
A GPU-aware Component Model Extension for Heterogeneous Embedded Systems

Gabriel Campeanu, Jan Carlson and Séverine Sentilles

Mälardalen Real-Time Research Center
Mälardalen University, Sweden

Email: {gabriel.campeanu, jan.carlson, severine.sentilles}@mdh.se

Abstract—One way for modern embedded systems to tackle the
demand for more complex functionality requiring more compu-
tational power is to take advantage of heterogeneous hardware.
These hardware platforms are constructed from the combination
of different processing units including both traditional CPUs and
for example Graphical Processing Units (GPUs). However, there is
a lack of efficient approaches supporting software development
for such systems. In particular, modern software development
approaches, such as component-based development, do not pro-
vide sufficient support for heterogeneous hardware platforms.
This paper presents a component model extension, which defines
specific features for components with GPU capabilities. The
benefits of the proposed solution include an increased system
performance by accelerating the communication between GPU-
aware components and the possibility to control the distribution
of GPU computation resources at system level.

Keywords–Embedded Systems; Component-based Development;
Heterogeneous CPU-GPU Systems; GPU Component Model.

I. INTRODUCTION

In the last years, various embedded computing technologies
have emerged due to the rapid advance of microprocess-
ing technology. Homogeneous single-core CPU systems have
evolved into heterogeneous systems with different processing
units such as multi-core CPUs or GPUs. Taking benefits of
the increased computational parallel power, new applications
have emerged while others improved their performance. Ex-
amples of systems that now use GPU processing hardware
include vehicle vision systems [1] and autonomous vision-
based robots [2]. However, a GPU is a different hardware unit
that has its own memory system. As a result, combining a GPU
with a CPU leads to an increase of the software complexity
and the need to optimize the use of the available resources.

One way of addressing the increasing system complexity
is through component-based development (CBD). In CBD,
complex software applications are built by composing already
existing software solutions (i.e., software components), result-
ing in increased productivity, better quality and a faster time-
to-market. The approach has been successfully used in other
domains, but has recently attracted attention also for develop-
ing software for embedded systems, as evident by industrially
adopted component models such as Autosar [3] and Rubus [4].
In order to address the specifics of embedded systems, many
component models targeting this domain follow a pipe & filter
architectural style. Using this style, the components are passive
and the transfer of data and control is defined statically by how
they are connected, rather than the typical object oriented style
with active components and method calls [5].

Having no component model support for GPU devel-
opment, each component that needs to use the GPU must

encapsulate various GPU specific operations such as memory
initialization, and operations to shift data between the CPU
and GPU memory systems. This introduces a communication
overhead among components (i.e., leading to longer response
times) and unnecessary code duplication. Also, these com-
ponents have to encapsulate all the GPU settings required
to meet their functionality. For example, each component
independently decides how much GPU computation resources
it uses (e.g., number of threads), which can result in a
suboptimal GPU usage in the system as a whole, decreasing
the system performance. The lack of efficient development
methods affects several component properties (e.g., granularity,
reusability), making difficult to fully use the benefits of GPU
systems.

In this paper, we describe how the problem can be tack-
led by proposing a GPU-aware component model extension
where components are equipped with GPU ports that allow
component communication directly through the GPU environ-
ment. We also provide a way for the system to decide the
GPU settings (e.g., number of threads) for each GPU-aware
component. Enhancing the communication and delegating the
component GPU settings to the system level, result in increased
system performance while keeping the key benefits of the CBD
approach.

The rest of the paper is organized as follows. Section II
gives a background depiction of existing component model
challenges in addressing efficiently the GPU hardware. A high
level descriptions of the GPU-aware components is covered by
Section III, where the specification of the component interfaces
and GPU ports are described in depth. Section IV describes a
running example which illustrates the underlying details of our
solution. In Section V, a series of experiments were carried out
to evaluate the performance efficiency of the proposed method.
Related work is described by Section VI, while Section VII
presents the paper conclusion and future work.

II. USING GPUS IN COMPONENT-BASED DEVELOPMENT

When developing applications for heterogeneous embedded
systems using a pipe & filter-type of component model, the
developer follows the model specifications to develop software
components. The same specifications are used even when
the model does not provide directions on how to support
GPU within the component. Hence, a component with GPU
computations requires encapsulation of all the information and
operations needed to support its functionality. For example, the
information and operations include choosing the GPU compu-
tational resources (e.g., number of threads, grid dimension) to
process data or, being GPU unaware, operations to replicate
data from and to the main (CPU) memory system.

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In the following example, we present a part of a
component-based software architecture of a demonstrator that
uses a heterogeneous CPU-GPU hardware platform. The
demonstrator is an underwater robot developed at Mälardalen
University, Sweden. It is used as the running case for the
RALF3 research project [6]. The architecture is an abstract
view of a component model design that uses a pipe&filter
interaction style (e.g., ProCom [7], Rubus [4]). The robot has
an embedded electronic board containing a GPU, alongside the
common CPU. Both processing units have different memory
systems. The board is connected to the cameras that are
providing a continuous stream of images, and to other sensors
and actuators (e.g., pressure sensors, motors).

Object'
Detector'

Image'
Merger'

Camera1'
Vision'

Manager'
Camera2'

Legend:'

Standard'component''
GPU'non:aware''' Standard'output'port'

Standard'input'port'Directed'communica>on'link'

Figure 1. The abstract software architecture of the vision system

Figure 1 presents the robot vision system architecture
combined with the data propagation view. The robot uses two
cameras which give an extended perspective of the surrounding
underwater environment. The physical cameras provide a con-
tinuous stream of frames to Camera1 and Camera2 software
components. The ImageMerger receives the frames from the
camera components and merge them into a single frame that
is filtered by ObjectDetector. The filtering process produces a
black-and-white frame which eases the identification process
of specific objects (e.g., red buoys). The vision system uses the
parallel processing power of the GPU hardware for its main
data processing activities from ImageMerger and ObjectDetec-
tor components. The black-and-white frame is received by the
VisionManager component which, based on the position of the
objects that have been detected, takes movement decisions for
the underwater robot.

Each component, as part of its functionality, accesses
particular hardware elements (e.g., CPU, RAM, GPU) in a
specific order. The hardware related activities of the vision
system are illustrated in Figure 2. The Camera1 and Camera2
components, connected to the physical cameras, fetch data
frames (two at a time) onto the main (CPU) memory system.
The ImageMerger component duplicates the two frames onto
the GPU memory system and processes them (i.e., merge
them into one frame). The component handles inside various
operations such as memory allocation, specific GPU-shifting
operations and picking suitable GPU computational settings for
its processing activity. Having GPU-unaware communication
ports, the connection with the ObjectDetector component is
done in a form that is recognized by the existing component
interfaces, i.e., thought the main system. Using the same
component model rules, the ObjectDetector component has

similar actions.

copy%

process%

Image&
Merger&

copy%

GPU%CPU%

copy%

Object&
Detector&

copy%

process%
copy%

Camera1&

Camera2&

Vision&
Manager&

process%

process%

process%

Legend:%

Processing%unit%

So6ware%component%

Flow%of%data%

Data%transfer%opera>on%

Processing%opera>on%

Figure 2. Vision system activities over the hardware

In general, using a pipe & filter-type of component model
to develop applications for heterogeneous embedded systems
has the following disadvantages:

• By being responsible for transferring the data be-
tween processing units, each component with GPU
capability uses an inefficient copying mechanism as
communication method. In most cases, this results
in an increased communication over the CPU-GPU
hardware bridge (e.g., PCI-Express), which decreases
the system performance (e.g., worse reaction time).

• As a side effect of the component encapsulating the
same transfer operations, the system contains duplicate
code. That is each GPU-based component has copy-
from or copy-to CPU operations.

• Each component with GPU capability individually
decides (at the development phase) the computational
configuration settings. This affects the overall GPU
usage of the system and also makes the component
less reusable in other contexts.

III. THE GPU-AWARE COMPONENT MODEL EXTENSION

To overcome the drawbacks of using pipe & filter com-
ponent models with no GPU support, we propose a GPU-
aware component model extension. In summary, the solution
introduces:

• A standardized configuration interface through which
a component receives GPU computational settings.
The assigned settings (limited by the hardware con-
straints) have a direct impact on the performance of
the application. The system, knowing the underlying
hardware platform, takes the decision of the com-
putational resources distribution among GPU-aware
components. For example, it may distribute the GPU
computational resources in such a way that several
components can run in parallel (e.g., their summed
number of threads should not exceed the total GPU
number of threads).

• Dedicated GPU ports which are aware of the GPU en-
vironment. Instead of communicating using the main

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

memory, the GPU-aware components communicate
directly using the GPU memory.

• Automatically generated adapters with dedicated
transfer operations. The adapters are automatically
introduced when a GPU port is connected to a standard
port, in order to facilitate the data transfer operation
between the processing units.

According to our proposed solution, the architectural soft-
ware model of a heterogeneous embedded system is extended
in the following way. Ports are classified as GPU ports or stan-
dard ports, and the model contains two types of components,
GPU-aware and standard components. Standard components
can only have standard ports while the GPU-aware components
can have both GPU and standard ports. In addition, the
software model contains two new inter-component commu-
nication elements, the automatically generated communication
adapters (CPU-to-GPU and GPU-to-CPU) that resolve the data
incompatibility issue between the port types.

Object'
Detector'

Image'
Merger'

Camera1'
Vision'

Manager'
Camera2'

GPU3aware''
component'

Legend:'

Standard'component''
GPU'non3aware'''

GPU'output'port'

GPU'input'port'

Standard'output'port'

Standard'input'port'

Generated''
CPU3to3GPU'adapter'

Generated''
GPU3to3CPU'adapter'

Directed'communica>on''
link'

Figure 3. The abstract software architecture of the vision system using a
GPU-aware solution

Figure 3 illustrates the abstract software architecture of the
vision system using our proposed solution. The system has two
GPU-aware components, i.e., ImageMerger and ObjectDetec-
tor, that uses their GPU ports to communicate via the GPU
environment. The data provided by the Camera1 and Camera2
components are placed onto the GPU by automatically gener-
ated CPU-to-GPU adapters. After the GPU-aware components
finish their functionality, the output is placed on the main
(CPU) memory by another generated adapter (i.e., GPU-to-
CPU adapter). This makes the output of the ObjectDetector
available to the VisionManager component.

At startup, the system communicates in a transparent way
with the GPU-aware components, connecting to their standard-
ized configuration interfaces. From the architectural software
perspective, however, this system-to-component communica-
tion mechanism is not graphically represented.

Figure 4 presents the vision system activities of the GPU-
adapted software architecture. Compared to the previous non-
GPU-aware solution from Figure 2, the newly introduced
adapters are handling the data transfer between the CPU and
GPU. The two first adapters move data onto the GPU, while
the third one transfers the final result back onto the CPU.
The ImageMerger component, using its GPU ports, takes the
frames directly from the GPU (where the adapters placed them)
and processes them using the hardware configuration setting
received from the system. Also, by having dedicated GPU
ports, the communication with ObjectDetector is done locally
via the GPU memory.

GPUCPU
Camera1'

Camera2'

Vision'
Manager'

process$

process$

process$

Legend:$

Processing$unit$

So5ware$component$

Flowofdata$

Data$transfer$opera=on$

Processing$opera=on$

copy$

Image'
Merger'

Object'
Detector'

copy$

process$

process$

copy$

Adapter$

Figure 4. GPU-aware vision system activities over the hardware

The main advantages of our GPU-aware solution are the
following:

• Keeping the component communication local on the
GPU, whenever possible. This improves the system
performance (e.g., better component-to-component
communication time) and decreases the communica-
tion stress over the hardware CPU-GPU bridge.

• By externalizing the data shifting operations from the
component, the component granularity is improved.
Also, as a consequence of introducing the specialized
adapters, duplicated code is reduced (when the system
has at least two GPU-aware components sequentially
connected).

• Deciding the GPU configuration of each component
at the system level improves the reusability of com-
ponents. For example, the system can run several com-
ponents in parallel on the GPU by adjusting their GPU
configuration settings, or the same component can be
used in different systems with different configuration
settings.

IV. EXTENSION IMPLEMENTATION

Next, we give an example of what the extension might look
like when implemented. We base the presentation on a simple
reference component model to simplify the presentation, and
use the vision system from Figure 3 as a running example.

A. An implementation of GPU-aware components
Using C++ as the implementation language, we see a soft-

ware component as an object with its public member functions
describing the component ports and interfaces. Any GPU-
aware component is characterized by four member functions,
as presented in Figure 5.

The first argument set of the initialize function, (i.e.,
SIZE TYPE frame1 in, ...) specifies the data sizes of the input
ports, while the second set (i.e., SIZE TYPE frame1 out,
...) describes the data sizes of the output ports. For GPU-
aware components, the initialize function has the role of
allocating memory on the GPU to hold the produced output

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

class GPU awareComp{
public:

void initialize(SIZE TYPE frame1 in, ...,
SIZE TYPE ∗frame1 out, ...);

void config gpu(int tile, int block x, int block y, int block z);
void execute(GPU TYPE in1, ..., GPU TYPE ∗out1, ...);
void free memory();
};

Figure 5. A GPU-aware component implementation details

data. Based on the sizes of the input data, the component uses
a GPU API routine (e.g., cudaMalloc) to allocate a specific
chunk of memory. The sizes of the allocated memory (i.e.,
SIZE TYPE frame1 out, ...) will be propagated to the next
connected component as input data sizes. The (input and
output) arguments are of a structure type and may hold several
elements indicating the multi-dimensional aspect of the data,
such as three-dimensional matrices or bi-dimensional images.
For example, a 2D image argument may be represented by a
data structure with two member elements (width and height)
that specify the number of image pixels.

Each GPU-aware component receives from the system
its GPU execution settings, through the config gpu function.
The function parameters describe this settings, such as the
three-dimensional size (block x ∗ block y ∗ block z) of the
thread-blocks unit. A thread-block is a specific unit of thread
organization.

The initialize and config gpu functions are used once at
system startup. After a component allocates the memory to
hold its results, it reuses it for all of its executions. The
same principle applies for the GPU execution setting; once
a component has the GPU setting, it is used every time the
component is executed. This design decision is suitable for
relatively simple stream processing applications, with static
control flow and where one frame is fully processed before
starting on the next. Each time a component is invoked,
it processes different data using the same GPU setting and
reusing the same allocated memory space (considering the
dimensions of the streaming frames do not change over time),
avoiding the overhead of allocating/deallocating and specifying
the execution setting for each frame of the stream.

The execute function triggers the core functionality of a
component. This function is specified with two sets of argu-
ments. The first set (e.g., GPU TYPE in1, ...), corresponding
to its input ports, are pointer variables that specify the GPU
locations of the input data. The second set (i.e., GPU TYPE
*out1, ...) indicates the GPU locations of the component
results, corresponding to the output ports. In case when the
component also has standard ports, the types of the ports are
used (e.g., TYPE instead of GPU TYPE).

After the component finishes its executions (it may run
several times), it must free the memory that has been allocated
to hold its output results. This is done by the free memory
function, which uses a GPU API deallocation routine (e.g.,
cudaFree).

B. Adapters implementation
The GPU-aware components, by communicating directly

via the GPU memory, do not have to handle the data shifting

class Cpu2Gpu adapter{
public:

void initialize(SIZE TYPE frame in);
void transfer(TYPE in, GPU TYPE ∗out);
void free memory();
};

Figure 6. A CPU-to-GPU adapter implementation details

activities. Instead, we propose automatically generated soft-
ware adapters to handle the data transfer between the two
computational units.

Figure 6 describes the interface of an adapter that handles
the CPU-to-GPU data transfer. Through the initialize function,
the adapter receives from the system the size of the data to
be transferred. Based on this, it allocates memory space on
the GPU using a GPU API procedure. The parameter of the
initialize function, being of a structure type, may hold several
elements, which reflects the multi-dimension aspect of the
frame in. The transfer function uses a GPU API copy proce-
dure (e.g., cudaMemcpy) to transfer data. The first argument
represents the CPU location of the input data (from the main
memory system), while the second argument holds the GPU
location where the data was transferred. The free memory
interface deallocates the memory space that was allocated on
the GPU.

GPU UCHAR ∗dev ptr;

void initialize(SIZE TYPE frame in) {
cudaMalloc(&dev ptr, 3 ∗ sizeof(dev ptr) ∗ frame in.width ∗

frame in.height);
}

void transfer(unsigned char ∗in, GPU UCHAR ∗∗out) {
cudaMemcpy(dev rgb, host ptr, 3 ∗ sizeof(in) ∗ frame in.

width ∗ frame in.height, cudaMemcpyHostToDevice);
∗out = dev ptr;
}

void free memory() {
cudaFree(dev ptr);
}

Figure 7. An example of CPU-to-GPU adapter implementation using CUDA
API

Figure 7 illustrates the implementation details of a CPU-
to-GPU adapter using the CUDA API programming model.
The adapter transfers a bi-dimensional RGB image (red, green
and blue elements of a frame pixel) from the main (CPU)
memory to the GPU memory. The input image argument (img)
is represented by a SIZE TYPE data structure that contains
two member elements, width and height. The transfer function
uses the main memory frame location specified by the input
argument in, and executing the cudaMemcpy routine, places the
image onto the GPU. The memory location of the newly shifted
image is memorized by the output argument out. In order to
make a distinction between the two different memory systems
(CPU and GPU), we use two different types to characterize
the input and output arguments, i.e., the unsigned char and

118Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

struct SIZE TYPE {
int height;
int width;

};

SIZE TYPE frame1 in, frame2 in, frame mrg, frame filtered;
unsigned char ∗camera1 in, ∗camera2 in, ∗result;
GPU UCHAR ∗adp1, ∗adp2, ∗merge, ∗obj;

Camera1.initialize(&frame1 in);
Camera2.initialize(&frame2 in);
Adapter1 CPU2GPU.initialize(frame1 in);
Adapter2 CPU2GPU.initialize(frame2 in);
ImageMerger.initialize(frame1 in, frame2 in, &frame mrg);
ObjectDetection.initialize(frame mrg, &frame filtered);
Adapter3 GPU2CPU.initialize(frame filtered);
VisionManager.initialize(frame filtered);

ImageMerger.config gpu(16, 16, 16, 1);
ObjectDetection.config gpu(32, 16, 16, 1);

while(stream!=NULL) {
Camera1.execute(&camera1 in);
Camera2.execute(&camera2 in);
Adapter1 CPU2GPU.transfer(camera1 in, &adp1);
Adapter2 CPU2GPU.transfer(camera2 in, &adp2);
ImageMerger.execute(adp1, adp2, &merge);
ObjectDetection.execute(merge, &obj);
Adapter3 GPU2CPU.transfer(obj, &result);
VisionManager.execute(result);
}

Figure 8. The implementation details of the vision system

GPU UCHAR types for the main memory and GPU memory
location, respectively.

The GPU-to-CPU adapter is implemented in a similar way.
The only major difference is located in the transfer function,
where the first argument describes the GPU location of the
image to be transferred, while the other argument describes
the main memory (CPU) location of the transferred data.

C. Vision system implementation
We now use the GPU-aware component and adapter imple-

mentations previously described to present our implementation
of the vision system.

For the robot’s vision system, three adapters are automat-
ically generated: two for placing images on the GPU and the
other for shifting the final result back on the main (CPU)
memory. The initialization of the adapters and GPU-aware
components are specified in the upper part of the Figure 8.

The image sizes of the camera output are propagated to
the rest of the system according to each component’s func-
tionality. For example, the ImageMerger component receives
the input sizes of the two camera images, and outputs the
size of the merged image to the next connected component
(ObjectDetection). The initialization part is done only once,
each adapter and GPU-aware component reusing the same
allocated memory to place the continuous stream of frames
received from the cameras.

The GPU setting of each GPU-aware component is pro-
vided by the system through the conf gpu methods. The

system sends once the execution setting to each of the com-
ponents, which is reused for every image processing activity
of the components during the entire application execution. For
example, the processing unit of ObjectDetection is a block of
16 ∗ 16 ∗ 1 threads, while is applied on frame tiles of 32 ∗ 32
pixels.

The execution of the system core functionality is illustrated
in the bottom part of the figure, inside the while loop. As
long as the stream frame flow is not closed (it stops when
e.g., the robot mission is completed), the camera components
are producing frames which are copied onto the GPU by the
CPU-to-GPU adapters. ImageMerger uses its input parameter
pointers that indicate the GPU memory location of the frames,
and outputs, using a GPU-type pointer variable, the location
of its result. In the end, the VisionManager, using the memory
location provided by the GPU-to-CPU shifted data, it processes
the data, taking appropriate movement decisions of the under-
water robot.

V. EVALUATION

To examine the benefits of our proposed solution, we
conducted a small experiment to compare the performance
with and without the GPU-aware extension, to determine the
reduction in communication overhead. To keep it simple, we
use only one component, i.e., vertical mirroring of an image,
implemented in two variants. A GPU-aware component, devel-
oped using our solution, and a standard component developed
as described in Section II (encapsulating the data shifting
operations between CPU and GPU). We then construct systems
of difference sizes by connecting multiple (from 5 to 25)
component instances sequentially, using either the GPU-aware
or the standard variant.

Two input images are used, one with 1152 ∗ 864 pixels
and a second, larger, with 1152∗1782 pixels. The platform on
which the experiments were executed consists of an NVIDIA
GPU hardware with a Kepler architecture, a 2,6 GHz IntelCore
i7 CPU with 16 GB of internal RAM memory. For each case,
we executed the system 100 times and calculated the average
of the measured times.

5 10 15 20 25

300

350

400

450

Components

E
xe

cu
tio

nT
im

e
(m

s)

Standard GPU-aware

Figure 9. Execution times of two types of systems when processing an
image with 1152 ∗ 864 pixels

Figure 9 illustrates the execution times of the two types of
systems while processing an input image of 1152∗864 pixels.
With standard components, represented in blue color, it takes
approximately 315 ms for 5 component to sequentially process

119Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the input image, and 420 ms when the system consists of 25
components. The GPU-aware variant, depicted with red color,
need approximately 300 ms to process the same image with 5
components, and 355 ms when the system is composed of 25
components.

The results for the larger input image of 1152∗1782 pixels,
presented in Figure 10, show similar improvements.

5 10 15 20 25

600

700

800

Components

E
xe

cu
tio

nT
im

e
(m

s)

Standard GPU-aware

Figure 10. Execution times of two types of systems when processing an
image with 1152 ∗ 1782 pixels

The experiment shows a performance increase of the GPU-
aware solution over the standard one where GPU interaction
is completely encapsulated in the components. For the smaller
input data, the gain is approximately 5% of the total execution
time with 5 components, and 16% with 25 components. For
the larger input, the gain is 6% and 12% with 5 and 25
components, respectively.

VI. RELATED WORK

There are several component-based approaches that in
different ways target GPU-based systems, as discussed in the
following paragraphs.

Elastic Computing [8] is a framework that, based on a
library that contains pre-built ”elastic functions” for specific
computations, determines offline the optimized execution con-
figuration for a given platform. The framework does not
manage the execution of GPU devices, which is done inter-
nally inside the elastic functions, alongside with the resource
allocation and data management.

Kicherer et al. [9] use a component-based approach to
propose a performance model suitable for on-line learning
systems. The disadvantage of their approach is that the data
management does not handle transfer operations for the GPU
execution. Hence, the data transfer between the main memory
and the GPU device is done internally by the library of the
performance model. Differing from both of the presented ap-
proaches, the data management and resource allocation is done
automatically (by adapters), from outside of the component
level.

A theoretical component model is proposed by Stoin-
ski [10] to support data stream applications by adding a
dedicated port which enables data stream communication
(e.g., MPEG1 video) between components. Comparable to this
theoretical approach, we are extending the hardware platform
specification to include GPUs, and enriching the component

interfaces to enable data (e.g., stream of frames) communica-
tion between components via the GPU memory system.

The PEPPHER component model [11] constructs an en-
vironment for annotations of C/C++ components for hetero-
geneous systems, including (multi-)GPU based systems. The
model provides different (sequential or parallel) implementa-
tion variants (e.g., one for multi-core CPU and another for
GPU) for the same computational functionality (component),
together with the meta-data (tunable parameters). The compo-
sition code of the component is in the form of stubs (proxy
or wrapper functions). In addition to this work, we address,
transparently, the system-to-component communication for the
GPU execution settings. The memory management issue is
handled by smart containers. Contrasting their approach, we
use automatically generated adapters which can be seen as a
high level memory management elements.

Regarding code generation, there is much work done in
automatically porting sequential (or parallel) CPU source code
for GPU execution. Several programming languages have
such GPU translators, such as Java [12], C [13], C++ [14],
OpenMP [15], Python [16] or Matlab [17]. For our work, these
approaches can be used to generate parts of the implementation
of GPU-aware components.

VII. CONCLUSION

Despite the growing trend of using heterogeneous platforms
for embedded systems, there is a lack of efficient ways to
address the CPU-GPU combination in the existing pipe &
filter component models. When a component model does
not provide dedicated means to specifically handle GPUs,
each component have to redundantly encapsulate the same
GPU specific operations and settings required to meet and
support their functionality. Our solution tackles the inefficient
development by proposing a GPU-aware component model
extension. With our method, the components are aware of the
GPU environment by having specialized GPU interfaces and
ports which facilitates the component communication via the
GPU environment.

The benefits of our solution include:

• The system performance is increased from reducing
the component communication overhead and keeping
data locally on the GPU when possible, as indicated
by the experiment in Section V.

• Improved component granularity and reduced code du-
plication, as a consequence of introducing specialized
generated adapters for data shifting operations.

• An increased reusability of components by adjusting
the components GPU configuration setting at the sys-
tem level. For example, the system can run several
components in parallel on the GPU by adjusting their
GPU configuration settings, or the same component
can be used in different systems with different settings.

As future work we want to increase the flexibility of the
GPU memory management to support also more dynamic
memory allocation. Moreover, our work may be extended
by supporting parallel execution of GPU-aware components.
Another possible thread of future work includes implementing
the method in some existing component model, e.g., Rubus [4]
or ProCom [7].

120Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

ACKNOWLEDGMENT

Our research is supported by the RALF3 project [18]
through the Swedish Foundation for Strategic Research (SSF).

REFERENCES
[1] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of

pedestrian detection for advanced driver assistance systems,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, no. 7,
2010, pp. 1239–1258.

[2] P. Michel et al., “GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing,” in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on. IEEE, 2007,
pp. 463–469.

[3] AUTOSAR Development Partnership, “AUTOSAR Technical Overview,
v4.2,” http://www.autosar.org, (accessed June 28, 2015).

[4] Arcticus Systems, “Rubus Component Model,” https://www.
arcticus-systems.com, (accessed June 28, 2015).

[5] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron, “A classifi-
cation framework for software component models,” IEEE Transaction
of Software Engineering, vol. 37, no. 5, October 2011, pp. 593–615.

[6] C. Ahlberg et al., “The Black Pearl: An autonomous underwater
vehicle,” Mälardalen University, Tech. Rep., June 2013, published as
part of the AUVSI Foundation and ONR’s 16th International RoboSub
Competition, San Diego, CA.

[7] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnkovic, “A
component model for control-intensive distributed embedded systems,”
in Proceedings of the 11th International Symposium on Component
Based Software Engineering (CBSE2008). Springer Berlin, October
2008, pp. 310–317.

[8] J. R. Wernsing and G. Stitt, “Elastic computing: A portable optimization
framework for hybrid computers,” Parallel Computing, vol. 38, no. 8,
2012, pp. 438–464.

[9] M. Kicherer, F. Nowak, R. Buchty, and W. Karl, “Seamlessly portable
applications: Managing the diversity of modern heterogeneous systems,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 8, no. 4, 2012, p. 42.

[10] F. Stoinski, “Towards a component model for universal data streams,”
Eighth IEEE International Symposium on Computers and Communica-
tion, 2003, 2003.

[11] U. Dastgeer, L. Li, and C. Kessler, “The PEPPHER composition tool:
Performance-aware dynamic composition of applications for GPU-
based systems,” in High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:. IEEE, 2012, pp. 711–720.

[12] Y. Yan, M. Grossman, and V. Sarkar, “JCUDA: A programmer-friendly
interface for accelerating Java programs with CUDA,” in Euro-Par 2009
Parallel Processing. Springer, 2009, pp. 887–899.

[13] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA code generation for affine programs,” in Compiler Construction.
Springer, 2010, pp. 244–263.

[14] F. Jacob, J. Gray, Y. Sun, and P. Bangalore, “A platform-independent
tool for modeling parallel programs,” in Proceedings of the 49th Annual
Southeast Regional Conference. ACM, 2011, pp. 138–143.

[15] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” ACM Sigplan
Notices, vol. 44, no. 4, 2009, pp. 101–110.

[16] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, 2012, pp.
157–174.

[17] A. R. Brodtkorb, “The graphics processor as a mathematical copro-
cessor in MATLAB,” in Complex, Intelligent and Software Intensive
Systems, 2008. CISIS 2008. International Conference on. IEEE, 2008,
pp. 822–827.

[18] RALF3, “Software for Embedded High Performance Architecture,”
http://www.mrtc.mdh.se/projects/ralf3/, (accessed September 10, 2015).

121Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

