dynamically reconfigurable SoCs: From UML MARTE
models to automatic code generation. In Procs of
DASIP, pages 68–75. IEEE, 2010.

[10] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The fujaba real-time tool suite:
model-driven development of safety-critical, real-time
systems. In Procs of ICSE, pages 670–671. ACM, 2005.

[11] F. Ciccozzi. Towards code generation from design
models for embedded systems on heterogeneous
CPU-GPU platforms. In Procs of ETFA, pages 1–4,
2013.

