ANDREAS ERMEDAHL

A Modular Tool Architecture
for Worst-Case Execution
Time Analysis

UNIVERSITET

Dissertation for the Degree of Doctor of Philosophy in Computer Systems presented
at Uppsala University, June 3, 2003.

ABSTRACT

Ermedahl, A. 2003: A Modular Tool Architecture for Worst-Case Execution Time
Analysis. Acta Universitatis Upsaliensis. Uppsala dissertations from the Faculty of
Science and Technology 45. 200 pp. Uppsala. ISBN 91-554-5671-5.

Estimations of the Worst-Case Execution Time (WCET) are required in providing
guarantees for timing of programs used in computer controlled products and other
real-time computer systems. To derive program WCET estimates, both the properties
of the software and the hardware must be considered. The traditional method to
obtain WCET estimates is to test the system and measure the execution time. This is
labour-intensive and error-prone work, which unfortunately cannot guarantee that the
worst case is actually found. Static WCET analyses, on the other hand, are capable of
generating safe WCET estimates without actually running the program. Such analyses
use models of program flow and hardware timing to generate WCET estimates.

This thesis includes several contributions to the state-of-the-art in static WCET
analysis:
(1) A tool architecture for static WCET analysis, which divides the WCET analysis
into several steps, each with well-defined interfaces. This allows independent replace-
ment of the modules implementing the different steps, which makes it easy to customize
a WCET tool for particular target hardware and analysis needs.

(2) A representation for the possible executions of a program. Compared to previous
approaches, our representation extends the type of program flow information possible
to express and handle in WCET analysis.

(3) A calculation method which explicitly extracts a longest program execution path.
The method is more efficient than previously presented path-based methods, with a
computational complexity close to linear in the size of the program.

(4) A calculation method using integer linear programming or constraint programming
techniques for calculating the WCET estimate. The method extends the power of such
calculation methods to handle new types of flow and timing information.

(5) A calculation method that first uses flow information to divide the program into
smaller parts, then calculates individual WCET estimates for these parts, and finally
combines these into an overall program WCET. This novel approach avoids potential
complexity problems, while still providing high precision WCET estimates.

We have additionally implemented a prototype WCET analysis tool based on the
proposed architecture. This tool is used for extensive evaluation of the precision and
performance of our proposed methods. The results indicate that it is possible to
perform WCET analysis in a modular fashion, and that this analysis produces high
quality WCET estimates.

Andreas Ermedahl, Department of Information Technology, Uppsala University, Box 325,
SE-75105 Uppsala, Sweden. Email: andreas.ermedahl@it.uu.se

ISSN 1104-2516

ISBN 91-554-5671-5

Printed in Sweden by Elanders Gotab, Stockholm 2003.

Distributor: Uppsala University Library, Box 510, SE-75120 Uppsala, Sweden. acta®ub.se

Acknowledgements

First of all I would like to thank my supervisor Hans Hansson. During my years
as a graduate student Hans has guided me with great enthusiasm and technical
knowledge, and he has supported me to grow as a researcher. Also, during the
writing of this thesis his thorough reviewing was really invaluable.

The research project I have been working within is a cooperation between re-
searchers located in Uppsala University, C-Lab in Paderborn and Maélardalen
University in Véasteras. This has convinced me that research is a group activity
and this teamwork has allowed me to achieve much more than I possibly could
have done on my own.

I would especially like to thank Jakob Engblom who has been my research
team-mate in Uppsala during most of my years as a PhD student. Together we
planned and started the work that now has resulted in this thesis. I would like
to thank Jakob for years of intense and inspiring cooperation and discussions,
as well as for his very constructive comments on drafts of this thesis.

Friedhelm Stappert has been involved in the WCET project during the last
couple of years, adding fresh perspectives and implementation manpower. De-
spite the fact that Friedhelm is located at C-Lab in Paderborn in Germany, he,
Jakob and I have together managed to produce a WCET tool prototype and
write a number of joint research papers. I thank Friedhelm for a very fruitful
collaboration.

I thank Jan Gustafsson for introducing me to the area of WCET analysis
research. Together we wrote my first conference publication on the subject,
and during the last months Jan has given me a lot of valuable and constructive
feedback.

Other people involved in the WCET project which I would like to thank for
detailed discussions on thesis subjects are Bjorn Lisper and Christer Sandberg.

Many thanks goes to all my friends and colleagues at the IT-department at
Uppsala University for providing me with an excellent working and research
environment. This also includes all the people that were part of the department
when I started but has graduated or moved on for other reasons.

Mikael Sjodin helped me to a good start in my PhD studies by including me
in his research work when I joined the department back in 1996. Mikael also
provided constructive discussions on the subjects in this thesis.

ii

I thank Bengt Jonsson, the director of ASTEC, which provided the major
part of my project funding.

My years as a PhD student have also provided me with the opportunity to
travel and to meet other researchers around the world. I cannot list them all,
but would like to mention a few people who have made a special impression on
me:

Philippas Tsigas and Marina Papatriantafilou, who encouraged me to go to
Hiroshima and make my first conference presentation on my own. Peter Al-
tenbernd, who have taught me that German beer-loving punk-rockers can be
both excellent friends and real-time researchers. Chris and Geraldine Exton,
who showed me that combining Australians and the Irish can make truly won-
derful people. Sang Lyul Min and his PhD students, including Sung-Soo Lim,
Kanghee Kim, Woonseok Kim, Sheayun Lee and Hoyoung Hwang, who together
gave me a great six month stay at Seoul National University. Lucia LoBello and
Giancarlo Tannizzotto, temperamental but wonderful Italian researchers who I
got to know during my stay in Korea.

My friends and the players in the HK71 handball team all deserve special thanks
for reminding me that there exists a life outside academia.

My deepest gratitude goes to my father Goran and my mother Gunilla, my sis-
ters, my brother, and the rest of my family, for always supporting and believing
in me.

Finally, I would like to thank Annelie, the very special person that has been
part of my life during the last years. With love, support and a lot of patience
she really helped me during the last stressful months of this thesis writing.

This work has been performed within the competence center for Advanced Soft-
ware TEChnology (ASTEC) at Uppsala University, partially funded by the
Swedish Agency for Innovation Systems (Vinnova). The ARTES network pro-
vided me with funding for some travels and summer schools. FFDF provided
travel funding for my Korean research trip.

Contents

1 Introduction
1.1 Embedded systems
1.2 Real-time systems
1.3 Execution time estimates
1.4 Uses of WCET analysis
1.5 The need for WCET analysis tools
1.6 Contributions of this thesis
1.7 Thesisoutline

2 WCET Analysis Overview and Previous Work
2.1 Components of static WCET analysis
2.2 Flowanalysis
2.3 Low-level analysis. oL
2.4 Qalculation oL
25 WCET tools

3 A Modular WCET Tool Architecture
3.1 Analysis modules and data structures
3.2 The basic block graph oL
3.3 Thescopegraph
3.4 The timing modelo oL
3.5 Separation vs. integration

4 Representing Program Flow
4.1 Introduction
4.2 Including all possible executions
4.3 Flows information characteristics
4.4 Expressing flow analysis results
4.5 Managing real-world code oL
4.6 Context-sensitive flow information
4.7 Flow information locality
4.8 Dynamic vs. static flow information
4.9 Flow information conversion

iii

39
39
40
41
43
44

iv

Contents
4.10 Conclusions 57
The Scope Graph and Flow Fact Language 59
5.1 Introduction. 59
5.2 Thescopegraph 60
5.3 Loopbounds 65
54 Flow facts 66
5.5 Loop-bound and flow fact semantics 70
5.6 Moreon complex flows, 77
Low-level Analysis 85
6.1 Global low-level analysis 85
6.2 Execution scenarios. L Lo oL 86
6.3 Expressing global low-level analysis results 87
6.4 Safe removal of scenarios oL 89
6.5 Local low-level analysis 90
6.6 The problem of pipeline analysis 91
6.7 Pipeline timing analysis 94
6.8 Timing model L 95
6.9 Alternative timing analyses 98
Efficient Path-based Calculation 101
7.1 Imtroduction. 101
7.2 Method overview 102
7.3 Basic path search algorithm 105
7.4 Path search with flow facts 107
7.5 Handling long pipeline effects 112
7.6 Complete example 117
7.7 Possible method extensions 0. 117
Extended IPET Calculation 121
8.1 IPET calculation basics 122
8.2 Expanding the scope graph L. 124
8.3 Constraint generation L 0L 130
8.4 Converting the timing model 136
8.5 Main algorithm and complete example 141
Clustered Calculation 145
9.1 Introduction 145
9.2 Method overview e 146
9.3 Clustering of flow facts 148
9.4 WCET calculation using fact clusters. 152
9.5 Hardware timing and local calculations 158
9.6 Complete example oL 163

Contents v

10 Prototype Tool and Experiments 167
10.1 Prototype implementation oL 167
10.2 User interaction and feedback 169
10.3 Benchmark programso L oL 171
10.4 WCET estimate precision 173
10.5 Flow facts and WCET precision 175
10.6 Long timing effects and WCET precision. 176
10.7 Computation time Lo 177
10.8 Path-based calculation evaluation 178
10.9 Scalability of calculation methods 179
10.10Clustered calculation evaluation 181

11 Conclusions and Future Work 185
11.1 Summary of contributions o0 185
11.2 Evaluation e 186

11.3 Future work in WCET analysis 187

vi

Contents

Publications by the Author

During my years as a Ph.D. student I have been involved in a number of dif-
ferent research projects, not all related to WCET analysis, and I have therefore
published articles on several topics with a number of different people. The fol-
lowing is a list sorted in chronological order of my publications which have been
subject to peer review:

A.

Andreas Ermedahl and Jan Gustafsson: Deriving Annotations for Tight
Calculation of Execution Time. In Proceedings of the 3¢ International
Euro-Par Conference, (Euro-Par’97), LNCS 1300, Passau, Germany, Au-
gust 1997.

. Jan Gustafsson and Andreas Ermedahl: Automatic derivation of path and

loop annotations in object-oriented real-time programs. In Proceedings of
the Joint Workshop on Parallel and Distributed Real-Time Systems at the
11" IEEE International Parallel Processing Symposium (IPPS’97), Geneva,
Switzerland, April 1997.

Andreas Ermedahl, Hans Hansson and Mikael Sjodin: Response-Time Guar-
antees in ATM Networks. In Proceedings of the 18" IEEE Real-Time Sys-
tems Symposium (RTSS’97), San Francisco, California, December 1997.

Hans Hansson, Mikael Sjédin and Andreas Ermedahl: Response-Time Guar-
antees for Networked Control Systems. In Proceedings of the 9" IFAC Sym-
posium on Information Control in Manufacturing (INCOM’98), Nancy -
Metz, France, June 1998.

Jakob Engblom, Andreas Ermedahl and Peter Altenbernd: Facilitating Worst-
Case Execution Times Analysis for Optimized Code. In Proceedings of the
10" Euromicro Real-Time Systems Workshop (ERTS’98), Berlin, Germany,
June 1998.

. Andreas Ermedahl, Hans Hansson, Marina Papatriantafilou and Philippas

Tsigas: Wait-Free Snapshots in Real-Time Systems: Algorithms and Per-
formance. In Proceedings of the 5" International Conference on Real-Time
Computing Systems and Applications (RTCSA’98), Hiroshima, Japan, Oc-
tober 1998.

vii

viii Contents

G. Jakob Engblom and Andreas Ermedahl: Pipeline Timing Analysis Using
a Trace-Driven Simulator. In Proceedings of the 6" International Confer-
ence on Real-Time Computing Systems and Applications (RTCSA’99), Hong
Kong, December 1999.

H. Jakob Engblom and Andreas Ermedahl: Modeling Complex Flows for Worst-
Case Execution Time Analysis. In Proceedings of the 21t IEEE Real-Time
Systems Symposium (RTSS’2000), Orlando, Florida, USA, December 2000.

I. Jakob Engblom, Andreas Ermedahl, Mikael Sjodin, Jan Gustafsson and
Hans Hansson: Execution-Time Analysis for Embedded Real-Time Systems.
Accepted for publication in Journal of Software Tools for Technology Trans-
fer, STTT), special issue on ASTEC (forthcoming).

J. Sheayun Lee, Andreas Ermedahl, Sang Lyul Min and Naehyuck Chang:
An Accurate Instruction-Level Energy Consumption Model for Embedded
RISC Processors. In Proceedings of the ACM SIGPLAN 2001 Workshop
on Languages, Compilers, and Tools for Embedded Systems (LCTES’2001),
Snowbird, Utah, USA, June 2001.

K. Jakob Engblom, Andreas Ermedahl and Friedhelm Stappert: A Worst-Case
Execution-Time Analysis Tool Prototype for Embedded Real-Time Systems.
In Proceedings of the 15 Workshop on Real-Time Tools (RT-TOOLS’2001),
Aalborg, Denmark, August 2001.

L. Friedhelm Stappert, Andreas Ermedahl and Jakob Engblom: Efficient Long-
est Executable Path Search for Programs with Complex Flows and Pipeline
Effects. In Proceedings of the 4** International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES’2001), Atlanta,
Georgia, USA, November 2001.

M. Andreas Ermedahl: A Unified Flow Information Language for WCET anal-
ysis. In Proceedings of the 2% Workshop on Worst-Case Execution Time
analysis (WCET’2002), Vienna, Austria, June 2002.

N. Martin Carlsson, Jakob Engblom, Andreas Ermedahl, Jan Lindblad and
Bjorn Lisper: Worst-Case Execution Time Analysis of Disable Interrupt Re-
gions in a Commercial Real-Time Operating System. In Proceedings of the
2" Workshop on Real-Time Tools (RT-TOOLS’2002), Copenhagen, Den-
mark, August 2002.

In addition to the above papers I have been co-authoring a number of tech-
nical reports [EEST99, SEE01, EES01, LEMC02] and work-in-progress articles
[EES00, ESEQQ].

Some of these publications form the basis of this thesis. Compared to the
original publications, there is a lot of new material in this thesis: each work is
extended and the algorithms and methods used are described in more detail.
The publications forming the basis of this thesis are:

Contents ix

m Papers I and K which contain the first ideas for the modular WCET tool ar-
chitecture outlined in Chapter 3. I co-authored the papers and have together
with Jakob Engblom and Friedhelm Stappert been the main developers of
the WCET tool architecture.

m Paper H and M which deal with the problem of how to represent program flow
for WCET analysis. These papers are the basis for Chapter 4 and Chapter
5 respectively. I co-authored the papers and have been the main developer
of the flow representation.

m Paper G which contains an early version of the pipeline analysis and the
resulting timing model outlined in Section 6.5. Jakob Engblom and I par-
ticipated equally in the method development and in the paper writing. The
paper forms the basis for low-level analysis outlined in Chapter 6. The Ph.D.
thesis by Jakob Engblom [Eng02] extends the original work and contains a
deeper investigation of processor pipelines than the material presented in this
thesis.

m Paper H also forms the basis for the IPET-based calculation method outlined
in Chapter 8. Jakob Engblom and I participated equally in the method de-
velopment and in the paper writing. I am the main developer and responsible
for the implementation of the calculation method.

m Paper L which forms the basis for the path-based calculation method outlined
in Chapter 7. I co-authored the paper together with Friedhelm Stappert and
Jakob Engblom and we all equally participated in the method development.

The clustered calculation method outlined in Chapter 9 has not been previ-
ously published and is to our knowledge a completely novel approach for WCET
calculation. I am the main developer and responsible for the implementation of
the method.

There are also some other publications related to WCET analysis which I
co-authored, but which will not be described in more detail in this thesis:

m Paper A and B, which present early work on deriving flow information suit-
able for WCET analysis. The Ph.D. thesis by Jan Gustafsson [Gus00] and
later work of his [GLSBO03] contains extensions of these initial ideas.

m Paper E, which deals with the problem of mapping source code WCET flow
information to the (optimized) object code (see Section 2.2.3 on page 21 for
more information).

m Paper N, which presents a case study of the problems that needs to be
addressed when using WCET analysis in an industrial setting.

m Paper [EES00], which deals with how to compare different WCET calculation
methods.

m Paper [ESE00], which deals with the problem of validating WCET analysis
tools and methods.

To summarize: the publications forming the basis for this Ph.D. thesis are

[EEST99], K (WCET tool architecture) H, M (flow representation) G (pipeline

timing analysis) H and L (calculation methods). Compared to these publi-

X Contents

cations, there is a lot of new material in this thesis and each work has been
extended and described in more detail.

Almost all of my research has been carried out within the framework of
the ASTEC WCET project in close cooperation with several colleagues. The
prototype implementation and experiments have been carried out in cooperation
with Jakob Engblom (also at Uppsala University) and Friedhelm Stappert (at
C-Lab in Paderborn, Germany).

Chapter 1

Introduction

Over the last few decades, our society has become increasingly dependent on
computers. Not only the gray PC boxes at our desks, but also the myriad
of computer systems embedded in everyday things around us. In fact, over
98 percent of all computers sold are used to control vehicles, appliances, power
plants, telecommunication equipment, toys, and other products that are intrinsic
parts of modern society. Many of these systems are required to react within
precise real-time constraints to events in the environment.

Take a look around in a modern car. There is an embedded computer con-
trolling the engine, keeping performance up and fuel consumption down by very
precise control of the ignition and fuel pump. For your safety, the anti-lock
brakes (ABS) are controlled by embedded computers that continuously monitor
the behavior of the car to prevent brake locking. In the unlikely event of a col-
lision, yet other embedded computers will detect the crash within milliseconds
and deploy the airbags.

Such embedded real-time systems are based on one or more computers. One
or more computer programs are running on each compter. Any failure of these
embedded computer systems could endanger human life and cause substantial
economic losses, and thus, there is a need for software development methods
and tools to minimize the risk of failures.

The purpose of worst-case execution time (WCET) analysis is to provide
information about the worst possible execution time of a computer program
before using the program in the final product. WCET estimates are a key
component in providing guarantees of satisfactory system behavior, and are
especially important when it must be proven that the system will always behave
correctly, even in the most stressful situations.

Static WCET analyses are a means of determining the worst-case execution
time of a program without actually running it. Such analyses rely on models
of program behavior and timing to generate safe WCET estimates which are
guaranteed not to underestimate the actual WCET. The alternative analysis
method is to test the systems and measure the execution times. This will,

2 Chapter 1. Introduction

Figure 1.1: Example of products using embedded computers

however, not guarantee that the true worst case will be found, since in general,
it is practically impossible to test all possible program behaviors. Static WCET
analysis is a concept similar to inspecting the blueprints of a bridge to determine
whether it will collapse, instead of building the bridge and driving heavy trucks
across it in order to test its strength.

This thesis is about static WCET analysis, in particular about a WCET
tool-architecture applicable to a wide spectrum of different embedded computers
and programs. The remaining chapters of this thesis will present different parts
of the tool in more detail, including methods and algorithms suitable for the
particular problems encountered.

The rest of this introduction will give a more detailed background of embed-
ded systems, real-time systems and program execution time. A reader familiar
with this background can proceed directly to Section 1.6, where the concrete
contributions of this thesis are presented.

1.1 Embedded systems

An embedded system can be said to be “a computer that does not look like a
computer”, i.e., it is a part of, incorporated within a product. It is a computer
used as a mean to achieve some specific purpose, the computer is not the end
product in itself.

Contrary to popular opinion, the majority of computers sold are not Intel and
AMD systems or servers. The great majority of computers are embedded, used
in consumer electronics, vehicles, airplanes, game systems, hand-held devices,
networking and communications systems, and many other applications. Figure
1.1 shows products that depend on embedded computers to function properly.

1.1 Embedded systems 3

wem High-speed

s Low-speed

DIM SWM

CEM

Figure 1.2: Schematic of on-board electronic modules in Volvo S80

In fact, over 98 percent of the total, more than 8 billion processors produced
annually, are used in embedded systems [Hal00, Tur02]. The dominating use
of computers today is embedded systems, and this will increase even further as
we enter an era of pervasive computing with enourmous amount of cooperating
computers controlling virtually all the devices in our environment.

In many embedded systems several different embedded computers are in-
cluded and may need to communicate with each other to fulfill the system ob-
jective. For example, a GSM mobile telephone contains at least two processors:
a digital signal processor (DSP) specialized for handling encoding and decoding
of radio and data signals, and a main processor to run the menu systems, games
and other user-interface functions.

As processors become more powerful, more reliable, and less expensive, they
also become attractive for use in new areas. In many cases, computers replace
sub-systems that were previously controlled entirely by mechanical systems or
fixed-function logic implemented as electro-magnetic relays or electronic circuits.
But not only do computers replace existing systems or system components, they
also have the potential to provide more functionality with higher reliability at
lower cost.

For example, it is now common practice to use embedded computers to
control many parts of automotive systems. Modern cars have an embedded
processor to control the engine. The processor calculates time-angle ratios,
which are vital for valve and ignition timing. Outside the engine, automatic
transmissions are microprocessor controlled as well. Cars currently available
even have adaptive shifting algorithms, modifying shift points based on road
conditions, weather, and the driver’s individual habits. Anti-lock brakes are
generally computer controlled, replacing the hydraulic-only systems of earlier

4 Chapter 1. Introduction

350,000
__ 300,000 M/
o
é’_ 250,000 f\ﬁ ﬁﬁjﬂ JA\‘
. 8-bif| 44 Mv
= JV I
2. 150,000 eI\
£ VENY _
E 100,000 ol jv{ci\y WA N i;bw =
s /ﬁ\;&\m:}\'ﬁh NN
e 16-bIt | At od TR
LA AN 32-bit
1990 1892 1994 1896 1988 2000

Figure 1.3: Microprocessor unit sales. All types, all markets worldwide [Tur02]

years.

A car such as the Volvo S80 contains more than 30 embedded processors,
communicating across several networks. Figure 1.2 illustrates the arrangement
of on-board electronic modules in the Volvo S80 [Mel98]. Similarly, BMW 7-
series and the Mercedes S-class both contain over 60 processors [Tur02].

Another example of a system containing several embedded processors is a
normal PC. Apart from the main processor from Intel or AMD driving the
PC there is one processor in the keyboard, another processor in the mouse, a
processor in each hard drive and floppy drive, one in the CD-ROM, one in the
graphics accelerator, etc., all cooperating to enable the computer to behave in
the intended manner.

1.1.1 Properties of embedded hardware

Comparing the embedded processor market with the desktop market, we first
note that there is a much larger variety of processors on the embedded market.
Contrary to the desktop market situation, there is no specific architecture or
manufacturer clearly dominant. There are instead hundreds of processors types
to choose from, many very simple, low in cost and specialized for a certain type
of application.

As illustrated in Figure 1.3, simpler microprocessors (4-8-16 bit) completely
dominate the market in terms of units sold'. The list of embedded micropro-
cessors architectures (and manufacturers) available on the very fragmented chip
market is very long, including ARM, AMD, Intel, MIPS, SuperH, PowerPC and
NEC.

Embedded CPUs are usually much simpler in their design and therefore
in most cases much cheaper than desktop processors. The latter incorporate

IDesktop processors, however, represent a much large share of the manufacturers’ earnings,
since the profit per sold unit is magnitudes higher.

1.1 Embedded systems 5

many hardware features, including techniques such as caches, branch predictors
and speculative execution to boost their performance. Embedded processors
do not usually include such features which are generally too expensive, space-
demanding and power-consuming. Also, for embedded systems designed for
predictability, most of these features are considered to introduce too much time
variance into the system. For example, memory in embedded systems is often
based on static RAMs, since caches are considered too unpredictable. Caches
are also quite demanding in terms of chip area and power consumption, making
them less suitable for embedded systems.

Comparing desktop and embedded processors further, we note that embed-
ded processors are often more specialized, intended to perform a specific task.
An example of such a specialized embedded CPU is a digital signal processor
(DSP). A DSP is targeted to perform intense mathematical calculations, over
and over again, and is normally used for processing streams of digital media
or signals. Consequently, a DSP is designed to work very differently from nor-
mal processors which are more focussed on control-flow decisions and logical
operations.

Examples of factors that influence the choise of microprocessor for a particu-
lar embedded applications include cost, (i.e., sufficient performance for smallest
amount of money), size, peripheral integration, energy consumption, heat emis-
sion and the type of task to be performed.

1.1.2 Properties of embedded software

One of the main reasons for the success of computers are that they are pro-
grammable, allowing one type of computer to be used in a large variety of
different applications. Software is the key component in embedded systems,
providing added value and required behaviour. The hardware related costs are
typically only a small fraction of the total system cost [ART00]. In most embed-
ded systems, the hardware consists of standard electronic components available
in large volumes at low cost, whereas the software is to a large extent designed
specifically for the application concerned.

Considering the type of programming language used, most embedded sys-
tems are programmed in C, C++, and/or assembly language. More sophisti-
cated languages, such as Ada or Java, have found some use, but the need for
speed, portability, small code size, and efficient access to the hardware is likely
to keep C the dominant language in the foreseeable future [SKOT96]. In em-
bedded system development, several different code sources are often combined,
including library code, hand-written assembler, and machine generated C code.

Program constructs used in desktop code differ quite significantly from those
used in embedded code. For example, desktop software focusses on arithmetic
operations, while embedded software contains more logical and bitwise oper-
ations [Eng99b]. The type of algorithms used in embedded systems includes
complex decision structures, requiring many mathematical operations. Unstruc-
tured code, deeply nested loops, recursion and function pointers is also used in

6 Chapter 1. Introduction

embedded real-time systems. Much of the complexity comes from automatically
generated code, and since the amount of generated code is expected to increase,
the problems posed by generated code must be handled.

The most common focus for WCET analysis is user code, but in any system
in which an operating system (OS) is used, the timing of operating system
services must also be taken into account. Many smaller embedded systems
contain no OS, mainly because its demand for system resources are excessive
in relation to its function in the particular application. For larger applications
responsible for managing several concurrent tasks, it is more common to use an
OS. However, compared with those in desktops, the OS’s used in such embedded
systems are much smaller and include only the functionality needed for handling
the particular application. For systems with high demands on predictability and
hard timing constraints, it is common to use a real-time OS, such as Enea OSE
[Ene03] or SSX5 [Rea03].

1.2 Real-time systems

Real-time systems are computer systems that must react within precise time
constraints to events in their environment. The correct behaviour of a real-time
system depends not only on the result of the computation but also on the time
at which the result is produced. Most real-time systems are found embedded
in products used by people on an everyday basis, as well in more specialized
settings such as industrial plants, space shuttles, etc.

As an example of a real-time system, consider a computer-controlled ma-
chine on the production line at a bottling plant. The machine’s function is
simply to cap each bottle as it passes within the machine’s field of motion on
a continuously moving conveyor belt. If the machine operates too quickly, the
bottle will not have arrived. If the machine operates too slowly, the bottle will
be too far away for the machine to reach it. Stopping the conveyor belt is a
costly operation, because the entire production line must then be stopped. Con-
sequently, the key to correct performance is to have the system running at a
steady and predictable pace, i.e., neither too slow, nor too fast.

1.2.1 Hard real-time systems

Real-time systems can be classified roughly as being either hard or soft. In a
hard real-time system, there are one or more activities which must never miss
its deadline, i.e., the time limit allocated to complete a computation. Failure
to meet a deadline could cause catastrophic consequences, including damage to
the equipment, major loss in revenues, or even injury or death to users of the
system. One example of a hard real-time system is the flight-control system of
an aircraft. If action in response to new events is not taken within prescribed
deadlines, the aircraft could become unstable, which could potentially lead to a
crash.

1.2 Real-time systems 7

Another example of a system with hard-real time requirements is the anti-
lock braking (ABS) system in a car. When the driver presses the brake pedal
the system must actuate the brakes within specified time limits. The computer
controlled system must modulate the brake pressure at all four wheels, adjust-
ing the pressure to each wheel independently to prevent wheel locking. If the
response time of the system is too high, or if the brake pressures on the different
wheels are not correctly correlated, an accident may occur.

1.2.2 Soft real-time systems

In soft real-time systems the meeting of deadlines is desirable, but occasionally
missing a deadline has no permanent negative effects.

Consider a cruise-control application in a car, the basic operation of which
is to keep a constant speed of the vehicle. If the vehicle is travelling slower
than the speed selected by the driver, an embedded computer detects this and
sends a signal to the engine controller to accelerate. Similarly, if the vehicle is
travelling too fast, the computer detects this and sends a signal to decelerate.
The embedded computer needs to sample the speed and send signals sufficiently
frequently to meet performance specifications, but not so frequently that it adds
unnecessary cost to the system.

If the software occasionally fails to measure the speed in time to be used for
the control algorithm, the control algorithm can still use the latest measured
value. This is because the amount by which the speed would have changed
between the previous sample and the next is so small that the control algorithm
can still operate correctly. Missing several consecutive samples, on the other
hand, could be a problem, as the cruise control would probably stop meeting
application requirements, being unable to maintain the desired speed within a
proper error tolerance.

Other examples of soft real-time systems include multimedia, voice over IP
and video. For example, in a video playback system it is not fatal to miss an
occasional frame, and this is often not even detectable by the user. However, if
several subsequent frames are missed, the result would be an annoying blurry
picture, but (typically) no one is killed or injured as a consequence of the dis-
turbance. In general, for soft real-time systems, the failure to meet deadlines
means that the quality of the service provided is reduced, but the system will
still provide useful service.

Considering real-world applications, the distinction of soft and hard real-time
systems becomes somewhat fuzzy. For example, an embedded system can have
both hard and soft real-time requirements. Actually, the definition of real-time
system can be widened to span the spectrum of all computer-based systems
[Ste01]. Figure 1.4 illustrates this using some example applications. At one
end of the spectrum is non-real-time, where there are no important deadlines
(meaning that essentially all deadlines can be missed). These are computer-
based systems where the correctness of the result is not really dependent on
the point in time when it is produced, such as large computer-based system

8 Chapter 1. Introduction

Non < | Soft | > Hard
real-time real-time real-time
System User Internet Tele- Cruise Flight
simulation interface video communication control control

Figure 1.4: The real-time system spectrum

simulations or weather forecast calculations. At the other end is hard real-time,
where no deadline is allowed to be missed.

1.2.3 The need for timing analysis

In hard real-time applications, the system must be able to handle all possible
scenarios, including peak load situations. The worst-case system behaviour
must therefore be analyzed and accounted for. If the system is responsible for
performing several different concurrent real-time tasks it must be shown that all
these tasks can meet their respective deadlines even in the worst-case scenario.
For many systems it is important to derive these guarantees before the system
is put into production. For example, a modern combat aircraft, such as JAS 39
Gripen, contains a number of computers, all which may need to communicate to
provide the system functionality [Fre00]. Such aircraft go through very detailed
testing and analysis before being used. It is not sufficient to test-fly the aircraft
in a certain system configuration to determine if it will be unstable or not.

To derive such overall system timing guarantees, it is necessary to know the
execution time demands of the different software tasks in the system. Basically,
only if each hard real-time component of the system fulfills its timing require-
ments can we be sure that the complete system meets its requirements. Thus,
WCET analysis provides a solid foundation for constructing safer and better
real-time products.

1.3 Execution time estimates

The worst-case execution time (WCET) is defined as the longest execution time
of a program that could ever be observed when the program is run on its tar-
get hardware. There are also other execution time measures that can be used
to describe the timing behaviour of a program. The best-case execution time
(BCET) is defined as the shortest execution time of a program that could ever
be observed when the program is run on its target hardware. The BCET can
for example, be of interest in control-applications where the output must be
sent to the controlled object neither too soon, nor too late. The average-case
execution time (ACET) lies somewhere in-between the WCET and the BCET,
and depends on the execution time distribution of the program.

1.3 Execution time estimates 9

probability
A

Measurements might
Actual miss th_e W(_)rst case Actual
BCET execution time WCET
tighter > { tighter
. n execution tlm‘e
safe BCET unsafe estimates safe WCET
estimates stimates
possible execution times ——————

Measurements
produces values in
the unsafe range

Static WCET analysis
produces values in
the safe range

Figure 1.5: Execution time estimates

The goal of execution time analysis is to produce estimates of the WCET and
BCET. To be valid for use in hard real-time systems, WCET estimates must
be safe, i.e., guaranteed not to underestimate the real WCET. To be useful,
they must also be tight, i.e., provide acceptable overestimations of the WCET.
Similarly, a BCET estimation should not overestimate the BCET and provide
acceptable underestimations.

Figure 1.5 shows how estimates of WCET and BCET relate to the actual
WCET and BCET of a program. The example program has a variable execution
time, and the curve shows the probability distribution of its execution time.
The figure also shows the way measurements and static analysis relate to time
estimates (more on this in Section 1.3.3 below).

1.3.1 Problem definition

It should be noted that the definition of WCET is valid only for one program in
isolation. WCET analysis is therefore performed under the assumption that the
analyzed program will be running in isolation and execute undisturbed on the
target hardware. This means that interference from background activities, such
as direct memory access (DMA) or refresh of DRAM memory are not consid-
ered. Similarly, direct interference from the operating system and concurrently
running tasks, such as preemptions or interrupts are also ignored in the analysis.

We claim that the assumptions above are reasonable and timing interfer-
ence caused by such interfering activities should instead be considered in some
subsequent analysis, e.g., schedulability analysis [BMSO*96, LHS*96, Sch00].
The problem is thus to derive a safe and sufficiently tight WCET estimate for
a single program (task) which executes on a particular hardware platform in a

10 Chapter 1. Introduction
specific environment.

1.3.2 Sources of execution time variation

The problem that needs to be addressed by WCET analysis is that a computer
program typically has no fixed execution time. Variations in the execution time
occur due to the characteristics of the work the program has to perform and
the hardware on which it runs.

Useful computer programs are typically sensitive to their inputs. Consider
the Patriot system used to protect military facilities and cities against incoming
missiles. The computer system is responsible for detecting an incoming missile,
classifying it as a non-friendly object, calculating its trajectory and launching a
defensive Patriot missile to intercept the incoming missile. Most of the time, no
missile is incoming, and a rather limited amount of computations are needed.
However, when a incoming missile is detected a large amount of computation
power is needed. Thus, the same software (computer program) can take different
amount of execution time depending on the situation.

The hardware on which the program runs is just as important. Obviously,
a program runs much faster on a brand new PC than on an old computer. A
WCET analysis must consider the timing properties of the particular hardware
on which the target program runs. Modern processors are designed to optimize
throughput by performance-enhancing features such as caches, pipelines, specu-
lative execution etc. [HP96]. Such features are designed to enhance the average
performance, but introduce execution time variability and make it much harder
to derive a safe WCET estimate.

In conclusion; both the properties of the software and the hardware must be
considered in order to understand and predict the WCET of a program.

1.3.3 Obtaining execution time estimates

The traditional way to determine the timing of a program is by measurements,
also known as dynamic timing analysis. A wide variety of measurement tools
are employed in industry, including emulators, logic analyzers, oscilloscopes, and
software profiling tools [Ive98, Ste02]. The methodology is basically the same
for all approaches: run the program many times and try different potentially
“really bad” input values to provoke the WCET. This is time-consuming and
difficult work, which does not always give results which can be guaranteed.

As illustrated in Figure 1.5 measurements are inherently unsafe, guaranteed
to produce timing results which are equal to or less than the actual WCET.
When using measurements, a safety margin must be added to the result ob-
tained, in the hope that the real worst case lies below the resulting WCET
estimate. However, if too much margin is added, resources will be wasted, and
if the added margin is too small, the resulting system will be potentially unsafe.

Static WCET analysis avoids the need to run the program by simultaneously
considering the effects of all possible inputs, possible program flows, and how

1.4 Uses of WCET analysis 11

the program interacts with the hardware. This is done by using mathematical
models of the software and hardware involved. The result is a worst-case exe-
cution time estimate that is greater than or equal to the actual worst-case, and
thus safe in all circumstances. The analysis must be repeated after a change
in the hardware or software, but the amount of work involved is usually much
smaller than for measurements. Also, when using static WCET analysis, there
is no need to set up the actual target system.

1.4 Uses of WCET analysis

The main use of WCET analysis is in the development and analysis of real-
time systems. In such systems WCET estimates are used to perform scheduling
and schedulability analysis, thereby providing timing guarantees for the overall
system behaviour, as well as to determine whether timing constraints can be
met for certain tasks, and to check that interrupts have sufficiently short reac-
tion times [ABD'95, CRTM98, Gan01]. However, WCET analysis has a much
broader application domain; in any product development where timeliness is
important, WCET analysis is a natural tool to apply.

Tools for modeling, validation and verification of real-time systems, like Up-
pAal [LPY97], Times [AFM™02], HyTech [HHWT97], Kronos [BDM*98] and
SPIN [Hol97] can use WCET estimates to provide guarantees of the overall sys-
tem behaviour. Typical application areas in which such tools are used include
real-time controllers and communication protocols, in particular those in which
timing factors are critical.

When developing reactive systems using programming tools such as TAR
VisualSTATE, [IARO03], Telelogic Tau, [Tel03], and I-Logix StateMate, [I-L03],
feedback relating to the timing of model actions and the worst-case time from
input event to output event is very helpful, as demonstrated by Erpenbach et al.
[ESS99]. The use of system modelling tools for UML and Statechart [Rat03]
could also benefit from accurate timing estimates.

For most embedded system developers, getting some form of timing estimates
would be of great value in its own. For time-critical code parts WCET estimates
can be used to verify that the execution time is short enough, that interrupt
handlers finish fast enough, or that the sample rate of a control loop can be
maintained. WCET analysis can also be used to find and target optimizations
of the part of the programs where most time is spent. Timing analysis should
be able to guide compilers in code optimizations targeting (worst-case) timing
of programs.

Another important aspect of embedded software is that only small parts of
the applications are usually really time-critical. For example, in a GSM mobile
phone, the time-critical protocol code is very small compared to the code for
the user interface. Using this fact, ambitious WCET analysis can be performed
on the timing-critical parts, provided that they can be identified.

WCET analysis can also be used in embedded system development to select

12 Chapter 1. Introduction

appropriate hardware. System designers can take the application code they will
use and perform WCET analyses for a range of target systems, selecting the
cheapest (slowest) chip that meets the performance requirements.

Practical experience of WCET analysis in industry has so far been lim-
ited to the space industry [HLS00b, HLS00a] and aerospace industry [FHL'01,
TSH*03]. Tt seems likely that aerospace and automotive industries will be the
leading industries in accepting static WCET analysis estimates, since many of
their products include resource-constrained embedded safety-critical real-time
systems [FHLT01].

1.5 The need for WCET analysis tools

Static WCET analysis is a promising technology that can be used to determine
the timing behaviour of programs, especially for programs used in embedded
real-time systems. For very simple architectures and programs it is probably
possible to derive WCET estimates by hand using code inspection, hardware
manual readings and clock-cycle counting. However, due to the complexity of
embedded systems hardware and software, automated tools are essentail to make
it practical to apply static WCET analysis. This thesis will present some steps
towards such a tool architecture, including data structures, different analyses,
and calculation methods suitable for static WCET analysis.

We believe that a WCET tool should ideally be a component in an integrated
development environment, making it a natural part of the embedded real-time
programmers’ tool chest, the same way as profilers, hardware emulators, compil-
ers, and source-code debuggers. In this way, WCET analysis will be introduced
into the natural work-flow of the real-time software engineer. Widespread use
of static WCET analysis tools would offer improvements in product quality and
safety for embedded and real-time systems, and reduce development time since
the verification of timing behaviour is facilitated.

Due to the diversity on the embedded processor market, it is not possible
to reach widespread use by only supporting a single target architecture. In-
stead, there is a need for a WCET tool architecture which is easily retargetable,
supporting many types of embedded processors and programming environments
with minimal retargeting effort. The tool architecture should also be flexible,
since different target systems require the performance of different types of anal-
yses. The underlying technology needs to be reasonably efficient, providing
timing estimates fast enough not to stall other development work. Finally, to
guarantee the degree of safety of the WCET estimates it must be possible to
verify the correctness of the analysis methods used.

The WCET tool architecture outlined in this thesis aims at retargetability
and flexibility by dividing the WCET analysis task into modules, each with well-
defined interfaces, and allowing these modules to be independently replaced. A
modular structure also allows the correctness of the tool to be assessed since it
is easier to validate the individual modules in isolation. The analysis algorithms

1.6 Contributions of this thesis 13

presented have been created with efficiency in mind, limiting the overall tool
complexity.

Also, even though static WCET analysis has been known to the research
community for some time, it is still difficult to compare the performance and
results of the analyses presented by different WCET research groups. A modular
WCET tool architecture provides a possibility for researchers to exchange results
and compare methods. For example, by having well-defined interfaces between
modules, analysis results from one type of tool can be given as input to another
tool, allowing each tool to specialize in its particular application domain.

1.6 Contributions of this thesis

The specific contributions of this thesis are:

m A tool architecture for the modularization of WCET analysis. The architec-
ture divides the WCET analysis task into modules, each with well-defined
interfaces, and allows these modules to be independently replaced. This is
an important contribution, since previous work in the WCET analysis area
have been more focussed on individual analyses, than on the desired prop-
erties of an overall WCET tool architecture. The types of modules in our
tool architecture are: flow analysis; to determine the possible program flows,
global low-level analysis; to determine the effects of caches, branch predic-
tors, etc., local low-level analysis; to determine the effects of pipelining and
to generate execution time for program parts and calculation; to combine
flow and timing information for calculation of a program WCET estimate.

m A program flow representation suitable for WCET analysis. The represen-
tation consists of the scope graph, a graph representation capturing the dy-
namic execution behavior of the program, and the flow fact language, which
is an annotation language used for providing constraints on the program flow.
The representation extends the type of flow information previously possible
to express and handle in WCET analysis, thereby allowing for calculation of
tighter WCET estimates.

m Three different calculation methods, each able to use program flow and timing
information for deriving a WCET estimate:

- A path-based calculation method which explicitly extracts the longest exe-
cution path in the program. Our method is more efficient than previously
presented path-based methods and has a computational complexity close
to linear in the size of the program.

- An implicit path enumeration technique (IPET)-based calculation method,
using integer linear programming (ILP) or constraint programming (CP)
techniques for calculating a WCET estimate. The method is able to han-
dle more complex flow and timing information than previously presented
IPET methods, thereby allowing for tighter WCET estimates to be de-
rived.

14

Chapter 1. Introduction

- A cluster-based calculation method using flow information to divide a pro-
gram into parts in which local WCET calculations can be made. Com-
pared with previously presented calculation methods, we avoid potential
complexity problems while keeping the precision of derived WCET esti-
mates.

The possibility of having three different calculation methods within the same
framework pinpoints the benefit of our modular tool architecture.

A prototype tool implementation. The tool is based on the WCET tool
architecture outlined and includes machine models for two embedded micro-
processors, the NEC V850E and the ARM9. We have performed extensive
experimental runs to evaluate the correctness, precision and efficiency of our
prototype, as well as the individual analyses and calculation modules.

The main focus of this Ph.D. thesis is the overall tool architecture, the pro-
gram flow representation and the calculation. However, the thesis also contains
material on low-level analysis including:

A pipeline timing analysis allowing use of existing trace driven simulators to
obtain program timing. Previous research has required the construction of
special purpose hardware models to capture timing safely for WCET analysis.
The use of simulators reduces the effort required to adapt WCET tools to new
hardware architectures and allows for easier verification of the correctness of
the hardware model in relation to the real hardware.

A timing model safely capturing the effects of target hardware timing. The
timing model allows calculation methods to handle timing effects of differ-
ent performance enhancing features, such as caches and pipelines, without
reverting to detailed hardware modelling. Compared with previous research,
the timing model permits calculation methods to safely capture timing ef-
fects between instructions in non-adjacent basic blocks, something that has
not previously been possible without introducing additional pessimism.

For a more detailed presentation of the timing model and the pipeline analysis
we refer to the Ph.D. thesis of Jakob Engblom [Eng02].

1.

7 Thesis outline

The remaining chapters of this thesis are organized as follows:

Chapter 2 gives an overview of static WCET analysis and previous work in
the field.

Chapter 3 presents the modular architecture for WCET analysis tools and
gives a short overview of the interface data structures.

Chapter 4 discusses the issues involved in representing program flow for
WCET analysis.

Chapter 5 presents our flow representation and annotation language.
Chapter 6 presents our low-level analysis, including the pipeline timing anal-

1.7 Thesis outline 15

ysis and the resulting timing model.

Chapter 7 presents the path-based calculation method.
Chapter 8 presents the IPET-based calculation method.
Chapter 9 presents the cluster-based calculation method.

Chapter 10 presents the prototype implementation and evaluations based on
different experimental runs.

m Chapter 11 draws conclusions from the work presented and outlines ideas for
future work.

16

Chapter 1. Introduction

Chapter 2

WCET Analysis Overview
and Previous Work

This chapter presents previous work in the area of static WCET analysis, to-
gether with a conceptual classification of the phases performed in static WCET
analysis.

2.1 Components of static WCET analysis

Program stages
Source ; Object Target Actual
Code > Compiler =iy Code » Hardware '"»(WCET

Corre-
Info spondence

Flow -

i WCET
Analysis Calculation f=
\ Low-Level LY

Analysis

WCET Analysis stages

Figure 2.1: Components of WCET analysis

The execution time of a program depends on a number of factors, as illus-
trated in Figure 2.1. The program code defines the possible instructions and
execution paths to be executed and the compiler transforms the high-level pro-
gram source code to a semantically equivalent object code. The object code is
executed on the target hardware and the actual WCET is the largest execution
time that could ever be observed when the program is executed.

17

18 Chapter 2. WCET Analysis Overview and Previous Work

We divide WCET analysis into the following three distinct phases, closely
connected to the different factors that influence the program execution time,
and illustrated in Figure 2.1:

m The flow analysis analyses the source- intermediate- and/or object code of
the program, and determines the possible flows through the program, i.e.,
the possible sequences of instructions that may be executed.

m The low-level analysis analyses the object code and target hardware to deter-
mine the timing behaviour for instructions running on the target hardware.
For modern processors it is especially important to study the effects of various
performance enhancing features, like caches and pipelines.

m The calculation combines the results of the flow and low-level analyses to
obtain a WCET estimate for the program.

The phases serve as a conceptual classification of static WCET analysis
and most WCET research groups make a similar division. Some researchers
integrate several analysis phases into a single algorithm. Some of the phases can
be further divided into different sub-stages, e.g., to analyse different hardware
features in isolation. The phase classification is also the base of our modular
tool architecture introduced in Chapter 3. The WCET analysis needs input
from all the program stages involved in producing the executable program, as
illustrated in Figure 2.1.

2.2 Flow analysis

The purpose of the flow analysis phase is to determine possible program flows,
i.e., the dynamic behaviour of the program. The result of the flow analysis is
information about which functions get called, how many times loops iterate,
if there are dependencies between if-statements, etc. Since the problem is
computationally intractable in the general case!, a simpler, approximate analysis
is normally performed. The analysis should yield safe execution information,
i.e., all feasible executions must always be covered by the approximation. To be
useful, the execution information extracted must also be tight, i.e., including as
few infeasible executions as possible.

The flow information can be extracted on the source- or object code level
and might benefit from information collected during the program compilation.
We further divide the flow analysis phase into three sub-phases:

1. Flow extraction: Obtaining flow information, either by manual annotations
or automatic flow analysis methods.

2. Flow representation: Representing the results of the flow extraction, poten-
tially integrating results from several different flow extraction methods.

3. Calculation conversion: Converting the represented flow information for the
final WCET calculation phase.

IThe general problem is equivalent to the well-known Halting problem, i.e., that it is
impossible to construct a program able to determine if any given program will halt or not.

2.2 Flow analysis 19

Not all flow information representations can represent all type of possible pro-
gram flows and not all calculation methods can take advantage of all type of
flow information.

The work presented in this thesis will focus on the last two sub-phases,
presenting a general representation for program flow (Section 5) and giving
algorithms to convert the flow information to a format suitable for several dif-
ferent calculation methods (sections 7, 8 and 9). No particular flow extraction
algorithms will be presented.

2.2.1 Flow extraction

Automatic flow analysis are methods to obtain flow information from the pro-
gram code with little or no manual intervention. Different approaches have
different complexity, generate different amounts of information, and can handle
different levels of program complexity. For complex programs it is sometimes
very hard (or even impossible) to derive needed flow information, and most au-
tomatic flow analysis are complemented with the possibility to provide manual
annotations. Manual annotations allow the programmer to by hand annotate
the program with additional flow information.

Researchers have developed automatic flow analysis methods for detecting
infeasible paths? and upper bounds for loops.

In the beginning of my doctoral studies I developed a flow analysis method
together with Jan Gustafsson [EG97, Gus00]. This analysis is based on abstract
interpretation [Cou96, Cou81], works on the program source code level and cal-
culates safe values for variables with respect to loop iterations and function calls.
The values are used to derive safe information on loop bounds and infeasible
execution paths.

Chapman et al. [CBW94] use symbolic execution, i.e., an execution of a
program using symbolic expressions in addition to concrete values, over SPARK
Ada to extract program flow information. The method calculates some infeasible
paths but manual annotations for loops must be provided.

Altenbernd and Stappert [Alt96, SA00] use symbolic execution on the source
code level to derive flow information. The source code is a subset of C. The
approach is able to identify some infeasible paths in the program.

Lundqvist and Stenstrém [LS00] find execution information using symbolic
instruction-level simulation of the object code. Their flow analysis is an in-
tegrated part of the calculation phase, simultaneously taking pipelining and
caching into account.

Colin et al. [CP00] use symbolic evaluation to calculate the number of iter-
ations in inner loops where the iteration count depends on the loop variables of
outer loops. However, the initial symbolic formulas must be added manually.
Liu and Gomez [LG98] perform symbolic evaluation on a functional language
to find executable paths.

2An infeasible path is an execution path allowed by the static structure of the program,
but not possible when the semantics of the code is taken into account

20 Chapter 2. WCET Analysis Overview and Previous Work

Healy et al. [HSRW98]| use data flow analysis and special algorithms to au-
tomatically calculate upper and lower loop bounds for several type of loops. By
user-provided loop-invariants the bounds can be further tightened. In [HW99]
they present a method using value constraints on variables to find iteration
dependent path information inside loops.

Holsti et al. [HLS00b] use Presburger arithmetic to calculate loop bounds
for counted loops, analysing programs on the object code level. The approach
allows for several types of information (loop bounds, variable value bounds) to
be added as annotations to help the automatic flow analysis.

Gerlek et al. [GSW95] present a method for syntactically identifying certain
classes of loop induction variables. Such classification is useful for deriving lower
and upper bounds of loops.

Ziegenbein et al. [ZWRT01] identify segments of a program that only have
a single feasible path by following input-data dependences. Ferdinand et al.
[FHLT01] are able to detect some infeasible program paths by analysing the
object code using abstract interpretation over processor register values.

2.2.2 Flow representation

The extracted flow information will have to be represented in relation to a
program representation. The program representation comes in the forms of
graphs, syntax trees or program code and can be given in relation to source-,
intermediate- or object-code.

Some researchers gives flow information directly or indirectly in relation to
the program source code. Kirner et al. [KP01, Kir02] enter manually calcu-
lated flow information into the program source code by extending the C lan-
guage with additional syntax to define scopes, loop limits and path information.
Borjesson [Bor95] allows similar flow information to be provided but takes a dif-
ferent approach by #pragmas directives instead of altering the language syntax.
In [RKO02] Kirner et al. includes WCET analysis in the MATLAB/Simulink
developing environment by generating their annotated C code from high-level
Matlab/Simulink models.

In [CBW94] Chapman et al. extend SPARK Ada, a subset of the program-
ming language Ada83, with additional annotations to facilitate partial proofs
of program correctness and WCET calculations. They introduce the concept
of modes, allowing a program to generate several WCET estimates to reflect a
particular system state.

Park [Par93] defines IDL (Information Description Language), to describe
the possible paths through a program. IDL uses certain keywords, like samepath(A,B)
and nopath(A,B), to denote constraints and relate executions of different pro-
gram entities. The flow information can be given in relation to certain scopes
in the graph, for example always(A) inside L1 means that statement A must
be executed within L1.

Puschner and Koza [PK89] present a program representation in the form
of a syntax tree (see Section 2.4.1). Flow information is given in respect to

2.2 Flow analysis 21

this format, including keywords to express the number of times that several
loops are iterated together and the number of times the control-flow can pass
through a particular statement. In [Vrc94] Vrchoticky introduce the timing-tree;
an extension of the syntax-tree to include timing information. The timing-tree
works as a format for providing object code timing properties to the source code
program level.

Colin and Bernat [CB02] present a program representation, called scope-tree,
which extends the syntax-tree with a possibility of giving symbolic information
on the relative execution frequency of sub-branches in the syntax-tree.

Gustafsson [Gus94] describes WCET analysis for RealTimeTalk, a real-
time version of the object-oriented programming language Smalltalk. The pro-
gram representation is tree-based with additional constructs to support object-
oriented features such as message-passing, polymorphism and inheritance.

Recently, many researchers has discovered that the use of linear constraints
offers a powerful representation of program flow. The approaches by Li et al.
[LM95], Puschner et al. [PS95] and Theiling et al. [TF98] all use the basic
block graph and linear constraints to express program flow. The constraints
are formulated as constraints over count variables holding the number of times
program entities can be executed.

Ottosson and Sjédin [0S97] employ Sicstus Prolog constraints over count
variables to model possible program flows, thereby allowing more complicated
non-linear flows to be expressed, compared to plain linear constraints.

We have developed the scope graph program representation, a graph derived
from the program basic-block graph, but extended to express the dynamic ex-
ecution behaviour of the program, and the flow fact language, an annotation
language used for providing constraints on program flow [EE00]. The scope
graph and flow fact language will be presented in Chapter 5.

2.2.3 The mapping problem

One intricate question is to which program code level the flow representation
should be related. Flow information can be provided in relation to the source
code, the intermediate code in a compiler, or to the object code. Automatic flow
analysis is probably easier to perform at the source code or intermediate code,
since variables and other entities of interest are harder to identify in (optimised)
object code. Also, for the potential WCET-tool user, manual annotations are
easier to provide at the source-code level.

However, if the flow information is provided at the source code level, the
information must somehow be mapped down to the object code to be used in
the WCET calculation. In the presence of optimising compilers, this prob-
lem is non-trivial since transformations like unrolling loops, inlining functions,
and duplicating code can be performed by the compiler [Muc97]. For example,
Lundqvist and Stenstrém [LS98] report a case where entire conditional state-
ments were removed from the program during the compilation process. The
mapping problem is very similar to the problem encountered when trying to de-

22 Chapter 2. WCET Analysis Overview and Previous Work

bug optimised code [Zel84, AT96, Wis94, BW95], something indicating that a
WCET tool should preferably be constructed in close cooperation to a compiler
framework.

Engblom et al. [Eng97, EAE98] present an approach of an external sys-
tem that transforms the flow information to reflect the code transformations
performed by the compiler. Kirner et al. [KP01] uses the internal debug infor-
mation propagation facilities in the gcc compiler to achieve the same task. In
[KPO03] the safeness of the flow information transformations is proven using an
abstract interpretation framework.

Lim et al. [LKM98] propose an approach where the compiler is assumed to
maintain labels identifying relevant locations in the code, allowing loops in the
object code to be identified with their source code equivalents. Holsti et al.
[HLSO00b] rely on compiler generated symbol tables and debug information to
map information about loop bounds and variable values from high-level code
constructs to the object-code.

One way to avoid the mapping problem is to perform (automatic) flow analy-
sis on the object code of a program [L.S00, HLS00a, FHL™01]. However, working
on the object code is difficult, since variables migrate between memory and reg-
isters, making it difficult to identify and track relevant data objects.

Assuming control over a compiler, it is possible to perform the analysis in-
side the compiler on the intermediate code, which mostly avoids the mapping
problem since the analysis can then be performed on the optimised program
with full information about variables etc. [HW99, HSR100]. This also avoids
discarding the large amount of program information collected during the com-
pilation process. Following this reasoning, Gustafsson et al. [GLSB03| perform
flow-analysis on a compiler-generated intermediate code, thereby avoiding some
of the mapping problems.

Another option is to keep the flow information on some source code level
and try to assign execution time to the various high-level program constructs
[BBMP00, PH98]. For very simple processors and non-optimised code this might
be feasible, but due to modern hardware features and compiler optimisations it
is extremely difficult to derive such timing which is both safe and tight. The uses
of virtual machines in programming languages, like Java and Erlang [AWVW96]
complicates the matter even more.

2.3 Low-level analysis

The purpose of low-level analysis is to determine the execution time for each
atomic unit of flow (e.g., an instruction, a basic block® or a longer execution
path) given the architectural features of the target hardware system. To obtain
actual timing behaviour of a program the low-level analysis must be performed
on the program object code.

3 A basic block is a sequence of instructions that can be entered only at the first instruction
in the sequence and exited only at the last instruction in the sequence [Muc97]

2.3 Low-level analysis 23

We can further divide the low-level analysis into two sub-phases:
m Global low-level analysis determines the timing effect of the machine-dependent
factors that needs to be modelled over the entire global program. Examples

of such features are instruction caches, data caches, branch predictors, and
translation lookaside buffers (TLBs).

m Local low-level analysis determines the timing effects of machine-dependent
factors that can be handled locally for a few neighbouring instructions. Ex-
amples of such effects are pipeline overlap and memory access speed.

In our tool architecture (see Chapter 3) the global and local low-level anal-
yses are kept as separate steps, and the result from the global low-level analysis
is given as input to the low-level analysis. Some researchers integrate the global
and local low-level analyses into a single phase. Also, some researchers integrate
the low-level analysis with the calculation phase, thereby deriving hardware tim-
ing effects simultaneously with the WCET estimate.

2.3.1 Global low-level analysis

For some timing behaviours of a microprocessor, analysis over the whole pro-
gram (or at least large parts of it) is required in order to obtain a safe and tight
result. For example, to determine the cache behaviour of an instruction, the
analysis must consider many instructions, arbitrarily remote from the instruc-
tion considered. Since exact analysis is normally impossible for global features,
an approximate but safe analysis is necessary. For example, when an attempt
is made to determine whether a certain instruction is in the cache, a cache miss
is assumed unless we can be absolutely sure of a cache hit and that it can be
guaranteed that a cache miss is always worse than a cache hit.
Researchers have investigated the behaviour of instruction caches, data caches,

unified caches and branch predictors.

Memory
Memory
Memory
Memory
icache | [dcache] cache
CPU CPU
(a) architecture (b) separate instruction (c) unified instruction (d) two-level
without cache and data cache and data cache cache hierarchy

Figure 2.2: Possible memory organisations

Cache analysis

Caches are used as the main solution for bridging the ever-increasing gap be-
tween the bandwidth demand of the modern microprocessor and the perfor-

24 Chapter 2. WCET Analysis Overview and Previous Work

mance of the memory system. For embedded systems designed for predictability
caches are not that common. The primary reason is that they are costly both in
terms of processor area and power consumption and are considered to introduce
too much variability in the system. However, for more high-speed CPUs caches
are almost mandatory.

The idea behind a cache is to use a fast intermediate memory between the
relatively slow main memory and fast processor to store the most recent blocks
fetched from memory. When the processor wants to access a memory block it
first checks if the cache contains the block. If so, the access is a cache hit and
results in a fast access. If not, the access is a cache miss and the block is copied
from main memory into the cache, where it is stored for this and future uses.
Consequently, a cache miss takes much longer time to process since it requires
an access to the main memory.

We can distinguish between instruction caches, used for providing faster
access to the executed instructions, and data caches, used for providing faster
access to the data manipulated by the instructions. In unified caches both the
instructions and data are stored in the same cache. To enhance performance
further, several levels of caches can be kept between the processor and the main
memory forming a cache hierarchy. Figure 2.2 illustrates the different concepts.

A cache consists of several locations where blocks from memory can reside.
If a block from memory can reside only in one particular location in a cache,
the cache is called direct-mapped. If a memory block can be placed in several
cache locations the cache is called set-associative. For set-associative caches a
replacement strategy is needed to determine which memory block to evict from
the cache when adding a new block from memory. Examples of replacement
strategies used are least-recently used (LRU), first in first out (FIFO), and
random replacement [HP96].

Instruction cache behaviour is rather easy to analyse, since the instruction
fetch behaviour can be determined from the program flow (at least when no
speculative execution is performed and all instructions addresses are known).
Data cache behaviour is harder to determine, since the data access pattern is
not fixed but depends on the run-time behaviour of the program, e.g., a single
instruction can generate many different data address references.

The first type of cache to be analysed in WCET analysis was direct-mapped
caches [LBJT95, AMWH94]|, since their behaviour is the easiest to model and
predict. Today, most type of analysis are able to handle set-associative caches.
Most analyses for instruction caches in the literature [LBJT95, LMW96, 0S97,
Sta97, FMW97, HAMT99] assume that the replacement condition is perfect
LRU. The uses of less predictable replacement strategies, like pseudo-LRU, may
introduce more pessimism in the cache analysis result [Eng02, HLTWO03].

Some researchers perform a separate cache analysis phase to determine the
instruction cache behaviour. Healy et al. [HAM™99] perform a static cache sim-
ulation which generates a categorisation of each instruction cache access as one
of always miss, always hit, first miss, first hit. The approach has been extended
to instruction cache hierarchies with several levels of caches [Miil97]. White

2.3 Low-level analysis 25

et al. [WMHT97] extends the approach to data caches, classifying instructions
in a similar manner, exploiting the data locality inherent in loops over arrays
to decrease the number of pessimistic miss categorisations.

Ferdinand et al. [FMW97] use abstract interpretation techniques to conser-
vatively estimate instruction cache hits and misses. The analysis works over a
partially unrolled graph allowing the analysis to differ between first and remain-
ing iterations of a loop. Heckmann et al. [HLTWO03] presents an extension of the
approach working to unified caches and caches with pseudo-LRU replacement
strategies.

Some approaches integrate the cache analysis into the calculation phase.
Lim et al. [LBJ'95] analyse the instruction cache behaviour by traversing the
syntax tree of a program, determining a cache behaviour abstraction for each
node. Kim et al. [KMH96] add data cache analysis to the approach.

Li et al. [LMW96] build a cache conflict graph to model conflicting instruc-
tion cache accesses. The graph is converted to a set of linear constraints, and
solved as part of the calculation phase. Ottosson and Sjédin [OS97] employ
constraint techniques to model the execution time gains from using instruction
caches and data caches.

Lundgqvist and Stenstrém [LS00] perform instruction and data cache analysis
together with flow analysis and calculation in an extended processor simulator.
In [Lun02] the data cache analysis is extended to handle more types of compli-
cated data, including data structures with unknown placement in memory.

The cache analysis used by Stappert and Altenbernd [SA00] uses data flow
analysis methods to determine instruction and data cache behaviour for pro-
grams without loops. The pipeline analysis is performed simultaneously.

Little work has addressed the behaviour of unified caches, mainly due to the
complexity introduced by having data and instructions blocks competing for the
same locations in the cache. However, Ferdinand et al. [FHLT01] have devised
a low-level analysis for a processor employing a unified cache. Value analysis
using abstract interpretation is performed on the object code of the program in
order to determine the potential target addresses of data access instructions.

An alternative route to limit the unpredictability caused by caches is by lock-
ing the contents of the cache. Puaut and Decotigny has performed some work
in algorithm for selecting the contents of statically locked caches [PD02]. Vera
et al. performs data cache analysis and cache locking for achieving predictable
data cache behaviour.

Branch prediction analysis

Branch prediction is another global effect that can have a large effect on the
execution time of a program. The outcome of a conditional branch can only
be determined quite late in the pipeline and unless some guess is made as to
where the program will continue, the pipeline will be stalled until the branch is
decided.

26 Chapter 2. WCET Analysis Overview and Previous Work

Branch predictions are used to guide an out-of-order processor in speculative
execution. In speculative execution the processor carries on executing instruc-
tions in spite of unresolved conditions such as branches or memory accesses.
Later, when the condition is resolved, it becomes clear whether the speculation
executed can be affirmed. If not, they have to be cancelled and the correct
instructions executed.

The simplest form of branch prediction techniques are static in that the
guesses are statically defined and not dependent on the actual program execu-
tion. For example, a simple rule is to assume that all backward branches are
always taken, using the fact that programs spend most of their time executing
in loops.

To reach higher predictability dynamic techniques have been developed. In
one-level branch prediction each branch is predicted based on its recent execu-
tion history of outcomes. Some recent processor designs for desktop and server
uses two-level dynamic branch prediction techniques [YP93, Gwe95]. In two-
level predictors, the recent branch history of several branches is used in order
to derive patterns in how a single branch behaves or in how several branch
outcomes are correlated.

Colin and Puaut [CP00] model the effect of the local branch predictor scheme
for the Intel Pentium processor. The result is a classification of branch predic-
tions similar to the instruction cache reference classification performed by Healy
et al. [HAM™99], e.g., always-miss-predicted or first-time-miss-predicted.

Mitra and Roychoudhury [MRO1, MR02] model the effect of global branch
predictors using linear constraints. The analysis is integrated with the calcula-
tion where the effects of branch predictions and the program timing is calculated.

Engblom [Eng03] investigate the execution time variations caused by branch
prediction for a number of advanced processors. Using measurements he ob-
serves hard-to-predict execution time variation for dynamic branch predictor
schemes, and notes that they sometimes cause inversions, where executing more
iterations of a loop takes less time than executing fewer. The conclusion is that
dynamic predictors schemes should be avoided in real-time systems where high
execution time predictability is desired.

MMU analysis

For a system using a memory-management unit (MMU), there is a need to anal-
yse the worst-case timing of memory accesses in more detail. The MMU is used
to translate virtual addresses to physical addresses. A Translation Lookaside
Buffer (TLB) is a cache holding the most recent address translations, thereby
providing a faster mapping. Using a MMU the time required to load a value
from memory can be quite high (even for fast memory and no cache), since a
TLB miss may require a complex table walk in main memory, involving several
INEemory accesses.

Bernat and Audsley [BAO1] present some techniques to reduce the penalty
introduced by TLB misses.

2.3 Low-level analysis 27

2.3.2 Local low-level analysis

IF: Instruction fetch
ID: Instruction decode and register fetch
IF In Ex MEM WB EX: Execution and address calculation
MEM: Memory access
WB: Write back

(a) Example pipeline structure

1234567891011‘1213141516S 123458678
[l] A c clock- I]] A . c stall
[E] A . Cc cycles [E] A. C =
@ A BB c @ AEBC
M A B c M A Bic
(W] Al ‘B c (W] A [Bic

(b) Non-pipelined execution (c) Pipelined execution

Figure 2.3: Example of pipelined execution

The local low-level analysis handles machine timing effects that depend on
a single instruction and its immediate neighbours. Examples of such features
are memory access speed and pipeline effects.

On embedded systems, there are usually several different memory areas, each
with different timing. On-chip ROM and RAM are fast, while off-chip memory
typically takes several extra cycles to access. A suitable analysis must be able
to safely determine which memory accesses that goes to a certain memory area.

Pipeline analysis

The majority of research in local low-level analysis has been directed at pipeline
analysis. Just like in global analysis, pessimistic but safe approaches are some-
times necessary, but thanks to the typically simpler behaviour of pipelines, the
precision is usually higher for local low-level analysis.

The idea behind pipelining is to increase performance by overlapping the
execution of successive instructions. An instruction proceed through a number
of stages in order to execute, and while one instruction is in one stage another
instruction can be in another stage. Not all instructions need to use all stages
and a pipeline can have several parallel paths that instructions can take.

Figure 2.3(a) shows an example pipeline consisting of five stages. In the (IF)
stage an instruction is fetched from memory, in the (ID) stage the instruction
is decoded and operands read from registers. In the (EX) stage arithmetic op-
erations are performed and the effective target address calculated. In the (MEM)
stage memory is accessed for data and in the (WB) stage the values computed in
EX or read from memory in (MEM) are written back to registers.

Figure 2.3(b) shows an example of non-pipelined execution of instructions
A, B and C, where one instruction must complete before the next one can start.
The vertical dimension illustrate the stages in the pipeline and the horizontal

28 Chapter 2. WCET Analysis Overview and Previous Work

dimension represent time. Figure 2.3(c) shows an execution where the instruc-
tions overlap in the pipeline. Note that pipelining does not reduce the number of
stages needed to complete an instruction, instead it increases the rate in which
instructions are started and completed, (i.e., the throughput).

Under ideal conditions, the speedup from pipelining equals the number of
pipeline stages, but in most cases the speedup is lower due to instruction and
resource dependencies. For example, in Figure 2.3(c) the B instruction uses
the (EX) for two clock-cycles causing a stall in the C instruction where it has
to wait in the (ID) stage without doing any work. Examples of dependencies
causing stalls are structural hazards which occur when two instruction need
the same pipeline stage at the same cycle, data hazards which occur when one
instruction has to wait for some data generated by a previous instruction and
control hazards which occur when a branch instruction might change the next
instruction to execute.

Pipelines come in a wide range of architectural complexity. In general, to
reach higher performance, more complex pipelines with higher level of paral-
lelism are required. In simpler pipelines all instructions are executed in-order,
i.e., in the order specified by the program, and at most one new instruction
can be issued per clock-cycle. In scalar pipelines the execution can split into
multiple branches, e.g., by allowing long running floating point instructions to
execute in parallel with the other instructions. A VLIW (Very Long Instruc-
tion Word) processor allows several instructions to start at the same clock cycle.
The instructions are processed in-order and are statically grouped at compile
time. A superscalar CPU also allows several instructions to start at the same
clock cycle, but the instructions to be issued are dynamically grouped during
run time. A superscalar out-of-order processor allows several instructions to
start at the same time, the instructions are issued dynamically and does not
need to be issued in the order specified by the program.

The results of global low-level analysis can be incorporated into the final
WCET estimate in several different ways. The simplest approach is to assign
a certain execution time penalty to bad cases like cache misses, and then add
this penalty to the execution time estimate to account for the global effect
[LBJ195, KMH96, TF98, CP00]. A more precise approach is to use the global
results as input to the local low-level analysis, and simulate the result of the
cache miss on the actual execution of instructions in the processor pipeline
[HAM™199, EE99, SA00, FHL*T01].

Pipeline reservation tables are commonly used by WCET researchers to pro-
vide a detailed model of the behaviour of pipelined processors. Each instruction
uses one or several of the pipeline resources in a predetermined manner and the
table is used to model the resource usage and interaction between instructions.
The concept can be illustrated in a fashion similar to the pipeline diagram shown
in Figure 2.3(c).

Atanassov et al. [AKPO01] have built a model for the pipelined Infineon C167
processor using constant execution times for each instruction plus formulas that
account for the interference between neighbouring instructions, the effect of

2.3 Low-level analysis 29

memory access times, etc.

Lim et al. [LBJ*95] analyse the pipeline overlap between program basic
blocks in conjunction with instruction cache analysis. The target processor is
a MIPS R3000/3010, with parallel integer and floating-point pipelines and in-
order issue, modelled using reservation tables similar to our pipeline diagrams.
Lim et al. [LHKM98] extends the approach to handle in-order superscalar pro-
cessors. This analysis works over instruction dependence- and latency graphs
instead of reservation tables [LHKMO98].

Healy et al. [HAM™99] analyse the concatenation of reservation tables for
a MicroSPARC 1 processor (similar in complexity to the MIPS R3000/3010),
over paths inside loops and functions).

Colin and Puaut [CP0la, CP0la] perform WCET analysis for one of the
integer pipelines of a Pentium processor, using reservation tables for pair of
instructions.

Altenbernd and Stappert [SA00] performs pipeline analysis for a somewhat
simplified model of the PowerPC 604 processor. The pipeline analysis is inte-
grated with the instruction cache analysis and computes a pipeline reservation
table for each basic block. Pairs of tables are safely concatenated in the calcu-
lation phase to find the longest path.

Wolf and Ernst [WEO01] analyse the pipeline behaviour of the scalar Strong-
ARM and SPARClite processors using processor simulators, or special devel-
opment hardware for the processors, avoiding the need for a special pipeline
model. They concatenate pair of paths conservatively.

Schneider and Ferdinand [SF99] analyse the in-order superscalar Super-
SPARC T using an abstract pipeline state to model the timing effect of the
superscalar pipeline. Ferdinand et al. [FHL*01] analyse the pipeline and cache
for the scalar ColdFire 5307 processor, also using an abstract pipeline model.

Lundqvist and Stenstréom [LS00] perform pipeline analysis for a simplified
PowerPC processor with in-order dual instruction issue. The analysis is per-
formed as part of their instruction-level simulation and is integrated with the
cache and flow analysis. They use an extended reservation table including in-
formation on both pipeline states and possible register and memory contents.

Petters and Farber [PF99, Pet00] perform the pipeline analysis for the super-
scalar Pentium III and Athlon processors by running code on the real hardware.
The analysis is thus intrinsically integrated with the global low-level analysis
they use.

Ottosson and Sjodin [OS97] extract pipeline overlap between basic blocks
using pipeline reservation tables. The resulting timing yodel assign times to
basic blocks and negative timing effects to edges to capture pipeline overlaps
both within and between basic blocks. The timing model presented in Chapter 6
is a generalisation of their timing model, allowing for pipeline overlaps between
blocks which are not neighbours [EE99].

Lindgren et al. [LHT00, Lin02] uses measurements to derive timing for
WCET analysis. They derive a system of linear equations from a number of pro-
gram measurements. The solutions to these equations gives timing for program

30 Chapter 2. WCET Analysis Overview and Previous Work

fragments, from which, together with flow information, execution time WCET
estimates for the entire program can be derived.

Bate et al. [BBMPO00] form a WCET model for a Java Virtual Machine
(JVM) by calculating an execution time for each JVM instruction in isolation,
and a speedup for each pair of JVM instructions when executed in sequence.
The assumption is that a very simple ahead-of-time compiler is used to translate
Java byte codes to native code for the target platform.

Lundqvist and Stenstrom [LS99] note that out-of-order processors with dy-
namic instruction scheduling are subject to timing anomalies. These are cases
when a shorter execution time of one or several instructions, e.g., a cache hit
instead of a cache miss, might lead to a greater program execution time for the
whole program.

Bernat et al. [BCP02] takes another approach to handle interaction of com-
plex hardware features by providing probabilistic WCET estimates. Each basic
block is given a probabilistic execution time distribution, reflecting that it will
not always be executed in the worst case manner. By combining several basic
block distributions an execution time distribution for the whole program are
constructed.

Heckmann et al. [HLTWO03] models the pipeline behaviour of the Coldfire
MCF 5307 and the PowerPC processors. The analysis is based on abstract in-
terpretation and works over a model integrating several performance enhancing
features like speculative execution, branch prediction, out-of-order execution,
caching and pipelining. This approach unifies the global and local low-level
analysis into one analysis.

Our pipeline analysis method, outlined in Chapter 6, does not need to ex-
plicitly model the internal pipeline behaviour of the processor [EE99, Eng02].
Instead we treat the hardware model as a block box, allowing us to use any
trace-driven cycle-accurate processor model (or even the hardware itself) to
perform WCET analysis.

2.3.3 Other hardware aspects

There are some other common hardware features that might affect the execution
time of a program, including DRAM refresh, task switching, interrupts and
DMA controllers. As mentioned in Section 1.3.1 these factors are not considered
when performing WCET analysis, and should instead be accounted for in some
subsequent analysis, e.g., schedulability analysis. However, we need to safely
derive the effect these features might have on the execution time.

Dynamic random access memory (DRAM), unlike static random access
memory (SRAM), has to be periodically refreshed to retain its data. This re-
fresh will occasionally make the memory unavailable, leading to unpredictable
delays to a program. The effect can be measured to be a few percent of the
total execution time. Atanassov and Puschner [AP01] outlines an approach to
determine the impact of the DRAM refresh on the execution time.

2.3 Low-level analysis 31

Direct memory access (DMA) controllers transfer data between main mem-
ory and I/O devices, often in parallel to instruction execution of the CPU. The
DMA controller can slow down the execution by “stealing” bus cycles from the
executing program.

In multi-tasking systems the execution can switch between different pro-
cesses. Using preemptive task scheduling a task can be preempted by higher
priority processes. Similarly, interrupts invoke executions of interrupt-handler
routines, thereby stopping a currently executing task. The cache and pipeline
contents of the preempted task can be radically altered when it continues execut-
ing, something which might invalidate previously derived low-level analysis re-
sults. There are several proposed techniques to account for cache and pipeline re-
lated preemption delays in multi-tasking systems [BMSO*96, LHST96, Sch00].

2.3.4 Hardware modelling

Almost all WCET researchers relies on models of the processor on which a pro-
gram is executed. For pipelined processors, a variety of modelling methods have
been used: cycle-accurate simulators [EE99, ZWR 01, Eng02], special-purpose
models using reservation tables or similar techniques to model the behaviour of
the processor pipeline [LBJT95, Sta97, HAM'99, CP01la], dependence graphs
[LHKMO8], pipeline abstractions [SF99, FHL101], and tables of instruction ex-
ecution times and inter-instruction effects [BBMP00, AKP01]. All approaches
share the common problem of not using the actual hardware but rather a model
of it, and thus bringing the quality of the model into question.

Engblom [Eng02] identifies several error sources in constructing a hardware
model for WCET analysis, including hardware bugs, manual writing errors and
simulator implementation errors. Another complicating factor is that proces-
sor manufactures are not generally providing information on the behaviour of
their processors on the detailed level needed to construct a safe WCET analy-
sis model. Engblom concludes that a good hardware model must be validated
against hardware and to achieve high agreement between the model and the real
target hardware, simple processors should preferably be used.

Montan [Mon00] validated and debugged the simulator for a V850E proces-
sor. The validation was made by executing small instruction sequences both
on the simulator and on an emulator, comparing the results and identifying
discrepancies. The resulting simulator is reported to perform close to the real
hardware but still containing some differences in execution time compared to
the emulator. The simulator is used in our WCET tool prototype (see Section
10).

Atanassov et al. [AKPO01] use measurements on hardware to validate a worst-
case execution time model for an Infineon C167. They do not attempt to build
an exact simulator for the processor, but rather aim for a safe timing model of
the target processor suitable for WCET analysis.

Black and Shen [BS98] validates and fine-tunes a model of a PowerPC 604
processor by comparing executions of small programs both on their simulator

32 Chapter 2. WCET Analysis Overview and Previous Work

and on real hardware. They report that they never manage to get a perfect
correspondence between the simulator and the hardware. Fixing an error in the
simulator sometimes revealed other errors that had been masked by the first,
and the total error could thus increase for some fixes.

Desikan et al. [DBKO01] validated a simulator for the superscalar Compaq
21264 processor. They report on a resulting difference between the target hard-
ware and simulator timing ranging from 2% of small microbenchmarks up to
40% for larger programs in the Spec suite.

The question of how to validate the hardware model definitely becomes more
important when the complexity of the hardware increases. Especially, for pro-
cessors using a lot of performance enhancing features, like caches, pipelines,
branch predictors etc. the validation process becomes more complicated, since
all modelled interactions between these features have to be validated. The qual-
ity of a derived WCET estimate is definitely questionable when the timing of the
used model differs significantly from the target hardware. Another complicating
factor is that many WCET researchers do not work on a concrete system model,
but use abstractions, e.g., merging of cache and pipeline states, something which
can not be found in a real processor.

We have been working with hardware model validation in mind, by allowing
us to use existing trace driven simulators to obtain program timing (see Section
6.5). We believe that the more concrete and executable the hardware model is,
the easier the validation process becomes.

2.4 Calculation

The purpose of the calculation is to calculate the WCET estimate for the pro-
gram, given the program flow and global and local low-level analysis results.
There are three main categories of calculation methods proposed in the WCET
literature: tree-based, path-based or IPET (Implicit Path Enumeration Tech-
nique).

2.4.1 Tree-based calculation

In a tree-based calculation, the WCET estimate is generated by a bottom-up
traversal of a tree corresponding to a syntactical parse tree of the program. The
syntax-tree is a representation of the program whose nodes describe the struc-
ture of the program (e.g., sequences, loops or conditionals) and whose leaves
represent basic blocks. Rules are given for traversing the tree, translating each
node in the tree into an equation that expresses its timing based on the tim-
ing of its child nodes. The method is conceptually simple and computationally
quite cheap, but encounters problems when handling advanced flow information,
since the computations are local within a single program statement and thus
cannot consider dependences between statements. Also, the method has prob-
lem handling unstructured and optimised code, since it makes the syntax-tree

2.4 Calculation 33

Longest path otartp o2 // Start and exit constraints
marked Xstart = 11 Xexit = 1
// Structural constraints
// Unit timin, Xstart = XstartA
toath = 31 g XA = XstartA ¥ XHA = Xpexit + XaB
i =3 Xg = Xag = Xgc * Xgp
header Xc = Xge = Xcg
// WCET Calc Xy = Xpy + XgH = Xpa
WCET = Xexit = XAexit
theader * tpath * // Loopbound constraint
(maxiter-1) = xa <100
© =
go-:;g 1799 // WCET Expression
WCET = max(xa*3 + xg*5 +
Xc*7 + ...+ Xy*2) =
) = 3069
exit exit
(a) Control-flow
graph with timing (b) Path-based calculation (c) IPET-based calculation
loop start
>eq Final
7 e Fogan
B c if H Aj
3069

Syntax-tree

T(seq(81,52)) = T(S1) +T(S2)

T(if(Exp) S1 else S2) =
T(Exp) + max(T(S1),T(S2))

T(loop(Exp,Body)) =
T(Exp) +

(T(Exp) +T(Body)) * (maxiter-1) . -

Transformation rules (d) Tree-based calculation

A,B,C,
E,F,GH

Figure 2.4: Different calculation methods

and transformation rules hard to construct.

Figure 2.4(a) shows an example control-flow graph with timing on the nodes
and loop-bound flow information. Figure 2.4(d) illustrates how a tree-based
calculation method would proceed over the graph according to the program
syntax-tree and given transformation rules. Collection of nodes are collapsed
into single nodes, simultaneously deriving a timing for the new node. Since the
processing order is pre-defined flow information between non-related program
parts, e.g., between C and F, are hard to handle. Similarly, hardware depen-
dencies between non-local parts of the code are difficult to handle, and must be
treated in a pessimistic fashion to guarantee the safeness of the analysis.

The first approach to tree-based calculation was presented by Park and Shaw
working on a source-code program level. They dubbed the approach “tim-
ing schema” [PS90], using time intervals for the transformation rules, and ex-
tracted both BCET and WCET estimates for their example programs. The
approach was extended to include pipeline and cache states by Lim et al.
[LBJT95, LHKM98, KMH96]. The method presented by Chapman [Cha95]
also builds on a tree-based calculation. Puschner et al. [PPVZ92] use a tree

34 Chapter 2. WCET Analysis Overview and Previous Work

representation which contains some path and timing information. Bate et al.
[BBMPOO] perform a tree-based calculation where the number of executions
of each type of JVM instruction is propagated, and not actual execution times.
Colin and Bernat [CB02] extend the syntax-tree with a possibility of giving sym-
bolic information on the relative execution frequency of sub-branches. Bernat
et al. [BCP02] extends the tree-based calculation to include probabilistic timing
for the nodes in the tree.

2.4.2 Path-based calculation

In a path-based calculation, the WCET estimate is generated by calculating
times for different paths in a program, searching for the overall path with the
longest execution time. The defining feature is that possible execution paths are
explicitly represented. The path-based approach is natural within a single loop
iteration, but has problems with flow information stretching across loop-nesting
levels.

Figure 2.4(b) illustrates how a path-based calculation method would proceed
over the graph in Figure 2.4(a). The loop in the graph is first identified and the
longest path within the loop is found. The time for the longest path is combined
with the loop bound flow information to extract a WCET estimate for the whole
program. The path-based approach is able to capture hardware dependencies
between instructions within the same path. For hardware effects going over
the analysis boundaries, some type of pessimistic and safe assumption must be
made. Some path-based methods have problem handling code containing large
amount of branches, since it makes the number of possible paths to consider very
large. Another problem for the method is unstructured code, since it makes it
difficult to define what constitutes a path or a single iteration.

Healy et al. [HAM™199] look for longest paths inside loops and functions,
one loop nesting level at a time, with some special-case handling for cache and
pipeline effects between loop levels. Flow information can be used to prune the
set of allowable paths, by limiting the number of times a particular path can be
executed [HW99].

Stappert and Altenbernd [SA00] investigate the longest paths in a non-
looping program, and select the feasible path.

Renaux et al. explicitly extract all the possible paths through a program
segment [RGL02]. They use a hardware model consisting of pipeline reservation
tables and an abstract cache state.

The method presented by Petters and Féarber [PF99] extract a number of
paths of interest. The information is used to instrument object code and the
timing of the extracted paths are derived using measurements on real hardware.

In Chapter 7 we will present a efficient path-based calculation method. The
method is able to handle complex flow information and timing effects between
non-local program parts.

2.4 Calculation 35

2.4.3 IPET

IPET calculation is based on a representation of program flow and execution
times using algebraic and/or logical constraints. Each basic block and/or edge
in the basic block graph is given a time (fepntity) and a count variable (Zentity),
denoting the number of times that block or edge is executed. The WCET is
found by maximising the sum » ;. ..., @i *t;, subject to constraints reflecting
the structure of the program and possible flows. The result is a worst-case count
for each node and edge, and not an explicit path like in path-based calculation.

Figure 2.4(b) shows the constraints and WCET formula generated by a
IPET-based calculation method for the program illustrated in Figure 2.4(a).
The start and ezit constraints states that the program must be started and ex-
ited once. The structural constraints reflects the possible program flow, meaning
that for a basic block to be executed it must be entered the same number of
times as it is exited. The loop bound is specified as a constraint on the number
of times node A can be executed.

IPET constraint systems can be solved using either constraint-solving [0S97,
EE99] or integer linear programming techniques (ILP) [PS95, FMW97, HLS00b,
LM95], with ILP being the most popular thanks to the availability of efficient
solvers. Constraint solving allows for more complex constraints to be expressed,
with a potential risk of larger solution times.

The term “implicit path enumeration technique” (IPET) was coined by Ma-
lik et al. [LM95], reflecting that the longest path no longer is explicit but im-
plicitly defined. In [LMW96] the approach was extended to simultaneously de-
rive the effects of instruction caches. Puschner et al. [PS95, Pus94] presents
a similar approach, with execution time on edges, also showing how some
path information can be expressed by numerical constraints. Ferdinand et al.
[FMW97, HLTWO03] also use IPET, including the timing effects of both pipelin-
ing and caches (but not the analysis) in the final calculation. IPET is usually
applied across a whole program, but Holsti et al. [HLS00b] apply it on a per-
function basis.

Ottosson and Sjodin [OS97] present an IPET-based approach using con-
straint programming techniques to model possible program flow, pipeline and
cache effects in a common framework. Wolf and Ernst [WEO01] use IPET over
program segments potentially containing several basic blocks. This makes their
approach a hybrid between IPET and path-based calculation.

In Chapter 8 we will present an IPET-based calculation method able to
handle local flow information and timing effects between non-local parts of the
program. Compared to our path-based calculation, our IPET-based approach
is able to handle more types of complex flow information.

2.4.4 Parametrized WCET calculation

Sometimes, the input data to a program cannot be bounded in a reasonable
fashion, but the data will become known only when the program is executed.

36 Chapter 2. WCET Analysis Overview and Previous Work

For example, a sorting function in a library will have the data size fixed when
called. In such cases, it is possible that instead of generating a single hard
WCET estimate, the result of the WCET calculation is a parametric formula
containing unknowns that are fixed when the WCET estimate is needed in a
running system. A simple parametric formula might provide valuable insight
into how parameters will affect the program execution time.

Possible parameters are input variables to the program, or entities that stand
for unknown program flow information, like an upper bounds on loop iterations
in a particular situation. Another example is a real-time operating system,
where the WCET of certain interrupt handling routines might depend on the
number of processes in the system [CEET02, CP99]. Another possibility of
parametric information is in the hardware timing, e.g., a cache miss might take
different time depending on the particular memory configuration used.

There have been a few attempts to construct parametric WCET analysis.
Chapman [Cha95] generates a symbolic time expression for a program using a
tree-based calculation. Colin and Bernat [CB02] presents the scope-tree struc-
ture* as a way of representing the worst-case execution time of a program sym-
bolically. The approach is tree-based and extends the timing schema calculation
model with a possibility of giving symbolic information on the relative execution
frequency of subbranches in the syntax-tree.

Vivancos et al. [VHMWO1] propose a method for calculating WCET for loops
with a parameterised number of loop iterations. A simple symbolic formula for
the WCET of a loop is assumed and the loop timing behaviour is iterated
until possible convergence. This method takes low-level features like caches and
pipelines into account, but is restricted to local analysis of loops and can not
take global flow constraints into account. Parametric analysis of nested loops
also seems to pose a problem.

Lisper [Lis03] proposes a technique to derive parametric constraints on the
program flow. The method is based on abstract interpretation over polyhedra
representing possible program variable values. The method outlined propose
the use of a parametric integer programming solver to perform a symbolical
IPET calculation.

2.5 WCET tools

There have been a number of more or less complete “WCET tools” presented

in the literature. Not all research groups have produced a complete and usable

tool, and most tools currently available are basically niche products or research

prototypes. To call a product a usable WCET tool we believe that there are a

number of properties that it should fulfil:

m Basically, it should produce safe and tight estimates of the WCET and pro-
vide deeper insight in the timing behaviour of the analysed program and

4not to be confused with our scopegraph representation, presented in Chapter 5.

2.5 WCET tools 37

target hardware.

m The tool should be reasonably retargetable, supporting several type of proces-
sors with different hardware configurations. It is valuable to provide insight
in how different hardware features will affect the execution time.

m The tool should be able to handle optimised and unstructured code. Also,
code for which the source-code is not available, e.g., library functions and
hand-written assembler, should be possible to handle.

m The tool and analysis should be reasonably automatic, easy to use and should
not require any complex user interaction.

m The user should be able to interact with the tool and provide additional
information for tightening the WCET estimate, e.g., constraints on variable
values and information on infeasible paths.

m The user should be able to specify which part of the code to measure, ranging
from individual statements, loops and functions to the whole program.

m The user should be able to view extracted results on both a source code and
object code level. The information should provide insight in code parts which
are executed, and how often.

Today, there is no tool fully supporting all points above. The main compli-
cating factor is the complexity involved in understanding and safely determin-
ing the timing behaviour of modern hardware, but also the limited market for
WCET analysis tools. Embedded system developers are in general unaware of
the potential benefits of using static WCET analysis.

We believe that a WCET tool should be closely integrated with a compiler,
mainly because compilers generate a large amount of information that can be
very useful for WCET analysis, but which is not part of standard object-code
formats and thus cannot easily be communicated to stand-alone tools. Also, a
compiler is the natural place to handle the mapping problem, thereby support-
ing flow information on both a source and object code level. For time-critical
systems a WCET tool might provide feedback helping the compiler to generate
code for better timing predictability.

The research group at Florida State University, USA, has attacked a lot of
WCET analysis problems, producing a tool which supports many of the above
points [HAM™T99]. The tool is closely connected to their research wpo com-
piler and can therefore handle optimised code and provide timing information
both on a source and object code level [KHR1T96, KWH95]. The tool is able
to automatically derive some flow information on loop-bounds and infeasible
paths [HSRW98, HW99]. Their target processor is MicroSPARC 1. They have
developed analysis algorithms supporting several types of caches, including asso-
ciative instruction caches [HAM™99], multi-level caches [Miil97] and data caches
[WMHT97]. The tool is a research prototype and is not commercially available.

The Bound-T tool from Space Systems Finland (SSF) was developed with
support of the European Space Agency (ESA) for the use in space applications.
They support several target processors, including Intel 8051, Analog Devices

38 Chapter 2. WCET Analysis Overview and Previous Work

ADSP-21020 and the ERC-32 space SPARC processors. They work on the
object code level, having modules for reading and decoding binary files and
extracting control-flow graphs. Some flow information is found by automatic
flow analysis using Presburger arithmetic. The tool is commercially available,
has been used in real systems, and is described in more detail in [HLSOOb,
HLS00a, HS02].

The AbsInt company [Abs03] is a spin-off from the research at the Unver-
sitdt des Saarlandes, Germany. They provide a tool suite specialised in compiler
technology for microcontrollers and DSPs, program optimisation and WCET
analysis. A basis for their work is PAG (Program Analysis Generator) [AM95],
a tool which supports the generation of static program analysers. Target pro-
cessors supported for WCET analysis are the Coldfire MCF 5307 and PowerPC
750/755. The analysis works on the machine-code level, reconstructing control-
flow graphs from the object code [The01b] and supporting the analysis of several
complex hardware features, including speculative execution, out-of-order execu-
tion and unified caches [HLTWO03]. The tool has several levels of graphical
interfaces for detailed hardware analysis information and feedback of WCET
execution information [LFW02, TSH*03]. Some flow analysis is performed on
the object code level, including dead code detection using range analysis over
register values [FHL101], but loop bounds must be provided manually. The
tool is commercially available and has been used at Airbus within EU projects
[TSH*03].

The Cinderella tool [Cin97] developed at Princeton University, USA is a
research prototype freely available for download. The tool works on the object-
code level, and has an interface for providing flow information by linear con-
straints. Their target processors are the Intel iI960KB and Motorola MC68000.
Both cache and pipeline behaviour is formulated using linear constraints and
solved in the IPET-based calculation phase [LM95, LMW96]. No development
has been made in recent years and no attempt to provide commercial support
has been made.

The Heptane (Hades Embedded Processor Timing ANalyzEr) tool [Hep03]
developed at IRISA ACES team (Ambient Computing and Embedded Systems),
Rennes, France is available for download under GPL license. Target architec-
tures supported are Pentium and Mips including analysis of instruction caches,
branch prediction and pipeline behaviour. The calculation method used is tree-
based. Loops can be annotated using symbolic annotations and evaluated using
Maxima, a symbolic computation tool. The tool is is a research prototype and
currently under development.

In the following chapters we will present our WCET tool architecture and
prototype implementation in more detail.

Chapter 3

A Modular WCET Tool
Architecture

To facilitate the design of powerful and portable WCET tools, we have defined
a modular WCET tool architecture. The architecture is based on well-defined
data structures providing an interface between replaceable modules. The data
structures are used to hold the output from different analysis and provide input
to others.

3.1 Analysis modules and data structures

Manual [\ . Scope graph
annotations || Ie(\;/gb:riécl)yvgis with%loygv aﬁd \
Flow Scope graph EXaclinD) Calculation WCET
analysis with flow info,
Input datal D\ Local low-
specification level analysis

Timing
I Y/
Program Compiler Object Hardware
source code model

model
Figure 3.1: WCET tool architecture

WCET tool architecture

Figure 3.1 illustrates our modular WCET tool architecture. Compared to
the conceptual view in Figure 2.1, interface data structures have been added and
the low-level analysis module has been split into the modules for global low-level
analysis and local low-level analysis. The resulting modules in our WCET tool
architecture are:

m flow analysis: determines the possible program flow, i.e., the possible se-
quences of instructions that may be executed.

39

40 Chapter 3. A Modular WCET Tool Architecture

m global low-level analysis: determines the effects of caches, branch predictors,
etc. i.e., machine-dependent factors that need to be modelled over the entire
global program to be correctly determined.

m local low-level analysis: determines the effect of pipelining, i.e., the machine-
dependent factors that can be handled locally for a few neighbouring instruc-
tions. Generates execution time for program parts.

m calculation: combines flow and timing information to calculate a program
WCET estimate.

It is possible to combine results of different type of analyses, each adding infor-
mation to the interface data structures. This makes it easy to extend the tool
with new analyses, without disturbing the existing modules.

We use three interface data-structures in our architecture: the basic block
graph, the scope graph and the timing model. The basic block graph is a graph
representation of the executable program code, the scope graph is a graph format
for representing program flow and global low-level analysis results, and the
timing model is a representation for program timing. The following subsections
will give a brief introduction to the different data-structures.

3.2 The basic block graph

The object code contains the executable code of the program being analyzed
and is target-dependent by nature. The object code can be partitioned into one
or more instructions and different processors support different instruction sets.
Figure 3.2(a) shows an example of a small C function and Figure 3.2(b) shows
the corresponding assembler code.

int foo(int max foo: .
{ () mov r0,r6 foo:
movi #1,r7
int i,j,total; mov r0,r5 ¥ N
i=0; br foo_1 foo_0:
=1 foo_0:
Jt =0 add 17,5 —
otal = U; addi #-2,r5 .
while(i <= max) addi #1,16 foo_1:
{ foo_1: —,
o cmp r6,r1
if(i < 5) blt foo_5 foo_2:
j+; foo_2:)
if(> max) cmpi #5,r6 SN
bge foo_4 foo 3:
break; foo_3: =
total = total + j - 2; addi #1,r7 a—
S foo_4: .
A cmp r7,r1 foo_4:
} bge foo_0 o)
return total; f°°_5:mov 501
} imp [3:” foo_5:
(a) C source code (b) Assembler code (c) Basic block graph

Figure 3.2: Example of basic block graph

3.3 The scope graph 41

All data structures in our tool architecture are based on the possibility of
partitioning the instructions in the object code into basic blocks. A basic block
is a maximal sequence of instructions that can be entered only at the first
instruction in the sequence and exited only at the last instruction in the sequence
[Muc97]. The generated basic blocks are used to construct a basic block graph.
Figure 3.2(c) shows the basic blocks graph generated from the assembler code in
Figure 3.2(b). The edges between basic blocks represent the potential program
flows between the basic blocks. For example, in Figure 3.2(c), there is an arrow
from basic block foo to foo_1 since there is an unconditional jump instruction
at the end of block foo with the first instruction in foo_1 as target.

The basic block model normally used is the one used in compilers where each
machine instruction in the program is only present in one basic block. However,
there are some special cases when the basic block model used for WCET analysis
needs to be different from the one used by compilers [HLS00b, Eng02].

It is possible to use compiled code or handwritten assembler with our tech-
nique, since it is neutral regarding how the basic blocks are generated. For such
code, control-flow analysis algorithms [Muc97, ASU86] can be used to construct
the basic-block graph. If only executable code is available, like for pre-compiled
library code, disassembling and more advanced control-flow graph restructuring
techniques, such as the one presented by Theiling [The0lal, are needed.

The generated basic block graph could include code from several different
files and functions. For programs making use of function pointers or dynamic
dispatching it can sometimes be hard at compile time to safely derive the pro-
gram flow, since we can not know the function(s) that will be called at a par-
ticular function call site. If so, analyses for determining which variables and
functions that potentially might be referenced by different pointers can be used
to construct the basic block graph [EH94, Ste96, Das00, HP0O].

3.3 The scope graph

The scope graph is a format used to represent the dynamic execution behaviour
of a program. The graph consists of nodes and edges where each node is referring
to a basic block in the basic block graph and a basic block might be referenced
by several different scope nodes. By separating the flow representation format
from the basic block format we are able to represent more dynamic execution
behaviour and are not restricted by a particular compiler, instruction set or
basic block model.

The nodes in the scope graph are partitioned into scopes reflecting the dy-
namic structure of the program in terms of function calls, loops, recursive calls
and unstructured code parts. Scopes are necessary in order to carry program
flow execution, in particular bounds for all loops and context-sensitive flow in-
formation for function calls. Additional flow information can be added to the
scope graph using our flow fact language.

Figure 3.3 shows an example scope graph generated from the basic block

42 Chapter 3. A Modular WCET Tool Architecture

@start

foo

scope: foo;

Y
Ale]] —prjresersi b
—)
B
|

loop

scope: loop;
C || | lheaders: C;
m loopbound: 10;
T~ ioop:([l]..;;:ilﬂszl;
oop:[]:4E <5;
D [co]
—,
-
/

re
G
‘exit

Figure 3.3: Scope graph with flow information

graph given in Figure 3.2(c). For this particular example, the generated scope
graph has the same underlying structure as the basic block graph and each
basic block is referenced by just one scope node. The scopes in the scope graph
correspond to the loop and function found in the basic block graph.

To each scope some flow information has been added. Each scope has a
loop bound attached to it, providing an upper bound on the number of times
the header node in the scope can be executed for each entry of the scope. The
loop scope has two additional flow facts. The first flow fact specifies that for
each time loop is entered, node E must be taken during each of the first five
loop iterations (but not that the loop needs to iterate 5 times). The second fact
specifies that for each time loop is entered node E can be taken at most five
times. Chapter 5 will present the scope graph and flow fact language in more
detail.

The scope graph is also used to hold results from global low-level analyses.
After applying such analyses the nodes in the scope graph get annotated with
information on factors affecting their execution, which cannot be determined
from the instructions themselves. An example of such ezxecution information
is if instructions will hit or miss the cache. Figure 3.4 shows how the nodes
in the scope graph given in Figure 3.3 has been extended with such execution
information. In Section 6.1 we will outline how results from different global
low-level analyses can be added to the scope graph.

3.4 The timing model 43

exec info scope: foo;
i i — | fheaders: A;
i i loopbound: 1;
a —
o exec info
.
icache hit
icache hit
exec info scope: loop;
" > —
C feache it > T —] headers: C;
— loopbound: 10;
T~ loop:<l..5>:4E =1;
icache hit loop:[]#E SS,
=
E

/

exec info
F icache miss|
icache hit
4
exec info
icache hit
T

foo

Figure 3.4: Scope graph with flow and execution information

3.4 The timing model

The scope graph is used as an input format to our local low-level pipeline anal-
ysis. The analysis derives execution times for a given sequences of instructions
annotated with execution facts. We have constructed an analysis which do not
require any special-purpose hardware model, but can in principle make use of
any trace-driven cycle-accurate simulator. Since such processor simulators are
standard equipment in embedded system development, the usage of simulators
enhance retargetability.

The data structure resulting from the local low-level pipeline analysis is the
timing model. 1t is a representation for program timing consisting of times for
individual nodes (annotated with execution information), (denoted t,04c), and
timing effects for sequences of nodes, (denoted dseq). The timing model allows
the execution time of a program to be composed from smaller parts, thereby
avoiding the need to model complete paths to capture interference between
instructions in different basic blocks. The timing model is separated from the
hardware model used to derive the timing, i.e., the simulator, thereby avoiding
the need for detailed hardware modelling in the calculation. The timing model
can alternatively be represented as a timing graph: a graph with timing on
nodes and timing effects on edges. Figure 3.5 shows the timing model and
timing graph generated from the scope graph given in Figure 3.4.

The calculation module takes the input of a scope graph annotated with flow
facts, representing possible program flow, and a timing model, representing pro-

44 Chapter 3. A Modular WCET Tool Architecture

t,=8 dpe=-1 t,=8] A

A BC A Syn=-1
70 fem Tl st [Bss
te=5 dce=-2 tc=5| _

tp=4 dpp=-1

tg=6 Spr=-2

B DF SCG=-2

tp=4 Bgp=-2

tG—5 SFB"1

Opc=-1 B8pg=-2 t.=5| G
(a) Timing model (b) Represented as timing graph

Figure 3.5: Timing model and timing graph

gram timing. Different calculation methods can make different use of flow and
timing information, basically trading speed for precision. Chapter 7, Chapter
8 and Chapter 9 will present three different calculation methods. Each calcu-
lation method can be replaced independently from the other analysis modules,
pinpointing the benefit of our modular tool design.

3.5 Separation vs. integration

We have based our WCET tool architecture on a clear separation of modules
with distinguished interface data structures. By a modular design the archi-
tecture targets the requirements of retargetability, flexibility, efficiency and cor-
rectness, as discussed in Section 1.5.

Retargetability is supported since only minor parts of the tool have to be
replaced or rewritten to port the tool to new target platforms. Also, the usage of
cycle-accurate simulators in the pipeline analysis instead of constructing special
purpose hardware models, further supports retargetability.

Flexibility is supported by well-defined and expressive interfaces, making it
easy to vary and replace the different modules in our WCET architecture. Also,
by having well-defined interfaces data structures we can string together results
from various analyses with different complexity and resulting information.

Showing the correctness of a tool is supported by the modular structure
since it is easier to validate the individual modules in isolation. To guarantee
that a WCET estimate produced by a WCET analysis tool is safe and tight,
each analysis phase must be safe and tight in its own right. Otherwise, errors

3.5 Separation vs. integration 45

in one module could mask errors in other modules [EES01]. Also, the usage
of cycle-accurate simulators allows for easier validation against the real target
hardware, see Section 2.3.4.

Efficiency is supported by separating each type of analysis into a distin-
guished module, making each analysis simpler and implementation easier. The
integration of some analyses may cause excessive solution times due to the com-
plexity of the integrated problem, even if each separate problem is quite easy
to solve. For example, some researchers report on analysis times of minutes or
even hours even for quite small programs [LMW96, OS97].

So, considering all the benefits of separation why do not all WCET re-
searchers produce modular WCET analysis tools? The main reason is the com-
plexity involved in constructing models for and analyses of modern hardware.
For simple processors such as our target architectures, i.e., the NEC V850E and
the ARMO, with relative few performance enhancing features, the behaviour of
each feature is relatively independent, and can be separately analysed from each
other. For example, a cache analysis can provide input on possible cache hits
and misses of instructions to the pipeline analysis.

However, for more advanced processors, techniques like instruction prefetch-
ing, out-of-order execution and control-speculation introduce interdependen-
cies between different processor components, such as caches, pipelines, prefetch
queues, and branch prediction units. For example, in a processor making use
of speculative execution, instructions are speculatively fetched and executed.
Such instructions might cause cache misses, or even evict “useful” instructions
from the cache, even though the speculation turned out to be wrong and the
speculatively executed instructions should be discarded.

Performing separate analysis of such processor components might potentially
lead to pessimistic WCET estimates. This is because conservative assumptions
needs to be made in each individual analysis on the potential state of other
interfering components. For modern processors using a lot of such performance
enhancing features, the overall pessimism introduced by separate low-level anal-
ysis might become very high. The work by Heckmann et al. [HLTWO03] contains
a good discussion on the need for integrated low-level analysis for advanced
hardware architectures. The authors show that for their target processors an
integrated global and local low-level analysis obtain much better WCET esti-
mates than the one from separate analysis. However, the integration complicates
the design of the analysis and increases the analysis running time and memory
demands.

Our modular tool architecture make no direct demands on what type of anal-
ysis to perform in the different modules. For complex hardware architectures
it is definitely possible to use a more integrated type of hardware analysis, but
keep the flow analysis and the calculation modules intact.

46

Chapter 3. A Modular WCET Tool Architecture

Chapter 4

Representing Program Flow

In this chapter we will look more deeply into how program flow should be
represented for WCET analysis. The question we will answer are: What char-
acteristics must a suitable flow representation fulfill and what design options
are there to choose from?

4.1 Introduction

. A A “Each time foo is called
int foo(msigned dnt) { // A the loop body will be
char 1 = ©; taken at most 100 times”
while(i < 100) { // B
if(1 <20 || x<30) // C “During the first 20
x=x+1 // D iterations stmt x = x * 2
else (E) can not be executed”
X =X * 2; // E
it+; // F “stmtx=x+1 (D) can
if (errorcheck(i,x)) // G only be executed during i
return 0; // H the first 30 iterations” return from
}
t ; I if x > 30 then stmt
} returm % /" x =x* 2 (E) must be taken
all remaining iterations”

Figure 4.1: Example program, flow information and control-flow graph

Figure 4.1 shows an example function foo, its corresponding control-flow
graph and some flow information. The capital letters A, B, etc. indicate the
basic blocks found in the control-flow graph to the right.

The flow information provided are examples of properties which we would
like to express for the given code fragment. For example, that for each time foo
is called the loop body can be executed at most 100 times. The bound is just
an upper bound, since the execution can leave the function before all iterations

47

48 Chapter 4. Representing Program Flow

have been executed due to the errorcheck outcome. The i < 20 condition in
node C gives that statement E can not be executed during the first 20 iterations
of the loop, and depending on the input value of x statement D or E might be
executed during the following 10 iterations.

The given function can be executed in several different ways depending on
the possible input values of x. The flow information needs to be valid for all
these possible executions. Comparing the provided flow information we note
the last flow fact is more dynamic in its nature since it depends on the current
run-time value of the x variable. More detailed knowledge of possible values of
input variable x might allow us to tighten the flow information.

For this particular example the flow information can be given either in terms
of the program code, e.g., statement x = x + 1, or the corresponding executable
object-code, here illustrated as a control-flow graph, e.g., node D. In the case of
optimizing compilers the correspondence between the code levels is not always
that straightforward.

The given example indicates some things to take into consideration and
choices to make when constructing a representation for program flow suitable for
WCET analysis. The following sections will discuss and describe these choices
in more detail.

4.2 Including all possible executions

One noticeable consequence of performing the flow analysis as an analysis step
separate from the low-level analysis and calculation is that a safe flow represen-
tation suitable for WCET analysis must include all possible executions of the
program. This is because without any timing and hardware information we do
not know which execution path that gives the worst case timing. Only during
the calculation phase, when information on both possible flows and hardware
timing are available, certain execution paths can be safely excluded.

char bar(char x) {
if(x < 20) // A
x =x + 1; // B
else
X =x + 2; // C
return x; // D
}

Figure 4.2: Simple example program

The most complete form of program flow representation suitable for WCET
analysis would therefore be a simple explicit enumeration of all possible execu-
tion paths through a program. Every possible execution would be represented
using an ordered list of statements or instructions. For example, see the small
example program given in Figure 4.2. The function can be executed in two

4.3 Flows information characteristics 49

different ways depending on the input value of x. The two possible executions
of the example program are therefore: (A,B,D) and (A,C,D).

One of the strong features of computer programs is that the same code frag-
ment can be repeatedly executed, e.g., using loops or functions. Unfortunately,
this makes the set of possible executions paths to grow rapidly in size. The
explicit list representation of the dynamic behaviour of a program might be
suitable for small programs with one or a few possible execution paths, but
is too expensive for most real-world programs. Instead, we need a compact
approximate way of representing the dynamic behavior of the program. The
approximation must be:

m Safe — no feasible executions of the program should be excluded.
m Tight — as few infeasible executions as possible should be included.

4.3 Flows information characteristics

Investigating previous presented flow representations for WCET analysis we
note that they roughly can be partitioned into two separate parts: a program
representation and an additional flow information language.

The program representation is more or less closely connected to the program
code. This can range from including flow information annotation as a part of the
programming language or as additional annotations outside the programming
language (close connection) to having a special program format separate from
the real program (loose connection). The program representation comes in the
forms of graphs, syntax trees or program code and can be given in relation to
the source-, intermediate- or object- program code. See Section 2.2.2 for a more
detailed discussion of program representations.

The flow information language allows for constraining and relating execu-
tions of different programs entities found in the program representation, e.g.,
functions, loops, statements, nodes or edges. The expressiveness of the language
gives the type of flows that we are able to express. To be useful the language
must have a clear and precise semantics.

Investigating the connection between the program representation and the
flow information in more detail we note that some flow information is mandatory
and some flow information is not.

For a given program representation the amount of possible executions are
given by the structure of the program: all execution paths that can be traced
through the statements in the program code or the nodes and edges in a program
graph are considered possible, regardless of the semantics of the code. This set
is usually infinite, since all looping constructs can be taken an arbitrary number
of times. For example, for the program given in Figure 4.2 the structure gives
that statement B and statement C can not be executed during the same call of
function bar.

The set of possible executions are made finite by introducing basic finiteness
information, where all loops in the code are bound with some upper limit on the

50 Chapter 4. Representing Program Flow

/ Structurally possible flows (infinite) \

Basic finiteness

Statically allowed

Actual feasible

WCET found here=desired result
WCET found here=overestimation

Figure 4.3: Relation between possible executions and flow information

number of executions. Such flow information is required to allow the extraction
of a WCET bound for a program. For example, in Figure 4.1 the loop body
execution bound provides such basic finiteness information.

Adding more flow information allows the set of executions to be narrowed
down further to a set of statically allowed paths. From this set the calculation
will extract the execution path with the worst case timing. A good flow repre-
sentation should allow us to make the set of statically allowed paths both safe
and tight in comparison to the set of actual execution paths. This additional
flow information is not mandatory but will allow us to produce tighter WCET
estimates. For example, in Figure 4.1 the flow information provided for nodes
D and E is not mandatory.

int baz(int x) {
if(x < 5) // A
x =x + 1; // B
else
X =x % 2; // C
if(x > 10) // D
x = sqrt(x); // E
return x; // F
}

Figure 4.4: Program with an infeasible path

The feasible paths through a program are not always easy to determine. For
example, a detailed investigation of the program in Figure 4.4 will conclude
that the path (A,B,D,E,F) is not possible to take due to the limitations on
the possible values of the x variable, i.e., if x is less than 5 in A then it can’t
be larger than 10 after executing B. Such execution paths are called infeasible
or false paths, i.e., an execution path allowed by the static structure of the
program, but not possible when the semantics of the code is taken into account.

Knowledge of possible variable values might sometimes allow us to reduce
the set of possible executions even further. For example, if the property x > 10

4.4 Expressing flow analysis results 51

always hold when calling baz, only (4,C,D,E,F) is a feasible execution path.

The extreme case of an infeasible path is dead code, i.e., a piece of code
which is never possible to execute during any executions. Dead code can be
safely removed from the program without altering the program behaviour. Flow
information on infeasible paths and dead code are not mandatory but will allow
us to tighten the WCET estimate.

A infeasible path does not always have to be infeasible. For example, the
second flow information given in Figure 4.1 is specifying that E cannot be exe-
cuted during the first 20 iterations of the loop. For the remaining iterations E
is no longer infeasible.

We conclude that a flow information language should allow us to express
both basic finiteness flow information as well as additional tightening flow in-
formation, like information on infeasible paths and dead code.

4.4 Expressing flow analysis results

As presented in Section 2.2.1 researchers have developed analyses for automati-
cally deriving program flow information suitable for WCET analysis. A suitable
flow representation must be expressive enough to include results from such au-
tomatic flow analyses as well as user-provided manual annotations.

An intuitive way of providing flow information is by limiting the number of
times different program entities, e.g., loops, statement, nodes or edges, can be
taken. This can either be done using precise bounds, e.g., that a loop is iterated
exactly ten times, or upper or lower bounds, e.g., that a certain statement
cannot be taken more than five times. It is also beneficial if the executions of
different program entities can be related, e.g., that node A and node B will be
executed the same number of times.

A language for representing such flow information can consist of named spe-
cial relations between entities, e.g., using constructs like Park’s samepath(A,B)
[Par93]. An alternative is to use a more generic style based on mathematics,
e.g., by relations between variables which represent the number of times certain
entities can be taken, e.g., xy = zp [LM95, PS95]). The benefit of a generic
math-based language is that it can express flows that are hard to put in words
and that there is no immediate limit to the types of flows that can be expressed.
On the other hand, a special purpose constructs may be easier to understand
and express complex relations in a compact way, but requires that new language
constructs are invented in order to express new flows.

For a potential WCET-tool user the use of graphical interfaces might offer
a third and more suitable paradigm for expressing flow information [KHR™96].

4.5 Managing real-world code

The flow representation must allow us to express the flows found in real-world
programs. Researchers have investigated embedded software [Eng99al, the Enea

52 Chapter 4. Representing Program Flow

OSE operating system [CEET02], the RTEMS operating system [CP01b] and
common signal-processing algorithms [EY97], trying to determine the charac-
teristics of the code and program flow for embedded software. The results are
not in complete agreement, indicating the diversity of algorithms and coding
style employed in the embedded and real-time systems field.

Engblom compared properties of embedded programs and desktop programs
and its implications for WCET analysis [Eng99b, Eng99al. He concludes that
embedded code has characteristics different from desktop code. For example,
desktop software focusses on arithmetic operations, while embedded software
contains more logical and bitwise operations. Most of the investigated em-
bedded code was quite simple, containing single nested loops, simple decision
structures, etc. However, he reports on some program instances with highly
complex control-flow. For instance, deeply-nested loops and highly complex
control structures occur in some programs, and more problematically, recursion
and unstructured code [Eng99al.

Colin and Puaut investigated the code properties of the RTEMS operating
system kernel [CP0O1b]. The code contained a small number of loops and no
nested loops, unstructured code or recursion. They found some cases of function
pointers usage and loops with iteration bounds depending on the current system
state, e.g., on the number of tasks allocated in the system. Complicated features
found were algorithmic timing behaviour of memory allocation routines, which
were dependent on the stack and heap layout.

Carlsson et al. investigated the timing behaviour of disable-interrupt (DI)
regions found in the Enea OSE operating system kernel [CEET02]. Within the
DI regions no usage of function pointers and only a few cases of nested loops
where found. The authors found program parts whose execution is dependent
on the system state and configuration used, e.g., number of tasks and particular
flag values.

Ernst and Ye investigated the control flow properties of some signal-
processing algorithms [EY97]. They note that even though code contained a
lot of decisions and loops, the decisions where written is such a way that there
was only a single path through the data, regardless of the input data. Simi-
larly, Patterson [Pat95] notes that most branches in the Spec benchmarks are
independent of input data to the program.

For a general purpose WCET analysis tool, the flow representation must be
able to correctly express flows found in recursive or unstructured code. Recur-
sion is used and allowed in many programming languages, and even though not
recommended, embedded programmers might write unstructured code, e.g., due
to uses of goto:s and jumps into loops. Also, unstructured (object) code might
be produced by program generators, optimizing compilers or programs written
as state machines [Eng99a].

We conclude that a suitable flow representation should not be too tightly
coupled to a particular programming language or instruction set. This will
also make the WCET tool easier to retarget to new target platforms. The
representation should be able to handle both unstructured code, recursion and

4.6 Context-sensitive flow information 53

pointer dependent flows, since such phenomena occur in real-world embedded
code.

4.6 Context-sensitive flow information

Many types of program analyses, including WCET flow analysis, can be formu-
lated as data-flow analyses. This is the collective name for any analysis, based
on the program control flow, which tries to derive information on program be-
haviour and how it manipulates its data. The analysis is often formulated as a
fixed-point iteration over a set of equations defined from the program structure
according to the analysis being performed.

Analyses which consider data going in-between functions are called inter-
procedural data-flow analyses. Investigating such analyses, like pointer analysis
[EH94, Ste96, HP0O0, Das00], we note that the quality of the result might benefit
from considering that the data flowing into a function from one call-site is
different from the data flowing into the same function at another call-site.

The same reasoning holds for WCET flow information. Assume that the
function given in Figure 4.1 is called from several different call-sites in a program.
For some of these call sites we might be able to derive more detailed bounds on
the input variable x, allowing for more tight flow information to be given for
these call instances.

int main() { void foo() { void bar(int b) {
e j=0; e
foo(); while(j<5) { for(i=0;i<b;i++) {
S bar(j); S
bar(32) ; Jjtts }

} bar (100) }

}
(a) function main (b) function foo (¢) function bar

Figure 4.5: Code for illustrating different levels of context sensitivity

An analysis which allows us to derive different data for different calling
contexts is called a contert-sensitive analysis. A context-sensitive analysis might
produce tighter results, but might be more costly, since a function needs to be
analysed multiple times in different contexts.

Look at Figure 4.5 for an illustration of various levels of context-sensitivity.
Function bar gets called at three different call-sites and contains a for loop
whose loop bound depends on the input parameter b.

Figure 4.6 shows three different call-graphs for three different levels of
context-sensitivity, corresponding to the code in Figure 4.5. In Figure 4.6(a)
each function only exists in one version in the graph. A flow-analysis working

54 Chapter 4. Representing Program Flow

¢\ ?@ Co D o
Cr D> D Coon D

(a) call-graph for context (b) call-graph for partly (c) call-graph for fully
insensitive analysis context sensitive analysis context sensitive analysis

Figure 4.6: Call-graphs with different context sensitivity

over such a graph would derive safe flow information valid for all different invo-
cations of bar i.e., an upper loop bound for bar of 100. This bound is safe but
not tight since the loop would iterate much less times for some invocations.

Figure 4.6(b) shows a context-expanded version of the call-graph in Figure
4.6(a). Two separate copies of bar have been created and the context is the
function from which bar is called. A flow analysis working over this graph would
derive a safe but not tight upper loop bound for the loop in bar; of 100 and a
tight upper bound for the loop in bar, of 32 (see below).

Figure 4.6(c) shows a further context-expanded version of the call-graph.
Here function bar gets copied for each separate call-site. A potential flow anal-
ysis would now derive upper loop-bounds of 5, 100 and 32 for bar,, bar, and
bar; respectively. Note further that the upper loop-bound given for bar; is
safe but not tight since the loop in bar; will not always iterate all 5 iterations.
A more advanced flow analysis would derive a total upper bound of 15 (i.e.,
14243+445=15) on the for loop, as a total for all invocations of bar called
from the while loop.

Such context-sensitive graph expansion can be automated. The most com-
mon approach is to consider the call-string, the sequence of function calls leading
to a certain invocation of a function, as the context [Mar99, The02]. A context
does not always need to be a function, e.g., in the instruction cache analysis
outlined in [The02] the analysis will differ between the first and remaining iter-
ations of a loop or a recursive function, allowing for a derivation of more detailed
instruction cache analysis results (see Section 6.1).

We conclude that WCET flow analyses might benefit from allowing different
levels of context-sensitivity and that a suitable flow representation should allow
us to represent results from such analyses.

4.7 Flow information locality

Closely related to the concept of context-sensitivity is the ability to provide flow
information in a local scope. Here one key observation is that flow information

4.8 Dynamic vs. static flow information 55

is usually local in its nature, specifying something valid for a small part of a
program, maybe for a few iterations of a loop or a particular invocation of a
function.

For example, the flow information derived for function foo in Figure 4.1 is
actually valid each time the execution enters foo. If foo is called from several
different places in the program the flow information will be valid for each such
call. The local scope for this flow information is therefore function foo. If we
want to express the same information in a global program scope we first have
to derive the number of times foo is called and constrain the total number of
executions of D and E in relation to this value.

Other type of contexts suitable for providing local flow information are loops,
recursive call nests, and pieces of non-reducible code. Also, the ability to express
context-local flow information is suitable when using flow analysis algorithms
not working over the complete program at once, e.g., when using a flow analysis
algorithm which derives flow information for each function separately.

In loops or recursive code, each statement can be executed a repeated num-
ber of times. For such constructs flow information can be valid for a local
context consisting of one or a few iterations. For example, flow analysis meth-
ods like [Gus00, HW99] derive information on feasible executions valid for some
iterations of a loop or surrounding loops. For example, the second and third
flow facts given in Figure 4.1 are only valid for some specific iterations.

We conclude that a suitable representation should allow us to provide flow
information at varying levels of locality, from the complete program down to a
single loop or iteration.

4.8 Dynamic vs. static flow information

As mentioned above, flow information for WCET analysis should be valid for
all possible program executions. Flow information can be further divided into
two types: dynamic and static flow information.

Dynamic flow information is information depending on the current run-time
state of the program, e.g., depending on variable values or register contents. In
Figure 4.1 the last flow fact contains dynamic flow information, since its effect
depends on the run-time value of the x variable.

Static flow information is information independent on the current run-time
program state. The first three flow facts given in Figure 4.1 are examples of
such static flow information, since they does not depend on any run-time state
values.

Not all calculation methods can make use of dynamic flow information, and
such information must therefore be safely converted to a static equivalent. Such
conversion might sometimes introduce some pessimism and the resulting static
flow information might not include the same amount of information as the orig-
inal dynamic one. For example, the methods outlined in [HSRW98] and [CP00)]
allow users or automatic flow analysis methods to provide symbolic formulas

56 Chapter 4. Representing Program Flow

on the execution bounds of loops and other program entities. Using a symbolic
computation tool the provided dynamic flow information is converted to static
flow information.

Another option is to use a calculation method which can make use of dynamic
flow information. During the calculation phase potential unbound variable val-
ues will be safely bounded and the provided flow information will be fixed. A
parametric WCET calculation method (see Section 2.4.4) goes one step fur-
ther by allowing flow information to include unbounded flow parameters, e.g.,
unbounded loop bounds or variable values. When generating a final WCET
estimate the unbound flow parameters need to be bounded. For example, the
method outlined in [CB02] allows symbolic flow information to be given as in-
put to the calculation phase, potentially generating a simplified parameterised
WCET formula. It should be noted that allowing dynamic and parameterised
flow information might introduce more complexity into the calculation phase.

for(i=0;i<MAX;i++) // L1 “For each entry of L1 the “For each entry of L3 its
H H

loop body will iterate body will iterate as many
for(j=0;j<i;j++) // L2 | exactly MAX times” times as current value of j”
for (k=0;k<j;k++) // L3 | “Foreach entry of L2its “For each entry of L3 stmt
A; body will iterate as many A will be taken as many
times as current value of i’ times as the loop-body”
(a) example program (b) dynamic flow info
MAX ~—j<i ~—k<j « . « .
exec(h) <) A 1 MAX is upper “For each entry of L1 stmt A will
(8) < 2%izo J=0 £<k=0 bounded by 10" be executed at most 120 times”

(¢) flow info conversion (d) static flow info

Figure 4.7: Example of dynamic and static flow information

Figure 4.7 gives an illustration of the difference between dynamic and static
flow information. Figure 4.7(a) shows an example program consisting of three
nested loops, L1, L2 and L3. The number of executions made within the inner
loops are dependent on the iteration count value of the surrounding loop. Figure
4.7(b) shows examples of dynamic flow information valid for the given program
fragment. MAX is a constant not known at compile time. Assuming that the
calculation method used can not handle this type of parametric dynamic flow
information the information must be converted. Figure 4.7(c) gives an example
of a symbolic formula extracted from the dynamic flow information which derives
an upper bound on the number of times statement A can be executed. Figure
4.7(d) illustrates the resulting static flow information. The value of the MAX
variable has been upper bounded and the resulting information does not contain
the same information as the original one, i.e., the order in which the different
executions are made has been lost in the conversion.

4.9 Flow information conversion 57

4.9 Flow information conversion

Regardless of the flow representation used, the extracted flow information must
be converted to a format suitable for the calculation method. As will be dis-
cussed in later chapters, not all calculation methods can take advantage of all
types of flow information. For example, if the calculation method can handle dy-
namic flow information such information can be provided as is, otherwise it has
to be converted to static flow information suitable for the particular calculation
method used.

Similar to the safety and tightness demands on the flow representation the
conversion must also be safe, i.e., never exclude execution paths which are con-
sidered possible by the flow information, and tight, i.e., including as few extra
execution paths as possible compared to the provided flow information. A flow
representation close to a calculation format will simplify the conversion but
might limit the expressiveness of flow information.

4.10 Conclusions

In conclusion we can distinguish the following desired properties for a flow rep-

resentation suitable for WCET analysis:

m The representation should allow us to give both basic finiteness and addi-
tional tightening flow information.

m The representation should allow us to express flows found in normal code
including selections, functions and loops, but also more complicated code
including recursion, pointers and unstructured code.

m The representation should not be closely connected to a particular target
architecture or programming language.

m The representation should allow us to express flow information from flow
analysis methods and manual annotations with varying level of context sen-
sitivity and locality.

m The representation should allow us to express static flow information. De-
pending on the particular calculation method used dynamic flow information
might be converted or provided as is.

m The representation should be possible to convert to a format suitable for
the used calculation method. The conversion must be safe and as tight as
possible.

58

Chapter 4. Representing Program Flow

Chapter 5

The Scope Graph and Flow
Fact Language

In this chapter we present our program flow representation. It consists of a
scope graph, which is a graph representation capturing the dynamic execution
behaviour of the program, and a flow fact language, which is an annotation
language for providing additional constraints on the program flow.

5.1 Introduction

The scope graph is a directed graph consisting of nodes and edges. Each node in
the scope graph refers to a basic block, and one basic block might be referenced
by several different nodes. By separating the flow representation format from the
basic block format we are able to represent more dynamic execution behaviours
and are not restricted by a particular compiler, instruction set or basic block
model.

The nodes and edges in the scope graph are partitioned into scopes, corre-
sponding to the differentiating and repeating environments found in the basic
block graph, including loops, functions, recursive call nests and non-reducible
code parts. Scopes carry program flow information, in particular bounds for all
loops and flow information with varying level of context sensitivity and locality.

The scopes are organised in a scope-hierarchy. We say that a scope c is a
child of another scope p if the execution of p encapsulates the execution of ¢ or
if the execution must pass through p to reach c¢. The exact scope layout depends
on the flow analysis algorithms employed.

To express more precise program flow information, each scope in the scope
graph might carry a set of flow facts. The flow fact language combines the ex-
pressive power of IPET, using constraints to limit possible executions of entities
in the scope graph, with the ability to give the flow information in a scope-local
context. The given flow information can be further restricted to be valid for

99

60 Chapter 5. The Scope Graph and Flow Fact Language

only a few specific iterations of a particular scope.

5.2 The scope graph

A scope graph sg = (Ngg, Eqq, Ssq, start, exit) is a directed graph consisting of
a set of nodes Ngq, a set of edges FEgq C Nyg X Ngg, a set of scopes Ssq and
specially identified start and exit nodes. An edge e € E 4 goes from a source
node, source(e) € Ny, to a target node, target(e) € Ny. When referring
to a particular edge we use arrow-concatenation of the source and target node
names, e.g., edge u — v goes from node u to node v. The term entities will in
the following be used to refer to both nodes and edges.

In the scope graph there exists a special start node, start € N,q4, with no
predecessors, and a special exit node, exit € N4y, with no successors. Every
node in N, is reachable from start and from every node in N4 it is possible
to reach exit.

@start .
o scope: foo; node A is header
o of scope foo
] Y
A foo: headers: A; _
- = | loopbound: 1;

loop

scope loop can iterate
up to 10 times
each time the
scope: loop; scope is entered
headers: C;
loopbound: 10;
loop:<1..5>:4E =1;

loop:[]:4E <5; \ flow facts gives that

node E can only be
taken first 5 iterations

scope foo is
parent of
scope inner

\\ foo
G loop

‘exit

(a) scope graph (b) scope-hierarchy

Figure 5.1: Example scope graph and scope-hierarchy

Figure 5.1 shows a scope graph generated from the basic-block graph in
Figure 3.2 on page 40. The scopes have been decorated with loop bounds and
some flow facts. In this particular example, each node except start and exit
corresponds to exactly one basic-block. For the given scope graph we have that
Nyg = {start,A,B,C,D,E,F,G,exit}, Esy = {start -—AA—CB—CC—DC—
GD—ED—FE—FF—GF—B,_G—exit} and S5, = {foo, loop}.

We define the following useful notations for extracting attributes of a scope
graph sg. The (type) notation is used to clarify the presentation by making the

5.2 The scope graph 61

type of the attribute explicit.

(set of nodes) nodes(sg) = Ngq

(set of edges) edges(sg) = Ej,

(set of scopes) scopes(sg) =S5,
(node) start node(sg) = start

(node) exit node(sg) = exit

5.2.1 Scopes

The scopes in a scope graph define a partitioning of the nodes and edges in the
scope graph. Intuitively, each scope corresponds to a certain repeating or dif-
ferentiating execution environment in the program, such as a loop, a function,
a recursive call-nest or a piece of non-reducible code, and encapsulates the exe-
cution of the program code within this context. For example, the scope graph
illustrated in Figure 5.1(a) contains the two scopes foo and loop.

More formally, a scope s = (Ng, Eq, Hg, Cs, b, Fs) in a scope graph sg con-
sists of a set of nodes Ny C Ny, a set of edges Es C E,g, a set of header nodes
Hy C Ny, a set of child scopes Cs C S, an upper loop-bound by € Z*, and a
set of flow facts Fj.

The nodes Ny of a scope s form a subset of the nodes in the scope graph,
i.e., Ny C Ngg. Each node in a scope graph belongs to exactly one scope. For
example, scope foo in Figure 5.1 contains the nodes A and G. The edges E; of a
scope s are a subset of the edges in the scope graph, i.e., Fy C Ey,. Each edge
in a scope graph belongs to exactly one scope. An edge is defined to belong to
the same scope as its source node, i.e., e € E;, = source(e) € N,. For example,
the edges C—G and F—G in Figure 5.1 both belong to scope loop. We will use
scope(ent) to denote the scope that the entity (node or edge) ent belongs to.

Each scope s has a non-empty set of header nodes Hy C N (usually just
one node per scope) with the property that no other node in the scope can be
executed more than once without passing any of the header nodes. Also, it
should not be possible for the execution to enter and later exit a scope without
passing one of the header nodes in between. In Figure 5.1 node A is header of
scope foo and node C is header of scope loop.

Each scope s also contains an upper loop-bound b, and a set of flow facts
F,, both used for restricting the possible executions over the scope and its
descendant scopes. The syntax and the semantics of these different constructs
will be described in more detail in the following sections.

62 Chapter 5. The Scope Graph and Flow Fact Language

We define the following useful notations related to a scope s:

(set of nodes) nodes(s) = N,

(set of edges) edges(s) = E,

(set of nodes) headers(s) = H,

(set of scopes) children(s) = Cj
(integer) loopbound(s) = b

(set of flow facts) flow_facts(s) = Fj

@start scope: outer;
headers: I;
loopbound: 10;

children: inner;

scope: inner;
headers: J;
_scope: foo; _locpbound: 20;

headers: A;
loopbound: 1;
| children: loop;

scope: loop;
headers: C;
loopbound: 10; main

¥ ™

scope: main; outer foo
headers: H;
loopbound: 1; * ‘
children: outer, foo;
inner loop
oxit (a) scope graph (b) scope-hierarchy

Figure 5.2: Scope graph and scope-hierarchy for two functions

A scope graph could be created for the whole program or some smaller
fragment of the basic block graph. This allows us to produce worst case timing
estimates for e.g., the complete program, individual functions or smaller parts of
the program. Figure 5.2 shows an extension of the scope graph given in Figure
5.1 where function foo is called by function main. Function main includes two
nested loops, resulting in scopes outer and inner. No flow information except
loop bounds is included.

5.2.2 The scope-hierarchy

The scopes in the scope graph are partially ordered by the child relation.
Roughly, a scope ¢ is a child of a parent scope p if the execution within p
encapsulates the execution of c¢. For example, ¢ might correspond to a loop
whose body is completely nested within a surrounding loop p. In Figure 5.2

5.2 The scope graph 63

the code in scope inner is nested within the code of scope outer and therefore
inner is a child to scope outer. Another possibility is that ¢ corresponds to
a function called from within another function p. In Figure 5.2 foo is called
within scope main, and therefore scope foo becomes a child to scope main.

Using the child relation the scopes in the scope graph are organized in a
scope-hierarchy, a directed tree with scopes as vertices and edges from a scope
to all its children. There exists a special root scope from which all scopes in the
scope-hierarchy are reachable. The only nodes in the root scope are start and
exit. The root scope will not be explicitly shown in our figures. Figure 5.2(b)
shows the scope-hierarchy for the scope graph in Figure 5.2(a).

We use the child relation to define some other relations between the scopes in
the scope-hierarchy. The parent of a scope s is the scope in the scope-hierarchy
which has s as a child. All scopes except the root-scope has a parent. The scope
being parent to a scope s is defined as:

(scope) parent(s) = p: s € children(p)

Each scope has zero or more ancestor scopes, i.e., scopes above it in the
scope-hierarchy. The immediate ancestor is the parent scope. For example,
in Figure 5.2 on page 62 scopes main, and foo are ancestors to scope loop.
Scope foo is a parent of scope loop. The set of ancestor scopes of a scope s is
recursively defined as:

(set of scopes) ancestors(s) =

{parent(s)} U ancestors(parent(s))

Each scope has zero or more descendant scopes, i.e., scopes below it in the
scope-hierarchy. The immediate descendants of a scope s are its child scopes,
Cs. For example, in Figure 5.2 on page 62 scopes outer, inner, foo and loop
are descendants of main. The set of descendants of a scope s is defined as the
set of scopes having s as ancestor:

(set of scopes) descendants(s) = {d|s € ancestors(d)}

A scope without any descendants is called a leaf scope. For example, in
Figure 5.2 scopes inner and loop are leaf scopes. The leaf scopes in a scope
graph sg are defined as follows:

(set of scopes) leaves(sg) = {s|s € scopes(sg) A descendants(s) = (}}

The complete subtree for a scope s is the set of scopes consisting of s and all
scopes in the scope graph having s as ancestor. The complete subtree is a subset
of the scopes in the scope-hierarchy in the form of a tree with s as root. For
example, in Figure 5.2 on page 62 scopes main, outer, inner, foo and loop are
all included in the complete subtree of scope main. The set of scopes included
in the complete subtree of a scope s is defined as follows:

(set of scopes) complete_subtree(s) = {s} U descendants(s)

64 Chapter 5. The Scope Graph and Flow Fact Language

A set of scopes sub is a (complete or non-complete) subtree of a scope s if
sub forms a connected tree with s as root. For example, {main}, {main ,outer},
{main,outer,foo} and {main,outer,inner} are examples of sets forming sub-
trees with main as root in the scope graph given in Figure 5.2. A set of scopes
sub is a subtree of a scope s if the following predicate is true.

(boolean) is_subtree(s, sub) =
s € sub A
sub C complete_subtree(s) A
Ve € (sub— {s}) : parent (c) € sub

5.2.3 Special scope entities

For each scope in the scope graph we define some special nodes or edges useful
for providing flow information. One example is the header-nodes which allow
us to provide information on iterations within the scope.

An in-edge e = u — v of a scope s is an edge having a source node w in a
scope not included in the complete subtree of s, and having target node v in a
scope included in the complete subtree of s. Note that an in-edge of a scope s
does not need to have its source node in a parent scope of s, and does not need
to have its target node within s. For example, in Figure 5.2, the edge H—T is
an in-edge of scope outer and edge I—J is an in-edge of scope inner. The set
of in-edges for a scope s is defined as follows:

(set of edges) in_edges(s) =
{e| scope(source(e)) ¢ complete_subtree(s) A

scope (target(e)) € complete_subtree(s)}

An in-node of a scope s is a target node of an in-edge. A scope can be
entered at several in-nodes, allowing for arbitrary code structuring, for example
unstructured jumps into loops and functions. Note that an in-node of a scope
s does not need to be a header-node of s. In Figure 5.2 node B, C and K are
in-nodes of outer, inner and foo respectively. The set of in-nodes for a scope
s is defined as follows:

(set of nodes) in nodes(s) = {n|Je € in_edges(s) : n = target(e) }

An out-edge of a scope s is an edge having its source in a scope within
the complete subtree of s and having its target in a scope outside the complete
subtree of s. A scope might have several out-edges, allowing for non-local jumps
out of loops and multiple function return sites. An edge can be an out-edge of
several scopes. In Figure 5.2 on page 62 edges I—S and J—R are out-edges of
outer and inner respectively. Edges C—G and F—G are both out-edges of scope

5.3 Loop bounds 65

loop. The set of out-edges for a scope s is defined as follows:

(set of edges) out_edges(s) =
{e| scope(source(e)) € complete_subtree(s) A

scope (target(e)) ¢ complete_subtree(s)}

An edge going to a header node of a scope s and having a source node in a
scope located in the complete subtree of s is a back-edge of s. In Figure 5.2 on
page 62 edges R—I, Q—J and F—B are back-edges of outer, inner and loop
respectively. The set of back-edges for a scope s is defined as follows:

(set of edges) back_edges(s) =
{e | target(e) € headers(s) A

scope (source(e)) € complete_subtree(s)}

5.3 Loop bounds

To limit the set of possible executions over a scope graph, every scope s must
be given a loop-bound bs. A loop-bound is an upper limit on the number of
iterations which can be executed within the scope each time the scope has been
entered. It is an upper bound valid for each possible entry of the scope. We
express a loop-bound by an integer larger than or equal to zero. An iteration
of a scope s is defined to start when a header of s is executed and end when a
back-edge or an out-edge of s is executed.

Figure 5.3 gives the grammar of loop-bounds and the semantics of loop-
bounds is given in Section 5.5.4.

LoopBound — loopbound: ZT

Figure 5.3: Loop-bound grammar

Note that a loop-bound should be interpreted as a local constraint, i.e., not
as a bound on the total number of times a loop is iterated through the whole
program, but a bound valid for each entry of the scope, independent of the in-
edge or the invocation history executed before entering the scope. If the scope
can be entered several times, e.g., being the inner loop in a loop-nest, the loop-
bound given must be a safe upper loop bound valid for each such entry. For
example, a loop-bound of 20 for scope inner in Figure 5.2(b) means that inner
can iterate at most 20 times each time scope inner is entered.

Further restrictions on possible flows, e.g., lower loop-bounds, different loop-
bounds for different entries, or bounds valid for the complete program execution
should be given using flow facts.

66 Chapter 5. The Scope Graph and Flow Fact Language

@start scope: outer;
main headers: I;
loopbound: 10;
children: inner;

outer: [1..8]:#header (inner) < 55

_scope: inner;
headers: J;
loopbound: 20;

[scope: foo;

headers: A; inner:<3..8>:#L+#0< 1
loopbound: 1; inner:[]:7< #M-N
children: loop; inner:<10..19>: #M=#P

[scope: loop;
headers: C;
loopbound: 10; main
loop:<1..5>:4E=1

_loop:[]:#ESS / \

scope: main; outer foo

headers: H;

loopbound: 1; * ‘

children: outer, foo;

main: [] :#P=#E i loop
exit (a) scope graph with attached flow facts (b) scope-hierarchy

Figure 5.4: Scope graph and flow facts

5.4 Flow facts

To express more complex program flow information than just basic loop-bounds
each scope s can carry a set of flow facts Fs. The flow facts combine the
expressive power of IPET, using constraints to limit possible executions of scope
graph entities, with the ability to give the flow information in a scope-local
context. The given flow information can be further restricted to be valid for
only a few specific iterations of the particular scope. Figure 5.4 shows the scope
graph given in Figure 5.2 with some attached flow facts.

Each flow fact f € F, consists of three parts, a defining scope, a context spec-
ification and a constraint expression. Intuitively, the constraint is only defined
for the executions within the complete subtree of the defining scope when the
execution is within the iterations given by the context specification.

For example, flow fact loop : <1..5> : #E = 1 in Figure 5.4 has loop as
defining scope, <1..5> as context specification and #E = 1 as constraint expres-
sion.

Figure 5.5 gives the grammar of the specification language for flow facts. For
each non-terminal NT in this grammar and flow fact f we will use NT (f) to
denote the corresponding expression, e.g., constraint (f) gives the constraint
expression of flow fact f and min(range (context (f))) gives the min iteration
of the range in the context specification of flow fact f.

5.4 Flow facts

FlowFact —
Scope —
Context —
Range —
Min —
Mazx —
Constraint —
Expression —
Relop —
Op —

Scope : Context : Constraint

1d

<>
< Range >

[1]
[Range]

Min .. Maz
Z+
Z+
Z+

FEzxpression Relop Expression

CountVariable
Integer

Ezpression Op FExpression

<l =1>

+1 =1

Figure 5.5: Flow fact grammar

5.4.1 Defining scope

67

The defining scope is the scope over which the flow fact will constrain program
execution, i.e., the constraint should hold for the executions within the complete
subtree of the defining scope. Like loop-bounds, each flow fact is considered
local to its defining scope, meaning that the fact is only allowed to constrain
executions of entities located in the complete subtree of the defining scope. We
will illustrate the defining scope of a flow fact by graphically attaching the flow
fact to this scope.

5.4.2 Context specification

| Operator \ Type | Iterations |

<>

1]
<range>
[rangel

foreach all
total all

foreach range
total range

Figure 5.6: Context specification operators

The context specification gives the iterations for the defining scope over which
the executions of entities should fulfil the given constraint. The type of the
context is either total; written as [] or [rangel, or foreach; written as <> or

<range>.

For a total context, ([] or [rangel), the sum of all executions of entities

68 Chapter 5. The Scope Graph and Flow Fact Language

within the given range should together fulfil the given constraint. For example,
flow fact inner : [3..8] : #F — G > 4 specifies that for each entry of inner,
when the iteration counter of inner is between three and eight, the edge F—G
must be taken at least four times.

For a foreach context, (<> or <range>), the execution of entities within each
iteration within the given range should fulfil the given constraint. For example,
flow fact loop : <6..10> : #N = 0 specifies that when the iteration counter of
loop is between six and ten, for each such iteration, node N can’t be executed.

A range r in a context specification for a fact with defining scope s specifies
that the constraint should be valid when the execution of s (and its descendant
scopes) is within the range of iterations given by r. To better understand
the ranges imagine that each scope s has a fictitious iteration counter holding
the current iteration number of s. The counter is incremented with one every
time one of the header nodes of s are taken and reset to zero whenever the
execution leaves the complete subtree of s. A range is written as min..maz,
where min < max and min, max € Z+ and a range specification valid over a
single iteration can be written as just ¢, instead of i..i.

Note that a ranged fact does not specify that the execution must enter the
range if the defining scope is entered, just that if the range is entered then the
constraint should hold for the executions made within the range. For example,
range 3..5 for a scope s tells us that the corresponding fact should be valid when
the iteration count of s is between three and five, but it does not specify that
we must execute three or more iterations in s when entering s.

[] and <> is a more compact syntax to specify that a fact should be valid
for all iterations of the defining scope. E.g., flow fact loop : <> : #N + #P < 1
specifies that for no iteration of loop both of the nodes N and P can be executed.
We define predicate is_total(f) to be true if flow fact f has a total context
and predicate is_foreach(f) to be true if f has a foreach context.

5.4.3 Constraint expression

The constraint in a flow fact is specified as a relation between two arithmetic
expressions involving execution count variables and constants. An execution
count variable, #entity, corresponds to an entity (node or edge) in the scope
graph, and represents the number of times the entity is executed in the context
given by the context specification.

A fact can only refer to count variables corresponding to entities located
in the complete subtree of the defining scope of the fact. For example, flow
fact main : [] : #P = #E in Figure 5.4 is defined in scope main, but refers to
executions of entities located in scope inner and scope loop. But, a fact in
inner could not refer to node H.

For each scope s we define a special header count variable #header(s), re-
ferring to the number of times the header nodes of scope s are executed within
the context given by the fact that uses the variable. The #header(s) count vari-
able can be used to limit the number of iterations of a scope beyond the basic

5.4 Flow facts 69

limitation offered by the loop-bound. If the scope has several header nodes the
header count variable will refer to a sum of header node executions within the
context given by the fact.

For each scope s we also define an entry count variable, #entry(s), referring
to the number of times s is entered via any of its in-edges. If the scope can
be entered at several different in-edges the entry count variable will represent
the sum of executions of these in-edges in the context given by the flow fact.
Consequently, the entry count variable #entry(s) can only be referred to by
facts with defining scope among the ancestors of s.

We do not make any direct demands on the type of constraint expression
allowed. Basically, the type of constraint expressions needed depends on the
type of flow information that we should express and the power of the calculation
method. More advanced flow information requires more advanced calculation
methods.

5.4.4 Flow fact examples

We now explain the meaning of the example flow facts attached to the scope

graph in Figure 5.4.

m The flow fact loop : <1..5> : #E = 1 expresses that for each entry of loop,
for each iteration 1 to 5 of inner, node E must be executed if the iteration
is executed.

m The flow fact loop : [] : #E < 5 expresses that for each entry of loop, node
E can not be executed more than 5 times.

m The flow fact inner : <3..8> : #L + #0 < 1 expresses that, for each entry of
inner, for iteration 3 to 8 of inner it is not possible to take both node L and
node 0. This means that during the covered iterations any execution passing
both L and 0 is infeasible.

m The flow fact inner : [] : 7 < #M— N expresses that for each entry of inner,
edge M— N must be taken at least 7 times.

m The flow fact inner : <10..19> : #M = #P expresses that for each entry of
inner, for each iteration between 10 and 19, node M must be taken the same
number of times as node P.

m The flow fact outer : [1..8] : #header(inner) < 55 is defined in scope
outer but refers to the header node of scope inner. It expresses that for
each entry of scope outer, for the first eight iterations of outer, the header
node of inner can not be taken more than 55 times. This is useful for
expressing a triangular loop behaviour.

m The flow fact main : [] : #P = #E is defined in scope main but refers to
entities located in scopes inner and loop. It expresses that for each entry
of scope main node P should be taken exactly the same number of times as
node E.

70 Chapter 5. The Scope Graph and Flow Fact Language

Observe that all the flow facts in the scope graph should be valid, i.e., there is
an implicit conjunction of the flow facts. Also, note that flow facts are allowed
to overlap in the ranges of their context specifications and refer to the same
execution count variables. This is useful when we want to combine the results
from several different flow-analysis methods.

5.5 Loop-bound and flow fact semantics

In this section we define semantics for our flow information language. We will
define the semantics of loop-bounds and flow facts as restrictions on the program
flow. The exact restrictions are defined by reasoning over all possible execution
paths in a scope graph.

, start

p|=<start,A,B,D,exit>
scope: loop
headers: A;

loopbound: 3; all iterations in loo
Loop: []:4C<2; p:=(start [A,C,D,A,C,D,A,C, D) exit)

loop:<2..3>:#B=0;

¢ loop:2..3 >
ps= (start,A,B,D /A,C,D|,|A,B,D ,exit)
loop:2..2 loop:3..3
* exit
(a) scope graph with flow facts (b) execution path examples

Figure 5.7: Example scope graph and execution paths

5.5.1 Execution paths

An execution path over a scope graph is represented as an ordered list of nodes
in the scope graph. The edges in a path are implicitly given by their source and
target nodes. Note that we do not allow two edges in a scope graph to have
the same target and source nodes, i.e., the scope graph is not a multi-graph. In
Figure 5.7(b) three example paths p;, po and p3 are shown for the scope graph
in Figure 5.7(a).

Fach node in a path gets an index corresponding to the its position in the
list. A node might occur several times in a path, for example path ps has
multiple occurrences of node A, but each occurrence will have a different index.
The indices are used to separate between different occurrences of the same node.
All indices of nodes in a path p can be represented as a possible infinite set of
positive numbers and is defined by indices(p). For example, the set of indices
for path p; is indices(p1) = {1,2,3,4,5}.

The i:th node in a path p is denoted node(p,?) where ¢ € indices(p). For
example, for path p; in Figure 5.7(b) the second node taken, node(p1,2), is A.

5.5 Loop-bound and flow fact semantics 71

An execution path must be continuous in the scope graph, meaning that it
can only go between nodes which have edges connecting them. More formally, a
path p over a scope graph sg is a finite or infinite sequence p = (ni,n9, ns,...)
of nodes in sg such that Vi,i+1 € indices(p) : Je € edges(sg) : source(e) =
node (p,i) A target(e) = node(p,i+ 1).

The indices are also used to identify edges taken within a path. The i:th edge
executed in a path p is defined to be edge(p,i) and is the edge going between
node(p,i) and node(p,i + 1). For example, for path p; in Figure 5.7(b) the
third executed edge, i.e., edge(p1,3), is B—D.

5.5.2 Subpaths

As mentioned in Section 5.4, both flow facts and loop-bounds are locally defined,
meaning that they have a scope-local semantics. An execution path might
include several entries to a scope and for a path to fulfil a given loop-bound it
must be satisfied for each such path passage.

Checking that a path fulfils a flow fact is more complicated since a flow
fact should be valid for each path passage when the execution has entered the
defining scope and the iteration counters are within the ranges given by the
context specification.

We introduce the concept of subpaths to define semantics for loop-bounds
and flow facts. A subpath is a continuous sequence of nodes extracted from an
execution path. More formally, a path sp is a subpath of an execution path p
if there exists a continuous sequence of nodes in p with exactly the same nodes
in the same order as in sp. The subpath sp of path p starting at a node with
index b and ending at a node with index e (when e > b) is defined as:

(path) subpath(p,b,e) =
sp: (lindices(sp) | = (e —b+1)) A
(Vi<i<b4+e—1:(b+i—1)€ indices(p) A
node(sp,i) = node(p,b+1i— 1))

For example, the path (A,B) is a subpath of p; given in Figure 5.7(b). Ob-
serve that the same subpath might occur several times in a path. In path ps in
Figure 5.7(b) the subpath (A, C,D) occurs three times. We will later use the fact
that a subpath can be recursively divided into smaller subpaths.

The set of all subpaths of a path p are defined as:

(set of paths) subpaths(p) =
{sp|3b,e € indices(p) : b < e A sp = subpath(p,b,e)}

Whether an execution path p satisfies a certain flow fact f = scope : context :
constraint is determined by considering all subpaths of p that are within the
scope and context specification and checking that constraint is satisfied within
each such subpath.

72 Chapter 5. The Scope Graph and Flow Fact Language

To extract the subpaths of a path p that are within a given context we first
extract all subpaths of p that start with an entry and ends with an exit of the
defining scope. Within each resulting subpath, the subpaths corresponding to
the range in the context specification are extracted. If the fact is a foreach fact
each such subpath is divided into a number of smaller subpaths corresponding
to the iterations of the defining scope. Finally, for each extracted subpath
the number of different entity executions are collected and checked against the
given constraint. If all counted executions in all extracted subpaths fulfil the
constraint, then the path fulfils the flow fact.

@ start

scope: outer
headers: A;
loopbound: 3;
outer: []: #G<1
outer:<1..2>:#E<#D

scope: inner
headers: A;
loopbound: 3;
inner: []:#F<2

. inner:<1>:4D=1

outer:1..3

ps= <start,|A,B,I,A,B,C,D,H,B,I,Al,exit>

outer:1 outer:2

I l |
p5=<startjA,B,C,E,F,H,B,I|,A,B,C,D,H,B,I,A|,exit>

| outer:1 f

inner:1
A,ﬁ,C,D,H,B,C,E,F,H,B,C,D,H,C,E,G,H,B,I‘,A,exit>
inner:1 inner:1
p7=<start,AJB,C,D,H,B,C,D,H,B,I,AHI,A,exit>

exit
(a) scope graph with flow facts (b) execution path examples

ps= <start,

Figure 5.8: Example scope graph and execution paths

Figure 5.8 shows a scope graph with two scopes and some flow facts, together
with some execution paths. Within path p; we extract two subpaths correspond-
ing to the first and second iteration of outer, as illustrated by outer:1 and
outer:2, respectively. The executions of entities within each subpath are col-
lected and validated against the #E = 1 constraint. Since node E but not node
D is executed within outer:1 we conclude that the subpath, and consequently
path ps, does not fulfil the given fact outer : <1..2> : #E < #D.

5.5.3 Extraction of path entities

To extract subpaths corresponding to ranges we first need functionality to ex-
tract and order executions of nodes and edges that fulfil specific properties.
We use the inclusion ent € V to define that an entity ent (node or edge)
in a scope graph fulfils a certain property V. For example, node B in Figure
5.8 is a header node of inner since B € headers(inner). We can now extract
the nodes or edges in a path that fulfils a certain property. For example, an

5.5 Loop-bound and flow fact semantics 73

execution node with index ¢ within a path p is an execution of a header node of
scope s if node(p,i) € headers(s).

Given a certain index 4 of an entity in an execution path p we define the
index of the next entity j in p for which a certain property V holds. This is
entity index j such that ¢ < j and there exists no other entity with index k such
that and ¢ < k < j and fulfilling V:

(index) next (p,i,V) =
j:(j € indices(p) Ai < j A (node(p,j) € V Vedge(p,j) €V) A
(—3k € indices(p) : i < k < j A (node(p, k) € V Vedge(p, k) € V)))

For example, next (p2,1,headers (loop)) for path ps in Figure 5.7(b) on page
70 denotes the index 2. The index corresponds to the first execution of A in
po after the execution of the start node. Similarly, next (p3,2,headers (loop))
denotes index 5, and corresponds to the second execution of the header node.

The index of the #:th succeeding entity fulfilling a property V' given a current
entity with index ¢ are recursively defined by applying next (p, i, V) t times. If
there does not exists such an entity the result is undefined.

(index) succ(p,i,V,t) =
j:if t =1 then j =next(p,i,V) else
7 = succ(p,next(p,:, V), V.t —1)

For example, succ(p2,1,headers(loop),3) for path ps in Figure 5.7(b) on
page 70 denotes the index 8, corresponding to the third execution of A.

5.5.4 Loop-bound semantics

We are now ready to give the precise semantics for loop-bounds. Loop-bounds
are locally defined, meaning that an execution path should fulfil the given loop-
bound each time the execution enters the scope of the loop-bound, i.e., for each
entry of the scope the execution should not iterate more than loop-bound times
before leaving the scope.

More formally, for an execution path p to fulfil a loop-bound b of a scope s
the following property should hold: If k£ is an b + 1:th succeeding execution in
p of an header node of s after an execution ¢ of an in-edge of s in p then there
must exists an execution j of an out-edge of s in p such that i < j < k.

(boolean) satisfy_loopbound(p,s) =
(Vk € indices(p) Anode(p, k) € headers(s) A
(3i € indices(p) A edge(p,i) € in_edges(s)
k = succ(p,i,headers(s), loopbound(s) + 1)) :
(37 € indices(p) Aedge(p,j) € out_edges(s) :i < j < k))

All the execution paths in Figure 5.7(b) fulfil the loop-bound of scope loop.
This is because none of the paths execute the header node more than three

74 Chapter 5. The Scope Graph and Flow Fact Language

times before exiting loop. Observe that it is mandatory to give loop-bounds for
all scopes in the scope graph.

5.5.5 Range subpaths

The next step is to define the subpaths of a path that corresponds to a range
specification over a scope.

We define the indices of nodes that start a subpath for a range » = min..max
over scope s. These indices are the min:th executions of a header node in s since
s was last entered. If the execution left s by an out-edge before the header node
was taken for the min:th time the node is not a valid start node for the range.

(set of indices) range begin(p,s,r) =
{j| (Ji € indices(p) : edge(p,i) € in_edges(s) A
j = succ(p,i,headers(s),min(r)) A
(=3k € indices(p) : edge(p, k) € out_edges(s) Ni <k < j))}

For example, range begin(ps,loop,2..4) for the the scope graph given in
Figure 5.7 denotes the index set {5}. This corresponds to the second occurrence
of node A in p3. range begin(p;,loop,2..4) is an empty index set, since the
execution left the scope before the second iteration started.

Similarly, we can define all indices of edges in an execution path that ends a
subpath for a range r = min..max over a scope s. These are the indices of the
edges at which a back-edge for s is taken for the max — min + 1:th time since a
begin-node for the subpath was taken, plus the indices of the out-edges leaving
s before the whole range of iterations was executed (whatever comes first).

(set of indices) range_end(p,s,r) =
{j | (3¢ € range begin(p,s,r) A
J = next (p,1,
{succ(p,i,back_edges(s)
max(r) —min(r) + 1)} U
{next (p,i,out_edges(s))}))}

For example, range_end (p;,loop,2..4) denotes the index set {10}, corre-
sponding to the only occurrence of the out-edge D—exit in the path.

A subpath for a range r over scope s in a path p can now be represented as
all entities inbetween a range subpath begin-node and the next range subpath
end-edge. The set of all subpaths over a path p for a given range r over a scope
s is defined as:

(set of paths) range_subpaths(p,s,r) =
{sp | 3b € range_begin(p,s,r) :
e = next(p,b,range_end(p, s,r) A sp = subpath(p,b,e)}

5.5 Loop-bound and flow fact semantics 75

For example, range_subpaths (p3,outer,2..3) denotes set {(A,C,D, A, B,D)}.
The subpath corresponds to the second and third iterations of outer over p3 and
is illustrated by outer:2..3 in Figure 5.7. Observe that the extracted subpath
indirectly includes all the edges between the nodes as well as the D—exit edge.

5.5.6 Iteration subpaths

Foreach contexts specifies that the given constraint should be valid for each
single iteration of the included range. We therefore need functionality to divide
a range subpath into smaller subpaths corresponding to single iterations of the
scope. As mentioned in Section 5.3 an iteration for a scope s starts at a header
node of s and ends at the next back-edge or out-edge of s in the path.

For a subpath sp we define the indices of all the nodes that start an iteration
of a scope s as well as indices of all the edges that end an iteration of the scope
s as:

(set of indices) iter begin(sp,s) = {i|node(sp,i) € headers(s)}

(set of indices) iter_end(sp, s) =

{i| edge(sp,i) € (back_edges(s) U out_edges(s))}

For example, iter begin(sps,loop) denotes the index set {1,4}, ie., all
indices within the subpath corresponding to an execution of the header node
A. Index set {3,6} are denoted by iter_end(sps,loop). The first index corre-
sponds to an execution of the back-edge D—A while the second index corresponds
to an execution of the out-edge D—ewit.

An iteration iter over a scope s can now be defined as all entities executed
inbetween an iteration begin node b and the next iteration end edge e. The
iteration subpaths over a path sp for a scope s are defined as (note the similarity
with the definition of a range subpath):

(set of paths) iter_subpaths(sp,s) =
{iter | (3b € iter_begin(sp, s)
e = next (sp,b,iter_end(sp, s)) Aiter = subpath(sp,b,e))}

For example, iter_subpaths (sp3, loop) denotes the iteration set {(A,B,D)}.
This corresponds to the last subpath loop:3..3 for ps as illustrated in Figure
5.7(b) on page 70.

5.5.7 Constraint satisfaction

A flow fact constraint contains count variables corresponding to entities in the
scope graph. As previously mentioned, a flow fact is only allowed to refer to
entities located in the complete subtree of its defining scope. Let cvars(c)
denote the set of all count variables in a constraint ¢, and let entity(v) denote

76 Chapter 5. The Scope Graph and Flow Fact Language

the entity that count variable v refers to. All execution indices for an entity
corresponding to a count variable v within a path sp are defined as follows:

(set of indices) collect(sp,v) =
{i|i € indices(p) A (node(sp,i) = entity(v) V edge(sp,i) = entity(v))}

For instance, collect ((start,A,B,D), #B) denotes the index set {2}.

We can now check for the validity of a subpath (or iteration) sp by replacing
each count variable with the number of times its corresponding entity got exe-
cuted within the subpath. The notation c[v/sum| means that we replace v with
sum in the constraint c. For the subpath to be valid the resulting constraint
must be true.

(boolean) satisfy_constr(sp,c) =

c[Vv € cvars(c) / |collect(sp,v) |]

For example, satisfy_constr((start,A,B,D), #B = 0) is false. After re-
placing entity variable #B with the the number of occurrences of B within the
path the given constraint becomes 1 = 0. This is false and therefore the path
(start,A,B,D) does not fulfil the given #B = 0 constraint.

5.5.8 Flow fact semantics

After defining the subpaths corresponding to ranges and iterations and giving
predicates to check if a subpath fulfils a given constraint we can now define the
semantics of flow facts, i.e., if an execution path fulfils a given flow fact.

For a path to satisfy a total fact, all the subpaths given by the context
specification should fulfil the given constraint. The subpaths of a path p given
by the context specification of a flow fact f are given by:

(set of paths) total_subpaths(p, f) =
{sp | sp € range_subpath(p, scope(f), range(context(f)))}

A path p fulfils a given total fact f if all total subpaths fulfil the given
constraint.

(boolean) satisfy_total(p, f) =
Vsp € total_subpaths(p, f) : satisfy_constr(sp, constraint(f)))

For example, satisfy_total(ps, loop : [] : #C < 2) for path ps in Figure
5.7 is false. The subpath given by the context range is (A,C,D,A,C,D,A,C,D).
The number of occurrences of C are counted, which gives a total of 3. Since this
contradicts the given constraint we conclude that path ps does not satisfy the
flow fact.

For a path to satisfy a foreach fact all the iterations within the subpaths given
by the context specification should fulfil the given constraint. The iterations of

5.6 More on complex flows 77

a path p within the subpaths given by the context ranges of a flow fact f are:

(set of paths) foreach_subpaths(p, f) =
{iter | Isp € total_subpaths(p, f) : iter € iter_subpaths(sp,scope(f))}

A path p fulfils a given foreach fact f if all foreach subpaths fulfil the given
constraint.

(boolean) satisfy foreach(p, f) =
Viter € foreach_subpaths(p, f) :satisfy_constr (iter, constraint(f))

For example, satisfy _foreach(ps,loop : <2..3> : #B = 0) for path p3 in
Figure 5.7 is false. The subpath given by the range in the context specification
is (A,C,D, A,B,D). Within this subpath the iteration subpaths are (A,C,D) and
(A,B,D). Within each iteration the number of occurrences of B are collected
and summed up. The first iteration fulfils the given constraint, but the second
iteration does not, since B is taken once. Thus, the flow fact is not satisfied.

We use the type of the flow fact (total or foreach) to validate that a path p
fulfils a given flow fact f as:

(boolean) satisfy flow_fact(p, f) =
(is_total(f) A satisfy_total(p, f)) V
(is_foreach(f) A satisfy_foreach(p, f))

Finally, a path p is a valid execution over an scope graph sg if it is an
execution path over sg and satisfy all loop-bounds and flow facts for the scopes
in sg:

(boolean) is_valid_path(p, sg) =
(Vs € scopes(sg) : satisfy_loop_bound(p,s) A
(Vf € flow_facts(s) : satisfy_flow_fact(p, f)))

Investigating the paths given in Figure 5.8 we conclude that only path py
and pg fulfil the given flow facts. Neither ps or p; fulfil fact inner : <1>: #D =1
and ps does not fulfil fact outer : <1..2> : #E < #D.

5.6 More on complex flows

The scope graph and flow fact language together fulfil some, but not all of
the desired flow representation properties outlined in Chapter 4. Loop-bounds
allow us to express basic finiteness flow information, and the flow facts allow
us to express additional tightening flow information. The scope graph is not
closely related to any particular programming language, but since it relates
to the object code, it is rather sensitive to program changes and needs to be
regenerated every time the program is recompiled.

78 Chapter 5. The Scope Graph and Flow Fact Language

The flow fact language is rather expressive, using a math-based language
to give constraints on possible flows. It combines the expressiveness with the
ability to give the flow information in a local context, ranging from a single
iteration of a loop to the whole program execution. The flow fact language
can only express static flow information, and requires that given dynamic flow
information is converted to a static format.

In the following subsections we will see how the scope graph format can be
adapted to express flows found in recursive and unstructured code as well as
context-sensitive flow information.

5.6.1 Context-sensitive flow information

One of the desired properties of a flow representation is the ability to allow
context-sensitive flow information to be expressed, i.e., that the flow information
derived for a function (or some other specific code part) is different due to the
context in which the function was called. Such context is for example the
preceding function invocation history.

int bill(...) [bill_o | function start int bull(...) [bull_o]function start
if(...) while(...)
{
for(...) .
{ }
bull(...) } _3| function exit
} (c) C-source code || (d) basic-block graph
} for function bull for function bull
bull(...)
} -m return bull
function exit
(a) C-source code (b) basic-block graph @
for function bill for function bill (e) call graph for functions bill and bull

Figure 5.9: Function bill calls function bull twice

The scope graph format supports context-sensitive flow information by al-
lowing a function (or some other specific code part) to exist in several different
copies in the scope graph. For each copy, flow information valid for this partic-
ular invocation could be individually provided. Similarly, flow information valid
independently from where the function got called, (i.e., context-insensitive flow
information), could be multiplied to all the different copies. Since a scope node
holds a reference to a basic block, this gives that the same basic block might be
referenced by several different scope nodes.

5.6 More on complex flows 79

Since the scope-hierarchy must be tree-formed one function can potentially
exist in several copies in the scope graph, all with identical flow information.
For programs including a lot of code and functions, the resulting scope graph
can potentially get rather large due to this scope duplication. However, this
is the price we have to pay for allowing flow information reaching down into
descendant scopes.

For an illustrative example of the need to create several copies of the same
function, consider Figure 5.9 and Figure 5.10. Figure 5.9(a) and Figure 5.9(c)
depicts pseudo C-code for two example functions bill and bull. Function bill
calls bull at two different call-sites, once inside for loop and once after the loop.
Figure 5.9(b) and Figure 5.9(d) show the corresponding basic-block graphs.

bl original scope- ®start
i hierarchy is bill scope: bill
not tree- | Alvino] — .
* J formed (o] headers: A
|| | scope: L1
for —|:headers: B
scope: bull,
bull headers: Gl
(a) Original * scope: while;
scope-hierarchy headers: H1
Y while
o all nodes and edges
Q | inscopes bull and
a while each exists
- in two instances
resulting scope- bill .7
hierarchy is
tree-formed
N scope: bull,
headers: G2
for bull,
* * \|:scope: while,
bull, while,, headers: H2
* "\/
. F[bns]
while, (b) Resulting
scope-hierarchy exit & (c) Resulting scope graph

Figure 5.10: Resulting expanded scope graph for bill and bull

Figure 5.10(a) illustrates how a scope-hierarchy covering both bill and bull
would look like when not differentiating between the contexts of the two calls
to bull. This scope-hierarchy is a directed acyclic graph (DAG) and not a tree
and an extra expansion-pass is therefore needed. Figure 5.10(b) illustrates how
the resulting tree-formed scope-hierarchy would look like. Both scopes bull and
while exists in two versions in the resulting scope-hierarchy. The algorithm for
converting a DAG-formed scope-hierarchy to a tree can be made as a depth-first

80 Chapter 5. The Scope Graph and Flow Fact Language

traversal of the DAG.

Figure 5.10(c) illustrates the resulting scope graph. Each node in the orig-
inal bull and while scopes exists in two version in the resulting scope graph.
Flow information valid for bull independent from where bull got called should
get copied into both versions of bull, while context-sensitive flow information
should only be given to the copy it is valid for. For example, flow information
only valid when bull is called within the for loop, should be added only to
the bull; scope. Note that each basic block for function bull is referenced
by two different nodes in the scope graph. For example, basic block bull_1 is
referenced both by node H1 and node H2.

5.6.2 Recursive code

Recursive code is code where a function calls itself directly or indirectly through
other functions. Programmers often use recursion as an alternative to writing
iterative code, e.g., when traversing complex data-structures. Since recursion,
like normal loops, allow repeated execution of a piece of code, the number
of times a function can recursively call itself must be upper bounded, since
otherwise a WCET estimate for the program can not be produced.

We do not make any direct demands on how to create a scope graph for
recursive call nests, but here only give some general remarks. The exact scope
graph layout is up to the flow analysis algorithms employed.

@start
id function scope: selfrec
voi start node) headers: A;
selfrec(...) { 1A Leatltlutr:Ne flow facts:
selfrec selfrec: [] :#E>D < #C>A
if(...) B
selfrec(...) //C,D additional flow fact
return; e LR o oxeutons of
return from return-edges
} function selfrec call
exit node
exit
(a) self-recursive function (b) flow graph (c’ scopegraph and flow facts

Figure 5.11: Example of self-recursive function

Figure 5.11(a) gives the code of a self-recursive program selfrec and Fig-
ure 5.11(b) depicts the corresponding basic-block graph. Investigating the basic
block graph layout we note that one recursive call actually give raise to two
loops: one loop due to the recursive call-edge and one loop due to the corre-
sponding return-edge. The concept of ranged flow facts and iterations given
earlier in this chapter is not directly applicable to recursive code. This means
that it is not possible to specify flow information valid for a particular recursive
call, using the the semantics given in Section 5.5.

5.6 More on complex flows 81

@start

scope: unstr; unstr scope: unstr;
/I:headers: A; — | | headers: A;

|| | scope: outer outer d || | scope: outer
headers: B; E headers: B;

scope: inner inner |

headers: C,D; \\I:SCOPe: inner

headers: D;

(a) unstructured Sexit
flow graph for unstr| (b) scope graph for unstr (b) scope graph after node splitting

Figure 5.12: Example of unstructured graph

Figure 5.11(c) illustrates a potential extension of the scope concept for han-
dling recursive code. Both loops have been encapsulated within a single scope,
thereby allowing flow information to be specified for a certain recursive call. To
bound the executions of the second loop we have added a flow fact specifying
that the back-edge E—D (corresponding to a recursive function call) should be
upper bounded by the C—A back-edge (corresponding to a return from recursive
function call). Note that the first iteration within the C—A loop will correspond
to the last iteration within the E—D loop, and the second iteration within the
C—A loop will correspond to the second last iteration within the E—D, etc.

This way of handling recursive functions allows us to uniquely specify a
certain recursive call in a recursive loop. However, the definition of a header
node is no longer valid, since it is possible to iterate within the scope without
taking the header node. Flow facts with ranged context specifications over
such recursive scopes are therefore not supported by the current scope graph
implementation. Giving specific flow information within mutually recursive call
nests is even more tricky. However, we believe that it should be possible to
adapt the iteration concept for such code constructs and plan to do it for future
work.

5.6.3 Unstructured code

An unstructured code part is a loop (nest) with not just one but several possible
nodes where the execution can enter the loop (nest) [Muc97]. To create scopes
from unstructured code some type of loop-identification algorithm is preferably
used. There exists a number of suitable algorithms presented in literature, each
with different ways to identify and define loops in unstructured code and with
different analysis complexity [Ste93, VSL96, Hav97, Ram00].

We do not prescribe any particular loop-identification algorithm to use when
constructing a scope graph from unstructured code. The loose definition of a
header node, i.e., that its should not be possible to executed any other node

82 Chapter 5. The Scope Graph and Flow Fact Language

in the scope more than once without passing one of the header nodes, allow us
to use most loop-identification algorithms. Instead, we outline some cases that
needs to be especially considered when providing flow information for unstruc-
tured code.

The first case is when we have a scope with multiple headers. Figure 5.12(a)
depicts an example of an unstructured control flow graph for a function unstr.
Figure 5.12(b) illustrates a possible corresponding scope graph. The loop iden-
tification employed has identified two loops outer and inner, both resulting in
a corresponding scope in the scope graph.

As mentioned in Section 5.3 an iteration of a scope is defined to start when
a header of the scope is executed and end when a back-edge or an out-edge of
the scope is executed. When giving flow information over the scope graph given
in Figure 5.12(b) and in particular the inner scope we must make sure that the
flow information is valid independently of which node inner was entered and of
which header node an iteration started.

Since many type of flow analysis algorithms and calculation methods for
WCET analysis require structured code, an alternative is to employ some kind
of graph transformations to convert the unstructured graph into a structured
one. One example of such technique is node-splitting [Muc97]. Figure 5.12(c)
depicts how the original scope graph presented in Figure 5.12(b) could look like
after applying node splitting. Node C has been split into two distinct copies,
with the result that the inner scope only can be entered at the D node.

void duffcopy(char *to,
char *from, int count) _scope: duffcopy
{ headers: switch;
int n=(count+7)/8; loopbound: 1;
switch(count%8) { -
case 0: do{ *to++ = *from++;
case 7: *to++ = *fromt++; [scope: loop
case 6: *to++ = *xfromt++; [| headers: "1:’;
case 5: *to++ = *from++; loopbound: 6;
case 4: *to++ = *from++; flowfacts:
case 3: *xto++ = *from++; loop:[1:#'0:"+
case 2: *to++ = *from++; x:;':: x:ff::
case 1: *to++ = *from++; #7374 #,2;,+
} while(--n>0); #71:7 = 43;
} return; &eﬁt

Figure 5.13: Example of multiple-entry loop: duff

The other case we need to consider is when unstructured code produces
scopes with in-nodes which not are header nodes. This allow us to avoid scopes
with multiple headers but complicates the iteration concept. In a scope with
in-nodes not being header-nodes, it is possible that one or several nodes in the
scope are executed once before the first execution of a header node. Since an

5.6 More on complex flows 83

iteration is defined to start when a header node is taken, we can not say that
these nodes are executed in the first iteration of the scope. Instead, we introduce
the concept of iteration “0”, used to hold the execution of entities in the scope
taking place before the header node in the scope is executed.

Figure 5.13 gives the core code of the function duff. It contains an unstruc-
tured code part with multiple entry points. For the loop scope, the definition
of a header node allows any set of nodes to be header nodes as long as node
1: is included. In the example we have chosen the node 1: to be the only
header node. Allowing an iteration “0” we can for example add a flow fact like:
loop : <0> : #0: = 0, specifying that the execution can not enter loop at node
0:.

The semantics of flow facts and ranges given in Section 5.5 does not al-
low us to specify constraints valid for such an iteration “0”, and is therefore
not supported by the current implementation (but is planned for future work).
However, for a scope with unstructured code, we can provide flow information
using total flow facts valid for all its iterations, as illustrated for scope loop in
Figure 5.13.

84

Chapter 5. The Scope Graph and Flow Fact Language

Chapter 6

Low-level Analysis

In this chapter we present our low-level analysis. The purpose of the low-level
analysis is to determine the timing behaviour of instructions executing on the
target hardware. For modern processors it is especially important to study the
effects of various performance enhancing features, like caches and pipelines.

Our low-level analysis is divided into two distinct phases. In the global low-
level analysis phase the effects of caches, branch predictors, etc. are determined.
In the local low-level analysis phase the effects of pipelining are determined and
execution times for program parts are generated.

Sections 6.1-6.4 present our view of global low-level analysis. We do not
present any new global low-level analysis, but show how to extend the scope
graph structure to incorporate results from various types of global low-level
analyses.

Sections 6.5-6.9 present our local low-level analysis. It consists of a pipeline
timing analysis and a resulting timing model. The pipeline analysis can make
use of a trace-driven cycle-accurate processor model to perform WCET analysis,
making it both easier to retarget the WCET analysis to new processors, and to
validate the model against real target hardware. Previous research has required
the construction of special purpose hardware models to safely capture the same
type of timing.

The resulting timing model allows us to calculate a program WCET estimate
from the timing of smaller program parts, still capturing all relevant hardware
timing effects. The timing model is independent from the hardware model used
in the pipeline analysis, thereby further enhancing retargetability.

6.1 Global low-level analysis
The global low-level analysis phase considers the effects of performance enhanc-
ing machine features that must be analysed over the entire program to be safely

captured. Examples of such features are instruction caches, data caches, branch

85

86 Chapter 6. Low-level Analysis

e basic block
- mov r5,r8 icache miss
Scope | aqd 6,15 icache hit
node mov r8,r6 icache hit
S add #4,r7 icache hit
L st r6,[r7] icache miss, SRAM_access

Figure 6.1: Scope node with basic block and execution scenario

predictors, and translation lookaside buffers (TLBs). To determine how such
features will affect the execution of an instruction it is not enough to consider
a few neighbouring instructions. Instead, global-low level analysis must take
a global program view, and consider interactions between instructions located
arbitrarily remote from each other.

A global low-level analysis only determines how the investigated feature(s)
affect the execution of instructions, but does not generate actual execution
times. The resulting information should be a safe estimate on how the investi-
gated feature will affect the execution of instructions. The features to analyse in
global low-level analysis are target-dependent, and consequently, the collected
information will be different for different CPUs. The complexity of the global-
low level analysis depends on the type of features used by the target hardware
and how much they interact.

Global low-level analysis can sometimes benefit from flow analysis informa-
tion to produce better estimates. For example, if we have information that a
certain basic block never will be executed, it is safe to assume that its instruc-
tions will not be loaded and therefore not interfere with other instructions in
the cache.

A large number of global-low level analyses have been presented in the liter-
ature, including analyses for instruction caches [FMW97, HAMT99, LBJ 95,
SA00], multi-level caches [Miil97], unified caches [FHL'01], data caches
[KMH96, SA00, WMHT97], and branch predictors [CP00]. Our working phi-
losophy has been to avoid reinventing the wheel. Instead, we have focussed on
providing a modular framework which allows us to express and use the results
from such previously presented analyses.

6.2 Execution scenarios

The information generated in the global analysis phase needs to be commu-
nicated to the local analysis phase. This includes safe information on cache
and branch prediction hits and misses. Other type of information needed to
determine the execution time of an instructions is information on the type of
memory being accessed, and bounds on data for instructions whose execution
time is data-dependent.

We have solved this problem by attaching such requisite information to the

6.3 Expressing global low-level analysis results 87

nodes in the scope graph [EEST03, EE99]. Every instruction in a basic block
can have zero or more associated execution facts, used for providing informa-
tion about the execution of the instruction. The execution facts for all the
instructions in a basic block together form an execution scenario. Figure 6.1
shows an example of a scope node with associated basic block and execution
scenario. The execution scenario contains information from memory access and
instruction cache analysis.

The information in the execution scenarios is used in the low-level analysis to
determine the execution time of the instructions in the associated basic block.
It is possible to have several execution scenarios for each basic block in the
program, each represented by a different node in the scope graph. However, each
execution fact should have a constant effect on the execution of the associated
instruction. Cache behaviour characterisations like first-miss and first-hit
proposed by Healy et al. [HAMT99] are not valid as execution facts. In this
case, two execution scenarios should be set up, one with a cache hit, and one
with a cache miss scenario. Also, the scope graph should be modified to include
a scope node for each alternative.

6.3 Expressing global low-level analysis results

The combination of execution scenarios and flow facts is powerful enough to
represent and combine the results from various types of global-low level analyses.
For example, Theiling et al. [TF98, FMWO97] outline a cache analysis using
abstract interpretation over abstract cache states. The result is a categorisation
of cache references for instructions as always-hit, always-miss, persistent
and undefined. The always-hit or always-miss categorisations are used when
all references to an instruction can be safely categorised as always generating a
hit, respectively miss in the cache. persistent means that all references of the
instruction after the first one will result in a hit and undefined is used when
a reference does not fit into any of the other categorisations. To increase the
precision in the analysis, loops are unrolled to distinguish between the first and
remaining iterations (maybe over several loop-levels), using the fact that within
loops the first reference to an instruction is more likely to result in a cache miss
than the following references.

Figure 6.2(b) illustrates how the scope graph in Figure 6.2(a) gets modified
to represent results from such iteration-based instruction cache analysis. In
this example, the analysis has derived that during the first iteration of loop
a reference to B will result in a cache miss, but references in the remaining
iterations will all result in cache hits. To account for the analysis result, B gets
expanded into two different execution scenarios, where Byiss holds the cache
miss scenario and By holds the cache hit scenario. Two flow facts are created
to specify during which iterations By;ss and By;y can be executed. Furthermore,
the original loop : <1..2>: #B = 1 flow fact is modified to reflect that B exists
in two new versions.

88 Chapter 6. Low-level Analysis

Converted

scope: loop flow facts

headers: A;
loopbound: 5;
loop:<1..2>:4B=1;

scope: loop
headers: A;
loopbound: 5;
loop:<1..2>: #Buiss + #Bre = 1;

loop:<1>:#Buss=1;
loop:<2..5>:#Bass =0;
New flow facts

from instruction
cache analysis

exec info

icache hit
icache hit

exec info

‘ oxit x exit

(a) Scopegraph with flow facts (b) Scopegraph after instruction cache analysis

Loopbound
decreased
with one

first
iteration

exec info

icache hit
icache hit

Can only

p scope: remainin
iterate once 4 g

headers: A’;
loopbound: 4;
remaining:<1>:$#B”=1;

exec info

exec info
scope: first exec info
headers: A;
loopbound: 1;

first:<1>:$#B’ =1;—

exec info

Orginal flow fact
get split into two

exec info

L |remaining

iterations

exec info

Orginal flow fact

get split into two

exit

(c) Scopegraph expanded to express instruction cache analysis results

Figure 6.2: Representing results from iteration-based instruction cache analysis

An alternative is to unroll the scope graph to explicitly differentiate between
the first and remaining iterations. Figure 6.2(c) depicts the scope graph in
Figure 6.2(a) expanded into two scopes first and remaining, each with its
own copy of the nodes from the original scope. The execution scenarios for B’
and B’’ holds the cache analysis results for the first and remaining iterations
respectively. Furthermore, the original loop bound and flow fact are modified
to reflect the graph transformation performed.

Healy et al. [HAM™99] perform a static cache simulation. The result
is a categorisation of each instruction cache access as one of always-miss,
always-hit, first-miss and first-hit. The categorisation is reference-based,
i.e., a first-miss categorisation should be interpreted as the first reference to
the instruction (independent of iteration number) will result in a cache miss,
while the remaining references all will be cache hits.

?start ,start
oxec info
icache miss Converted
scope: loop “oxoc info Ioache hit Exeainio scope: loop flow facts
headers: A; headers: A;
loopbound: 5; loopbound: 5; /

loop:[2..3]:#B=1;

oxec info

icache hit
icache hit

loop: [2..3] : #Bnics + #Brie= 1;

loop: [1: #Bais < 1;(\

New flow facts
corresponding to
first-reference miss

exec info

* exit x)
exit

(a) Scopegraph with flow facts (b) Scopegraph after reference-based instruction cache analysis

Figure 6.3: Representing reference-based instruction cache analysis

6.4 Safe removal of scenarios 89

Figure 6.3(b) illustrates how the scope graph in Figure 6.3(a) gets modified
to represent the result of such reference-based instruction cache analysis. In this
example, the analysis has derived a first-miss categorisation for one instruction
in the B node. This results in two execution scenarios: Bpiss, where the instruc-
tion miss the cache, and Byi¢, where the instruction hit the cache. The flow
fact loop : [] : Buiss < 1 does not explicitly specify that a By;ss must be taken
before By;y, but limits the number of executions of Byiss to be less than one per
entry of the loop. Additionally, the original loop : [2..3] : #B = 1 flow fact is
modified to reflect that B exists in two versions in the resulting scope graph.

The combination of execution scenarios and flow facts can also be used to
express data cache analysis results. White et al. [WMH"97, Whi97] perform
analysis resulting in an upper bound on the number of data cache misses an
instruction can cause in relation to surrounding loops. For example, a cate-
gorisation of ¢ 25 2500 for an instruction ¢ means that the number of misses
for an entry of the innermost surrounding loop is bounded by 25 and the num-
ber of misses for an entry of the next surrounding loop is bounded by 2500.
Such categorisation can easily be expressed using two different flow facts as:
inner : [] : igmiss < 25 and outer : [] : igmiss < 2500 where i4niss is the exe-

cution scenario with a data cache miss.

6.4 Safe removal of scenarios

When the global-low level analysis cannot safely determine a certain execution
scenario for an instruction, nodes for all scenarios have to be created. If we
can guarantee that, for one original node, one scenario will always give worse
timing than all the others, and if we are only interested in the WCET (and
not the BCET), we can safely remove the best-case scenario. For example, for
many types of processors it is safe to assume that a cache hit will always result
in a total execution time that is less than a miss at the same place. However,
removal of scenarios might increase the WCET estimate pessimism, especially
if there exists flow information constraining the number of times the worst case
scenario can be executed.

For more complex hardware, including a lot of performance enhancing fea-
tures, it might be hard to safely determine the feature combination that will
result in the overall worst case program timing. One single scope node will
then be cloned into multiple versions, each referencing the same basic block,
but with different execution scenarios. In the local-low level analysis timing for
all the execution scenarios will be extracted and the combination of scenarios
that produce the worst case timing will be determined.

Finally, note that if the header node in a scope gets copied due to multiple
execution scenarios, the resulting scope might become unstructured, i.e., a loop
with multiple in-nodes. Figure 6.4(b) illustrates how the scope graph in Figure
6.4(a) would be modified to reflect that both A and B gets copied into two
versions due to different execution scenarios. This indirectly requires that the

90 Chapter 6. Low-level Analysis

icache miss
icache hit

exec info
icache hit
icache hit
icache hit

scope: loop
headers: A;
loopbound: 5;

scope: loop
headers: Amiss,, Ant;

loopbound: 5;

Resulting scope
get multiple
header-nodes

exec info

icache hit
icache hit

exec info

‘ exit xexit

(a) Scopegraph with flow facts (b) Scopegraph with multiple header nodes

Figure 6.4: Execution scenarios causing multiple headers

local low-level analysis and the calculation method should be able to handle
unstructured code.

6.5 Local low-level analysis

The purpose of the local low-level analysis is to determine the effects of pipelin-
ing and to generate execution times for program parts. This includes determin-
ing the effects of machine-dependent factors that can be analyzed locally for one
or a few neighbouring instructions, such as pipeline and memory access timing.

In the following sections we will present a pipeline timing analysis able to
safely capture the effects of dependencies and pipeline overlap that exist be-
tween instructions both within and between basic blocks. The outlined pipeline
analysis is able to take execution facts into account, maybe derived by one or
several different global low-level analyses.

The pipeline analysis makes use of a hardware model to extract time for
sequences of instructions annotated with execution facts. The analysis treats
the hardware model as a black box, i.e., it does not need to have access to its
internal state. In principle, the weak requirements on the hardware model allow
us to use any trace-driven cycle-accurate processor model (or even the hardware
itself) to extract timing for instructions.

The result of the analysis is a timing model which allows a worst case exe-
cution time estimate of a program to be calculated from the timing of smaller
program parts. We only store times for node and timing effects for sequences of
nodes in the model, (and not any internal state related to the hardware model),
thereby clearly decoupling the low-level analysis from the calculation phase.

The pipeline analysis and the resulting timing model have been previously
described in Engblom’s Ph.D. thesis [Eng02].

6.6 The problem of pipeline analysis 91

EX } M | Integer and memory pipeline IF: Instruction fetch
IF EX: Execute stage
S M: Memory access

F Floating-point pipeline F: Floating point

Figure 6.5: Scalar pipeline with parallel units

6.6 The problem of pipeline analysis

The purpose of pipeline analysis is to model the execution time effects of the
overlap between instructions in pipelined processors. For simple non-pipelined
CPUs it is possible to assign a fixed execution time to an instruction (or a basic
block), but for pipelined processors this is no longer sufficient since instructions
(and basic blocks) can overlap in the pipeline.

The overlap between instructions makes the execution time for a sequence
of instructions (or basic blocks) less than the sum of the execution times of the
individual instructions (or basic blocks). Furthermore, not all instructions need
to use all pipeline stages, and instructions can be stalled, waiting for pipeline
stages or data of other instructions to become available. A pipeline analysis
suitable for WCET analysis should be able to safely capture the effects of such
pipeline interference between instructions. The resulting timing model should
model the timing effects due to such pipeline interference in a way that an
overall program WCET estimate can be calculated.

For an illustration of the problems involved in performing such pipeline anal-
ysis and constructing a resulting timing model, we use an example pipeline with
the layout as depicted in Figure 6.5. The pipeline is an in-order scalar pipeline
(see Section 2.3.2) containing an instruction fetch (IF), an execute (EX), and a
memory access (M) stage. It also contains a separate floating point (F) stage,
which can be used instead of the (EX) and (M) stages. Instructions can execute
in the (F) stage for several clock cycles.

Figure 6.6(a) shows a scope graph fragment consisting of three nodes Q, R and
S, each referring to a basic block. Figure 6.6(b) shows the pipeline layout of the
three basic blocks, when executed on the pipeline depicted in Figure 6.5. Nodes
Q and S have instructions using the (F) stage, while R has not. The execution
time for a sequence of instructions can be given as the time from when the
first instruction enters the pipeline until the last instruction exists the pipeline.
Using this definition the pipeline overlap between instructions within the same
basic block is captured, as illustrated in Figure 6.6(b), and the execution times
for the nodes become 8 cycles for Q, 6 cycles for R and 7 cycles for S, respectively.

When executing basic blocks in sequence, the total execution time for the
sequence is usually smaller than the sum of the times for the individual basic
blocks, reflecting that the instructions of the different basic blocks are overlap-
ping in the pipeline. For example, the timing for the sequence QR is 11 cycles,

92 Chapter 6. Low-level Analysis

2345 [IF[1]2]3]4 5
T 345 L] W= [
1 345 b W=]
2EEBEE i DOEEDED
8 cycles 6 cycles 7 cycles
Stall waiting
for F stage to
become free
0 EEEN_ O N--EEEN
[[[1] [-- HEEEE
EEEE O [T 1]
a ||][]
11 cycles 14 cycles
(a) Scope graph (b) Pipeline overlap within and between nodes (c) Timing graph

Figure 6.6: Pipeline overlap over pair of nodes

while the sum of the execution times for Q and R is 8 4+ 6 = 14 cycles. Similarly,
the time for executing sequence QS is 14 cycles, while the execution time sum
of Q and S is 8 + 7 = 15 cycles.

Our way to model such pipeline overlap between basic blocks is to assign
execution times to nodes, corresponding to the time for the node when executed
in isolation, and timing effects to edges, for the overlap effect between basic
blocks. For example, the pipeline timing effect for edge Q — R would be minus
three (11 — 14 = —3) cycles. The effect is negative to indicate a speedup of the
overall execution time. Similarly, the pipeline timing effect for edge Q — S would
be only minus one (14 — 15 = —1) cycle. Note that the timing effect for Q —R
is different from the timing effect for Q — S, indicating that the pipeline overlap
is different for the two sequences.

Figure 6.6(c) illustrates how the graph fragment could be annotated with
timing and timing effects. In Section 6.8 we will describe how such timing
and timing effects are derived. The total timing for executing a sequence of
nodes is obtained by summing the time and timing effects for all nodes and
edges included in the sequence. For example, the timing for sequence QR is then
8 —3+ 6 =11 cycles.

Unfortunately, just considering pairs of basic blocks might be insufficient,
since in many cases instruction overlap and interference can reach across more
than two basic blocks. Such effects can for example be caused by instructions
completing their execution long after the other instructions in the basic block
they belong to. For example, in the pipeline outlined in Figure 6.6(a) an in-
struction might occupy the (F) stage for many cycles, while the rest of the
instructions in the block have finished executing.

An example of such a long-reaching overlap between instructions in non-
adjacent blocks is illustrated in Figure 6.7. The execution of node C is partially
overlapped by the node A. This results in an additional execution time speedup
which is not captured by just considering the pipeline overlap in neighbouring

6.6 The problem of pipeline analysis

93

[A]
JIF |
[EX] O NEN L EEEEE
] 0 EEN [EEEEE
a
10 cycles 5 cycles 7 cycles
[IF | | | | |
[| [1] 0 EENEEEEE
W] 1] 0 EEFEEEEE
[F| [F|
10 cycles 10 cycles
Some instructions
ﬂ E ¥ ———_innode C gets
overlapped by an
K] pEnEEEEE instruction in node A
[M] EEFEEEEE
13 cycles
(a) Scope graph fragment (b) Pipelined execution

Figure 6.7: Pipeline overlap over three nodes

nodes. The execution time for the sequence ABC is 13 cycles, while the sum

of block times and pairwise timing effects are

104+5+7—5—2 =15 cycles.

Ignoring this extra speedup would lead to a safe, but potentially pessimistic,

program WCET estimate.

[A] [o]
IF| ONEN [eomEN
[L SN K §EEE
M} b mes O [1]]
[F| | F [LQQQQQQW
10 cycles 5 cycles 7 cycles Instruction usin
floating point.
[IF| | | | |
[L[]] E NES EEE
M} []] 0 NEEN EEEN
o 000000
10 cycles 10 cycles

DI I —

The instruction in
node C gets delayed

O DENe- - -NEN due o iode A
[EX] EEE--- EEE
m EEE-- HEEE
a
16 cycles

(a) Scope graph fragment

Figure 6.8: Pipeline interference

(b) Pipelined execution

over three nodes

More critically, not all long reaching instruction interferences are speedups,
some interferences can cause slowdowns. Figure 6.8 shows an example of such
an interference between a long-running instruction and an instruction in a non-

neighbouring basic block. Node A and B are the

same nodes as in Figure 6.7, but

we here focus on the D successor node. The execution of D gets stalled due to A’s

94 Chapter 6. Low-level Analysis

use of the floating point stage. This is despite the presence of node B between
them. The execution time for sequence ABD is 16 cycles, while the sum of block
times and pairwise timing effects is 10 + 5 +7 — 5 — 2 = 15 cycles. Ignoring
this type of execution time slowdown would lead to a potentially unsafe WCET
estimate.

6.7 Pipeline timing analysis

We have constructed a pipeline timing analysis able to capture instruction in-
terference and overlap both between adjacent and non-adjacent basic blocks.
Our pipeline analysis makes use of a hardware model, or timing function T,
that given a sequence of nodes in the scope graph (containing instructions and
execution facts) returns its execution time. The pipeline analysis do not need
to access to the internal state of the hardware model, but instead consider the
hardware model as a block box. The only requirement on the hardware model
is that it should safely enact the effects of the execution facts, and that the
model is deterministic, i.e., the same sequence of instructions and execution
facts should always give the same execution time.

The exact definition of the execution time reported by T for an instruc-
tion sequence depends on the hardware model used. For a typical model of a
pipelined processor, the execution time will be from the time the first instruc-
tion enters the pipeline until the last instruction exits the pipeline as illustrated
in Figure 6.6, Figure 6.7 and Figure 6.8.

In principle, the weak requirements on the hardware model allow us to use
any trace-driven cycle-accurate processor model (or even the hardware itself)
to perform WCET analysis, making it easier to retarget the WCET analysis to
new processors. The simulator does not need to simulate the semantics of the
code executed (like the results of arithmetic operations or the contents of mem-
ory locations), it need only to provide execution times for a given sequence of
instructions. Such simulators are commonly used by embedded systems devel-
opers to evaluate new features and design tradeoffs [BC98], and we can leverage
existing simulators to port our technique to a variety of hardware platforms.

Simulator (8 Q t,=8

Simulator 6 dop=—3

Ll

Q | R —Simulator|»11| | R |t.=6

exec exec

Fragmentof || L/ L | Timing graph
scope graph Simulation runs with times

Figure 6.9: Timing analysis using a simulator

6.8 Timing model 95

The input to our pipeline timing analysis is a scope graph, containing nodes
referencing basic blocks with attached execution scenarios. The flow information
and the hierarchical scope structure of the scope graph is of no interest for
the analysis and therefore removed. The resulting input is a flattened graph
consisting of just nodes and edges.

The analysis works by running individual nodes (i.e., basic blocks with ex-
ecution scenarios) and sequences of nodes through the hardware model. The
reported execution times are used to construct a timing model, with timing for
nodes and timing effects for sequences of nodes (see Section 6.8). Figure 6.9
provides an illustration of a pipeline analysis where a cycle-accurate simulator
is used to extract timing for nodes Q and R and the QR node sequence.

Note that we are only interested in the sequences of nodes that can actually
occur in the program; that is, only sequences where the successive nodes are
linked by edges in the scope graph. Also, no sequence needs to be run more
than once in the hardware model, thereby reducing the run time of the analysis
when using a complex hardware model with potential high execution time cost.

A central part of the analysis is the extension condition, a function that
determines the sequences of nodes that we need to investigate to safely capture
all timing effects of pipeline overlap and hardware dependencies. The extension
condition to be used depends on the properties of the target processor and
corresponding hardware model. For hardware models not subject to long timing
effects, only nodes and sequences of nodes up to the length of two need to be
run. For other type of hardware models the extension condition becomes more
complicated, (see the Ph.D. thesis of Jakob Engblom [Eng02] for more details).

It should be noted that most WCET researchers do not support the use of
cycle-accurate simulators. Instead, they construct a special-purpose pipeline
model of their target processors, relying on the fact that even if a certain hard-
ware processor is subject to long timing effects, it might be possible to construct
a hardware model which is not. Our pipeline timing analysis can make use of
such special purpose hardware model, just like a simulator.

Note that using a special purpose hardware model for WCET analysis might
have the drawback that another hardware model has to be created for BCET
analysis. A model which is safe for WCET analysis is by necessity unsafe for
BCET analysis, since the model will overestimate the execution time in cases
of uncertainty, while a model for BCET analysis would need to underestimate
the time in such cases.

6.8 Timing model

The result of our pipeline timing analysis is a timing model, orginally introduced
in [EE99] and extended in [Eng02]. The model represents the times reported by
the timing function T, using node times, denoted by t,o4e, and timing effects
for sequences of nodes, denoted by ds¢q. Figure 6.10(a) illustrates a scope graph
fragment and Figure 6.10(b) its resulting timing model.

96 Chapter 6. Low-level Analysis

(=1 S=—d OoiT .
=15 8,= -2 Sost
: =5 5,=-3 om0
node Basic S RT S =
bl — = STU
} o t,=17 §.=—1
xecution 5 =0
scenario t=19 &..=-1 QSTU
U TU —
SQRTU 0 (c) llustrated on
(a) Scope graph (b) Timing model timing graph

Figure 6.10: Scope graph, timing model and timing graph

A node time t,,4c represents the time it takes to execute a node in isolation
on the hardware model. A timing effect §,., represents the change in execution
time encountered when a node sequence seq is executed compared to the timing
of nodes and timing effects of subsequences included in the sequence. Timing
effects are negative to indicate a speedup over a sequence of nodes, and positive
to indicate a slowdown. In the following we will outline how the node times and
timing effects are related to the node sequence times reported by the hardware
model.

We use the notation T'(seq) for the execution time returned for sequence seq
when executed on the hardware model. The time for an empty sequence is zero.
The node time t,,4. for a node node is equal to T'(node), i.e., the execution
time for the node when running in isolation on the target hardware:

tnode = T'(node) (6.1)

The execution time T'(seq) for an arbitrary node sequence seq is defined to be
equal to the sum of times for all the nodes in the sequence and all the timing
effects of all subsequences of the sequence:

T(seq) = Z t, + Z s (6.2)

VnéEnodes (seq) Vs€Esubsequences(seq)

For example, using a hardware model which gives the execution time for a
sequence as the time from when the first instruction enters the pipeline until
the last instruction exists the pipeline, the execution time for the ABC sequence in
Figure 6.7 becomes: T(ABC) = tA+tB+tC+5AB+5BC+5ABC =104+54+7-5-2-2 =
13 cycles.

Figure 6.11 illustrates how times for successively longer sequences are con-
structed from Equation 6.2. The execution time T'(seq) for a sequence seq is
obtained by summing all the ¢ and § variables within the corresponding triangle.

Using some algebraic manipulation of Equation 6.2, we can express the tim-
ing effect for a sequence in terms of the execution times of just a few sub-
sequences. Using [to denote the length of a sequence seq and the notation

6.8 Timing model 97

Figure 6.11: Timing triangle

seqli..j] to denote the subsequence starting at the i:th element and ending at
the j:th element of seq we get:

dseq = T'(seq) — T(seq[2..1]) — T(seq[1..1 — 1]) + T'(seq[2..1 — 1]) (6.3)

For example, dysc = T(ABC) — T'(AB) — T'(BC) + T'(B). Note that for sequences
of length two, the last term becomes zero, e.g., dxp = T(AB) — T'(A) — T'(B).
In Figure 6.7 we get a timing effect for sequence AB of d,5 = —5, reflecting
that A completely overlaps the execution of B. For the sequence ABC, we get the
negative timing effect of dpc = —2, reflecting that the execution of A overlaps
both B and C. For the example in Figure 6.8 the pipeline interference results in
a positive timing effect dypp = +1 for sequence ABC.

Engblom showed in his Ph.D. thesis [Eng02] that both positive and nega-
tive long timing effects can occur over sequences longer than three nodes, and
even more problematic: for certain architectures arbitrary long timing effects
can be constructed. For such architectures a special-purpose hardware model
should preferably be used, making sure to make safe but potentially pessimistic
overestimations when such long timing effects can occur.

The resulting timing model will consists of timing for nodes and timing
effects for sequences of nodes. Figure 6.12(a) provides an illustration of the
node times and timing effects generated for the scope graph in Figure 6.7 and
Figure 6.8. The timing model can also be illustrated as a decoration of a timing
graph, a flattened version of the scope graph with the same node and control-flow
structure but with the scopes and flow facts removed. Figure 6.12(b) depicts
this alternative represention. Note that the long timing effects dppc and dypp are
represented by an explicit encapsulation of the nodes included in the sequence.

For the calculation, a timing effect for a node sequence should only be ac-
counted for when the execution goes uninterrupted via all the nodes in the
sequence. For example, dypc should not be accounted for if the execution leaves
the sequence before node C or if the execution enters the sequence at a node
different from A. The calculation method used must be able to safely capture

98 Chapter 6. Low-level Analysis

t,=10 SapcE —2
8pc= -2 =10
tB=5 /AB: —
Spp= —2
tC=7 BBC_ SBD= _
Sppp= *+1 ?D=7
tc SRR
ty=7 dapp= *1
8apc=—2
(a) Some values (b) lllustrated on timing
in timing model graph fragment

Figure 6.12: Representing long timing effects

such timing effect execution constraints, otherwise it may end up with an unsafe
WCET estimate.

6.9 Alternative timing analyses

For many types of WCET analysis the way to extract and represent timing is
closely connected to the calculation method used. Our approach to low-level
analysis clearly separates the hardware modelling, the timing model, and the
calculation. This enhance retargetability since different low-level analysis can
be used together with the same calculation method.

For example, some approaches do not make an explicit decoupling between
the hardware analysis, the resulting timing-model and the calculation. For
example, the path-based calculation methods proposed in [HAMT99, SA00,
RGL02, ZWR™01] form paths across multiple basic blocks when calculating
program WCET, simultaneously extracting instruction pipeline behaviour and
program timing.

Most IPET-based calculation methods, e.g., [PS95, FMW97, HLS00b] use a
separation similar to ours between the low-level analysis and the resulting timing
model. The potential pipeline overlaps are calculated using this hardware model,
resulting in a timing model with timing typically on either nodes or edges (but
not both). Since none of our calculation methods are dependent on timing
effects for sequences of nodes to be present, they can be used with the timing
models producied such low level analysis.

Modelling pair-wise pipeline overlaps using timing effects on edges was in-
troduced by Ottosson and Sjodin [OS97]. They derive the potential pipeline
overlap between a pair of nodes using pipeline reservation diagrams. By only
considering a simple scalar pipeline, they avoid the problem of long timing ef-
fects [Eng02].

6.9 Alternative timing analyses 99

interarrival time: 5 cycles block time: 7 cycles

~[==]=

Figure 6.13: Block times and inter-arrival times

Its should be noted that our proposed timing model is not limited to our
modular type of timing analysis with our clear separation between the local- and
global low-level analysis phases. As mentioned in Section 3.5, for more complex
hardware with a lot of inter-dependencies between processor components, a more
integerated and potentially more complex low-level analysis is preferably used
to reduce the pessimism in the resulting WCET estimate. The results from such
analysis can in many cases be formulated as a classical IPET [HLTWO03] (i.e.,
just having timing on nodes or edges), something which allow our calculation
methods to use the timing models resulting from such more integrated types of
low-level analyses.

The timing model we propose is also independent on how the hardware
model (i.e., the timing function T') defines the execution time for a piece of
code. The pipeline diagrams presented in this chapter assigns an execution
time to a basic block, corresponding to the number of cycles its instructions are
occupying stages in the pipeline. Other definitions are possible, for example, it
is possible to describe the execution time of a pipelined processor by ignoring
the overlap between instructions which “always” occurs, and rather use the
interarrival time, which is done in many CPU manuals (see Figure 6.13 for an
illustration).

Processor manuals written in this style give a number of cycles for each
instruction rather than a detailed pipeline diagram, together with some rules
for when the execution gets slowed down due to resource contention [ARMO0].
Atanassov et al. [AKPO1] have built a model for the pipelined Infineon C167
processor using constant execution times for each instruction, plus formulas
that account for the interference between neighbouring instructions, the effect
of memory access times, etc. We use a similar model for the ARM9 processor
(see Section 10).

For a more detailed discussion of our pipeline analysis, timing model and
the occurrence and causes of long timing effects we refer to Engblom’s Ph.D.
thesis [Eng02].

100 Chapter 6. Low-level Analysis

Chapter 7

Efficient Path-based
Calculation

This chapter presents a fast and effective WCET calculation method which takes
account of low-level machine aspects like pipelining and caches, and high-level
program flow like loops and infeasible paths. The method is path-based in that
the possible execution paths of a program or piece of a program are explicitly
explored to find the overall program path with the worst case timing.

7.1 Introduction

There has been some other approaches to path-based calculation presented in
the WCET literature e.g., [HAM199, SA00, RGL02] (see Section 2.4.2 for more
details). The basic principle between all path-based methods are the same,
extracting explicit longest paths over some type of graph structure in a bottom-
up manner, replacing code subparts with a safe timing and hardware model
abstraction.

The main difference between our approach and previous work is our clear
separation of pipeline analysis and calculation. This allows us to construct
a simpler calculation phase just working over a graph annotated with times
and timing effects. Previous approaches [HAM199, SA00, RGL02] have explic-
itly integrated a hardware model state, including pipeline and sometimes cache
information, in their path analysis. Thereby, our path-based calculation elimi-
nates the need for an explicit enumeration of all paths to handle pipeline effects
and becomes more efficient than previous presented path-based approaches, es-
pecially in the presence of many potential execution paths.

We further extend the presented path-based calculation method to handle
complex program flow information such as dependent conditional statements
and implication. The flow information are expressed using a subset of our
flow fact language presented in Chapter 5. We extend the calculation method

101

102 Chapter 7. Efficient Path-based Calculation

further to use graph rewriting to handle pipeline timing effects between non-
neighbouring basic blocks. We also show how to handle such long timing ef-
fects going over the calculation borders dictated by the calculation method.
Our experiments demonstrate that speed does not sacrifice precision, and that
programs with extreme numbers of potential execution paths can be analyzed
quickly (see Chapter 10).

7.2 Method overview

Our path-based calculation module takes two inputs, a description of possible
program flows, represented as a scope graph with flow facts (see Chapter 5), and
a timing model, represented as a global timing graph generated by our low-level
analysis (see Chapter 6).

7.2.1 Program flow

The description of possible program flows is represented by a scope graph an-
notated with flow facts, but the method can only handle a subset of the flow
fact constructs presented in Chapter 5. The only flow facts allowed in our path-
based calculation are foreach facts, i.e., facts with <min..max> or <> context
specifiers. Furthermore, facts are only allowed to use count variables referring
to nodes located in the defining scope of the fact.

These kinds of flow facts have a natural relation to path-based calculations,
since they talk about what happens on a single iteration of a scope. Such
flow facts can express complex flow information extracted using flow analysis
method as presented in [Gus00, HAM199]. Flow information stretching over
several scopes or expressed using total facts, i.e., facts using [min..mazx] or []
context specifiers, can not be handled.

*scope: outer;

| headers: A;
loopbound: 10;
outer:<1..5>:#I=1

scope: inner;
headers: B;
loopbound: 20;
inner:<>:#C+#F<1
inner:<6..10>:4#C=0
inner:<1..8>:#C<#G

\4
(a) Control-flow graph (b) Scopegraph with attached flow facts

Figure 7.1: Control-flow graph and scope-graph with flow facts

Each scope in the scope graph is structurally restricted to only contain a
single header node, thereby limiting the calculation method to only handle well-

7.2 Method overview 103

formed loops. A scope might have several out-edges, allowing for non-local
jumps out of loops and multiple return sites for functions. In Section 7.7 we
outline possible method extensions to manage more advanced types of flow
information and graph structures.

Figure 7.1(a) shows an example of a control-flow graph containing two nested
loops. Figure 7.1(b) shows the corresponding scope graph with some attached
flow facts. The fact inner : <> : #C 4 #F < 1 gives that the nodes C and F can
never execute on the same iteration of the scope (an infeasible path), while the
fact inner : <6..10> : #C = 0 gives that for each entry of the inner loop, node C
can not be executed during iteration 6 to 10. The fact inner : <1..8> : #C < #G
gives that, for each entry of inner, during the first eight iterations, an execution
of C implies that G must also be executed. The fact outer : <1..5> : #I =1
gives that for each entry of outer, during the first five iterations of outer, the
execution is forced to take the path passing node I, (and can therefore not enter
the inner scope during those iterations).

7.2.2 Program timing

Basic block
t=11 & =4
EXEC) 1020: add rl,r2 OR
1022: 1d ‘x’,r3 tR:15 S S=-2
1026 . Execution ¢
iexec| —exec| icmp rl,r i i t=17 &__=-3
1028 boe or . l/nformal"/on o RT
1020: icache miss t =5 5 =1
1022: icache hit, T ST
exec| dmem SRAM t =19 &5 =1
1026: icache hit U T~
1028: icache hit
exec|
(a) scopegraph with execution information (b) timing model | | (c) resulting timing graph

Figure 7.2: Scope graph fragment, timing model and timing graph

As presented in Chapter 6, the global low-level analysis annotates the nodes
in the scope graph with execution information, and the local-low level analysis
extracts timing for entities using a hardware model. The second input to the
path-based calculation method is the result of the low-level analysis, a timing
model represented as a global timing graph. The timing graph is a flattened
version of the scope graph with timing on nodes and timing effects on sequences
of nodes.

Figure 7.2(a) shows a fragment of an example scope graph annotated with
execution information. Figure 7.2(b) shows the time model generated from
the low-level analysis and Figure 7.2(c) shows the corresponding timing graph
fragment. In the timing graph, times for nodes correspond to the execution times
of nodes in isolation, (e.g., tq in Figure 7.2), and timing effect for sequences,
(e.g., ogr in Figure 7.2), to the pipeline effect when the two successive nodes are

104 Chapter 7. Efficient Path-based Calculation

Path search
preprocessing

Simple fact
removal

Timing graph
for vscope

Timing
Graph

WCET tool F——_V Path-based calculation
(Virtual H H },

scope
Virtual scope
expansion
Timing effect
Scope graph Local Longest path Expanded
traversal WCET search timing graph,

eI
with flow an
N SErn G level analysis ihifiowar
Input datal\, with flow info,
=
Global timing
I \ / graph
] [

i Object
Compiler H o

Flow
analysis

Hardware

Program
model

source

Figure 7.3: WCET analysis using path-based calculation

executed in sequence. The timing graph is generated once for the entire scope
graph.

As explained in Chapter 6 there is a potential for timing effects along longer
sequences of nodes than just two, usually caused by a node using some CPU
resource that is used by a later node in the sequence, but not by the nodes
in between. Such timing effects should only be included in the final WCET
estimate if all the nodes in the sequence are executed in sequence. For example,
in Figure 7.16(a) on page 114, we have a timing effect for the sequence CDE.

7.2.3 Calculation overview

Figure 7.3 gives an overview of our WCET analysis system, when using longest
path-based search as described in this chapter. The path-based calculation
module is shown in detail.

Our path-based method works bottom-up over the scopes in the scope graph,
extracting worst case timing of descendant scopes before their ancestors (box
“Scope Graph Traversal” in Figure 7.3). Within each scope we extract a number
of worst case paths each valid for one single iteration. The extracted paths will
be combined to form a worst case execution for the whole scope. The WCET
time derived for the root scope in the scope graph becomes the WCTE estimate
for the whole program.

To account for flow facts which make execution paths infeasible for all or
some iterations, we unroll a scope into a number of virtual scopes, (box “Virtual
Scope Expansion”). Fragments of the global timing graph are used to create a
local timing graph for each such virtual scope (box “Timing Graph for VScope”).

We apply an acyclic longest-path search algorithm over the local timing
graph to extract a worst-case iteration path. Before the algorithm can be applied
all cycles in the timing graph are removed, (box “Path Search Preprocessing”).
Also, some nodes and edges in the timing graph are removed to account for
certain types of simpler flow facts, such as facts specifying that a certain entity
must or can’t be taken (box “Simple Fact Removal”). Paths not fulfilling given
flow information are removed until a feasible longest path is found, (box “Local
Path Search”).

7.3 Basic path search algorithm 105

Dijkstra’s(timinggraph T'G):
// Initialization
for each node u in T'G do
predecessor(u] := nil
time_sum(u] := 0
end for
// Breadth-first-search
for each node u in T'G in breadth-first order do
for each outgoing edge e = u — v in G do
d := time_sum[u] + ty + de
// Is u on the longest path to v
if time_sum[v] < d then
predecessor[v] := u
time_sum(v] := d
end for
end for
return TG

Figure 7.4: Longest path search algorithm

The timing graph is expanded to handle pipeline effects across sequences of
nodes longer than two, (box “Timing Effect Expansion”). Special care has to be
taken to handle long timing effects going over our analysis borders, e.g., effects
over nodes which belong to different scopes.

The following sections will describe the algorithm steps in more detail. Sec-
tion 7.3 present the basic longest path search algorithm used. Section 7.4 and
Section 7.5 presents how the algorithms and data structures are modified to
handle complex flow information and long pipeline effects.

7.3 Basic path search algorithm

The classical approach to longest executable path search in path-based calcula-
tion is to generate all possible paths for a certain program segment (function,
loop body, or other unit), run all the paths through some kind of hardware
model, and select the path with the longest execution time. The unit of analy-
sis is the complete path, and the number of paths to explore is up to 2", where n
is the number of decisions in the program segment being analyzed. The need to
handle many complete paths arises from the use of pipelining in modern proces-
sors: to get a tight timing estimate, one must account for the overlap between
basic blocks, and this can only be done by analyzing all the basic blocks in a
path in a continuous sequence.’

However, since our pipeline analysis allows the timing of a path to be com-
posed from smaller components, it is possible to reformulate the longest path
search problem for a program segment as finding the longest path in a directed
acyclic graph, eliminating the need for an explicit enumeration of all paths to

1To keep complexity under control while losing some precision, it is possible to cut a
program segment into smaller pieces with a lower number of decisions in each [HAM99].

106 Chapter 7. Efficient Path-based Calculation

Prepared for path search Predecessors, time

Initial timing algorithm. Exit and contin- || sums, and longest path
graph with times uation nodes added. to loop continuation
(a) (b) (c)

Figure 7.5: Longest path search

handle pipeline effects.

We base our efficient path search on Dijkstra’s algorithm (shown in Figure
7.4) [CLR90]. The algorithm computes the longest path in O(m-+n) time where
m is the number of edges and n is the number of nodes, i.e., it is linear in the
size of the graph.

In order to be able to apply the algorithm on the timing graph TG for a
scope s, we must first remove all cycles from the graph, since in general the
longest path in a graph is undefined if there are cycles in the graph. Therefore,
within each scope, we replace all back-edges (i.e., edges back to the header node
of the scope) with edges to a special continuation node L.. Furthermore, all
edges leading to nodes outside the scope are redirected to a special exit node
1, (see Figure 7.5(b)). This is the “Path Search Preprocessing” stage in Figure
7.3.

After this preprocessing, the algorithm works by breadth-first search. For
each node, it computes the predecessor with the greatest total time on the
longest path from the start node of the graph (called time_sum in the algorithm).
If a node is not reachable from the header node, due to the removal of certain
paths (Section 7.4), the corresponding time_sum is zero. Figure 7.5(c) illustrates
the result of the algorithm, showing the predecessor and time_sum for each node.
This is the “Longest Path Search” stage in Figure 7.3.

After each run, for each node n, predecessor{n| defines the predecessor of
node n on the longest path from the start node to n. Thus, a path can easily
be constructed backwards by following the predecessor chain.

The extracted worst case paths to 1. and 1., respectively, both corresponds
to a single iteration of s. When computing the local WCET for a looping scope
s, we have to give the last iteration a special treatment, since when exiting a
scope, a different path is usually taken, which may be longer or shorter than the

7.4 Path search with flow facts 107

scope: s
loopbound: 20;
s:<1..5>:§C=1 (£1)

Si<3..10>:#B+#E=1 (£2)

v 7 v ¥
gel, .2 883555 5:6..10 s:11..20
(f1) (f1.12) (f2) ©)

Original scope Virtual scopes and associated facts

Figure 7.6: Virtual scope expansion

repeating path. Therefore, we calculate two longest executable paths in each
scope: one to the special node L. and one to the special node L. If there is no
executable path to L., s does not iterate at all, in which case the WCET for
the scope is the longest executable path to L.

If there is a path going to L. the final WCET for scope s becomes:
time_sum(L.) * (loopbound(s) — 1) + time_sum(_L).

7.4 Path search with flow facts

In this section, we show how flow facts can be used to remove infeasible paths
in the path-based calculation, and thus obtain more precise WCET estimates.

7.4.1 Ranges and Virtual Scopes

In order to account for flow facts with ranges, i.e., facts with a <min..max> con-
text specifier, we expand a scope into a number of virtual scopes. A virtual scope
corresponds to a certain range of iterations of a scope, and the virtual scope
expansion will, creates a copy of the original scope for each virtual scope. Each
virtual scope has a corresponding wvirtual scope specifier, s:range, specifying
which scope and range the virtual scope is valid for.

The purpose of the virtual scope expansion is to make sure that each fact
attached to a virtual scope has a range covering the entire iteration range of a
virtual scope, as illustrated in Figure 7.6. Here, the two facts s : <1..5> : #C =
1 and s : <3..10> : #B + E = 1 are specified for the scope s. Both facts hold
for the iterations 3..5. Only fact £1 holds in iterations 1..2, and £2 in iterations
6..10. In iterations 11..20, none of the facts hold. Thus, the scope is split into the
virtual scopes s:1..2, §:3..5, s:6..10, and s:11..20. After the expansion,
we note which facts are valid for each virtual scope.

108 Chapter 7. Efficient Path-based Calculation

VirtualScopeSpecCreation (scope s):
VSS =0, min :=1
F := facts in scope graph having s as defining scope
Feurrent = facts in F' spanning first iteration in s
// Loop over all iterations in the scope
for each iteration iter between 1 and loopbound(s) do
Fiter := facts in F spanning iteration iter in s
// Has set of spanning facts changed
if Fcu'rrent # F'Lter then

mazx := iter - 1
VSS := add virtual scope spec s:min..max to VSS
min := iter
Feurrent = Fiter
end for
// Return set of created virtual scope specifications
return VSS

Figure 7.7: Virtual scope generation

SimpleFacts Removal (timinggraph T'G):

// Handle forbidden’ nodes, (#node = 0)
for each forbidden node n in T'G do
delete n from TG
remove resulting dead paths
end for
// Handle 'must-have’ nodes, (#node = 1):
for each must-have node n in TG
mark all transitive predecessors of n
mark all transitive successors of n
for each node m in TG
if m not marked
delete node m from TG
end for
end for
return TG

Figure 7.8: Simple facts removal

An algorithm for finding virtual scope specifications over a scope is given in
Figure 7.7. For each created virtual scope specification a corresponding virtual
scope will be created.

7.4.2 Simple facts removal

To make the path search with facts more efficient, certain facts can be handled
in a preprocessing stage (the “Simple Fact Removal” stage in Figure 7.3). The
algorithm for this step is shown in Figure 7.8.

A fact with a constraint expression of the form #node = 0, stating that node
must not be taken in the covered iterations, can be handled by simply removing
node from the corresponding virtual scope. A fact with a constraint expression
of the form #node = 1, stating that node must be taken on each iteration, can
be handled by removing all paths from the graph that do not include node.

7.4 Path search with flow facts 109

Original longest path. Removing the path “ACDFG-continue”
Made infeasible by fact. by graph rewriting, new longest path.

(a) (b)

Figure 7.9: Infeasible path removal

LongestFeasiblePathSearch(timinggraph TG, factset F', node Mepg):

// Extract longest path p in TG
TG = Dijkstra’s(TG)
begin loop
// Get timing and longest extracted path
tp = time_sum(Nend)
p := longest path from startnode(T'G) to ngng
// Return if p feasible against flow facts
if Feasible(p, F') then return ¢,
// Return if there was no path to neng
if ¢, == 0 then return t,
// Else, remove p from T'G and redo extraction
TG := DeletePathFromGraph(TG,p)
end loop

Figure 7.10: Longest feasible path search

The paths can be found in time linear to the size of the graph by first marking
all transitive predecessors and successors of node, and then removing all nodes
that are not marked. Any such node would not be on a path from start to end
involving node, and is thus infeasible.

7.4.3 Longest path search with flow facts

The longest path found by Dijkstra’s algorithm is then checked for feasibility
against the flow facts not removed in the preprocessing. The checking is done
by counting the occurrence of entities in the path, and comparing this to the
constraints specified in the facts. For example, for a fact like “inner : <> : #C+
#F < 1”7, we will check that the path does not contain both node F and node C.

If the path is not feasible, it is removed from the graph and the search
begins again, now finding the second-longest path. The path is removed using

110 Chapter 7. Efficient Path-based Calculation

an algorithm by Martins and Santos [MS00], and the effect is illustrated in
Figure 7.9. The idea is to create a deviation around the path to be removed.
This is achieved by adding copies of already existing nodes and edges to the
graph as shown in Figure 7.9, and removing the end of the original path. Note
that the modified graph still contains all paths of the original graph, except
precisely the removed one. All new nodes and edges have the same timing as
their originals in the timing graph. During the path removal, the algorithm also
computes the next longest path in the graph by updating the path information
time_sum[v] and predecessor{v] (see Section 7.3 above) for all affected nodes v
(thereby avoiding another pass of Dijkstra’s algorithm).

The process of longest path search and infeasible path detection and removal
is repeated until a feasible path is found. The first feasible path found is the
longest executable path in the virtual scope. The algorithm for longest feasible
path search is given in Figure 7.10.

The removal of a path and finding the next longest one runs in O(m) time,
where m is the number of edges in the graph. This comes from the fact that
for each new node the time_sum and predecessor are computed by traversing
all incoming edges of the corresponding original node (see [MS00] for details).
However, this complexity is obtained only if the next longest path is found after
scanning the entire set of edges, which is the case only when a path passes all
nodes. For a typical flow graph, this is not realistic. Thus the actual complexity
can be assumed to be much lower.

After one initial run of Dijkstra’s Algorithm, the path search algorithm runs
in O(K % m) time, where m is the number of edges in the graph and K is
the number of paths removed. As the number of paths in a flow graph grows
exponentially with the number of decisions (see Section 7.3 above), the whole
path search might take exponential time, since in the worst case all paths have
to be examined (if the shortest path is the only feasible path). However, for
typical programs this is very unlikely and may only happen when we have many
complex flow facts covering the same virtual scope. It was not a noticeable
problem for any of our benchmark programs (see Section 10.8). Thus, in general,
the number of paths examined should be low compared to the total number of
possible paths. Also note that since the calculation successively improves the
WCET estimate in each step, it can be interrupted at any time, still yielding a
safe, but probably pessimistic result.

7.4.4 WCET calculation algorithm

After applying the modifications to the graph as described above, we start
searching for the longest executable path allowed by the remaining facts. We
have a fragment of the global timing graph corresponding to a virtual scope,
with back-edges removed and special nodes added, and a set of remaining facts.

Figure 7.11 shows the top-level algorithm, used for each scope. It performs
WCET analysis recursively for the subscopes, divides the scope into virtual
scopes, retrieves a piece of the timing graph, and removes the paths corre-

7.4 Path search with flow facts 111

WCETCalculation(scope s, timedatabase s):
// Initialize timing variables for scopes and virtual scopes

ts,cont = ts,cont = teont = tvs,ezit = tvs,ezit =tezit =0
// Extract timing for subscopes
for each child scope sub to scope s do

tsup 1= WCETCalculation(sub)

s := in s replace call to sub with new call node ngup
add time tg,p for node ngyup to tdb
end for

// Divide scope s into virtual scopes
VS := VirtualScopeCreation(s)
// Calculate times for virtual scopes
for each virtual vs in VIS in increasing order do
// Get and convert timing graph for virtual scope
TG := TimingGraphFragment(s,vs)
TG PathSearchPreprocessing(TG)
TG := SimpleFactRemoval(TG)
TG := LongTimingEffect Expansion(TG)
// Get time for longest continuation and exit paths
teont := LongestFeasiblePathSearch(TG,F, L)
tezit := LongestFeasiblePathSearch(TG,F, 1)
// Does there exist a feasible continuation path?
if valid(tcont) then
// Update longest time time to back-edges for scope
ts,cont = ts,contt+ SPan(US) *tcont
// Update longest time time to out-edges for scope
if valid(feqit) then
ts,e:cit := ts,cont + (Span(US)—l) * teont + texit
else // We must take the exit path
if valid(feqit) then

ts,ezit 1= ts,cont + texit
return tsexit
end for

// Return the longest time to out-edges
return ts ezt

Figure 7.11: Path-based WCET algorithm

sponding to the simple facts. By calling the algorithm with the root scope of
the scope graph, a WCET for the complete program is generated.

The algorithm creates a number of virtual scopes for each scope as given
by the flow facts defined on the scope. The algorithm then iterates over the
created virtual scopes in increasing range order. For each virtual scope, two
timing values are calculated, one time t.,,: to the continuation node . and
one time tez;; to the exit-node 1,. The longest path in each virtual scope is
generated as described in Section 7.3 above.

The times extracted for the virtual scope are combined together to form a
WCET for the complete scope. For each scope s we have one variable ts ¢y
holding the worst case timing accumulated for scope s to 1,, and one variable
ts.cont holding the worst case timing accumulated to L.. The final t; ¢4+ value
extracted is the worst case timing for the scope, and is returned.

A potential optimization reducing the path search needed is to compare the

112 Chapter 7. Efficient Path-based Calculation

LongTimingEffect Expansion(timinggraph T'G):
// Breadth-first-search
for each node v in T'G in breadth-first order do
if in_degree[v] > 1 and v in long timing effect then
for each incoming edge u — v inside a sequence do
// Copy v and add and redirect edges
add node v’ to TG
add edge u — v’ to TG
remove edge u — v from TG
for each outgoing edge e = v — w in T'G do
add edge v — w to TG
// Add long timing effect to edge
if e is last in a timing sequence s then
add s to weight of e
end for
end for
end for

Figure 7.12: Long timing effects expansion

set of facts covering the different virtual scopes. If the set of facts covering a
virtual scope vs; is a subset or equal to the set of facts covering a virtual scope
vs; then all paths removed from vs; can be safely removed also from vs;. This
means that when doing a longest path search over vs; we can instead start with
the resulting graph after the longest-path search over vs;.

7.5 Handling long pipeline effects

The basic longest path-search algorithm presented in Section 7.3 manages tim-
ing effects up to the length of two. But, if there are pipeline effects across
sequences of nodes longer than two, they must be considered during the path
search since they might affect the longest path. Path-based calculation methods
have previously required complete paths to be executed to capture such effects
[HAM'99, SA00, RGLO02], while here we show how to capture the effects locally
by graph rewriting.

To account for such effects, we need to know when we have taken a path
containing the sequence of nodes corresponding to the timing effect. Since the
longest path search only looks at the predecessors for a node, a preprocessing
algorithm, given in Figure 7.12 and corresponding to the box “Timing Effect
Expansion” in Figure 7.3, is used.

The idea behind the preprocessing algorithm is to make each path that
contains a long timing effect separate in the graph, and to add the time of the
timing effect to the last edge in the sequence. This is obtained by traversing
the nodes in the graph in topological order, and for each node visited, if it is
inside a timing effect sequence (i.e., not the first or last of a sequence), and
has more than one incoming edge, it is copied together with its outgoing edges
and the incoming edge that is part of the sequence. The original incoming edge

7.5 Handling long pipeline effects

Timing effect Graph expanded to Edge accounts for
across C-D-E account for timing effect timing effect
(a) (b) (c)

Figure 7.13: Simple timing effect

SADE 3BDF.
7

Three timing effects
cross at node D

SADE OBDF O9BDE
/i TN

Graph expansion to
separate the effects

Effects added to unique

graph edges

(a)

(b)

(c)

Figure 7.14: Crossing timing effects

Initial situation, two | | Split at C, CDE Splitat D Effects added to
timing effects effect duplicated edges in the graph
(a) (b) (c) (d)

Figure 7.15: Overlapping timing effects

113

114 Chapter 7. Efficient Path-based Calculation

is removed. The copied nodes and edges have the same timing effects as the
original nodes and edges.

In Figure 7.13 the expansion process for a timing effect dcpg on a graph
fragment is shown in more detail. The node D is copied to D’ and the d¢pg
timing effect is added to the dpg timing effect, to create the new timing effect
6D’E~

Figure 7.14 shows what happens when several time effects cross each other.
A number of new nodes is added, and three edges are rewritten. Figure 7.15
shows the case where two timing effects overlap. The graph must be expanded
in such a way that we count both effects only if the sequence BCDE is taken, and
only the effect over CDE if only that path is taken. The end result is a graph
where the effect dcpg is added to two edges.

Timing effect over Graph expanded to Longest path to contin-
several nodes account for timing effect. | |uation, with timing effect.

(@) (b) ()
Figure 7.16: Path search with timing effects

An example showing that the long timing effects might affect the longest path
is shown in Figure 7.16, where the timing effect on the sequence CDE increases
the execution time of that path by 3 cycles, making the longest path different
from the one shown in Figure 7.5.

7.5.1 Long timing effects over analysis boundaries

One problem with a bottom-up WCET calculation such as the one presented
in this chapter is that there might be long timing effects across the boundaries
between successive paths or scopes, which have to be handled in order to ensure
a safe WCET estimate. For pipeline effects across scope boundaries, all timing
effects of length two are accounted for at the scope where the edges begin. For
timing effects of longer length crossing calculation borders, a safe but potentially
pessimistic solution is needed.

The simplest way to handle such long border crossing timing effects is to

7.5 Handling long pipeline effects 115

Timing effect on the | [History node before node | | Longest path to continuation,
sequence G-A-B. A. Timing effect moved. with long timing effects.

(@) (b) (c)
Figure 7.17: Timing effect across back-edge

ignore all pipeline effects between nodes in different scopes and loop iterations,
i.e., pessimistic but safely assume that we always have an empty pipeline when
we start a new iteration and exiting and entering scopes?.

Our less pessimistic (but still not perfect) solution is to add special history
nodes to the timing graph. The history nodes represent the potential paths
taken before the beginning of a path search and therefore have no weight asso-
ciated with them. Long timing effects will then begin at history nodes and end
at a node in the current scope (as shown for the timing effect from “(G)” to B
in Figure 7.17(b)).

For each node v in the graph that is the target of a back-edge, return from
a child scope call or an entry to the scope, we collect all timing effects with a
length greater than two (those of length two are already handled as regular edge
times). For each such timing effect we create a history node labelled with the
sequence of nodes up to v, and insert it between the start node and the node
v. For example, the sequence GAB in Figure 7.17, makes us insert the history
node “(G)”. This changes the longest path from ACDFG as shown in Figure 7.5
to ABDFG as shown in Figure 7.16(c).

The insertion of history nodes gives a safe but possibly pessimistic estimate
of the execution times, since we will always use the worst incoming timing effect.
This remaining pessimism is the price we have to pay for the convenience and
efficiency of extracting WCET times for scopes and virtual scopes in isolation.
In Chapter 9 more details on how to handle border crossing timing effects will
be given.

2This is safe if we assume that a two basic blocks can never have a positive timing effect
between them, i.e., in the worst case, we assume that two basic blocks executed on end in a
pipeline will have no overlap.

116 Chapter 7. Efficient Path-based Calculation

scope: outer;
headers: A;

: 10;
outer:<7..10>:#I=1

scope: inner;
headers: B;
loopbound: 20;
inner:<>:#C+#F<1
inner:<6..10>:#D=0
inner:<1..8>:#C < #G

scope inner is processed

(a) Control-flow graph (b)

v
Scopegraph and flow facts

(c) Scope-hierarchy

(d) Global timing graph

WCET(inner:11..20) =

410 + 225 + 156 + 822 = 1613
WCET(inner:1..5) =

time_sum(L;) *iters(1..5) = 82 *5 =410
WCET(inner:6..8) =

time_sum(1.) *iters(6..8) =75 * 3 = 225
WCET(inner:9..10) =

time_sum(1.) *iters(9..10) =76 * 2 = 156
WCET(inner:11..20) =

time_sum(1.) * iters(11..20)-1 +

time_sum(Ll,) *1=82*9 +84 * 1= 822

(e) WCET Calculation for scope inner

WCET(inner) = WCET for inner
WCET(inner:1..5) + is given by loopbound: 20;
WCET(inner:6..8) + WCET of its inner:<>:#C+#F<1 (£1)
WCET(inner:9..10) + virtual scopes .10>:4D=0 (£2)

inner: <1..8>-4C<#G (£3)

b

L

xnner 6.
(£1,£3)

(£1,£2,£3)

\ v
inner:9..10 inner:11..20
(£1,£2) (£1)

(f) Scope inner singled-out and virtually expanded

(9) Preprocessed timing
graph for scope inner

(h) Expanded timing
graph for scope inner

(i) Longest path to contin-
uation for inner:1..5

(j) Longest path to contin-

uation for inner:9..10

WCET(outer) = Total program
WCET(outer:1..6) +
WCET(outer:7..10) =
9756 + 174 = 9930

WCET(outer:1.
time sum(L

n‘ers(1.6) =
1626 * 56

WCET(outer:7..10) =
time_sum(L;) * iters(7..10)-1+
time_sum(L.) 1=
433 +45%1=174

scope inner can not
be entered during four
last iterations of outer

(k) WCET calculation for outer

scope: outer;
headers: A;
loopbound: 10;

outer:<7..10>:#I=1 (£4)

n inner

Time for node “inner”
becomes equal to
WCET for scope
inner

node “inner”
has been
removed

-) (£4)

() Scope outer singled-out and virtually expanded

(m) Preprocessed timing
graph for scope outer

continuation for
outer:1..6

p=J
node p= S p= §=4:
replacing 5=1628 5=1626
callto .
Scope inner | outer!1.. outer!7.. (n) Longest path to (o) Longest path to
"

continuation for
outer:7..10

Figure 7.18: Complete path-based WCET calculation example

7.6 Complete example 117

7.6 Complete example

In Figure 7.18(a)-(m) we give a compact illustration of the steps involved in our
path-based calculation method.

Figure 7.18(a) shows an example control-flow graph consisting of two nested
loops. Figure 7.18(b) shows the corresponding scope graph with the scopes
inner and outer and some attached flow facts. Figure 7.18(c) shows the cor-
responding scope-hierarchy. Figure 7.18(d) illustrates the global timing graph
generated from the scope graph by our low-level analysis.

The path-based calculation is performed bottom-up over the scopes in the
scope-hierarchy, starting with the inner scope. The flow facts attached to
inner will generate four different virtual scopes, inner:1..5, inner:6..8,
inner:9..10 and inner:11..20 as illustrated in Figure 7.18(f). A timing graph
fragment corresponding to inner is singled out, made acyclic and expanded for
long timing effects as given in Figure 7.18(g) and Figure 7.18(h). The longest
path-search method is then applied to the timing graph for each of the virtual
scopes. Figure 7.18(i) illustrates the longest path extracted for virtual scope
inner:1..5 fulfilling the £1 and £3 flow facts. Figure 7.18(j) shows the longest
path extracted for virtual scope inner:9. .10 fulfilling the £1 and £2 flow facts.
Note that node D has been removed due to fact £2.

The times for extracted paths over the different virtual scopes are combined
to form a WCET for each virtual scope. The virtual scope WCETSs are combined
to form the WCET of 1613 clock cycles for the whole inner scope as illustrated
in Figure 7.18(e).

After calculating a WCET for the inner scope the calculation proceed with
its parent scope outer. A special node is created in the outer scope correspond-
ing to the call to inner. Two virtual scopes outer:1..6 and outer:7..10 are
created for the outer scope as illustrated in Figure 7.18(1). The timing graph
fragment corresponding to outer is extracted and the inner call node is given
the timing extracted for the inner scope as illustrated in Figure 7.18(m). For
virtual scope outer:1..6 the longest feasible path will include this call node,
as illustrated Figure 7.18(n), while for virtual scope outer:7..10 the execution
must go over the I node, as illustrated in Figure 7.18(0).

The times for the two virtual scopes are combined to form a WCET of 9930
clock cycles for the whole program as illustrated in Figure 7.18(k).

7.7 Possible method extensions

7.7.1 Managing more advanced flow information

One limitation with the current version of our path-based calculation method
is the inability to handle flow facts which are giving flow information over col-
lections of paths, i.e., total facts or facts referring to the execution of entities
in descendant scopes. One key observation is that for such facts it is often not

118 Chapter 7. Efficient Path-based Calculation

enough to extract a single path, but instead we need to combine several paths
that together satisfy given flow facts.

A small illustrating example is the following: Assume that a total fact
s: []:#A = #B + 2 is given over a scope s with a loop bound of 10. Both
node A and B are located in scope s. We can not extract a single path that
fulfils the given fact when executed on all ten iterations. Instead, we need to
extract a number of longest paths which together form the WCET of s.

We here outline a possible extension of our path-based method which allows
us to handle non-overlapping total flow facts. The algorithm works in two steps.
In the first step we extract a number of longest paths. In the second step we cre-
ate a small constraint system to extract the worst case path combination which
together satisfies the given flow fact. We will use the given fact to illustrate the
different steps in more detail.

We first create a virtual scope s:1. .10 and corresponding local timing graph
for our path-based method. To extract longest paths for virtual scope s:1..10
we note that only two different nodes, A and B are referred by the fact. We are
therefore interested in the longest paths that include respectively not include
these nodes. Each extracted path must be structurally feasible and not con-
tradicting any foreach facts which overlap the virtual scope. For s:1..10 the
longest paths of interest are:

m pap: the worst case path passing both A and B.

m py-g: the worst case path passing A but not B.

m p-,p: the worst case path not passing A but B.

m P, -p: the worst case path neither passing A or B.

The set P holds all the extracted paths. Note that no other paths need to be
extracted, since any other path will have lower execution time and have the
same properties in terms of passing / not passing A and B as one of the already
extracted paths.

In the second step we extract the worst case path combination fulfilling the
given flow fact by creating a small constraint system. Let ¢; hold the timing of
path p; and let count variables x; hold the number of times path p; is executed.
For example, ¢, holds the timing and x, g is the count variable of path py 5. The
additional count variables, x, and xg, are created to hold the number of times
nodes A and B are executed. A number of constraints are created to constrain
path executions and relate their executions to the given flow fact.

Figure 7.19 shows the constraint system for this example. The resulting max-
imization problem will extract a WCET for s:1. .10 with the given constraints.
A solver would also provide an instantiation of the given count variables, i.e.,
the combination of paths that produces the worst case timing.

The method can be further extended to handle facts with overlapping ranges
in a fashion similar to the IPET-based calculation method presented in Chapter
8. Similarly, to handle facts with count variables referring to entities located in
descendant scopes we can no longer extract WCET for a single scope in isolation
but need to combine paths in several different scopes.

7.7 Possible method extensions 119

// Original flow fact
s:[]:#A=#B+ 2
// Paths of interest
PAB, PA,—B; P—A,B, P—A,—B
// Limit the number of times the different paths can be taken
a8 + Ta,—B + T-aB + T-a,- < iters(1..10) = 10
// Collect all paths executing A respectively B
Ty = TpB + Ta,-B
Tp = TpB + T-AB
// Flow fact converted to constraint
xp = a8 + 2
// Problem to maximize
WCET =maz(},, cp Ti *ti) =
max(xap * tap + Ta,—B * ta,~B + T-a B * t-pB + T—p,~B * t-a,—B)

Figure 7.19: Paths and constraint system

A potential advantage of a combined path- and constraint-based approach
is that the resulting constraint system becomes very small, i.e., a lot of prepro-
cessing is made in the longest path search part. The disadvantage is that the
number of paths to extract within a scope might rapidly grow with the num-
ber of virtual scopes and referred count variables. The method has not been
implemented and will therefore not be further elaborated upon.

7.7.2 Differentiating between out-edges

When calculating a WCET estimate for a scope s the least costly alternative
is to calculate a WCET estimate for all out-edges s simultaneously. This will
result in a safe but sometimes pessimistic estimate.

One cause of pessimism is that flow facts might sometimes prohibit the ex-
ecution to leave a scope at a certain out-edge or that the timing for a scope
becomes different depending on where the execution left the scope. The pes-
simism can be resolved by calculating a separate WCET for each individual
out-edge of the scope, i.e., having several 1, nodes in the timing graph. The
cost to pay for the reduced pessimism would then be a more costly calculation.

In Section 9.4.2 we will elaborate further on calculating timing for program
fragments with several entry and exit locations.

7.7.3 Handling unstructured code

Another limitation of the current version of our path-based method is its in-
ability to handle unstructured code. For example, a scope can only have one
in-node which must also be its only header-node. Since unstructured code exists
in embedded systems and might be produced by compiler optimizations, this
is a potentially severe limitation [Eng99a]. We will here outline some possible
method extensions for handling this problem.

To capture that we can enter a scope at one or several nodes not being the
header node of the scope we can create a separate virtual scope for the zero:th

120 Chapter 7. Efficient Path-based Calculation

iteration. During this iteration the execution can take nodes in the scope which
are not the header node. The execution must not be able to leave the scope
before a header node has been taken.

For scopes having multiple header nodes the calculation becomes more com-
plicated, but we can still extract one or several worst-case paths corresponding
to a single iteration. Remember that in the case of multiple header-nodes an
iteration is defined to start at any of the header nodes and end at a back- or
out-edge. The calculation must then guarantee that the final extracted longest
path becomes continuous, i.e., if an iteration 7 ends at a back-edge with header
h as target then iteration ¢ + 1 must start at header h.

Chapter 8

Extended IPET Calculation

In this chapter we present a WCET calculation method using integer lin-
ear programming (ILP) or constraint programming (CP) techniques to de-
termine a WCET estimate. In the WCET literature this type of calcu-
lation technique is called implicit path enumeration technique, (IPET), re-
flecting that the longest path no longer is explicit but implicitly represented
[PS95, FMW97, HLS00b, LM95]. Our method is able to handle more com-
plex flow and timing information than previously presented IPET calculation
methods, thereby allowing for tighter WCET estimates to be obtained.

Our calculation method takes two inputs: a scope graph with flow facts,
representing possible program flows (see Chapter 5), and a timing model with
timing for nodes and timing effects for sequences of nodes, representing hardware
timing (see Chapter 6). The use of our timing model allows the calculation
method to handle the effects of hardware without using a detailed hardware
model in the calculation.

WCET tool

VS Graph Virtual
Mathl_al N\ Global low- S%ﬁ%& grapz Generation Scope Graph
annotations i ey an
level analysis ea e = Ny
Input data[\ ’|
e Local low-
level analysis v
Timing Effect Constraints
Timing Conversion
model v
Objective ILP or CP
- Function solver

. Object Hardware
Compiler |—>| | model | Extended IPET l

Figure 8.1: WCET tool architecture for IPET calculation

Flow
analysis

Scope graph
with flow info,

Flow Fact
Conversion

VS Graph
Conversion

Program
source

Figure 8.1 gives an overview picture of our WCET tool when using extended
IPET. All components of the system, except the calculation phase, remain un-

121

122 Chapter 8. Extended IPET Calculation

changed, demonstrating the modular structure of the tool.

The first section of this chapter presents the basics of constraint-based cal-
culation. The succeeding sections describe our constraint-based calculation
method in more detail. Section 8.2 presents how the input scope graph is ex-
panded into a wirtual scope graph, to correctly account for given flow facts.
Section 8.3 presents how constraints are generated from the virtual scope graph
and the input flow facts. Section 8.4 presents how to generate an objective
function, whose maximization, subject to generated constraints, will produce
a WCET estimate. The section also shows how to safely constrain the impact
of long timing effects. Finally, Section 8.5 gives the overall WCET calculation
algorithm and a complete example of our constraint-based calculation method.

8.1 IPET calculation basics

Xstart® start i i = =
// Start and exit constraints Xstart= 1 Xstarta =1
Xstart = 1, Xexit = 1 . xa=100 Xxpg=99
V4 Stru_ctural constraints Xg=99 Xpeyit=1
Xstart = XstartA Xe = 99 =99
XA = Xstarta ¥ XHA = Xaexit + XaB c- Xgc =
Xg = Xag = Xgc * Xgp Xp = Xgp =0
Xc =X =X
¢~ 7BCT TcE Xe=99 xce=99
XH = XpH * XgH = XHA Xe=99 xpg=0
Xexit = Xaexit X = Xer = 99
// Loopbound constraint = -
X5 <100 Xi=99 xgg=0
Xc=99 xpy =99
// WCET Expression Xe = 0
WCET = max(xa*3 + xg*5 + GH
Xc*T + ... + Xp*2) = Xpa =99
= 3069
(a) Control-flow (c) Resulting count
graph with timing (b) Basic IPET-based calculation variable values

Figure 8.2: Basic IPET calculation

An IPET calculation method builds upon reformulating the WCET calcula-
tion problem into a maximization problem (or minimization for BCET), where
the program structure, restrictions on program flow and execution times are
given as algebraic and/or logical constraints. Each basic block and/or program
flow edge in the program is given a time variable (fcpu1y), denoting the execution
time of the node or edge, and a count variable (Zcn1y), denoting the number of
times the node or edge is executed. For example, node B in Figure 8.2(b) has
timing g = 5 and count variable xp.

The count variables are considered global for the program (part) for which
WCET is calculated, and their values reflect the total number of executions of
entities for the complete execution of the program (part). For example, xg holds
the total number of times that node B is executed over the complete program

8.1 IPET calculation basics 123

(part) execution.

The possible flows through the program structure are modelled using struc-
tural constraints. For a node to be executed a number of times the execution
must have entered the node through its incoming edges and exited the node
through its outgoing edges the same number of times. For each node, two
constraints are generated: One constraint sets the sum of count variables for
in-edges to be equal to the node count variable, and one constraint sets the
node count variable to be equal to the sum of count variables for out-edges. For
example, in Figure 8.2(b) the constraints xcg + xpg = 2 and xg = Tgr + Txg
are generated for node E. The structural constraints are given by the program
graph layout and need not be described by any additional flow information.

Constraints are also needed to guarantee the finiteness of the program and
the termination of the calculation. The finiteness is ensured by giving an upper
bound on the number of times each looping construct in the code can iterate.
This is done by bounding the count variable of the header node of the loop. For
example, for the program in Figure 8.2(b) the constraint 2y < 100 gives a total
bound on the number of iterations of the inner loop.

Additionally, constraints are needed to make sure that the program starts
and exits once. This is done by setting the execution count of the program start
node and the program exit node to one, (i.e., Tstart = Texit = 1).

To constrain the possible flows through the program additional constraints
can be given on the count variables, limiting the total number of times the
corresponding entity can be executed. The type of constraints allowed depends
on the type of solver used, e.g., using a linear solver limits the flow constraints
to be linearly formulated.

The final WCET estimate is generated by maximising an objective func-
tion, i.e., a sum of products of execution count variables and timing, subject
to the constraints reflecting the structure of the program and possible flows:
WCET = max (), coniities Ti*ti). The maximisation problem can be solved us-
ing a constraint programming [0S97] (CP) or integer linear programming (ILP)
[PS95, FMW97, HLS00b, LM95]. Constraint solvers allows for more complex
constraints to be expressed, but with a potential risk of longer calculation times.

The result of the maximisation is a WCET estimate as well as a worst case
count for each entity count variable, and not an explicit path like in path-
based calculation. Figure 8.2(c) illustrates generated worst case count values
for entities found in Figure 8.2(a). Note that there is no information about the
resulting execution order, only information on the total amount of executions
made for each entity in the graph.

The constraint-based calculation method presented in the following sections
extends the basic IPET calculation method. By allowing the full expressive
power of our flow fact language, the type of flow information possible to handle
using IPET is extended. By generating constraints to safely capture the impact
of timing effects for longer node sequences, the method also extends the type of
timing information that can be taken into account.

124 Chapter 8. Extended IPET Calculation

8.2 Expanding the scope graph

The first input to our extended IPET calculation method is a scope graph with
flow facts that together represent possible program flows. Both total and foreach
facts, valid for all or certain ranges, are allowed. Flow facts can refer to count
variables corresponding to entities located in the defining or descendent scopes
of the fact. Scopes are allowed to contain one or more header nodes, and to have
several in-nodes and out-edges, something which allow us to handle most types
of unstructured code. To simplify the presentation all in-nodes are assumed to
also be header-nodes.

ta=9 =22 §yg=-2
scope: loop;
headers: A; - S P —
’ tz=5 Spp=-1 Bpy=-1
loopbound: 200; s a8 o
loop: [100..199] :#C< #F+2 . .
loop:<1..20>:4D=1 t-=8 dgc=-2 8gu=-2

ty=15 8gp=-1 Oup=-2
tg=7 Scg=-1 Oper=1

t;=44 Spg=-4 Orma=-1

t,=41 8gp=-3

exit \‘ exit

(a) Control-flow graph (b) Scope graph and flow facts (c) Timing model

Figure 8.3: Example scope graph and timing model

The type of flow constraints allowed by basic IPET can be said to have the
same expressive power as total/all flow facts with a defining scope equal to the
root scope in the scope graph. However, there are many types of flows which we
are able to express in our flow fact language which can not be formulated using
constraints in classical IPET. For example, loop : <1..20> : #D = 1 illustrated
in Figure 8.3, gives flow constraints in a local loop scope context and valid only
for loop’s first 20 iterations.

Comparing flow facts to the IPET flow constraints in more detail, we note
that our flow fact language uses scope-local semantics, while IPET uses a global
semantics. Therefore, to use IPET for calculating a WCET estimate we need to
convert the local flow information into a consistent set of constraints reasoning
about variable values valid over the complete program execution.

Furthermore, flow facts with ranged context specifiers only provides partial
information on the executions of referred entities. This means that such flow
facts cannot be converted to constraints valid for all executions of an entity.
Also, flow facts can interact with each other, e.g., by having overlapping ranges
or referring to the same entity count variable, and we need to make sure that
all facts together get safely accounted for in the final WCET estimate.

The following subsections will outline how the scope graph and flow facts are
converted to constraints to account for the flow information provided by flow

8.2 Expanding the scope graph 125

facts. The basic approach is as follows: we use flow facts to create specifications
of execution environments that need to be differentiated to correctly account for
flow information provided by flow facts. The specifications are used to extend
the input scope scope into a virtual scope graph, consisting of one or more virtual
scopes. Each virtual scope is a physical representation of a specific execution
environment but also a copy of a scope in the original scope graph, including
copies of nodes and edges.

In Section 8.3 we show how to convert the flow facts to constraints over
executions of entities in the virtual scope graph. Additional constraints are
generated from the virtual scope graph reflecting possible program flows and
the structure of the graph.

8.2.1 Iteration space partitioning

We start by showing how flow facts are used to create specifications of execution
environments that should be differentiated. The need to differentiate between
execution environments comes from flow facts with ranged context specifiers,
only valid for one or a few iterations of a particular scope. For example, a flow
fact like inner : [5..10] : #A < 3 only constrains the execution of A when the
iteration count of scope inner is between 5 and 10. This means that we cannot
convert such a flow fact to one single constraint valid for all executions of A.

Instead, we note that we can partition the executions of A into two sets; the
ones taking place when the iteration count of inner is between 5 and 10 and the
ones taking place when the iteration counter of inner is something else. Only
the executions taking place when the iteration count of inner is between 5 and
10 should be constrained. The observation is used to break down the iteration
space of a scope into non-overlapping subranges, where each flow fact is valid
for all iterations of a subrange.

The iteration space partitioning of a scope creates one or more scope:range
pairs. For example, inner:5. .10 specifies executions made in inner when the
iteration count of inner is between 5 and 10.

If several ranged flow facts have the same defining scope and overlap-
ping ranges, the iteration space of the scope needs to be split into dis-
joint subranges. For example, the facts inner : <1..7>:#B = 1 (f1) and
inner : [5..10] : #A < 3 (£f2) produce the following pairs: inner:1..4,
inner:5..7 and inner:8..10. Both facts cover inner:5..7, while only f1
covers inner:1..2 and only £2 covers inner:6..7.

If the created pairs not cover the complete iteration space of the scope,
extra pairs are created to fill the gaps. Therefore, each iteration from the first
iteration to the loop bound of the scope gets covered by one scope:range pair.
For example, assuming scope inner has an upper bound of 20 and flow facts £1
and £2, we get the scope:range pairs: inner:1..4, inner:5..7, inner:8..10
and inner:11..20.

It would be possible to make a partitioning that differentiate between each
iteration of a scope, e.g., inner:1..1, inner:2..2, ..., inner:20..20. How-

126 Chapter 8. Extended IPET Calculation

CreateVirtualScopeSpecs(factset FS, scope s):
// Create scope:range pairs for scope s

SR := 0
b := 1 // Get first iteration of scope s
FSy := facts in FS with range covering iteration b in s

// Loop over all iterations of s
for each iteration ¢ between b+ 1 and loopbound(s) do
FS; := facts in fs with range covering iteration 7 in s
// Check if set of covering facts has changed
if FSy # FS; or i = loopbound(s) then
// Create new scope:range pair
e =1 -1
sr = s:b.e
SR := SRU {sr}
// Restart search
b =1
FSb = FSZ
end for

// Create virtual scope specifications for scope s
VSSeup = 0, VSS =0
// Get virtual scope specifications from descendant scopes
for each child ¢ to scope s do
VSSsup = VSSsup U CreateVirtualScopeSpec(fs, c)
end for
// Create virtual scope specifications with s as root scope
for each scope range pair sr in SR do
for each virtual scope specification wvsSg,, in VSSg,, do
// Append specifications from descendant scopes to sr

vss := append(Sr, vSSgyp)
VSS = VSSU {uvss}
end for

// Create specification with sr as only element
V5SS := VSSU {sr}
end for
// Return set of virtual scope specifications
return VSS

Figure 8.4: Virtual scope specification extraction

ever, this would result in a very large virtual scope graph, with each iteration
explicitly represented by a copy of the original scope. Instead, we note that
we only need to differentiate between executions in different iterations of the
same scope if there are flow facts which constrain execution within the iterations
differently.

8.2.2 Virtual scope specifications

Another key observation is that a flow fact can constrain executions in scopes
differently from its defining scope by referring to entities located in descendant
scopes. This means that the iteration space partitioning of a scope can not
be made in isolation, but needs to be made in relation to the partitioning of
iteration spaces of ancestral scopes.

8.2 Expanding the scope graph 127

The algorithm given in Figure 8.4 does iteration space partitioning over
several scopes. The algorithm works in two steps; first partitioning the iterations
space of each individual scope into a set of scope:range pairs, and then extending
the partitioning in relation to the partitioning of ancestral scopes.

The algorithm creates a number of specifications of execution environments,
each consists of a list of scope:range pairs. We call such execution environment
specification a virtual scope specification. The scope in the last (right-most) pair
is called the anchor scope, and is the scope that the virtual scope specification
will be used to constrain executions. The scope:range pairs in the list goes via a
sequential branch in the scope-hierarchy, i.e., the last range corresponds to the
anchor scope for the fact, the second last range corresponds to the parent scope
of the anchor scope, etc.

An example of the generation of virtual scope specifications can be found
in Figure 8.5(a). First we partition the iteration spaces of scopes according to
attached flow facts. Flow fact £3 partitions the iteration space of q into scope
range pairs q:1..4 and q:5..10. Flow facts £1 and £2 are both defined in p
and have different ranges. The iteration space partition of scope p result in the
scope:range pairs p:1..15 and p:16..20.

Flow fact £2 reaches down into the q scope by constraining executions of node
Q1, and the iteration space partitioning of q should therefore be made in relation
to the partitioning of p. As a result, four virtual scope specifications are created
for g, as depicted in Figure 8.5(b). A specification such as p:16..20,q:5..10
has q as anchor scope, and specifies the execution environment of the last six
iterations of the q scope when the iteration count of scope p is between 16
and 20. Since p has no parent in the scope-hierarchy, only two virtual scope
specifications are created for p, as shown in Figure 8.5(b).

8.2.3 Virtual scope graph creation

The virtual scope specifications are used to expand the input scope graph into a
virtual scope graph, consisting of one or more virtual scopes. Each virtual scope
is a copy the anchor scope of its specification, including nodes and edges.

Figure 8.5(c) illustrates the virtual scope graph created from the scope graph
in Figure 8.5(a) and virtual scope specifications in Figure 8.5(b). Two virtual
scopes are created from p and four virtual scopes are created from q. The
algorithm for the graph expansion is given in Figure 8.6. It takes a scope graph
and a set of virtual scope specifications as input and produces a virtual scope
graph.

The algorithm starts by creating a virtual scope for each virtual scope specifi-
cation. A virtual scope will contain copies of the nodes and internal edges of the
anchor scope of the specification. For example, the virtual scope specifications
p:1..15 and p:16..20 generate two copies of the p scope. Each virtual scope
gets the name of its virtual scope specification. We denote the node created
from a virtual scope specification vss and original node n with n*°.

128 Chapter 8. Extended IPET Calculation

@ start

}Scopep scope: p
oop- : . “
bound:20 p:<l..20>:#P3=1 (f1)

p:[16..20] :4P3<#01 (f2)

_scope: q
g:[1..4]:#01+#02=5 (f3)

scope q
bound:10

scope | virtual scope spec.
p p:1..15
p:16..20
q p:1..15,0:1..4
p:1..15,0:5..10
p:16..20,q:1..4
p:16..20,9:5..10
¥exit
(a) Scope graph and flow facts (b) Virtual scope specifications
@ start
scope p:1..15 cope p:16..20
loopbound: 15 loopbound: 5

bound: 6

scope p:1..15,q:5..10

bound: 6

scope p:16..20,q9:5..10

scope p:1..15,q:1:.4
scope p:16..20,q:1..4

P3

p:l..15 p:16..20 p:l..15 p:16..20 :16..20 :16..20,q9:1..4 :16..20,9:5..10
X535 +Xp3 < Xneader +Xneader (c) X5 <Xbi 4 +X5; B (c2)

p:l..15,q:1..4 p:16..20,9:1..4 :1..15,9:1..4 :16..20,q:1..4_
Xo1 +Xo1 + X5 e +X& e =

0
:1..15,G:1. . :16..20,9:1. .4
5 (XDl T Gy e) (c3)

(c) Virtually expanded scopegraph with facts converted to constraints c1, c2 and c3

Figure 8.5: Virtual scope graph generation

8.2 Expanding the scope graph 129

CreateVirtualScopeGraph (scopegraph sg, vsspecset VSS):

// Create virtual scopes
vsg := create empty scope graph
for each vsspec vss in VSS do
vscope := create scope with name wvss
// Copy nodes and internal edges
s := anchor scope of vss
for each node n in s do
add node n"* to vscope
end for
for each edge u — v in s with w,v € nodes(s) do
u”® := node in vscope generated from u

v"® := node in vscope generated from v

add edge u"* — v"° to vscope
end for
// Set loop bound and add virtual scope to graph
T := range of scope s in wss
loopbound(vscope) := max(r) - min(r) + 1
add scope wscope to wsg
end for

// Create hierarchy between virtual scopes
for each vsspec vSSchiida in VSS do
VSCOPEechild = scope with name vsscpiiq in vsg
VSSparent = remove last scope:range pair from vsSSchiid
VSCOPEparent := Scope with name vSSparent in vsg
set vscopeparent to be parent of vscopecniida in vsg
end for

// Create edges between nodes in different virtual scopes
for each edge u — v in sg such that scope(u) # scope(v) do
// Get ancestral scopes of source and target nodes
A, := ancestors(scope(u)) U {scope(u)}, A, := ancestors(scope(v)) U {scope(t)}
// Get common ancestral scopes and ancestral scopes unique for node v
Aporn = AuNAy, Ay, = Ay — Apotn
for each vsspec wss, in VSS with scope(u) as anchor scope do
for each vsspec vss, in VSS with scope(v) as anchor scope do
if (Vs in Apotp exists identical s :r pair in both wvss, and vss,) and
(Vs in Avonlu exists s :r pair in wss: such that min(r) = 1) then
VSCOpe, = séope with name vss, in wvsg
vscope, := scope with name wss, in wvsg
u"*% := node in vscope, generated from u
v"*v := node in vscope; generated from v
add edge u"** — v"v to wsg
end for
end for
end for

// Copy and redirect back-edges to successor scopes
for each back-edge u — v in sg do
for each vsspec wss, in VSS with scope(v) as anchor scope do
r, := range of scope(v) in wvss,
// Skip virtual scope covering last iteration of scope(v)
if max(r,) 7 loopbound(scope(v)) then
// Get virtual scope covering following iteration
for each vsspec vss, in VSS with the same length as wvss, do
if (Vs in ancestors(scope(v)) exists identical s:r pair in both wss, and vsS,)
and (3 range r, in wvss, for scope(v) such that min(r,) = max(r,)+1) then
vscope, := scope with name wss, in wsg
v"¥" .= node in vscope, created from v
// Get source nodes in descendant virtual scopes
for each vsspec wvss, in VSS with prefix wss, and scope(u) as anchor scope do
vscope, := scope with name wvss, in wvsg
u"*% := node in vscope, generated from u
add edge u"’v — v to wsg
end for
end for
end for
end for
// Return created virtual scope graph
return vsg

Figure 8.6: Virtual scope graph creation

130 Chapter 8. Extended IPET Calculation

The loop bound of a virtual scope is set to be the number of iterations
covered by the range of its anchor scope. For example, virtual scope p:1..15
gets a loop bound of 15 and the virtual scope p:16..20,q9:5..10 gets a loop
bound of 6.

The next step is to create a hierarchy of virtual scopes. The parent of a scope
c with a specification wvss is the scope p corresponding to vss with the anchor
scope:range pair removed. For example, virtual scope p:16. .20 is the parent of
virtual scopes p:16..20,q:1..4 and p:16..20,q:5..10. The resulting scope-
hierarchy forms a tree.

Next, edges in and out of virtual scopes are created. The edges reflect the
potential program flows through the virtual scope graph. We only create an edge
between virtual scopes if there exists a corresponding edge in the original scope
graph. However, the scope-crossing edges should reflect the potential flows
going between their target and source nodes specific execution environments.
Therefore, an edge u"*** — v¥*% between nodes u"*** and v"*%/ is only created if
there exists an original edge © — v with scope(u) # scope(v), all scope:range
pair for all common ancestors of scope(u) and scope(v) are the same in wvss;
and vss;, and all the remaining scope:range pairs in vss; cover the first iteration.

For example, scope q in Figure 8.5(a) has one in-edge and two out-edges.
In the resulting virtual scope graph, in Figure 8.5(c) scope q exists in four
different versions. In the original graph the execution can enter q from p using
one in-edge. In the new graph the original in-edge has been copied into two
new in-edges entering virtual scopes p:1..15,9:1..4 and p:16..20,q:1..4
respectively. The remaining virtual scopes originating from q will have no in-
edges from virtual scopes originating from p, reflecting that the execution must
take the first iterations of a scope before the following ones.

Since the execution should be able to leave the original p scope during any
iteration of p, its original out-edges are copied to all the generated virtual scopes.
For example, in Figure 8.5 the original out-edge of q going to exit, will exist in
four different versions in the virtual scope graph.

Finally, back-edges are copied and redirected to reflect that the execution
should continue to the next virtual scope after all iterations have been executed
in the current. For example, the back edge in virtual scope p:1..15,q:1..4
points to the to the header-node of virtual scope p:1..15,q:5..10. For virtual
scopes with a range that cover the last iteration of the anchor scope, (i.e., the
iteration corresponding to the loop-bound), no back-edges need to be redirected.
Note that back-edges can have source nodes in descendant scopes.

8.3 Constraint generation

The next step is to convert the virtual scope graph and flow facts to constraints.
The virtual scope graph is converted to constraints reflecting possible program
flows and graph structure, and the flow facts are converted to constraints over
executions of entities in the virtual scope graph.

8.3 Constraint generation 131

VSGraphToConstraints(vsspecset VSS, scopegraph vsg):
CS := (// Empty constraint set

// Start and exit constraints

add Tstart = Tezit = 1 to CS

// Structural constraints

for each node n located in virtual scope tree wvsg do

Esource := edges having m as source node
add =, = ZeeEsuurce ze to CS
FEtarget := edges having m as target node n
add z, = ZEGEta,rget ze to CS

end for

// Relate header variables to headers
for each virtual scope vs in wsg do
add x}izader = Zheheaders(vs) zp to CS
end for
// Relate entry variables to in-edges
for each virtual scope vs in wsg do
add x’gflt'ry = ZeEin.edges(’us) ze to CS
end for
// Relate entries and iterations of virtual scopes
for each virtual scope vs in wsg do
add ngadm‘ 2 IZery to CS
add I;)L:ade'r' < loopbound(vs) * :pgthT.y to CS
end for
// Relate entries of different virtual scopes
for each vsspecs uss; and wss; in VISS do

if immediate_predecessor(wss;,vss;) do

add (i, > weul, to CS

add (loopbound(uss;) — 1) fo;;y <@yl - xzzstlw to CS
end for
// Return updated constraint set
return CS

Figure 8.7: Virtual scope graph constraint generation

8.3.1 Constraints from the virtual scope graph

We with the algorithm for generating constraints from the structure of the
virtual scope graph. The constraints are similar to the ones generated by basic
IPET (see Section 8.1), but extra constraints are needed for relating entries and
iterations of virtual scopes. The algorithm is given in Figure 8.7.

For each entity (node or edge) in the virtual scope graph a corresponding
virtual scope variable, x¢%;,, . is created. The variable holds the number of
times the referred entity is executed within the execution environment given by
the virtual scope. Each scope in the virtual scope graph is also given a header

count variable (3%,), and an entry count variable (z%55,.). For example, for

entry
. . i1..15
a scope p:1..15 and node P3 we generate a virtual scope variable xh; , an
. p:1..15 . p:1..15 . .
entry variable @, and a header variable z}_,.,~. The resulting constraints

will all be formulated over such virtual scope variables.
The start and exit constraints give that the execution must be able to enter

132 Chapter 8. Extended IPET Calculation

ForeachToTotalFacts(factset FS):
// Convert foreach facts to total facts
for each fact f = scope : context : constr in FS do
if is_foreach(f) then
// Multiply all constants with header of scope
for each constant c¢ in constr not part in multiplication or division do

constr := in constr replace c¢ with ¢ * #header(scope)
context := ’[’ range(context) ’]1°
end for
end for
// Return updated set of facts
return FS

Figure 8.8: Conversion of foreach to total flow facts

and exit the virtual scope graph precisely once. Next, structural constraints are
generated from the structure of the virtual scope graph. These constraints are
identical to the constraints generated by basic IPET.

We need to further relate and constrain the executions within and between
virtual scopes. For this we use the virtual scope header variables, z7%° ., and
virtual scope entry variables, z¢73,., . We first make sure that these variables have
a correspondence in the virtual scope graph. For each virtual scope, its header
variable is set equal to the sum of header node variables of the virtual scope
and its entry count variable is set equal to the sum of its in-edge variables.
For example, 2%,;,-'*%"** is set equal to the count variable of the in-edge
originating from p:1..15.

Additional constraints are generated to relate the number of iterations in a
virtual scope to the number of entries of a virtual scope. Constraint)7 >
Tomiry gives that the virtual scope must be iterated once for each entry of the
virtual scope. Constraint z,7:°"" < loopbound(vscope) * T i+ are gener-
ated to specify the loop bound of a virtual scope that should be valid for each
entry of the virtual scope. The last constraint also serves as a basic finiteness
bound for each loop found in virtual scope graph. For example, for virtual scope

. . . p:1..15,q:1..4 p:1..15,q:1..4
p:1..15,9:1..4 we generate the constraints x; ', - > Tentry and

:1..15,q9:1..4 :1..15,q9:1..4
P 5,9 §4*xp 5,9)

header entry

The executions and entries between different virtual scopes are also related.
A virtual scope specification prev is defined to be an immediate predecessor of
another specification next if the two specifications have the same anchor scope
and identical lists of scope:range pairs except for the anchor scope. Also, the
last iteration in the range of the anchor scope for prev should be one smaller
than the first iteration of the range for the anchor scope of next. For example,
p:1..15 is an immediate predecessor of p:16..20. Virtual scope specification
p:1..15,q9:1..4 is an immediate predecessor of p:1..15,q:5..10, but not of
p:16..20,q:5..10.

The constraint 2?0 > 27! ensures that no virtual scope can be entered

entry = “entry
more often than its immediately preceding virtual scope. To guarantee that a

8.3 Constraint generation 133

virtual scope only can be entered if the preceding virtual scope has executed all
its iterations, the constraint (lLoopbound(prev) — 1) * atept, < oo — xbnil,
is generated. For example, virtual scope p:16. .20 can not be entered unless its
immediate predecessor p:1..15 has been entered and all 15 its iterations has

. . p:16..20 p:1..15 p:1..15
been executed. This generates the constraint 14w, <y 0" — Tepiry

8.3.2 Fact conversion

The next step is to convert the locally defined flow facts to globally valid con-
straints over virtual scope variables. This is made by the two algorithms outlined
in Figure 8.8 and Figure 8.9.

All foreach facts are first converted to total facts by the algorithm given in
Figure 8.8. Basically, a foreach fact gets converted from being for each separate
iteration of a given range to be for all iterations within the given range. This is
done by multiplying each constant not part in any multiplication or division by
the header count variable of its defining scope, and by substituting the foreach
context specifier (<>) with a total context specifier ([]). This is necessary since
IPET works across all iterations and not just small parts.

For example, flow fact p : <1..20> : #P3 = 1 gets converted to flow fact
p: [1..20] : #P3 = 1 x #header (p). While the first fact specifies that node P3
should be executed each iteration of the scope p, the resulting fact specifies that
P3 should be executed as many times as p is iterated. Basically, we make sure
that the constant gets counted as many times as the scope is iterated within the
range. It should be noted that this conversion might introduce some pessimism
since more executions might get allowed by the converted total fact than for the
original foreach fact.

The next algorithm, given in Figure 8.9, converts locally defined (total) flow
facts, valid for each entry to a given scope and range, to global constraints,
valid for all entries of the given scope and range. Simultaneously, the facts are
converted to constraints over virtual scope variables.

First, all constants not part in any multiplication or division, i.e., terms
without variables, gets multiplied by the entry count variable of the defining
scope. This ensures that the constant gets counted as many times as the scope
and range is entered.

Next, each execution count variable gets replaced by a sum of virtual
scope variables. Only count variables originating from the same entity as
the original count variable and are located in virtual scopes covered by the
range of the fact should be included in the sum. For example in Fig-
ure 8.5(a) flow fact p: [16..20] : #P3 < #Q1 gets converted to xB3'® *° <
ghy 1020ttty 1620005520 yrariable 25'% *° holds the number of times
node P3 gets executed when the iteration counter of scope p is between 16
and 20. Since Q1 is located in the q scope we get two resulting variables
gpi 1020t et g o Bi16:-20:035- 10 oether holding the executions of Q1 when
the iteration counter of scope p is between 16 and 20.

134 Chapter 8. Extended IPET Calculation

FactsToConstraints(scopegraph vsg, factset FS, constraintset CS):

// Multiply all constants in fact with entry variable of scope
for each fact f = scope: context : constr in FS do
for each constant ¢ in constr not part in multiplication or division do
constr := in constr replace c with ¢ x #entry(s)
end for
end for
CS := (// Empty constraint set
// Convert fact to constraint on virtual count variables
for each fact f = scope: context : constr in FS do
VSSy := vsspecs in VSS including s:7 pair such that s = scope and
min(range(contert)) < min(r) and max(range(context)) > max(r)
// Replace each entity count variable
for each entity count variable #e in constr do
Se := scope where entity #e is located
VSSe := all vsspecs in VSSf with s. as anchor scope
if #e = #entry(se) then
// Treat scope entry variables specially
VSSe := all vspecs in VSS. ending with se:7e such that min(re) =
smallest iteration of s. covered by any scope-range pair in VISS.
// Replace original variable with sum of virtual scope variables
constr := in constr replace #e with Zussevsse i
end for
// Add generated constraint to constraint set
add constr to CS
end for
// Return updated constraint set
return CS

Figure 8.9: Flow facts to constraints conversion

Substitution of header variables is performed in the same way as normal
entity count variables. However, substitution of entry count variables needs to
be given special treatment. This is because an entry of a subrange of a range
indirectly implies that the whole range is entered. An entry count variable
should therefore be replaced with a sum of virtual scope entry variables with
a specification whose anchor scope is the same as the flow facts defining scope
and includes the first iteration in the range of the flow fact. For example, if
flow fact p: [1..20] : #P4 = 7 gets added to Figure 8.5(a) it would result in

: p:1..15 p:16..20 p:1..15 . .
the constraint xp, + Tpy = T*T¢py - An entry of range p:1..20 is
p:16..20

entry should therefore not

implied by an entry of virtual scope p:1..15 and x
be included in the sum.

It should be noted that the conversion to global constraints might poten-
tially introduce some pessmism in the WCET estimate. Basically, the program
execution paths allowed by the local flow facts is a subset of the execution paths
allowed by the global flow facts. However, as long as no execution paths allowed
are removed, the calculated WCET estimate are safe.

8.3 Constraint generation 135

8.3.3 Mapping to global count variables

The generated constraints are sufficient to, together with timing information
from the timing model, (see Section 8.4), generate a WCET estimate. However,
we can create additional constraints that relate virtual scope variables to the
count variables used in basic IPET. This is useful for giving simplified execution
information on the total number of times each scope graph entity can be exe-
cuted. However, the virtual scope variables provide a more detailed view than
the global variables. Also, only virtual scope variables and no global variables
should be included in the objective function (see Section 8.4.1).

The mapping to global IPET variables is made by creating count variables
(@entity) for the different entities (nodes and edges) found in the original scope
graph. The value of each such entity count variable is set equal to the sum of
the virtual scope variables created from the entity. For example, in Figure 8.5
we create the count variable xq; for node Q1 and generate the formula xq; =
1’811 .15,q9:1..4 + xgll .15,q9:5..10 + xSiIG. .20,q9:1..4 + 1’8116. .20,q9:5. .10.

We can also create constraints to relate entries of scopes to entries of virtual
scopes. However, we can not just set a global entry count scope variable to be
equal to the sum of entry count variables of virtual scopes generated from the
scope. An entry of the scope is the same as an entry of the virtual scopes which
covers the first iteration of the scope. This means that for a scope s only entry
count variables with a specification with s as anchor scope and a range covering
the first iteration of s can contribute to the sum. For example, for scope p in

Figure 8.5 we get the constraints Tepry(p) = 22:1-1% and for scope q we get the

entry
p:1..15,q:1.. p:16..20,q:1..4

. _ 4
constraint ZTentry(q) = Tentry + Zentry

8.3.4 Constraint generation example

For an example on how the algorithms works, consider the code given in Figure
8.10. It shows the flow-relevant parts of the kernel of a DSP algorithm. To
simplify the presentation, the code in the fir function and the inner loop is
not shown in detail. Also, the structure of the source code and object code
are assumed to be the same (i.e., no flow-changing compiler optimizations are
performed).

Analysis of the code has given flow information specifying that node A is
executed during the last 18 iterations of the outer loop and node B is executed
during first 17 iterations of the outer loop. Also, node C is taken the first 682
iteration of the outer loop. This is given as flow facts £1-£3.

The inner loop executes (18,19...34,35...35,34...19,18) times across the
iterations of the outer loop. This gives a basic finiteness bound of 35, and the
more precise loop bounds given in flow facts £4-£6. The ramp-up and ramp-
down each contain a total of Zfilgi = 442 iterations, and are given as one fact
each of total style (f4 and £6).

The derived flow information results in the flow facts £1-£6. Note that we
use both foreach and total flow facts to model the possible flows, illustrating

136 Chapter 8. Extended IPET Calculation

acc_length = 18, len = 35, // initialization
ptr = start + 17, end = start + 700;
for(i=0;i<700;i++) { // outer loop
for(j=1;j<acc_length;j++) // inner loop
{ // calculation }
if (ptr == end)
acc_length--; // node A
else {
if (acc_length < len)
acc_length++; // node B
ptr++; // node C

} // end of loop
Basic finiteness loopbound(outer) = 701
loopbound(inner) = 35
node A taken last 18 outer:<683..700> : #A =1 (£1)
node B taken first 17 outer:<1..17>:#B =1 (£2)
node C taken first 682 outer:<1..682>:#C =1 (£3)
Bounds on inner outer:[1..17] : #header(inner) = 442 (£4)

outer:<18..683> : #header(inner) = 35 (£5)
outer: [684..700] : #header(inner) = 442 (£6)

Figure 8.10: fir kernel with flow facts

the convenience of having both types. Flow facts f4—f6 have outer as defining
scope but refers to the header node of inner, illustrating the need to allow flow
information to reach over the borders dictated by loops or functions.

Figure 8.11(a) illustrates the scope graph generated from the fir code and
the derived flow information. Loop bounds for all loops have also been added
to the scope graph. Figure 8.11(b) illustrates the virtual scope specifications
derived from the scope graph and the corresponding flow information. Figure
8.11(c) illustrates how the resulting virtual scope graph would look like. The
virtual scope specifications have five distinguished execution environments for
the outer scope, and accordingly five copies of scope outer are created, each
with an own copy of inner as a child scope.

Some of the resulting constraints are illustrated in Figure 8.12. (A) shows the
constraints over virtual scope variables generated from the original facts. (B)
shows constraints generated between the entry variables and header variables of
virtual scopes. Finally, (C) shows examples of how global IPET variables gets
related to virtual scope variables. The constraints generated from the structure
of the virtual scope graph and the start and exit constraints are not shown in
the example.

8.4 Converting the timing model
The constraints generated so far are not sufficient to produce a WCET estimate.

To construct an objective function to maximize, we also need information on
timing for entities. This is provided by the timing model ¢tm, which has been

8.4 Converting the timing model 137

@ start
fir ace_length=1 —[scope: fir scope virtual scope specification
loopbound: 1 fir fir1..1
outer
i<700 outer | fir:1..1,outer:1..17

fir:1..1,outer:18..682

fir:1..1,outer:683..683
- fir:1..1,outer:684..700
scope: inner fir:1..1,outer:701..701
loopbound: 35

inner | fir:1..1,outer:1..17,inner:1..35
fir:1..1,outer:18..682,inner:1..35

_scope: outer fir:1..1,outer:683..683,inner:1..35
loopbound: 701 fir:1..1,outer:684..700,inner:1..35
outer:<683..700>:#A=1 fir:1..1,outer:701..701,inner:1..35
:<1..17>:4B=1 " P
gﬁii,ﬂ 682>##C=1 (b) Virtual scope specifications

outer:[1..17]) :#header (inner)=442

o oxit outer:<18..683>:#header (inner)=35
(a) Scope graph for fir ~ [outer:<684. .700>: #header (inner)=442
,S[a!‘t

fir:1..1

fir:1..1,outer:1..17 fir:1..1,outer:18..682 fir:1..1,outer:683..683 fir:1..1,outer:684..700 fir:1..1,outer:701..701

Pl (ST

,outer:701.,,

fir:1..1,0uter:18..682;

inner:1..35
fir:1..1,0uter:683.,

inner:1..35

(c) Reegulting virtual scope graph

Figure 8.11: Virtual scope graph generation for fir kernel

generated by our low-level analysis, as outlined in Chapter 6.

8.4.1 Objective function

The low-level analysis is performed once for the complete scope graph. The
resulting timing model consists of timing for nodes ¢4 and timing effects dseq
for sequences of nodes (see Chapter 6).

After expanding a scope graph into a virtual scope graph, each original node
or node sequence exists in one or more versions in the virtual scope graph. From
the original timing model ¢m, we therefore create a new timing model ¢11,,q,
containing timing and timing effects for the entities found in the virtual scope
graph. This allows us to perform the pipeline timing analysis over the original
scope graph, but to use the derived timing information for the entities found in
the virtual scope graph, avoiding a reanalysis. The resulting objective therefore

138 Chapter 8. Extended IPET Calculation

A: Converted flow facts
fir:1..1,outer:683..683 fir:1..1,outer:684..700 _ fir:1..1,outer:683..683 fir:1..1,outer:684..700
Xy + Ty =1x (fheadm“ + header) (fl)
fir:1..1,outer:1..17 __ fir:1..1,outer:1..17
B =100, (£2)
fir:1..1,outer:1..17 fir:1..1,outer:18..682 __ fir:1..1,outer:1..17 fir:1..1,outer:18..682
T + Te =1x (fheadm“ + header) (£3)
fir:1..1,outer:1..17:inner:1..35 __ fir:1..1,outer:1..17
T header =442z (£4)
AAl,outer:18AA682:inner:lu35+ fir:1..1,outer:683..683:inner:1..35 __
cader T header =
fir:1..1,outer:18..682 fir:1..1,outer:683..683
35 (xheader + T header) (£5)
fir:1..1,outer:684..700:inner:1..35 __ fir:1..1,outer:684..700
header =442« x gy, (£6)
B: Relation between subheader and subentry variables for outer
fir:1..1,outer:1..17 fir:1..1,outer:1..17 fir:1..1,outer:1..17 fir:1..1,outer:1..17
header S 17 = zentry header Z xe’.ntry
fir:1..1,outer:18..682 fir:1..1,outer:18..682 fir:1..1,outer:18..682 fir:1..1,outer:18..682
header S 665 * xentry header Z men Y
zfir:i..1,0uter:683..683< 1 % mfir:1<<1,outer:683. .683 683> Ifir:lul,outer:683<<683
header — entry = %entry
1..1,0uter:684..700< 17 * $fir:1,Al,outer:684“700 700> zfirrlAAl,ou‘cer:684u700
header — entry = %entry
fir:i..i,outer:?oi,,701< 1 % fir:1..1,outer:701..701 701> fir:1..1,outer:701..701
header — xenlry = %entry
fir:lul,outer:lul7> fir:1..1,outer:18..682 fir:i,,i,outer:iB,,582> fir:1..1,outer:683..683
entry = went‘ry xemn'y = xen/ﬂ‘y
fir:lul,outer:683“683> fir:1..1,outer:684..700 fir:1. ,1,onter:684“700> fir:1..1,outer:701..701
entry Z Tentry entry Z Lentry
fir:1..1,outer:18..682 fir:1..1,outer:1..17 fir:1..1,outer:1..17
(17 - 1) * Tentry < Theader ~ Tentry
fir:1..1,outer:683..683 fir:1..1,outer:18..682 fir:1..1,outer:18..682
(665 - 1) * L ontry < Theader — Lentry
(1 — 1) % fir:1..1,outer:684..700 < fir:1..1,outer:683..683 _ fir:1..1,outer:683..683
) T entry > LTheader T entry
fir:1..1,outer:701..701 fir:1..1,outer:684..700 fir:1..1,outer:684..700
A7 = 1) * @y, < Theqder ~ Tentry
C: Examples of mapping to global variables
__ fir:1..1,outer:1..17 + fir:1..1,outer:18..682 + fir:1441,outer:68344683+
Theader(outer) = Lheader T header Theader
zfir:l. .1,outer:684..700 + Ifir:l. .1,outer:701..701
header header
_ ..1,outer:1..17,inner:1..35 fir:1..1,outer:18..682,inner:1..35
Theader(inner) = der + T ader +
fir:1..1,outer:683..683,inner:1..35 + xfir:l..1,outer:684,,700,innet:1. .35+
header header
fir:1..1,outer:701..701,inner:1..35
header
_fir:1..1 outer:1..17
Lentry(outer) = Lentry
X __ fir:1..1,outer:1..17:inner:1..35 + fir:l..l,outerzls..682:inner:1..35+
Lentry(inner) = Lentry Tentry
fir:1..1,outer:683..683:inner:1..35 + fir:1..1,outer:684..700:inner:1,,35+
T entry entry
o fir:l..1,outer:684..701:inner:1..35
'LenM‘y
fir:1..1,outer:1..17 fir:1..1,outer:18..682 fir:1..1,outer:683..683
Tc = xg + ¢ ’ + z; ’ +
fir:1..1,outer:684..700 fir:1..1,outer:701..701
T + x;

Figure 8.12: Example of constraints generated for fir

function becomes:

WCET = max(Z Ty %ty + Z Tk 0g) (8.1)

nenodes (tMysg) s€sequences (1M y5q)

For each node with a timing t,,4. the product Z,ode * tnode is added to the
objective function, where x,,q4e is the count variable of the node. Similarly,
each node sequence seq, with a timing effect d,.4, gets an associated execution
count variable .4, holding the number of the times the sequence is executed.
The resulting outcome will be an instantiation of virtual scope count variables

8.4 Converting the timing model 139

giving the number of times each entity is taken in the worst case, as well as a
total worst case execution time for the program.

8.4.2 Constraints for node sequences

To be sure that get a safe and tight WCET estimate we need to produce con-
straints to constrain the impact of long timing effects on the total execution
time. Basically, a timing effect for a sequence should only be accounted for
when the execution goes uninterrupted via all the nodes in the sequence.

The count variable for a sequences of length two is defined to be the count
variable for the edge going between the two nodes, and number of executions
of an edge is constrained by structural constraints from the scope graph. For
example, x,p is the count variable for the A — B edge but also the count variable
for the number of times d,5 should be accounted for in the final WCET.

Structural constraints:
Xp=XaB

Xg=Xpc + Xgr
Xpc =Xc

XpgR = XR

Upper bound
constraints:

XaBc <Xap

XaBc < Xgc

Lower bound
constraint:

>
XaBC = Xap ~ XBr

(a) Timing graph with (b) Constraints on
long timing effect count variables

Figure 8.13: Example of constraints on node sequences

For sequences longer than two we do not have such direct correspondence in
the scope graph, and we need to derive safe upper and lower bounds on their
executions. The bounds are expressed relative to the executions of shorter se-
quences, where the structural constraints represent the base case. The upper
bound is needed when the timing effect is positive (to bound the program exe-
cution time), and the lower bound makes sure that the execution of a negative
timing effect is not ignored by the objective function.

The upper bound constraint is derived from the observation that a sequence
seq of length [is executed only if its two subsequences of length [—1 are executed.
This is expressed using two inequalities, using s[i..j] to denote the subsequence
of s starting at node ¢ and ending at node j:

Tg < xs[l..l—l] (82)
Tg S zs[Q..l] (83

140 Chapter 8. Extended IPET Calculation

For example, for the timing effect dppc over a sequence ABC in Figure 8.13 we
get the following upper bound constraints: xypc < xpp and xppe < Tpe.

Note that this means that count variables for all subsequences of a sequence
have to be generated, even if those subsequences have no timing effects associ-
ated with them (for a sequence ABCD, we will need constraints over the count
variables for sequences ABC and BCD, etc.).

The lower bound constraint is derived by considering the stepwise construc-
tion of a sequence from prefix sequences. Intuitively, a lower bound can be
derived by the possible flow through a sequence: a certain number of executions
enter the start of the sequence, and at each node in the sequence, one edge leads
the way to the next node in the sequence. At each such node there might be
other edges leading to nodes not part of the sequence, thus diminishing the total
number of executions of the sequence.

The result is that a sequence can be executed as many times as its prefix
of length | — 1 is executed, minus the sum of executions of edges leaving the
sequence at the second-last node. Using s[i] to pick a single node from a sequence
s, and succ(n) to return all successor nodes to node n in the scope graph we
get:

Ts > Tg[11-1] — > Ts(—1]on (84)
Vné€succ(s[l—1]) #s[l]

For example, for a timing effect dppc in Figure 8.13 we generate the following
constraint: TaABC > Tpg — TBR-

8.4.3 Tightening constraints

IPET has no concept of “execution paths”, only the values of the execution
count variables matter for the maximisation of Equation 8.1, but not the precise
execution order of the entities. Therefore, it is sufficient to model infeasible
paths as constraints on single nodes, as long as there are no timing effects for a
sequence along the infeasible path.

s [scope: loop
i=0; [A] headers: A;

do { loopbound: 2;
if(x < 200 // A B [loop:<>:#B+#D<1;
// B C
if(x > 50) // C .
// D ﬂ]

i++; // E
} while (i<2) E

Figure 8.14: Example of infeasible path

For example, consider Figure 8.14, where the sequence BCD can never be
taken during any iteration. The infeasible path is expressed using the flow

8.5 Main algorithm and complete example 141

fact loop : <> : #B + #D < 1. The flow fact is converted to the constraint
2Pt g0 2 < 4 °%P 2 sing the fact that A is the header node of
the scope and the loop has an upper bound of 2. This constraint is sufficient for
a tight WCET estimate, despite the fact that we do not directly state that the
specific sequence ABCDE is infeasible. E.g., assuming that the loop is iterated
twice, it is possible that the first iteration took sequence ABCDE and the second
iteration took sequence ACE. As the timing of a node or edge is independent of
when the node or edge is taken, the obtained answer is correct.

However, the infeasibility of the specific sequence BCD would matter if there
was a timing effect for the sequence (i.e., dgep # 0). To make sure that the timing
effect does not contribute to the total WCET sum an additional constraint
like 230" = 0 has to be added. The constraints generated for zpes? ™
by Equations 8.2, 8.3, and 8.4 are not strong enough to express this fact. This
extra constraining of timing effect variables are not part of any of the algorithms
presented and has not been implemented.

8.5 Main algorithm and complete example

CalculateWCET (scopegraph sg, factset FS, timingmodel ¢m, constraintset CS):

// Create virtual scope specifications

VSS := CreateVirtualScopesSpecs(FS, oot (sg))

// Create virtual scope graph from specifications

vsg := CreateVirtualScopeGraph(sg, VSS)

// Convert flow facts to constraints

ES := ForeachToTotalFacts(FS)

CS := FactsToConstraints(vsg, FS)

// Convert virtual scope tree to constraints

CS := CSUVSGraphToConstraints(VSS, vsg)

// Create timing model for virtual scope graph

tmysg := CreateVSTimingModel(tm)

// Generate objective function

sum := CreateObjective Function(tm, sum)

// Greate constraints for long timing effects

CS := CSUTimingEffectsToConstraints(tmysg, vsg)
// Generate WCET estimate

WCET := maximize(sum) given constraints in CS
// Return obtained WCET estimate

return WCET

Figure 8.15: Extended IPET WCET calculation

We are now ready to give the complete algorithm for our extended IPET
calculation method. The algorithm is illustrated in Figure 8.15 and uses all
the algorithms previously presented in this chapter. To solve the obtained
maximization problem an integer integer linear programming (ILP) solver or
constraint programming (CP) can be used.

In Figure 8.16(a)-(n) we give a compact illustration of the steps involved in
our extended IPET calculation method.

142

Chapter 8. Extended IPET Calculation

(a) Control-flow graph

tart
LA scope: outer; =9 t;=18
headers: A;
loopbound: 10; t.=5 San=- o =-
outer: []:#H < #F s A H
te=8 8pp=-1 8gp=-2

scope: inner;
headers: B;
loopbound: 20;
inner:<1..8>:#C=1;
inner:[5..20]1:#G<7;

outer

t,=22

@exit
(b) Scopegraph and flow facts

t,=32
(d) Timing model

Sgp=-2

(c) Scope-hierarchy

@start
o 3 Xstart = 1 Xot =1
<« o :
Lo - (h) Start and exit constraints
IR i = B 2
H oM N K 3 S 3 —
00 0 o |& n Q Xstart = Xstarta
g g g 5c] 3 u . .
g 8 8 g g o xouter:1.10 _ o + youter:1..10
e e fr] g g A TstartA JA
~ o~ gl n gl i outer:1.10 _ outer:1.10 , Jouter:1..10
oo oo s S S XA =XaH + Xag
oo - = 1
e : : : outer:1..10:inner:1.4 _ outer:1..10
s o] o =) Xg =Xa +
e e E § § outer:1.10:inner:1.4 s outer:1..10inner:1.4
HOHOH Y 5 5 5 E8 B
[V T] ° ° °
PP PP xou(er:1..10:inner:1v4 _ Xou(er:1,10:mner:1..4 +
3333 B = 7BC
0 00O xouter:1..10:inner:1..4
BD
(e) Virtual scope exit @
specifications (f) Virtually expanded scopegraph oot
outer:1..10 outer:1..10:inner:1..4 outer:1..10:inner:5..8 outer:7..10:inner:9..20 XGUer1-10 - youter:1.10 . youter:1.10
uter:1.. uter:1..10:inner: uter:1..10:inner:5... uter:7..10:inner:9... J = Xpy %]
XY < Xg + X¢ + Xg

. " . . ' . . " . . - . Xouter:1..10 _ Xouter:‘\..w + Xouler:1 .10
Xou(erv1..10vlnner.1..4 + Xou(erl 10:inner:5..8 — 1% (Xoutem..10vlnner,1,v4 +X0uter.1,v10.lnner,5v8 J = A Jexit YA
(] C header header .
X — quler.1..10
exit — “Jexit

outer:1..10:inner:5..8 outer:1..10:inner:9..20 — outer:1..10:inner:5..8
Xg * Xg =7+ Xemry

(g9) Converted flow facts

(i) Structural constraints

outer:1.10 _
Xentry - Xs(anA
Xouter 1.10:inner:1.4 _ Xou(er:1..10
entry AB

outer:1..10:inner:5..8 _ youter:1..10:inner:1..4
Xentry - >(EE!' +

Xoutem .10:inner:1..4
GB

outer:1..10:inner:9..20 _ outer:1..10:inner:5..8
Xenlry - XEEI +

Xouler:1 .10:inner:5..8
GB
outer:1.10 _ xouler:1..10
header - 7A
outer:1..10:inner:1.4 _ Xouler'1 10:inner:1..4
header - B
qu(er:1..10:inner:5 8 _ Xouler:1. 10:inner:5..8
header - B
Xou(er:1,,10:inner:9..20 7Xou(er:1 .10:inner:9..20
header 7B

(j) Relating entrys and headers to entities

outer:1..10 outer:1..10 outer:1..10 outer:1..10
Xheader < 10+ Xemry Xheader 2 Xemry
outer:1..10:inner:1..4 outer:1..10:inner:1..4 outer:1..10:inner:1..4 outer:1..10:inner:1..4
Xheader < 4 Xy Xheader = Xentry
outer:1..10:inner:5..8 outer:1..10:inner:5..8 outer:1..10:inner:5..8 -, youter:1..10:inner:5..8
Xheader < 4xx enty Xheader = Xemry
outer:1..10:inner:9..20 outer:1..10:inner:9..20 outer:1..10:inner:9..20 -, youter:1..10:inner:9..20
header <12y Xheader = Xentry
outer:1..10:inner:1..4 -y outer:1..10:inner:5..8 outer:1..10:inner:5.8 -, youter:1..10:inner:9..20
entry = Xentry entry = Xentry
(4 _ 1) * xnuler:1..10:inner:5..8 < youter:1.10:inner:1.4 _ , outer:1..10:inner:1..4
entry = ®header entry
* youter:1..10:inner:9..20 outer:1..10:inner:5..8 outer:1..10:inner:5..8
(4 - 1) Xenlry < Xheader ~ Xen

(k) Relating entrys and headers of virtual scope

WCET = max(xQ""- 10+ 9 +

X%u(er:1”10:inner:1 4 54
nodes . i .
_/ X%uter.1,,10.mner,1 4 8+
outer:1..10
XAg * =1+
edges x%l:er:t.m x—] +
outer:1..10:inner1..4
XBc * -2+
outer:1
X
long node OF

sequences Xeuor:1. A0inner.8 o |

outer:1..10:inner:9..20
XpFI *1)

(m) Objective function to maximize

outer:1..10:inner:1..4 outer:1..10:inner:1..4 outer:1.10:inner:1.4 > youter:1..10:inner:1.4 _
XpFi < Xpr XpFi X

104 4 10inner: eouter:1..10:inner:1..4
X(I):;Jéler.1.10.mner1..4 < X?:I:ter.1..10.lnner.1 4 FG

X%Jéclemno:mner 5.8 X?:ilner:mo:inner:s.s X%Ufe” 10:inner:5..8 X%uter-1 10:inner:5..8 _

outer:1..10:inner5.8 . youter:1..10:inner:5..8 Xxouter:1.10inner:5..8
DFI = 7DF
outer:1..10:inner:9..20 outer:1..10:inner:9..20 outer:1..10:inner:9..20 outer:1..10:inner:9...20
XbFi < Xg XDFi Z Xpr 10 o
. inner- -inner: outer:1..10:inner:9. .
X%uéler.ﬂ.ﬂﬂlnner.g..zo < XODuFter1..10.lnner.9..20 XFG

() Constraints for long timing effects

_ youter:1..10 _ youter:1..10:inner.1..4 outer:1..10:inner.5..8 outer:1..10:inner.9..20
XA— XA XB— XB + XBv + XBH

_ jouter1.10:inner.1.4 outer:1.10:inner5.8 _outer:1.10:inner.9..20
Xgc = Xgec + Xgc + Xgc

_ youter:1..10:inner:1..4 outer:1..10:inner:1..4 outer:1..10:inner:9..20
XpF1 = XpFi + XpFi + Xpr

(n) Examples of mapping to global variables

Figure 8.16: Complete IPET-Based WCET Calculation Example

8.5 Main algorithm and complete example 143

Figure 8.16(a) shows an example control-flow graph consisting of two nested
loops. Figure 8.16(b) shows the corresponding scope graph with scopes inner
and outer. Each scope has a loop bound and some flow facts attached. Figure
8.16(c) shows the resulting scope-hierarchy. Figure 8.16(d) illustrates the timing
model generated from the scope graph by our low-level analysis. Observe the
long timing effect dprr over the DFI node sequence.

Figure 8.16(f) gives the virtual scope graph generated from the virtual scope
specifications in Figure 8.16(e). Scope inner gets cloned into three virtual
scopes. Figure 8.16(g) shows the flow facts after being converted to be con-
straints over virtual count variables. Figure 8.16(h) gives the start and exist
constraints for the virtual scope graph. Figure 8.16(i) gives some example con-
straints generated from the virtual scope graph structure.

Figure 8.16(j) shows how entry and header variables get related to some
entity count variables found in the virtual scope graph. Figure 8.16(k) shows
constraints generated to relate the executions and entries of different virtual
scopes. Figure 8.16(1) shows upper and lower bound constraints generated on the
count variables for copies of the DFI node sequence. Figure 8.16(m) shows the
objective function to maximize, generated for all nodes and sequences of nodes
in the timing model. Finally, Figure 8.16(n) shows some examples of mappings
between count variables of the original scope-graph and count variables found
in the new expanded graph (not really needed to produce a WCET estimate).

144 Chapter 8. Extended IPET Calculation

Chapter 9

Clustered Calculation

A critical part of WCET analysis is the calculation, which combines the flow in-
formation and low-level timing information in order to derive a program WCET
estimate. The type of flow information which a calculation method can han-
dle is to a great extent determining the WCET estimate precision that can be
achieved. Traditionally, we have had a choice between precise methods that per-
form global calculations with a risk of high computational complexity, and local
methods that are fast but cannot take into account all types of flow information.

In this chapter we present an innovative hybrid method to handle com-
plex flows with low computational complexity, and still generates safe and tight
WCET estimates. The method uses flow information to find the smallest pos-
sible parts of a program that have to be handled as a unit to ensure precision.
These units are used to calculate a program WCET estimate in a demand-driven
bottom-up manner. The calculation method to use for a particular unit is not
fixed, but could depend on the characteristics of the included flow information
and program structure.

9.1 Introduction

A correct WCET calculation method must take into account possible program
flow, like loop iterations and function calls, as well as effects of hardware fea-
tures, like caches and pipelines. The possible program flow can be described
by a set of flow facts, each providing a certain piece of information about the
program (like loop bounds, infeasible paths, execution dependencies, etc.).

A key observation is that program flow information is usually local in its
nature, expressing facts that only affect a small region of a program. However,
these regions might be larger than the units used in local calculation schemes (a
loop nest rather than a loop, or an entire function rather than just a loop inside
that function). In general, the boundaries for a flow fact might not agree with
the boundaries of a calculation scheme based on the structure of a program.

145

146 Chapter 9. Clustered Calculation

When flow facts cross structural boundaries, and thus calculation boundaries,
they cannot be accounted for, which leads to a lower precision.

The obvious solution to the boundary problem is to work globally on the
entire program at once. However, this has a potentially high complexity, and
makes scaling to large programs risky. Almost all techniques for performing
global calculations are based on integer linear programming (ILP) or constraint
programming (CP) techniques, thus having a complexity potentially exponential
in the program size. Also, as discussed in Section 8.3, some flow facts get less
precise when being converted to a global program level.

However, by structuring local calculations after the boundaries dictated by
the flow facts, it is possible to achieve both efficient local calculation and high
precision, since all flow information can be accounted for, while avoiding the
need for performing global calculation (unless there are actual flow facts that
make this necessary).

Another key observation is that in many cases it is not sufficient to consider
each provided flow fact in isolation. For a WCET tool using several types of
automatic flow analyses and manual annotations, many different type of flow
facts might be generated for the same program. Such flow facts can interact
and together constrain program flow in a manner not possible by single flow
facts. A WCET calculation method working over smaller program part must
therefore, to achieve maximum precision, find interacting flow facts and treat
them as a unit.

9.2 Method overview

WCET tool
Manual [\ - Scope graph ,I Fact cluster (Fact)
annotations Iggb:rﬂ;‘l’ﬂis with ﬂo\% and generation clusters

:| Flow (Scope graph exec info ¥
analysis with flow info T T—
ot e Wear)| Sppe g |
P / I \ level analysis ‘
| Co

?

il IPET- or path- Fact cluster
TJ{SJ,’;? T based WF(J:ET and covered
calculation scopes

| Cluster-based
3

Figure 9.1: WCET Tool architecture when using fact clustering

u

mpiler H Object | Hardware |

Program
model

source code

The clustered WCET calculation method presented in this chapter builds
upon the reasoning above. Figure 9.1 gives an overview of our WCET tool when
using a clustered calculation module (as discussed in this chapter). All compo-
nents of the system except the calculation phase remain unchanged, demonstrat-
ing the modular structure of the tool. As for our path-based and IPET-based
calculation methods, the cluster-based calculation method builds upon a clear

9.2 Method overview 147

separation of the calculation from the rest of the WCET analysis stages, thereby
enhancing reusability and retargetability.

The possible program flow is represented by a scope graph with flow facts.
The calculation method uses the given flow information to construct sets of flow
facts, where all the included flow facts have to be considered together to ensure
precision (box “Fact cluster generation” in Figure 9.1). Such fact clusters are
caused by flow facts sharing application area with some other flow facts, by
reaching down into subscopes and by having overlapping range specifications.
The facts in a fact cluster indirectly specify the scopes in the scope graph that
needs to be evaluated as a unit together with the flow facts.

The flow facts and covered scopes are used together to perform a local WCET
calculation (box “IPET- or path-based WCET calculation” in Figure 9.1). The
WCET estimates extracted for different fact clusters together form a WCET es-
timate for the whole program. The calculation is performed bottom-up, letting
extracted WCET estimates for clusters be represented as a node when calcu-
lating a WCET estimate for clusters higher up in the scope-hierarchy, (box
“Scope graph traversal”). The calculation is also demand-driven, and calculates
a WCET estimate for a cluster only when it is needed in the WCET calculation
of other clusters. Sections 9.3-9.4 will present the details of our cluster-based
WCET calculation method.

For a given set of flow facts it is possible to construct various kind of fact
clusters. In Section 9.3.2 we outline several potential fact clustering algorithms,
each with the property of putting interacting flow facts in the same resulting
cluster. The presented fact clustering algorithms will each generate different
amount of fact clusters. Having many small fact clusters results in more local
WCET calculations, but the calculation cost for each cluster decreases. Further-
more, the scope graph fragment specified by a fact cluster might have multiple
entry and exit points. In Section 9.4.2 we present different calculation alterna-
tives for such fact clusters and graph fragments, showing that WCET estimate
precision can be traded for calculation speed.

Furthermore, not only flow information can reach over the borders dictated
by local calculation schemes. As discussed in Chapter 6 some hardware depen-
dencies might reach over larger program parts of a program. When performing
WCET calculation over smaller program parts the calculation must guarantee
to safely capture such long reaching hardware dependencies.

We identify such long reaching dependencies in our low-level analysis, i.e.,
in a stage clearly separated from the calculation. In our resulting timing model,
which is given as input to the calculation, the dependencies are represented
using timing effects over sequences of nodes (see Chapter 6). In Section 9.5 we
outline how to safely capture the impact of long timing effects when they reach
over calculation borders dictated by fact clusters.

Finally, in Section 9.6 we give a complete example of our clustered calculation
method.

148 Chapter 9. Clustered Calculation

9.3 Clustering of flow facts

Our clustered calculation method takes two inputs: (1) a description of possible
program flows, represented as a scope graph with flow facts (see Chapter 5), and
(2) a timing model, including timing for nodes and timing effects for sequences
of nodes (see Chapter 6).

The scope graph structure and flow facts allowed depends on the final cal-
culation methods used within the extracted clusters, but basically we allow the
full expressiveness of the flow fact language as presented in Chapter 5. Both
total and foreach facts, valid for all or certain ranges, are allowed. Scopes are
allowed to contain one or more header nodes, and to have several in-nodes and
out-edges, something which allow us to handle most types of unstructured code.

To understand how we construct fact clusters with dependent flow facts we
need some extra definitions. For a flow fact we define all scopes between the
defining scope and the scopes containing referred count variables to be covered
by the fact. As mentioned in Chapter 5, a flow fact is only allowed to refer to
count variables corresponding to entities in the complete subtree of the flow fact.
Thus, the scopes covered by a fact form a subtree in the scope-hierarchy with
the defining scope as root (see Section 5.2.3 on page 64). We define cover (f)
to return the set of scopes covered by a facts f. Furthermore, for each scope
covered by a fact the fact spans a number of iterations. For the defining scope
the span is the number of iterations specified by the context specifier. For all
other covered scopes the span is all iterations of the scope.

We define a fact cluster to be a set of flow facts. The defining scope of a fact
cluster is defined to be the first common ancestor of all the facts in the cluster.
The cover of a fact cluster is all scopes between the defining scope and the
scopes containing count variables referred to by a flow fact in the scope. Thus,
the covered scopes forms a subtree in the scope-hierarchy with the defining scope
as root. We define cover(c) to return the set of scopes covered by a fact cluster
c. The scopes in a covered subtree with no children are called leaf-scopes. For
the defining scope s of a cluster the span is all iterations between the minimum
and maximum iteration of s spanned by any of the facts in the cluster. For all
other covered scopes the span is equal to all iterations of the scope.

In Figure 9.2(a) an example scope-hierarchy with associated flow facts is
given. In Figure 9.2(b) we show the defining scopes, defining scope spans, and
cover of each given flow fact. The name of a referred count variable gives the
scope in which the corresponding entity is located, e.g., #N1 refers to executions
of node N1 located in scope n. The function 1b (i) returns the loop bound for a
scope ¢.

The fact clusters generated from the facts are given in Figure 9.2(c). For
each generated fact cluster we show its defining scope, its defining scope span,
and the scopes covered by the cluster. Note that the same flow fact can be
present in several clusters, and that not all flow facts in a cluster need to have
the same defining scope.

9.3 Clustering of flow facts 149

n:[l..5]:#N1s#N2+2(f1)m=<>=#M1S#Q1 (4)

n:<3..7>:#N1+#N3 =1 (2)

| scope 0 | | scope q |
0:<8..10>:#02>N3 =0 (f3)

r: [] :#header(s) < 55 (f5)

scope s

(a) Example scope-hierarchy with associated facts

s:<1..5>:#S1=1 (6)

Fact Defining| Span def | Covered Fact Defining | Span def | Covered
scope scope | scopes cluster scope scope scopes
f1 n 1.5 {n} {f1,f2} n 1.7 {n}
f2 n 3.7 {n} {f3} o 8..10 {o}
3 o 8..10 {0} {f4} m 1..lb(m) | {m,p,q}
f4 m | 1.lb(m) | {m,p,q} || {f5,f6} r 1..1b(r) {r.s}
5 r 1..1b(r) {r,s} {f6} s 1.5 {s}
f6 s 1..5 {s}
(b) Information about facts (¢) Information about fact clusters

Figure 9.2: Fact clustering example

9.3.1 Flows causing clusters

for(i=0; i<10; i++) /* Bound: 10, (scope r) */
for(j=i; j<10; j++) /* Local bound: 10, (scope s) */
{... } /* executed at most 55 times */

Figure 9.3: Example 1: Triangular loop

Program flows causing fact clusters and reaching over several scopes are
actually quite common. The simplest example is illustrated in Figure 9.3. It is
the classical “triangular” loop, i.e., a nested loop where the number of iterations
of the inner loop depends on the current iteration number of the outer loop (cf.
scopes r and s in Figure 9.2(a)).

The inner loop considered in isolation will have an iteration bound of 10, and
so will the outer loop. If WCET calculation is performed locally, the WCET
calculation for the inner loop will assume 10 iterations, and the WCET calcu-
lation for the outer loop will use 10 executions of the inner loop, leading to
the body of the inner loop being counted 100 times, when it is actually never
executed more than 55 times. This requires that we handle the inner and outer
loop together. Flow fact £5 in Figure 9.2(a) shows how this type of triangular
loop dependency can be captured.

Flows in nested scopes can be related in other ways, for example if the
outcome of a decision in a scope determines the paths taken in a loop (maybe
deeply) nested in the scope (with varying outcome), like e.g., for the scopes

150 Chapter 9. Clustered Calculation

void foo(bool x) { /* Function foo(), (scope m) */
if(cond)
x = true; /* Block M1 x/
for(...) /* Outer loop, (scope p) */
for (...) /* Inner loop, (scope q) */
if(x)
Q1 /* Block Q1, execution is implied by M1 */
}

Figure 9.4: Example 2: Long reaching dependency

m, p and q in Figure 9.2(a). Figure 9.4 gives example code with such long
reaching dependency. Flow fact £4 in Figure 9.2(a) captures this type of nested
dependency. It gives that an execution of M1 implies an execution of Q1, (node
Q1 can still be executed on its own).

In the next example, (shown in Figure 9.5), block N3 does not belong to the
loop, (due to the break statement), and the way the loop is exited will determine
whether it should be counted or not. Thus, N3 depends on the decision cond in
the loop body, but N3 is a node in the parent scope of o (scope n).

for(...) { /* Bound: 10, (scope o) */
if(cond) { /* False during last 3 iterations */
N3 /* Block N3, big chunk of work */
break;
}
}

Figure 9.5: Example 3: Condition dependent dependency

Fact £3 in Figure 9.2 captures this dependency by specifying that the edge
from 02 to N3 can’t be taken during the last three iterations of the o scope.

Another case of flow information causing clusters is when information from
different types of flow analysis methods or manual annotations interact, and
therefore need to be considered together in the WCET calculation. An example
of such overlapping flow information is shown in Figure 9.2(a) with flow facts
f1 and £2. Both flow facts have the same defining scope n and they overlaps in
the ranges of their context specifications.

9.3.2 Fact clustering algorithm

An algorithm to create the clusters of flow facts is given in Figure 9.6. The
algorithm makes a bottom-up traversal of the scopes in the scope-hierarchy, i.e.,
all clusters for a subscope are generated before its parent scope is processed.
For each scope s, we look at the facts defined in the scope, and partition the
facts based on their range specifications. Two facts with ranges that overlap,
i.e., have some iteration numbers in common, should belong to the same set:

9.3 Clustering of flow facts 151

ClusterFacts(scopegraph sg):
FC := 0 // To hold set of fact clusters
// Traverse scope-hierarchy bottom up
for each scope s in sg in bottom-up order do
Fs := facts in sg with s as defining scope
FCs := 0
// Partition facts in Fy into overlapping sets of facts
for each fact f in Fs do
FCy := all fact clusters in FC; with span of s overlapped by f
if FCy = () then
// No overlapping facts, create and add cluster for f
FCs := FCs U {f}
else // Merge all overlapping facts into one fact cluster
FCs := FCs - FCj
feg = merge(FCy) U f
FCs := FCs U fo
end for
// Add fact clusters defined in descendant scopes
for each fact cluster fcs in FCs do
Sub := scopes covered by fcs in sg
Sub := Sub - s
for each fact cluster fcz,, in FC with defining scope in Sub do
Jes = fes U fesup
end for
// Update set of fact clusters
FC := FC U {fes}
end for
end for
// Return set of fact clusters
return FC

Figure 9.6: Minimal fact clustering algorithm

Vfi, f; € facts(s) : ((3i € range(context(f;)) Ai € range(context(f;)) A
Afi € F) = f; € F. This creates sets of facts where the range expression of
each fact overlaps one or more of the facts in the same set.

For example, fact £1 and £2 in Figure 9.2 have overlapping ranges and the
same defining scope n, and should therefore be put in the same set. Note that if
there are any “all iterations” facts (using context specification [] or <>), there
will only be one fact set for this scope since these facts include all iterations,
and thus overlap with all other facts defined on the scope.

We also need to consider interactions of flow facts located in different scopes.
For each extracted fact-cluster we check if it covers any descendant scopes. For
all covered descendant scopes all facts in clusters defined on these scopes are
added to the cluster, together covering a set of scopes that have to be considered
jointly. Note that this means that a fact can be part of several fact clusters. For
example, fact £5 in Figure 9.2 covers both scope r and s and should therefore
be clustered together with fact £6, resulting in fact cluster {£5,£6} with r as its
defining scope. Fact £6 is at the same time the only fact in the cluster having
s as defining scope.

The algorithm given in Figure 9.6 generates minimal fact clusters, i.e., sets of

152 Chapter 9. Clustered Calculation

facts where all included facts need to be considered together, but includes as few

facts as possible. We call this clustering algorithm for minimal fact clustering.

It is also possible to form larger clusters, (note that any clustering has to put

all interacting facts in the same unit), and natural examples of such clusterings

are:

m Scope-based clustering: All facts defined in a scope are put in the same clus-
ter, together with all the facts in fact clusters defined in covered subscopes.

m Mazimum clustering: All flow facts in the scope graph are put into one big
cluster with the first common ancestor scope as its defining scope. Scopes
not covered by the resulting fact cluster will be calculated separately from
the scopes in the cluster.

m Global clustering: All flow facts in the scope graph are put into one big cluster
with the root scope of the scope graph as its defining scope. All scopes in the
scope-graph are part of the cluster. This is identical to the global calculation
view used by our IPET-based calculation method (see Chapter 8).

Furthermore, we can construct even smaller clusters by subdividing foreach
facts into facts valid for smaller ranges. A foreach fact gives flow information
valid for each individual iteration and therefore do not need to force overlapping
subranges to the same cluster. Instead, we apply the algorithm given in Figure
9.6 only to total facts. The remaining foreach fact are split into new foreach facts
across the ranges of the resulting clusters. E.g., in Figure 9.2(a) the total fact £1
does not overlap £2 completely, so we split £2 into the facts n : <3..5> : #N1 +
#N3 =1 (f2’) and n : <6..7> : #N1 +#N3 = 1 (£2”). The resulting fact clusters
becomes {£f1,£2’} and {£2”}. We call such clustering split-foreach-fact minimal
clustering. Compared to the minimal clustering algorithm the split of foreach
facts will result more facts but in smaller clusters covering a smaller program
parts.

In Chapter 10 we evaluate the WCET estimate precision and calculation
speed due to the usage of different fact clusterings.

9.4 WCET calculation using fact clusters

The algorithm for calculating a WCET estimate using fact clusters is shown
in Figure 9.7. The algorithm performs a demand-driven traversal of the scopes
in the scope-hierarchy. For each scope we find the fact clusters defined on
the scope, and for each fact cluster the scopes covered by the cluster are
extracted as a subgraph over which a local WCET calculation is made (the
CutOutScopeGraph (. ..) algorithm, given in Figure 9.9). This means that if
there are fact clusters that cover more than one scope, a WCET calculation is
performed over all covered scopes as a unit.

The WCET estimate for a scope s is obtained by iterating over the clusters
having s as defining scope in range order, i.e., fact clusters spanning the first
iterations of s are processed before fact clusters spanning later iterations of s.

9.4 WCET calculation using fact clusters

153

ScopeWCET (scope s, scopegraph sg, factclusterset F(', timedatabase tdb):

// Initialize timing variables for scopes and clusters
ts back = ts,out = tfc,back = tfc,out =0
// Get fact clusters for scope s
FC, := create empty clusters with a cover of s for each range
of s not spanned by fact clusters in FC
FCs := FC. U fact clusters in FC with s as defining scope
// Make WCET calculation over clusters
for each fact cluster fc in F(s in increasing range order over s do
// Create scope graph for cluster
sgeut = CutOutScopeGraph(sg, FC, fc,tdb)
// Get begin nodes for cluster
if fc spans first iteration of s then b := in_nodes(s)
else b := headers(s)
// Calculate time to out-edges for cluster
tic,out := ClusterWCET(fc,b, out_edges(s), sgcut, tdb)
// Update time to out-edges for scope
if valid(tf,out) then
ts,out = max(ts,back + tfc,om,:ts,out)
// Calculate time to back-edges for cluster
if fc does not span last iteration of s then
ticback = ClusterWCET(fc, b, back_edges(s), sgcut, tdb)
// Update time to back-edges for scope
if valid(j pack) then
ts,back i= ts,back + tfc,back
// Break loop if execution can’t continue
else break
end for
// Update timing database and return
add time ts o4t for scope s to tdb
return tdb

Figure 9.7: Cluster-based WCET calculation algorithm

If some scope range is not spanned by any fact cluster, an empty fact cluster
is created. Such empty cluster covers just the current scope and spans only
consecutive iterations not spanned by any fact. For a scope not covered by any

flow fact, an empty cluster is created, spanning all iterations of the scope.

A timing estimate for a program fragment should be calculated from where
the execution can enter the fragment to where the execution can exit the frag-
ment. A calculation for a cluster is therefore performed from some begin-nodes,
where the execution can enter the covered scopes, to some end-edges, where the
execution can exit the covered scopes. The cluster spanning the first iteration
of a scope has begin-nodes equal to the in-nodes of the scope. For the remaining
clusters the begin-nodes are equal to the header-nodes of the scope, since this

defines the start of a new iteration.

Similarly, for all clusters except the one including the last iteration, we make
two distinct calculations, one ending at an out-edge and one ending at a back-
edge. This is because the execution path taken to exit a scope might be different
from the path taken when continuing to the next cluster. If a WCET estimate
for the back-edges cannot be calculated, e.g., due to some contradicting flow

154 Chapter 9. Clustered Calculation

loopbound: 20 .
scope u =
IIIu: [1..5] :#U1<#U2+2 (f1) V‘;gf(m”cté%gm 7 out
u:<3..7>:#U1+#U3=1 (f2) =\, 1. £, O,
u: [10..20] :#U2<#V1 (f3) WCET(in,u:1..7,back) +
loobbound: 10 WCET(header,u:8..9,out),
@ Viel..ds:#VIsV2<] (f4) WCET(in,u:1..7,back) +
) , - WCET (header,u:8..9,back)+
(a) Scope-hierarchy with flow facts WCET(header,u:10..20,0ut))
in header ir header header
{f4} {} {f1,f2} {} {f3.f4}
vil..4 v:5..10 usl..7 u:8..9 u:10..20
| v:l..10
out back out | | | | i

out | back out | back
WCET(in,v,out) = out

max(WCET(in,v:1..4,out), scope v scope v 5{;--;106;1376;{‘6/0_
WCET(in,v:1..4,back)+ ulated together

WCET(heéader,v:5. 10,0ut) || lime forvbecomes anew — with u:10..20

(b) WCET calculation scope v (c) WCET calculation scope u
Figure 9.8: Calculation over clusters

information in the cluster, the execution can not continue further. If so, we
stop iterating over the ranges and return the total time accumulated for the
scope.

Figure 9.8 shows an example of a WCET calculation working over clusters.
The algorithm starts at scope u where there are several facts covering the iter-
ation range. The name of a referred count variable gives the scope in which the
corresponding entity is located, e.g., #V1 refers to executions of node V1 located
in scope v. The facts £1 and £2 together form a cluster, {£1,f2}, spanning
range 1..7 of u. Since neither £1 nor £2 cover v, a local calculation is made for
v by a recursive call to the algorithm.

The local WCET calculation for v only needs to consider facts and fact
clusters defined on v. Fact £4 creates a fact cluster on its own, {f4}. Two
calculations are made for the {£4} cluster: one to the out-edges and one to the
back-edges. The remaining iterations (5..10) of v are not spanned by any fact
and an empty fact cluster { } is therefore created for these iterations. Since the
fact cluster covers the last iteration of v, a WCET estimate is only made to the
out-edges, and not to the back-edges as in the previous clusters.

After calculating a WCET estimate for v, the calculation restarts at u with
the fact cluster {f1,£2}. There are no facts spanning range 8..9, and an empty
fact cluster { } (covering just u) is created. For both these calculations, the
call to scope v is represented by a call node with the timing of the extracted
WCET estimate for v, i.e., no details of v except its timing are included in the

9.4 WCET calculation using fact clusters 155

CutOutScopeGraph (scopegraph sg, factclusterset FC, factcluster fc, timedatabase tdb):

// Create new scope graph, copy covered scopes, nodes and edges
Sgcut = create empty scope graph
add root scope with nodes start.,; and exitcy; to Sgcut
for each scope s in cover(fc) do

Scut = create new scope

// Copy nodes

for each node n in s do

add node Ny to Scut

end for
loopbound(s¢y:) := iterations of s spanned by fc
add scope Scyt to Sgcut

end for

// Copy edges
for each edge u — v in sg with scope(u),scope(v) € cover(fc) do

Uyt = node in sg.,; generated from u
Veyt := node in sg.,; generated from v
add edge Ucut — Veut tO SGcut

end for

// Copy hierarchy between scopes

for each scope pair c¢,p in sg such that p = parent(c) do
Ceyt = SCOpe in sg.u: generated from c
Peut = scope in sg., generated from p
set pcyt to be parent of cgyr in SGeut

end for

// Add edges to enter and exit scope graph
d := defining scope of fact cluster fc
// Create edges to in-nodes and header-nodes
for each edge u — v within (in_edges(d) U back_edges(d)) do
Veut = node in sg.,: generated from v
add edge start — Vcut to SGcut
Sgeut = CreateHistoryNodes(u,v,startcyt,Veut stdb,sgcut)
end for
// Copy and redirect out-edges and back-edges
for each edge e = u — v within (out_edges(d) U back_edges(d)) do

Ucyt := node in sg.,; generated from u
add edge Ucyt — €Xitoyt tO SGcut
end for

// Add call-nodes for non-covered subscopes
for each child scope sub to leaf scopes of cover(c) do
// Do demand-driven analysis of subscopes
if time for sub not in tdb then
tdb := ScopeWCET (sub, sg, FC, tdb)
// Replace calls to subscopes with call nodes
tsup := time for scope sub in tdb
add node Ngyup tO SGcut
add timing sy, for node mgyn to tdb
// Create edges going to call node
for each edge u — v in sg with scope(u) € complete_subtree(sub) and
scope(v) € cover(fc) do

Ucyt = node in sg.,tg generated from wu
add edge Ucut — Msub tO SGcut
end for

// Create edges leaving call node
for each edge u — v in sg with scope(u) € scope(u) € cover(fc) and
scope(v) € complete_subtree(sub) do
Veyt = node in sg.,; generated from v
add edge Nsup — Veut tO SGcut
Sgeut = CreateHistoryNodes(u,v,NsyubsVcut stdb,SGcut)
end for
end for
// Return extracted scope graph
return Sgcut

Figure 9.9: Algorithm for creating scope graph for fact cluster

156 Chapter 9. Clustered Calculation

calculation.

Fact £3, however, covers both scope u and v and will be clustered together
with the £4 fact as {£3,f4}. This means that when calculating a WCET esti-
mate for scope u over the range 10..20 we cannot use the previously generated
time for scope v, but must do the calculation over both u and v. Observe, that
the cluster covers the last iteration of u so no calculation for the back-edges is
needed.

9.4.1 Extracting a scope graph from covered scope

The scopes covered by a fact cluster are used to extract a new scope graph
over which a local WCET calculation is made. The algorithm for extracting the
scope graph is given in Figure 9.9. The algorithm starts by generating copies of
all the scopes, nodes and edges covered by a fact cluster. A root scope with a
start and exit node is also created.

Edges are added to let the execution enter and exit the scopes covered by a
fact cluster. Edges are created from the start node to the nodes corresponding
to in-nodes and header-nodes of the defining scope of the fact cluster, i.e., the
nodes where the execution can enter the scopes covered by the fact cluster.
Similarly, to be able to exit the extracted scope graph, edges corresponding to
out-edges and back-edges of the defining scope of the fact cluster are copied and
redirected to go to the program exit node.

WCET estimates for subscopes not covered by the fact cluster are generated
by a recursive call to the algorithm given in Figure 9.7 (this is the demand-
driven aspect of the algorithm) and each non-covered subscope is replaced with
a call-node. A call node is a place-holder for a call to a subscope with a timing
of the WCET estimate extracted for the subscope. Edges are added to let the
execution enter and exit the call-node in the same way as the execution can
call and return from the subscope. To safely encapsulate the effect of border
crossing timing effects, extra history nodes are added when the execution enters
the scopes covered by the fact cluster or returns from a call to a non-covered
subscope (see Section 9.5 for more details). Finally, the extracted scope graph
is returned.

9.4.2 Calculation alternatives

A timing estimate for a program fragment should be calculated from where the
execution can enter the fragment to where the execution can exit the fragment.
For a scope with several in-nodes and out-edges we have the possibility to make
a separate WCET calculation for each in-node and out-edge pair, or to make
one single WCET calculation for all pairs simultaneously. The first alternative
is the least costly in terms of needed CPU resources. However, such calculation
will result in a safe but sometimes pessimistic program WCET estimate, since
a program fragment WCET estimate sometimes differs depending on where it
can be entered or exited.

9.4 WCET calculation using fact clusters

157

N2 Nz v
for(...) O1
o) A1
if(...) 02
& A5
N3 3
break; 5 m m
} g
o3 Z
} v e
N4 One WCET | | Separate WCETs
S for scope “0”| | for each out edge
cope
Example code Graph Calculation alternatives

Figure 9.10: Calculation alternatives

As an example of the need for the calculation to differentiate between dif-
ferent out-edges of a scope, consider Figure 9.10. The code corresponds to the
third code example in Section 9.3.1, where flow fact £3 specifies that the edge
between 02 and N3 can not be taken during the last three iterations of scope o.

If only one calculation is made for scope o for both its out-edges it will result
in a timing estimate for o which gives that the loop is iterated 10 full iterations.
Later, when doing a WCET calculation for scope n the worst case path will be
passing the call node for scope o together with the nodes N3 and N4. This gives a
safe but pessimistic WCET estimate, since the extracted worst case path could
not be taken in an actual execution.

The other calculation alternative, which is to make a separate WCET cal-
culation for each out-edge of scope o, will discover that the out-edge to node N3
can not be taken during the last three iterations of o. The WCET estimate for
scope o will therefore be different depending on the execution out-edge used. In
the calculation of scope n this will result in two separate call nodes for scope o,
each with different timing. Thus, by making separate calculations for different
in-nodes and out-edges the calculation cost increases, but more precise WCET
estimates can be achieved.

The same reasoning can be applied for WCET calculation of fact clusters.
As discussed in Section 9.4 each fact cluster has a set of begin-nodes and end-
edges, and a timing estimate for a cluster is calculated from its begin-nodes
to its end-edges. The most costly calculation alternative for a cluster is to
make a separate calculation for each pair of begin-nodes and end-edges and the
least costly alternative is to calculate a WCET estimate for all pairs of begin-
nodes and end-edges simultaneously. The algorithm presented in Figure 9.7
is somewhere in between, not differing between begin-nodes, but making two
separate calculations for each cluster, one ending at out-edges and one ending at
back-edges. This alternative will keep the calculation complexity at a reasonable
level, but allows us to differentiate between executions continuing to the next

158 Chapter 9. Clustered Calculation

cluster in the scope and executions which exit the scope.

Note that we only extract a single scope graph for a fact cluster even though
we perform separate calculations for its in-nodes and out-edges. By adding extra
flow facts stating which begin-nodes and end-edges that are possible for each
particular calculation, an extracted scope graph can be reused. For example,
when performing separate calculations for scope o in Figure 9.10 we extract a
scope graph covering just the o scope. For the first calculation of o we add a
flow fact stating that the 02 — N4 edge is not possible to take. For the second
calculation of o another flow fact is added, stating that the 02 — N3 edge is
infeasible.

In Chapter 10 we evaluate the impact of different node and edge combina-
tions on the WCET estimate precision and calculation speed.

9.4.3 WCET calculation of clusters

After constructing a WCET calculation working over fact clusters, the next step
is to calculate a WCET estimate for each fact cluster and extracted program
part in isolation. Since our clustered calculation framework does not specify any
specific calculation method, different methods can be used for different clusters,
depending on the characteristics of the flow information and covered program
fragment.

For example, for fact clusters consisting of only foreach facts and covering
only a single scope, our efficient path-based calculation method, (see Chapter
7), can be used. For fact clusters with more complicated flow information our
IPET-based calculation method, (see Chapter 8), is preferably used.

9.5 Hardware timing and local calculations

The second input to our clustered calculation is the hardware timing represented
by a timing model with timing for nodes (tno4e) and timing effects (0seq) for
sequences of nodes. As discussed in Section 6.5 there is a potential for timing
effects along sequences of nodes longer than two, usually caused by a node using
some CPU resource that is used by a later node in the sequence, but not by the
nodes in between. A WCET calculation method must be able to safely handle
such long reaching hardware timing effects.

Our basic timing model assumes that there is a graph for the entire program,
meaning that there are no internal borders in the model. In previous chapters we
have outlined how calculation methods can handle timing and timing effects for
nodes in the same program graph fragment. This can be done either by graph
rewriting, as in our path-based calculation method, (see Chapter 7), or by giving
constraints for bounding the number of times a sequence can be executed, as in
our IPET-based calculation method (see Chapter 8).

However, for efficiency reasons some calculation methods divides a program
into smaller fragments, thereby introducing artificial calculation borders. For

9.5 Hardware timing and local calculations 159

the path-based calculation method the program fragment is a single iteration
or a scope, while for the clustered calculation the program fragment can reach
over a larger part of the graph. The IPET-based method does not introduce
any calculation borders by itself, but need to handle the border problem when
used as the final calculation method of our clustered calculation.

9.5.1 Border-crossing timing effects

Timing for nodes and node sequences of length two should be accounted for
whenever the corresponding node or edge is executed. A timing effect for a
longer node sequence should only be accounted for when the execution goes
uninterrupted via all the nodes in the sequence. This means that timing effects
have to be accounted for where they end, since only at the end of a sequence do
we know that it was actually executed.

This means that when timing effects cross one or more calculation bound-
aries, they should be accounted in the fragment containing the end of the se-
quence. However, when calculating the timing for a graph fragment in isolation
no knowledge of the worst case execution path in the surrounding fragments can
be assumed, i.e., we do not know if the prefix nodes of the sequence was taken
or not. Therefore, at the boundaries between fragments, rules are needed to
make sure to maintain a safe timing approximation and (hopefully) precision,
basically by using a pessimistic but safe assumptions on the possible executions
made in the surrounding fragments.

No timing effect
on entry edge

2
8=0
r=19

Timing effects
counted at
source node

(a) Global Timing Model (b) Timing Models for each Fragment

Figure 9.11: Managing timing effects at fragment borders

Using this reasoning, timing effects over pairs of nodes can be handled by
including the edge in the same calculation fragment as its source node. This
means that edges going from one fragment into another will be counted with
the “from” fragment, as shown in Figure 9.11. It is not safe to count the timing
effect at both the source and target nodes, since this will count the timing effect
of the edge (at least) twice.

Long timing effects are harder to handle, since they lie on a specific sequence

160 Chapter 9. Clustered Calculation

of nodes in the graph. If that sequence is divided by a boundary, it is in the
general case not possible to know whether to include the timing effect of the se-
quence or not. This is handled by adding special history nodes, representing the
potential paths taken before entering the given graph fragment. In a fragment
containing incoming timing effects, such history nodes are added at the start of
the fragment.

History nodes have an execution time of zero, and their only purpose is to
provide support for the specification of long timing effects. A history node is
added for each node belonging to a surrounding fragment also included in a
long timing effect which ends in a node in the fragment. Edges are added to
connect the history nodes, with the result that all incoming timing effects get
a corresponding history node sequence. Each added edge has a timing effect of
zZero.

If there are incoming execution paths not included in any timing effect se-
quence, extra edges should be added from the start node to the entry of the
fragment. This allow the calculations to bypass incoming timing effects if this
would result in a larger WCET estimate for the fragment.

start @

History nodes added
to reflect potential flows
in previous fragment

Long timing effects
not handled
in first fragment

“. exit

(a) Long timing effects (b) Timing graphs for each fragment

Figure 9.12: Managing long timing effects at fragment borders

Figure 9.12 shows an example of the handling of long timing effects. Due
to the two (overlapping) long timing effects over the sequences CEFG and EFG,
two history nodes corresponding to nodes C and E are added in the timing
model for fragment (2), together with the long timing effects. The calculation
for fragment (2) will then find the local longest path including the long timing
effects overlapping fragments (1) and (2).

The insertion of history nodes gives a safe but possibly pessimistic estimate
of the execution times, since we will always use the worst incoming timing effect.
For example, in Figure 9.12 the worst case execution path for fragment (1) will
exit in sequence DE, giving that the long timing effects should not be used in the
calculations in fragment (2). However, this cannot be modeled in a fragmented
timing model, which will cause an overestimation of the final WCET estimate.

9.5 Hardware timing and local calculations 161

This imprecision is the price we have to pay for the convenience of using a
subdivided calculation method.

Note, however, that there is a special case when long timing effects can be
modeled precisely across fragment boundaries. If a long timing effect sequence
has all its nodes but the last inside one fragment, its timing effect is modeled as
part of the originating fragment. Since the exit edge leading to the last node is
part of the first fragment, it can be deduced within the first fragment whether
the long timing effect is activated or not.

(1)
()
=)
w () 5% @
§=-2 §=-2 f=19
Long timing effect
(3 accounted for in
fragment (2)
(a) Long Timing Effect (b) Timing Models for each Fragment

Figure 9.13: Special case of only last node across the boundary

Figure 9.13 illustrates the special case. When fragment (2) exits via the
edge EF, we know that F will be the next node executed. Thus, the long timing
effect DEF can be modeled within fragment (2) rather than by history nodes in
fragment (3).

9.5.2 Generating history nodes

We have constructed an algorithm for generating history nodes for long timing
effects reaching over calculation borders. The algorithm is given in Figure 9.14
and takes six arguments. The first two arguments, %o,y and vorg, are the nodes
that the original long timing sequence must be passing to generate new history
nodes in the extracted graph. The third and fourth argument, e and vyeqw
are the nodes that the new history node sequences will be going in between. tdb
is the timing model for the original scope graph. For border crossing sequences
from subscopes, the u,¢, node will be a newly created call-node, and for border-
crossings over the begin-nodes of the cluster, e, will be the root-scope start
node of sgpew-

The algorithm starts by extracting border crossing time sequences with more
than one node in the covered scopes. These are the long timing sequences
including the %org,Vorg subsequence and ending in a node in the fragment. For
example, for the example graph in Figure 9.12 the CEFG and EFG sequences both
pass the EF subsequence and has more than two nodes in fragment (2), and will
therefore both generate history nodes.

162 Chapter 9. Clustered Calculation

CreateHistoryNodes(scopenode uorg, scopenode Vorg, scopenode Upew s
scopenode Unew, timedatabase tdb, scopegraph sgnew):
// Collect long border crossing timing sequences
PreSeqs := 0 // Set for holding prefixes of border crossing sequences
// Extract node sequences generating history nodes
for each timing effects dseq with length(seq) >3 in tdb do
if seq includes subsequence uUorg,Vorg and last node in seq #* Vorg then

pre := prefix sequence of seq ending at uUorg in last uUorg,Vorg Subsequence
PreSeqs := PreSeqs + pre
end for

// Create history nodes from prefix sequences

Proc := (// Set for holding processed prefix sequences

for each prefix sequence pre in PreSegqs in decreasing length order do

if pre is suffix of previously processed sequence in Proc do

// The prefix sequence is suffix of previously created history nodes
proc := previously processed sequence in Proc having pre as suffix
Nproc := new history node in proc created from first node in pre
create edge from node Upew to node nNproc
add newly created edge to Sgnew

else
// Create and connect history nodes
Pprenew := create new history node sequence from nodes in pre

create edge from node Unpew to first node in prenew
create edge from last node in prenew to node vnew
add newly created history nodes and edges to Sgnew
Proc := Proc + pre
end for

// Return updated scope graph
return Sgnew

Figure 9.14: Algorithm for history node creation

Next, sequence prefixes are extracted to reflect that only the nodes before
the last uorg,Vorg Subsequence will generate history nodes. For example, for the
border crossing sequences in Figure 9.12 the prefix sequences CE and E will be
extracted.

In the next step the history nodes are generated and connected according to
the extracted prefix sequences. The algorithm needs to consider that if a short
prefix sequence is a suffix of another longer prefix sequence then an execution of
the longer sequence implies an execution of the shorter sequence. For example,
in the resulting graph fragment in Figure 9.12 an execution of history node
sequence CE implies an execution of history node sequence E.

9.5.3 Example of timing effects over calculation borders

Figure 9.15 gives an example of long timing effects reaching over fact cluster
calculation borders. Figure 9.15(a) shows a scope graph fragment with the
scopes t and u. Scope t has a flow fact covering scope t but not scope u. This
generates a fact cluster only consisting of this single fact covering only the t
scope. The corresponding timing graph fragment contains timing for nodes and

9.6 Complete example

163

scope: u;
headers: E;
loopbound: 20;

call to u has been
replaced with node

in the resulting

call to u has timing

5 — history node
- | —added for =
ACD node A 8ACD
scope: t; . .
headers: C; :::g:r‘:s?'B.
loopbound: 10; d4- 10
ti[]:#H=1; loopbound: 10; |
U ! t:[]:#H=1; tu=840

timing graph tE=0
history node
added for
S node E
EGI
history node
for E has
no timing -
bEGI 1
exit exit

(a) Scope graph and timing graph fragment (b) Cutted out scope graph for scope t and timing graph

Figure 9.15: Example of clustered calculation and long timing effects

edges, (not shown in the figure), as well as two long timing effects, illustrated
as Opcp and Oggr-

When making a clustered calculation the u scope will be calculated in isola-
tion from the t scope. A worst case estimate for scope u is first calculated and
given a timing. The extracted scope graph for scope t is illustrated in Figure
9.15(b). In the graph, the call to scope u has been replaced with a call-node. To
be sure to capture the long timing effect dycp a history node is created for the A
node. Since we can enter t by two different edges, an extra edge from the start
node is added to allow the calculation to bypass the timing effect sequence.

We also have a long timing effect dg¢r originating in node E in the non-covered
scope u. To be sure to capture this long timing effect, a history node is created
for the E node. Since the execution is forced to pass the E node in order to leave
scope u, all paths leaving the new u node must also pass the E history node.

In Chapter 10 we will evaluate the pessimism introduced by long timing
effects over calculation borders dictated by fact clusters.

9.6 Complete example

In Figure 9.16(a)-(k) we give a compact illustration of the steps involved in
our clustered calculation method. To simplify the presentation, no timing for
entities is included in the example.

Figure 9.16(a) shows an example control-flow graph consisting of a single
loop and a loop nest consisting of two loops. Figure 9.16(b) shows the corre-
sponding scope graph with scopes main, loop, outer and inner. Each scope
has a loop bound and some have flow facts attached. Note that both loop and
outer have multiple out-edges. Figure 9.16(c) shows the corresponding scope-

164 Chapter 9. Clustered Calculation

—-scope: loop;
: B;

loopbound: 50;
loop:<1..40>:4D=1; (£1)
n loop:[1..5]:#G=2; (£2)

J -scope : outer;
. headers: I;

loopbound: 10;

n outer: []:#J<55; (£3)
u m -scope: inner;
+H—— headers: J;
n loopbound: 10;
H inner:<l..5>:#L=1; (£4)
n -scope: main;
n — | headers: A;
loopbound: 1;

@exit
(a) Basic-block graph (b) Scope graph and flow facts
mai @ start
outer: []:#J <55 (f3) loop | | Calculation 1: loop:1..40 to back-edge
loopbound: 40
l loop l l outer l B loop:<1..40>:#D=1
. . - loop:[1..5]:#G =2
%ggg;ﬁ::g?f#éz 21 g;; <] Toop: [1..40] :#B—exit + #E—>exit = 0
inner:<1..5>:#L=1 (f4) Calculation 2: loop:1..40 to out-edge
(c) Scope-hierarchy with associated flow facts B [E] igggbﬁ“d ioi?#D -1
Defini S defini c d loop:[1..5]:#G =2
Fact | scope | ' 'scope | scopes [F][]| |2oop: (1- 0] #G~exit=0
f1 loop 1..40 {loop} Calculation 3: loop:41..50 to out-edge
f2 loop 1.5 {loop} E loopbound: 10 L
3 outer 1..10 {outer,inner}) loop: [41..50] :#G=exit=0
4 inner 1.5 {inner} “Sexit
(d) Information about flow facts (i) Scope graph and calculations of scope loop

Fact | Defining | Span def| Covered
cluster scope scope scopes

{f1,f2} | loop 1..40 {loop}

ter,
3,54y | outer | 1.10 {,zg:r;

@start

outer Calculation 4: outer:1..10 to first out-edge
loopbound: 10

outer: []:#J<55
inner:<1..5>:#L=1

outer: []:#O0—=exit=0

(e) Minimal fact clustering

Fact | Defining | Span def| Covered
cluster | scope | scope | scopes

{f1’,f2} | loop 1.5 {loop}
{1} loop 6..40 {loop}

#3,f4) | outer | 1.10 | fouter,
inner}

(f) Minimal split-foreach clustering

Calculation 5: outer:1..10 to second out-edge
loopbound: 10

outer: []:#J<55

inner:<1..5>:#L=1

outer: [] :#l—=exit=0

scope inner is
calculated together
with scope outer

Fact | Defining | Span def | Covered p
cluster | scope | scope | scopes Woxit

(j) Scope graph and calculations of scope outer

{main,
{f1,f2, . outer,
f35y | main | 1T oner estart
loop} main
i calltoloop is C ion 6: main:1..1 to out-edge
(g) Global clustering o u;" — Loopbound: 1
Fact Defining | S def| Covered
cluster scopeg E.a;gp: scopes \‘s S:gl :;eodmeyr
{} main 1.1 {main} N"n?ag'e"fv'ﬁﬁf
{f1,f2} | loop 1.40 | {loop} m'f,f.,;
{} loop | 41..50 | {loop} of outen)
{f3,f4) | outer | 1.10 | {outer,
inner} ®exit
(h) Minimal plus empty clusters (k) Scope graph and calculations of scope main

Figure 9.16: Complete example of clustered calculation

9.6 Complete example 165

hierarchy, with flow facts attached to the different scopes. Figure 9.16(d) shows
the defining scopes, defining scope spans, and cover of the different flow facts,
as defined in Section 9.3.

Figure 9.16(e) shows the fact clusters generated when applying the minimal
clustering algorithm given in Figure 9.6. Since fact £1 and f£2 overlap in their
ranges they will be put in the same cluster. Fact £3 refers to the header node
of scope inner and is therefore put in the same cluster as f4!.

Figure 9.16(f) shows the fact clusters generated when applying the split-
foreach-fact minimal clustering (see Section 9.3.2). Fact f£1 has been split
into two new facts loop : <1..5>: #D = 1((f1’) and loop : <6..40> : #D =
1((£1°?). The fact clusters {£1°,£2} and {£1’’} together span the same range
as the {£f1,£2} cluster given in Figure 9.16(e).

Figure 9.16(g) shows the fact cluster generated when applying the global
clustering, (see Section 9.3.2). All facts are put into one cluster, with main as
defined scope, and will all be consider together as a unit in the final calcula-
tion. This corresponds to the overall program view used in our extended IPET
calculation (see Chapter 8).

For the rest of the example we use the clusters in Figure 9.16(e) as generated
by the minimal clustering. Figure 9.16(h) shows the resulting set of clusters,
after adding empty clusters for all ranges of scopes not covered by any cluster.
This is done as part of the algorithm given in Figure 9.7. An empty cluster for
range 1..1 of main and one empty cluster for range 41..50 of loop is created.

Our demand-driven WCET calculation algorithm given in Figure 9.7 starts
at scope main. Since only main is covered by the empty fact cluster, recursive
calls are made for scope loop and outer, before calculating the WCET of main.

Scope loop is covered by two fact clusters, {f1,f2} and an empty cluster.
The calculation starts with cluster {£1,£2}, since it spans the first iteration of
loop. Using the algorithm given in Figure 9.9 a new scope graph is extracted for
the covered scope loop. The resulting scope graph is given in Figure 9.16(i). For
the extracted scope graph and fact cluster {£f1,£2}, two different calculations
are made: one ending at the back-edge of loop (Calculation 1) and one ending
at the out-edge of loop (Calculation 2). The same scope graph is used for both
calculations, but some extra flow facts are added in each calculation to constrain
where the execution should end (as outlined in Section 9.4.2).

The calculation continues with the empty cluster spanning range 41...50 of
scope loop. When calculating a WCET estimate for this cluster we reuse the
extracted scope graph for scope loop. Since the cluster is empty, no flow facts
are included, except one specifying that the execution must end at the out-
edge (Calculation 3). The three different WCET estimates extracted are used
together, as given by the algorithm in Figure 9.7, to calculate a WCET estimate
for scope loop.

The next step is to calculate a WCET estimate for scope outer. Since the

IFact £4 is also constituting a fact cluster on its own, {f4}, defined on scope inner, but
this is not included in Figure 9.16(e), since £4 will always be calculated together with £3.

166 Chapter 9. Clustered Calculation

fact cluster {£3,f4} covers both scope outer and inner, a WCET estimate will
be extracted for both scopes together. Using the algorithm given in Figure 9.9
we first extracts a new scope graph for the scopes, as shown in Figure 9.16(j).
For the extracted scope graph and fact cluster, two different calculations are
made, one to the out-edge with node I as source (Calculation 4), and one to the
out-edge with node 0 as source (Calculation 5). As discussed in Section 9.4.2,
making just one calculation for both out-edges might result in a pessimistic
WCET estimate.

After calculating WCET estimates for scope loop and outer a WCET esti-
mate for scope main can be calculated. A scope graph for scope main is extracted
(again using the algorithm in Figure 9.9), as shown in Figure 9.16(k). In the
extracted graph, the calls to scope loop and outer are replaced with call nodes.
Each node is given a timing equal to the WCET estimate extracted for the call
to the corresponding scope. Note that scope outer gets replaced with two dif-
ferent call nodes. No fact is covering scope main, and only calculation needs to
be made for this scope (Calculation 6).

Note that we do not put any demands on the calculation method to use
when calculating a WCET estimate for a scope graph and fact cluster. For
example, for the calculations of the main scope or the last range of loop, both
our path-based (Chapter 7) and extended IPET (Chapter 8) methods can be
used. For fact clusters with more complicated flow information, such as {£3,£4},
the extended IPET is preferably used to guarantee that all included flow facts
can be accounted for.

Chapter 10

Prototype Tool and
Experiments

In this chapter we present our implemented WCET analysis tool. We present
results from a number of experimental runs to evaluate the correctness, precision
and efficiency of our prototype. In particular, we evaluate the impact of timing
and flow information on the WCET estimate precision and computation time,
as well as individual analysis phases.

10.1 Prototype implementation

Manual [\ Scope graph Calculation

annotations | with flow facts,

Pipeline
analysis

Timing
model

\’ Path-based
Extended IPET

CPU simulator

Derivation of
source
| Compiler |—>|

ARM9
V850E

Object
code

WCET tool prototype

Figure 10.1: WCET tool prototype implementation

Based on the modular WCET tool architecture presented in Chapter 3 we
have implemented a WCET analysis tool prototype. Figure 10.1 illustrates the
current prototype implementation. The prototype incorporates the scope graph
and flow facts flow representation (Chapter 5), the pipeline timing analysis
and the resulting timing model (Chapter 6), and the three different calculation
methods (Chapters 7, 8 and 9). The tool does not yet use automatic flow

167

168 Chapter 10. Prototype Tool and Experiments

analysis, and global low-level analysis has not been needed for the targets and
programs we have studied. Thus, the current prototype is a subset of the WCET
tool architecture outlined in Chapter 3.

The prototype runs under Solaris, Linux, and Windows 2000. The tool
currently performs WCET analysis for two different target chips, NEC V850E
[NEC99] and ARM9 [ARMOO], both typical 32-bit RISC micro-controller archi-
tectures with pipelines.

A basic block graph and a scope graph (annotated with loop bounds and flow
facts) are required as input to our prototype. For ARM9 programs, we directly
parse object code to generate a basic block graph. For NEC V850E programs,
we rely on a modified IAR V850/V850E C/Embedded C++ compiler TAR99].
We have defined a textual format for scope graphs and flow facts and a special
target-independent textual format for basic block graphs.

We have implemented an algorithm to construct a scope graph from a basic
block graph by identifying loops and functions. The program does not currently
handle all type of programming constructs found in normal code, such as func-
tion pointers and recursion. No automatic flow analysis is currently performed,
and flow information, in the form of flow facts and loop-bounds, must be man-
ually added. Work is currently under way to automate the generation of scope
graphs and flow information [GLSB03].

The implementation of the scope graph and flow fact language supports all
of the features presented in Chapter 5. However, the implementation does not
support scopes with multiple headers, disallowing some type of unstructured
code to be handled, but this is planned as future work.

We have implemented a cache analysis in the style of Ferdinand et al.
[FMW97], (not shown in Figure 10.1), just to check that it is possible to deposit
information about cache hits and misses in the scope graph. However, we are
not using it in our experiments, since none of our target architectures use a
cache.

We have implemented two rather different CPU models [Eng02], one for the
NEC V850E [NEC99] and one for the ARM9 [ARMO00]. Both models returns
obtained execution times for a given sequence of instructions based on a trace-
driven simulation.

To gain insight in how a simulator works and to facilitate experiments with
complete control of the simulator, the V850E CPU model was implemented in
a detailed manner. Engblom reports on experiences from the implementation
in [Eng02]. The model includes a detailed simulation of CPU resource usage in
terms of pipeline stages for instructions. The timing behaviour of the V850E
model has been validated against an emulator for the NEC V850E [Mon00].
The validation indicates that the CPU model has a close timing correspondence
to the real hardware.

Our ARM9 CPU model was developed to support a case study for doing
WCET analysis on interrupt disable regions of the OSE Delta RTOS [CEE*02].
The model has mainly been developed from the execution time information
found in ARM9 user’s manual [ARMO00]. The model uses a table of execution

10.2 User interaction and feedback 169

counts for each instruction, based on type of operands and operations performed,
with additional rules for handling data dependencies between instructions, i.e.,
a much simpler model than for the V850E. The ARM9 model has not been
validated against real hardware. We will not use the ARM9 model in any of our
experiments.

As illustrated in Figure 10.1, we have implemented three different calculation
modules: a path-based (Chapter 7), an Extended IPET (Chapter 8) and a
clustered calculation method (Chapter 9). Each calculation module takes the
same inputs: a scope graph with flow facts (representing possible program flows)
and a timing model (representing hardware timing). Each calculation module
can be chosen independently from the target processor, indicating that our
modular design makes it easy to port the tool to new targets and exchange
components and analyses.

Our extended IPET calculation method and the clustered calculation
method both rely on integer linear programming (ILP) or constraint program-
ming (CP) to solve generated constraint systems. We have integrated the mixed
ILP solver 1p_solve [Ber03] into our prototype. We also support the possibility
to export generated constraints in a format suitable as input to Sicstus Prolog
CP [Int95]. The Prolog solver is much slower than 1p_solve, but allows more
complicated constraints in our flow facts, e.g., multiplication between variables.
We have also done some testing with the commercial mixed integer and con-
straint solver CPLEX [CPLO03|. It was very fast for most of our benchmarks. We
have used lp_solve in all our experiments, mainly because it is much faster
than the Prolog solver, and it is freely available (which CPLEX is not).

The current implementation does not support the possibility to perform
path-based calculation within clusters, i.e., only our extended IPET can be used
within clusters. Support for allowing both calculation methods inside clusters
is planned as future work.

The extended IPET calculation can produce both WCET and BCET esti-
mates. A BCET estimate is calculated by minimizing (instead of maximizing)
the objective function. Flow facts should be valid for all possible program exe-
cutions, i.e., not just the worst case, and can therefore be used in both WCET
and BCET calculations. Also, the timing information produced by our pipeline
timing analysis should be valid both for WCET and BCET analysis as long
as we do not use a hardware model specially constructed for WCTE analysis.
However, when using global low-level analysis we must be sure that all possible
execution scenarios are included, not just the worst cases.

10.2 User interaction and feedback

Our prototype WCET analysis tool is currently command-line driven, and sup-
ports a number of different command-line options. For example, it is possible to
select the CPU model by using a --cpu option, and the --mode option specifies
the input file and which calculation method to use.

170 Chapter 10. Prototype Tool and Experiments

For each calculation method there are additional options to choose from, spe-
cific for the particular method used. For example, for our clustered calculation
method we can choose between five different algorithms for clustering facts (see
Section 9.3.2 on page 150). Also, there is a number of debug options used for
giving statistics of program runs, something used heavily for the measurements
presented in this chapter.

Both the scope graph and the basic block graph can be visualized graphically.
We use dot [Dot97] from AT&T Bell laboratories to illustrate generated graphs.
Obtained results, in form of generated counts for nodes and edges, are displayed
in the graphs.

scope: fir, maxiter: 1, entry var: NX_1,
count: 1, header: N_1
scope: Outer, maxiter: 701, entry var: NX_3,
count: 5, header: N_3 Outer : <683..700> : NX_10 =1
- Outer : <1.17>:NX_7=1
Outer : <1..682>: NX_12=1
scope: Inner, maxiter: 35, entry var: NX_6, Outer : [1..17] : NX_14 = 442
count: 700, header: N_11 N11>NG6 Outer : <18..683> : NX_14 = 35
N_11 var: EX_16, count: 700 Outer : [684..700] : NX_14 = 442
bb: XXfir_filter_int 5 | effect: -3
var: NX_14, count: 24194 N 6
N_11->N_12 time: 5 bb: BB4
var: EX_14, count: 23494 var: NX_9, count: 700
effect: -1 time: 42
N_12->N_11
var: EX_15, count: 23494
effect: -4 . N_6->N_8 .
var: EX_5, count: 682
N_12 N6->N 7 effect: -1
bb: XXfir_filter_int_6 var: EX_4. count: 18
var: NX_15, count: 23494 effect: -3
time: 13 N_8
bb: XXfir_filter_int_1
N start var: NX_11, count: 682
count: 1 N_5->N_11 time: 5
var: EX_13, count: 700
effect: -3 N 7
bb: BB5
N_start -> N_1 . . N_8->N_4
var: EX_17, count: 1 N_5 var an_r:‘g': (6:ount. ' var: EX_7, count: 17
effect: 0 bb: BB3 effect: -3
var: NX_8, count: 700
time: 13 N 8->N_9
var: EX_8, count: 665 N_4
effect: -1 b: BB2
N 1 var: NX_7, count: 17
bb: fir_filter_int time: 5
var: NX_2, count: 1 . N_3 > N—5‘
time: 28 N_1->N_3 var: EX_3, count: 700
var: EX_1, count: 1 effect: -3 N_7->N_10
~ | effect: -3 var: EX_6, count: 18 var: gi“;s’:ﬁ:r 7
effect: -3 effect: -4
N3
bb: XXfir_filter_int_0 N 10->N 3 N_9 .
N 3->N_2 var: NX_5, count: 701 var: EX_11, count: 700 bb: XXfir_filter_int_2
var: EX_12, count: 1 time: 5 ef?ecl" 4 var: NX_12, count: 682
—— g time: 5
effect: -1
/— N_9->N_10
N_2 var: EX_10, count: 682
bb: XXfir_filter_int_4 effect: -4
var: NX_4, count: 1
time: 15 N_10
bb: XXfir_filter_int_3
var: NX_13, count: 700
N_2 -> N_exit fime: 5
var: EX_2, count: 1
effect: 0
N_exit ‘
count: 1

Figure 10.2: Scope graph for fir generated by prototype tool

Figure 10.2 illustrates the scope graph generated for a fragment of fir using

our WCET analysis tool.

The scope graph corresponds to the scope graph

10.3 Benchmark programs 171

depicted in Figure 8.11 on page 137. Note that each node and edge contains the
execution time and timing effect, as well as an execution count of the entity in
the WCET execution.

Inner

Figure 10.3: Scope hierarchy for fir generated by prototype tool

Figure 10.3 illustrates the corresponding scope hierarchy as generated by our
prototype tool. Note that the root scope is explicity represented as _root._.

10.3 Benchmark programs

“Benchmarks are like sex, everyone wants it, everybody is sure they know how to
do it, but nobody knows how to compare performance” [Tur02]. This citation is
particularly true when evaluating WCET analyses. All WCET research groups
use different target architectures. Two obtained WCET estimates can only be
directly compared, if the estimates are derived for same target architecture using
the same configuration and for the same object code (different compilers might
generate very different executables from the same source code). This is never
the case.

However, by comparing obtained WCET estimates with actual worst-case
executions (assuming they are available) we can get an idea of the precision
of a particular WCET analysis method. Furthermore, to get an indication
of computational complexity of a particular WCET analysis method and its
included components, we can investigate its computation time characteristics as
we scale the workload. For example, having three different calculation methods
and using an identical setup for the remaining tool components, we can compare
their precision and computation time.

We have performed a number of experiments using the collection of bench-
mark programs shown in Figure 10.4. The benchmarks are a diverse collection
of test programs differing in types of flows and structures, intended to thor-
oughly test all aspects of the flow representation, pipeline timing analysis and
calculation. Most of the programs have been used by other WCET research

172

Chapter 10. Prototype Tool and Experiments

[Program [Description

| Properties

compress | Compression using lzw. Nested loops, goto-loop, function calls.
crc | Cyclic redundancy check com- | Complex loops, lots of decisions, loop
putation on 40 bytes of data. bounds depend on function arguments,
function that executes differently the first
time it is called.
duff | Using “Duff’s device” [Ray00] | Unstructured loop with known bound,
to copy 43 byte array. switch statement.
expint | Series expansion for computing | Inner loop that only runs once, struc-
an exponential integral func- | tural WCET estimate gives heavy over-
tion estimate.
fibcall | Simple iterative Fibonacci cal- | Parameter-dependent function, single-
culation, used to calculate | nested loop.
fib(30).
fir | Finite impulse response filter | Inner loop with varying number of itera-
(signal processing algorithms) | tions, loop-iteration dependent decisions.
over a 700 items long sample.
insertsort | Insertion sort on a reversed ar- | Input-data dependent nested loop with
ray of size 10. worst-case of n?/2 iterations.
jfdctint | Discrete-cosine transformation | Long calculation sequences (i.e., long ba-
on a 8x8 pixel block. sic blocks), single-nested loops.
lcdnum | Read ten values, output half to | Loop with iteration-dependent flow.
LCD
matmult | Matrix multiplication of two | Multiple calls to the same function, nested
20x20 matrices. function calls, triple-nested loops.
ns | Search in a multi-dimensional | Return from the middle of a loop nest,
array deep loop nesting.
nsichneu | Simulate an extended Petri | Automatically generated code containing
Net massive amounts of if-statements (>
250)

Figure 10.4: Benchmark programs used in experiments

groups, while some have been specially crafted to test a particular aspect of our
WCET analysis.

Figure 10.5 shows some properties of interest for our WCET analysis phases.
All properties are given for the executable program when compiled for the V850E
processor. The Basic block column gives the number of basic blocks in the
object code and is an indication of the program size. The Scopes and Scope
nodes give the number of scopes and scope nodes in the scope graph. The
number of scopes is an indication of the number of loops and functions found
in the source code program.

For most programs the number of scope nodes is just two plus the number
of basic blocks. In these scope graphs each basic block is referenced by a single
scope node, and then we add start and exit nodes. However, for some programs,
such as crc and matmult, the number of scope nodes are higher. This indicates
that some basic blocks are referenced by several different scope nodes. This is
typically due to a function being called from two different places in the code (see
Section 5.6). The Flow facts column gives the number of flow facts (excluding

10.4 WCET estimate precision 173

| Program | Basic blocks | Scopes | Scope nodes | Flow facts |

compress 91 24 108 9
crc 29 12 57 11
duff 20 6 22 2
expint 24 7 26 4
fibcall 7 4 9 0
fir 14 5 16 7
insertsort 7 4 9 1
jfdctint 14 6 16 0
1cdnum 26 4 28 2
matmult 27 16 38 0
ns 18 7 20 1
nsichneu 754 3 756 129

Figure 10.5: Benchmark properties

Basic With Flow With Pipe Flow & Pipe
Program | Cycles| +%| Cycles| +%]| Cycles| +%| Cycles|] 4%

Actual
Cycles

compress 126242| +1357 10388 +20 92482 +967 8672 40.12 8662
crc 61624| +104 61340| +103 30389| +0.39 30271 0 30271

duff 1823| +86.3 1775| +63.9 1104 +1.9 1083 0 1083
expint 68077 +693 10062 +17.2 41359| +382 8588 0 8588
fibcall 559| +78.6 559| +78.6 313 0 313 0 313
fir 487970 +40.2| 487808| +40.1| 352162| +41.2| 352073 +1.1| 348095
insertsort 2328| +117 1428| +33.0 1794 +67.0 1074 0 1074
jfdctint 5388 +9.4 5388 +9.4 4925 0 4925 0 4925
1lcdnum 501 4153 341 +72.2 283 +42.9 198 0 198
matmult 275879 +24.4| 275859| +24.4| 221824 0] 221824 0| 221824
ns 25741 +84.8 25713 +84.6 17373| +24.7 17353| +24.6 13928
nsichneu 150841 +195 87193| +70.6 97645 51116 0 51116

Figure 10.6: WCET estimates with and without timing effects and flow facts

basic loop-bounds) added to provide additional flow information.

For each program we have derived an actual WCET value by running a
worst-case trace of the program through the CPU simulator used by the WCET
analysis. Thereby, the experiments only deal with the effectiveness and preci-
sion of the WCET analysis phases, and do not need to take into account any
differences between the simulator and the actual hardware. The traces were
obtained by manual analysis of the program source and object codes, and ex-
tensive testing was undertaken to make sure that they really correspond to the
actual WCETs.

10.4 WCET estimate precision

The need for both correct low-level timing and flow information in deriving safe
and tight WCET estimates is illustrated in Figure 10.6. The column Basic
gives the WCET estimate when ignoring pipeline overlap between basic blocks,

174 Chapter 10. Prototype Tool and Experiments

(but including the pipeline overlap within basic blocks), and using only basic
loop bounds as flow information. The columns including Flow gives WCET
estimates resulting from adding flow facts to the program. Columns including
Pipe gives WCET estimates where timing effects between nodes have been
accounted for. Column Actual gives the actual WCET of the program, as given
by a simulation of the target platform. The numbers in the +% columns give
the pessimism of each WCET estimate in percent, relative the actual WCET.

The need for analyzing the pipeline timing is illustrated by the values in the
With Pipe column. The WCET overestimation is clearly reduced compared
to the Basic column. In general, modelling pipeline overlaps between basic
blocks seems to tighten the WCET estimates by at least 20 percent, (ignoring
pipeline effects within basic block would create WCET estimates about five
times higher, since V850E has a five-stage pipeline). The benefit is greatest for
programs with many small basic blocks (like crc, fibcall and nsichneu), and
least for programs with large basic blocks (like jfdctint).

The need for correct flow information is illustrated by the values in the
With Flow column. The improvements in WCET estimate precison due to
flow information vary much more for the different benchmarks than the effect
of pipeline analysis. Some benchmarks, like compress and nsichneu, show
large decrease in obtained WCET overestimations, while for other programs
the improvement is much smaller.

The good results in the Flow & Pipe column indicates that to obtain
WCET estimates both high quality flow and timing information must be ob-
tained. All WCET estimates are safe, i.e., larger than or equal to the actual
WCET. The remaining execution time overestimation is mostly due to the prob-
lem of correctly model the program flow.

Compared to other work in WCET analysis, the WCET estimate precision
we achieve is competitive. Healy et al. report 0% overestimation (perfect agree-
ment) for predictable programs like matmult, and up to 100% overestimation
for a sort program similar to insertsort, considering only the pipeline of the
MicroSPARC 1 [HAM™99]. Stappert and Altenbernd report overestimations
between 4% and 13% for straight-line code on a superscalar PowerPC 604 pro-
cessor with caches [SA00]. Ernst and Ye report overestimates ranging from 0%
to 10%, analyzing a SPARC pipeline similar in complexity to our V850E, using
IPET calculation [EY97]. Colin and Puaut report overestimates between 1%
and 265% for a simplified integer-only Pentium CPU with caches and branch
prediction [CP00]. Lundqvist and Stenstrém report overestimates between 0%
for programs with predictable flow, up to 1600% for programs with very irreg-
ular flow [LS00].

Note that not all published work include measurements comparing the gen-
erated WCET estimates with actual execution times; in many cases, the ef-
fectiveness of analysis methods are evaluated by comparing the estimated and
actual number of cache misses etc., and not actual execution times.

10.5 Flow facts and WCET precision 175

Program| Path-based Local Facts Clustered Ext. IPET Actual|Lte
‘ ‘ Cycles| +%| Cycles| +%| Cycles| +%| Cycles| +% WCET‘
compress 8670 +0.09 8670 +0.09 8670 +0.09 8670 +0.09 8662 3
crc| 30275 +40.01| 30271 0| 30271 0| 30271 0 30271 0
duff - - 1083 0 1083 0 1083 0 1083 0
expint 8588 0 8588 0 8588 0 8588 0 8588 0
fibcall 313 0 313 0 313 0 313 0 313 0
fir| 352073| +1.14| 352073| +1.14| 348095 0| 348095 0| 348095 0
insertsort 1794| +67.04 1794 +67.04 1074 0 1074 0 1074 0
jfdctint 4942 +0.3 4926 +0.02 4926 +0.02 4925 0 4925 3
lcdnum 198 0 198 0 198 0 198 0 198 0
matmult| 221824 0 221824 0| 221824 0| 221824 0 221824 0
ns| 23746| +70.49| 17353| +24.59| 17353| +24.59| 17353| +24.59 13928 0
nsichneu| 51133 +40.03| 51116 0| 51116 0| 51116 0 51116 1

Figure 10.7: WCET estimate precision for calculation methods using V850
model

10.5 Flow facts and WCET precision

Not all calculation methods can make use of all type of flow information. In
order to evaluate how this will affect the WCET estimate precision we calculated
WCET estimates for all benchmarks using our different calculation methods.
Indirectly we also test how different types of flow facts will affect the WCET
estimate precision.

The table in Figure 10.7 shows that the WCET estimate precision compu-
tation time depends on the calculation method used. The Path-based column
gives results for our path-based implementation, using only foreach facts valid
within single scopes. The Local Facts column gives results for a clustered
calculation using facts (both foreach and total) valid within single scopes. The
Clustered column gives results using minimal clustering and Ext. IPET gives
results for the global extended IPET calculation method.

The Cycles columns gives the WCET estimates extracted (in clock cycles)
and the +% columns gives the pessimism of each WCET estimate in percent.
The numbers in the Actual WCET gives the actual WCET of the program.
The path-based approach does not work with the duff benchmark, since it
contains an unstructured loop.

Comparing the With Pipe column in Figure 10.6 with the columns in
Figure 10.7, we first conclude that for most programs loop bounds alone are
not sufficient to achieve tight WCET estimates. The path-based and local-facts
WCET estimate precision is of the same quality as the clustered and extended
IPET for most programs. This also indicates that using foreach facts to model
possible program flows are for many programs sufficient for achieving precise
WCET estimates. However, some programs like insertsort and fir need extra
flow facts covering several scopes to reduce the overestimation. This indicates
that the local calculation schemes are not sufficient to handle the flow of all
programs. The almost identical values in columns Clustered and Ext. IPET
tell us that the clustered calculation performs as well as extended IPET, the

176 Chapter 10. Prototype Tool and Experiments

Program Path-based Local Facts Clustered Ext. IPET Actual|Lte
’ ’ Cycles| +%| Cycles| +%| Cycles| +%| Cycles| +%| WCET
compress 15457 +1.10 15306 +0.11 15306| +0.10 15304| +0.10 15289 26
crc| 34432 +41.53| 33917| +0.01| 33917 +0.01| 33917 +0.01 33914 8
duff - - 1468 0 1468 0 1468 0 1467 2
expint 8720 0 8720 0 8720 0 8720 0 8720 0
fibcall 332 0 332 0 332 0 332 0 332 0
fir| 597206 +1.19| 597206 +1.19| 590168 0| 590168 0| 590168 0
insertsort 3963| +40.55 3981| +68.97 2361 +0.21 2361 +0.21 2356 3
jfdctint 6626 +3.77 6393| +0.13 6393| +0.13 6392] +0.12 6385 3
lcdnum 268 +12.61 238 +12.61 238 0 238 0 238 5
matmult| 312550| +49.53| 287470 +0.74| 287470 +0.74| 287468 +0.74| 285348| 13
ns 29243| +70.56 21350| +24.53 21350| +24.53 21349| +24.52 17145 1
nsichneu| 135793 +40.01| 135776 0| 135776 0| 135776 0| 135776 3

Figure 10.8: WCET precision using V850 model with 6 cycle memory

current method with highest precision.

10.6 Long timing effects and WCET precision

A long timing effect is an effect reaching over a sequence of three or more nodes
(see Section 6.5). The number of long timing effects varies with the processor
architecture and the properties of the program code. For the V850E, only a few
of our benchmark programs contained long timing effects. The Lte column in
Figure 10.7 gives the number of long timing effect generated for each program.

We have also used a model of the NEC V850E with a data memory latency of
6 clock-cycles. This is an artificial model not corresponding to any real setup of
the V850E, but very useful in provoking long timing effects. The impact for the
pipeline timing analysis computation time and precision with the appearance of
many long timing effects is discussed in more detail in [Eng02].

We use the model to investigate how long timing effects affect the WCET
estimate precision. This is particularly relevant for calculations that partition
the program into smaller parts to increase efficiency, such as our path-based and
clustered calculation. When long timing effects reach over calculation bound-
aries they might introduce pessimism in the WCET estimate calculation, as
discussed in Section 9.5. For example, in Figure 10.7 the one clock cycle differ-
ence of WCET estimates for jfdctint of the clustered and the extended IPET
calculation, is caused by a border-crossing long timing effect.

Figure 10.8 gives the WCET precision achieved for our calculation methods
when using the V850E model with 6 cycle data memory. We use the same scope
graphs, flow facts and basic block graphs as for the runs in Figure 10.7. For
some programs, like compress and matmult, many long timing effects appeared,
while for others there was no impact.

More long timing effects makes the precision of the clustered WCET esti-
mates for compress, jfdctint, matmult and ns to be a little worse than for
extended IPET. Since the WCET estimates for these programs were identical

10.7 Computation time 177

Program IPET, Lte IPET, no Lte Actual
Cycles | 4% | Cycles | +% | WCET
compress 15304 +0.10 15461 +1.12 15289

crc 33917 -+0.01 34427 +1.50 33914

duff 1468 0 1765 | +20.31 1467
insertsort 2361 +0.21 2361 +0.21 2356
jfdctint 6392 +0.12 6626 +3.77 6385
lcdnum 238 0 268 | +12.61 238

matmult | 287468 +0.74 | 312550 +9.53 285348
ns 21349 | +24.52 21350 | +24.53 17145
nsichneu | 135776 0 | 135793 +0.01 135776

Figure 10.9: Effect on WCET estimate precision of ignoring long timing effects

when using the basic V850E model, as given Figure 10.7, we conclude that the
obtained pessimism is due to long timing effects across calculation boundaries.

For all our benchmarks only negative long timing effects where observed,
even though the V850E CPU has a potential of exhibiting positive long timing
effects [Eng02]. This means that for the tested programs, a calculation method
would obtain pessimistic but safe estimates by ignoring the long timing effects.

To evaluate the effect of ignoring long timing effects, we calculated WCET
estimate for programs using the slow memory and extended IPET calculation
method, while ignoring all long timing effects. The result is shown in the IPET,
no Lte column in Figure 10.9. For all programs except insertsort, ignoring
long timing effects lead to an overestimation of the WCET estimate. For some
programs, such as duff and lcdnum, the consequences of ignoring long timing
effect are quite substantial. Altogether, we conclude that long timing effects
must be modelled in order to generate safe and tight WCET estimates.

10.7 Computation time

In order to test the computational complexity and find potential costly “hot
spots” we measured the time spent in different analysis stages for our benchmark
programs. The result is shown in Figure 10.10. All times are given in seconds,
obtained on a Pentium IIT 500 MHz processor with 256 MB RAM. Column
Load Time shows the time required to read the input files into the tool. The
column Pipe Time shows the time for the pipeline analysis using our V850E
model. The columns Path, IPET and Clustered give the computation time
required for each calculation method.

The time taken for the pipeline analysis is roughly linear to the program
size, as measured by the time to load the code. For all our benchmarks, ex-
cept nsichneu, the time spent in the calculation stages is almost negligible.
In general, the path-based calculation method is much faster than the other
two calculation methods. The computation time for the clustered calculation
method is comparable to extended IPET.

178 Chapter 10. Prototype Tool and Experiments
Program | Load Time | Pipe Time Calculation Time
Path | IPET | Clustered
compress 1.2 1.6 0.1 1.2 1.5
crc 0.3 0.7 0.03 0.17 0.22
duff 0.15 0.3 0.01 0.05 0.27
expint 0.22 0.3 0.02 0.13 0.3
fibcall 0.05 0.05 0.01 0.02 0.07
fir 0.15 0.25 0.02 0.18 0.39
insertsort 0.1 0.15 0.01 0.02 0.02
JEdctint 0.7 0.7 0.02 | 0.04 01
lcdnum 0.12 0.35 0.03 0.23 0.9
matmult 0.23 0.54 0.03 0.13 0.31
ns 0.12 0.26 0.02 0.07 0.25
nsichneu 28.0 15.5 1.07 7.9 8.7
Figure 10.10: Computation times of WCET analysis stages
[Program [Facts/ign. | Scopes | VScopes | Paths | Explored | +/—
compress 9/0 24 27 244 39 | -15.98%
crc 11/4 12 11 44 16 -36.36%
expint 4/0 7 8 25 13 -52%
fibcall 0/0 4 3 6 4 -33%
fir 7/2 5 8 34 15 -56%
insertsort 1/1 4 3 6 5 -17%
jfdctint 0/0 6 5 10 8 -20%
lcdnum 2/0 4 5 30 7 -T7%
matmult 0/0 16 15 25 22 -12%
ns 1/1 7 7 19 11 -57.89%
nsichneu 129 / 0 3 2 | 3.73E97 3 | ~-100%

Figure 10.11: Complexity measures for path-based calculation

10.8 Path-based calculation evaluation

This section evaluates our path-based calculation method in more detail. The
path-based calculation method is very efficient, and for most programs it is
much faster than the other two calculation methods.

Figure 10.11 shows more detailed measurents for the path-based calculation
method. The Facts/ign. column gives the number of flow facts and the number
of flow facts not used by the calculation method. Flow facts ignored were total
facts and facts referring to entities not located in the defining scope of the fact.
This explains most of the WCET estimate precision pessimism obtained for the
path-based method, as given in Figure 10.7.

The Scopes column lists the number of scopes required to model the pro-
gram, and VScopes the number of virtual scopes created to account for ranged
flow facts. Note that no virtual scope is created for the root scope, and thus the
number of virtual scopes might be smaller than the number of original scopes.
Paths shows the number of possible execution paths (summed over all virtual

10.9 Scalability of calculation methods 179

Extra Path-based Ext. IPET Clustered

facts| time| expl.| paths| time| lptime| constr.| vars.| time| lptime| calcs
0| 0.09 3| 3.73E97 1.78 0.66 1651 2139| 2.153 0.72 2
1 0.2 5| 1.11E98 14.45 5.02 3417 4528| 8.64 1.85 4
20 0.31 7| 1.87TE98| 32.84 11.71 4931| 6665| 13.28 3.06 6
3| 0.46 9| 2.61E98| 58.38 21.80 6445| 8802| 19.98 4.24 8
4| 0.58 11| 3.36E98| 92.43 35.32 7959| 10939| 27.04 5.48 10
5/ 0.74 13| 4.11E98| 135.90 51.94 9473| 13076| 36.13 6.73 12
6/ 0.92 15| 4.85E98| 187.86 71.35 10987 | 15213| 49.33 7.99 14
7| 1.05 17| 5.59E98| 248.87 95.06 12501| 17350| 54.35 9.14 16
8 1.19 19| 6.34E98| 319.51 120.81 14015| 19487| 59.44 10.34 18
9] 1.32 21| 7.09E98| 390.73| 149.54 15529 21624| 66.80 11.52 20
10 1.34 23| 7.83E98| 476.26| 182.84 17043| 23761| 78.20 12.82 22

Figure 10.12: Scaling measures of calculation methods

scopes, before applying facts to the graph), and Explored the number of paths
that the search actually explored. The last column shows how Explored relates
to Paths.

In every case, the path-based calculation method explores only a subset of
the total number of paths, and the more complex the program gets (many paths
compared to the number of virtual scopes), the proportion of paths explored
goes down. For nischneu, which contains a massive amounts of if-statements,
the number of possible paths is very large, but only three paths are actually ex-
plored. Compared to path-based calculation methods which explicitly explores
each execution path, our path-based method will execute much faster.

10.9 Scalability of calculation methods

Most of the benchmarks programs given in Figure 10.4 are quite small and do not
really stress our prototype tool and the calculation methods. To evaluate how
the different calculation methods scale with added flow facts and the program
size, we used an altered version of the nischneu benchmark.

The original scope graph generated for nsichneu consists of three scopes (see
Figure 10.5). The innermost scope is very large, containing 752 scope nodes.
By adding extra dummy flow facts, spanning a particular iteration of the inner
scope and not actually removing any possible execution paths, we increase the
computational load. For example, adding one dummy fact will create a virtual
scope graph for our extended IPET method consisting of 1508 scope nodes (752
+ 752 + 4). The IPET method will create a constraint system over the whole
graph while the clustered and path-based calculation methods will partition the
problem into smaller subproblems. For each calculation run all WCET estimates
achieved were exactly the same as reported in Figure 10.6.

Figure 10.12 gives computation times obtained for our calculation methods
when adding dummy flow facts. The Extra facts column gives the number

180 Chapter 10. Prototype Tool and Experiments

500
450 || —e— Path-based /
—a=— Ext. IPET
m 400 +— 4 Clustered
'8 350 |_|---B--- Ip_solve Ext. IPET /
3 ---A--- Ip_solve Clustered /
)
o 300
g 250
= /
£ 200
£ / ..o
g .-
42-. 150 / = .
e
g 100 e
© / - ”‘_’—A—/"/‘
Dummy flow facts

Figure 10.13: Computation time scaling

of added dummy facts. For each calculation method we give some values of
interest for understanding its particular execution time properties. For the path-
based calculation the computation time (time), the number of explored graphs
(expl.) and the number of potential paths found in the virtual scope graph
(paths) are given. For the Extended IPET calculation, the computation time
(time), the time spent in the linear programming solver 1p_solve (lptime),
and the number of constraints (constr.) and variables (vars.) generated are
given. For the clustered calculation the computation time (time), the number
of 1lp_solve calls made and the total time spent in lp_solve (lptime) are
given. All computation times are given in seconds. The computation time for
Extended IPET and Clustered calculation includes the time spent in 1p_solve.

The measurements were performed on a AMD Athlon 1800+ with 512 MB
RAM. From the measurements it is clear that the path-based calculation method
is always the fastest. Extended IPET is faster than the clustered calculation on
the original version of nsichneu, but not when problem size increases.

Figure 10.13 shows computation times of each calculation method plotted
against the number of added dummy flow facts. We note that the compu-
tation time seems to be linearly increasing with the problem size both for the
path-based and clustered calculation, while the extended IPET has a more than
linear increase. Furthermore, both the extended IPET and the clustered calcu-
lation method spend most of the calculation time in constructing graphs and
generating constraint systems.

The graph also plots the time spent in 1p_solve for the extended IPET
and clustered calculation. For the extended IPET a single call to 1p_solve
is made for each calculation, with constraints and variables for the complete
virtual scope graph. For the clustered calculation, the number of lp_solve
calls increases with the number of added dummy scope, but not the size of each

10.10 Clustered calculation evaluation 181

Program min-split minimum scope max global
‘ cl| call| time| cl| call| time| cl| call| time| cl| call| time| cl| call| time
compress| 6 34| 0.29| 4 34| 0.28] 4 30 03] 1 23| 0.34| 1 1| 0.28
crc| 6 6| 0.04] 6 6| 0.01| 6 6] 0.04] 1 1] 0.01] 1 1| 0.02
duff| 2 12| 0.04] 2 12| 0.04] 2 12| 0.03] 1 4] 0.02| 1 1| 0.01
expint| 4 11| 0.04| 4 11| 0.04] 2 7| 0.03] 1 6] 0.03] 1 1| 0.01
fibcall| O 4 0.01] O 4 0.01| O 4 0.01| O 4 0.01| O 1 0.01
fir| 5 12 0.05| 2 6 0.04| 2 3 0.03| 1 1 0.02| 1 1 0.02
insertsort| 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01
jfdctint| O 5| 0.02] 0 5| 0.02] O 5| 0.02] O 5| 0.02] O 1| 0.01
lcdnum| 2 23| 0.13] 2 23] 0.12] 1 19| 0.11] 1 21| 0.12] 1 1| 0.03
matmult| O 15[0.04] O 15] 0.04] O 15) 0.05| O 15| 0.04] O 1| 0.01
ns| 1 13] 0.03] 1 13| 0.03] 1 10 0.02] 1 13| 0.03] 1 1| 0.01
nsichneu| 1 2 2.18] 1 2 2,171 1 2 2.06| 1 2 217 1 1 1.72

Figure 10.14: Clustered calculation measures

generated constraint system. Each call to 1p_solve by the clustered calculation
of the innermost scope contained 2156 variables and 1660 constraints and took
approximately 0.65 seconds. The total computation time spent in lp_solve
seems to grow exponentially with the problem size for extended IPET, but only
linearly for the clustered calculation.

We conclude that the extended IPET has quite bad scaling properties. This
could be a general problem for calculation methods relying on global ILP solvers
for calculating WCET estimates. Our path-based calculation method is very
efficient, only exploring a few of the total number of possible paths, and seems
to scale very well. However, it should be noted that nsichneu only contains
foreach facts, making it especially suitable for the path-based calculation. The
clustered calculation is somewhere in between in complexity, scaling reasonable
well, while still being able to handle complex flow information. In general, the
computation time needed for each particular calculation method depends of the
structure of the program, and the properties of the provided flow facts.

10.10 Clustered calculation evaluation

In Section 9.3.2 we outlined a number of alternative fact clustering algorithms.
The algorithms differ in how many flow facts that will be considered together,
and consequently in how large part of the scope graph that will be covered by
each local WCET calculation performed. Figure 10.14 shows the effect of ap-
plying different fact cluster algorithms to our benchmarks. Columns labelled
cl gives the number of fact clusters generated (not including empty clusters).
Columns labelled call gives the number of local WCET calculations performed,
i.e., the number of calls to 1p_solve and columns labelled time gives the com-
putation time of the calculation.

We have implemented all five clustering algorithms outlined in Section 9.3.2.
Column min-split gives the gives values obtained when applying the split-
foreach-fact minimal clustering algorithm, i.e., minimum clustering but splitting

182 Chapter 10. Prototype Tool and Experiments

Program minimum, diff in-out minimum, no diff
clusters | calls | WCET | clusters | calls | WCET
compress 6 38 8670 6 31 8670
crc 6 6 30271 6 6 30271
duff 2 12 1083 2 5 1083
expint 4 11 8588 4 10 8588
fibcall 0 4 313 0 3 313
fir 5 12 348095 5 12 348095
insertsort 1 1 1074 1 1 1074
jfdctint 0 5 4926 0 5 4926
lcdnum 2 23 198 2 7 198
matmult 0 15 221824 0 15 221824
ns 1 13 17353 1 8 23746
nsichneu 1 2 51116 1 2 51116

Figure 10.15: Effect of differing between flows in and out of clusters

foreach facts when the span ranges of created clusters. Column minimum gives
values for the minimal clustering algorithm, as given in Figure 9.6. Column
scope gives values when all facts defined on the same scope are put into the same
cluster, (plus all facts in fact clusters defined in covered subscopes). Column
max gives values when putting all facts in the same cluster, but not including
non-covered scopes in the cluster. Column global gives values when creating
a cluster that covers all scopes and all flow facts in the scope graph. This is
identical to the global calculation view used by the extended IPET calculation
method.

Looking at Figure 10.14, we note that the left-most clustering algorithms
(min-split and minimum) generate many small clusters, and result in many
local WCET calculations. At the other extreme we have the global clustering
(global) which performs one single WCET calculation for the whole program.
Scopes not covered by any fact clusters are traversed bottom-up generating one
or more local WCET calculations, explaining the different number of WCET
calculation calls made for programs not using any flow facts, such as jfdctint.

Which clustering algorithm to use depends on the structure of the program
and the nature of provided flow facts. For small programs with few flow facts
the global clustering (i.e., extended IPET) should preferably be used. For larger
programs with many flow facts the clustered calculation should be used, as
indicated by Figure 10.13.

For all benchmarks, except jfdctint, all clustering algorithms gave the
same WCET estimates as presented for the clustered calculation in Figure 10.7.
For jfdctint the global clustering gave a WCET estimate of 4925 clock cycles
while the other clusterings gave a WCET estimate of 4926 clock cycles. The
difference is due to a long timing effect reaching over the calculation borders
dictated by fact clusters.

As discussed in Section 9.4.2, each fact cluster defines a fragment of the scope
graph evaluated as a unit together with the flow facts. Furthermore, some graph

10.10 Clustered calculation evaluation 183

fragments have several points where the execution can enter or exit fragment.
For such fragments we have the calculation option to either make a separate
WCET calculation for each pair of entry and exit points, or to make just one
WCET calculation for all entry or exit points together. The option allows us to
trade WCET estimate precision for calculation time.

Figure 10.15 presents measurements performed using the minimal clustering
algorithm. The minimum, diff in-out measurements differentiate between
entry and exit points, while the minimum, no diff measurements do not. The
clusters columns give the amount of fact clusters generated and is identical
for both algorithms. What is more interesting is the number of local WCET
estimates performed for each program, given by the calls columns. We note
that for many programs, the number of local WCET estimates decreases quite
significantly when not differentiating between entry and exit points. For all
programs, except ns, the precision of calculated WCET estimates is the same.
Program ns contains a non-local return from a deeply nested loop, causing an
overestimation in a fashion similar to the example presented in Section 9.4.2.

The usefulness and impact of the different clustered calculation options de-
pends on the structure of the program, properties of the added flow facts and
the WCET estimate precision that is required. All measurements presented in
previous sections for the clustered calculation have used minimum clustering
differentiating between entry and exit points.

184 Chapter 10. Prototype Tool and Experiments

Chapter 11

Conclusions and Future
Work

This chapter summarizes the contributions of this thesis, discusses how the work
can be extended, and gives directions for future work in WCET analysis.

11.1 Summary of contributions

Estimations of the Worst-Case Execution Time (WCET) are required in provid-

ing guarantees for timing of programs used in computer controlled products and

other real-time computer systems. Static WCET analysis is a way to determine
the worst-case execution time of a program, using models of program flow and
hardware timing for deriving WCET estimates.

Due to the complexity of embedded systems hardware and software, auto-
mated tools are essential to make static WCET analysis applicable for analysis
of real systems. This thesis have covered several techniques crucial to building
such automated tools.

Five main contributions to the state-of-the-art in static WCET analysis have
been presented:

1) A tool architecture for the modularization of WCET analysis (Chapter 3).
The architecture divides the WCET analysis task into the following four
steps: flow analysis, global low-level analysis, local low-level analysis and
calculation. To guarantee smooth flow of information between these steps,
well-defined interface data structures have been designed.

2) A program flow representation for WCET analysis, consisting of a scope
graph format and a flow fact language (Chapter 5). Additionally, a detailed
discussion of the desired characteristics of a program flow representation is
given (Chapter 4).

3) A path-based calculation method (Chapter 7). The method extends the

185

186 Chapter 11. Conclusions and Future Work

type of flow and timing information that path-based calculation meth-
ods can handle and is more efficient than previously presented methods
[HAM™'99, SA00, RGL02], having a computational complexity close to linear
in the size of the program.

4) An IPET-based calculation method (Chapter 8), using integer linear pro-
gramming (ILP) or constraint programming (CP) techniques for calculating
a WCET estimate. Compared to previous research [0S97, PS95, FMW97,
HLS00b, LM95], our method extends the power of IPET to handle new types
of flow and timing information.

5) A clustered calculation method (Chapter 9), using flow information to divide
a program into smaller parts for which local WCET calculations can be made.
This is a completely novel approach which avoids the potential complexity of
global analysis, while being able to produce high precision WCET estimates,
since all flow information will be accounted for.

Overall, our modular tool architecture, including presented interface struc-
tures and analysis stages, aims towards building retargetable, flexible, efficient
and correct static WCET analysis tools (see Chapter 3).

11.2 Evaluation

As presented in Chapter 10, we have implemented a WCET tool prototype and
performed extensive evaluations to asses the correctness, precision and efficiency
of our prototype, as well as to evaluate the individual analyses and calculation
modules. For all our benchmark programs the prototype calculates WCET
estimates that are close or even equal to the actual WCET), indicating that our
techniques are capable of producing high quality WCET estimates.

For many of our benchmark programs the quality of provided flow infor-
mation is a great (if not the greatest) determiner for the WCET estimation
precision achievable. The results indicate that the scope graph and the flow
fact language together form a representation expressive enough to capture the
type of program flows found in various types of programs, most notably those
including unstructured code. The results also indicate that we can perform a
clearly separated flow analysis, and still obtain high quality WCET estimates.

The second determiner of the WCET estimate precision achievable is the
quality of the hardware timing information. We have built hardware models for
two 32-bit embedded RISC micro-controllers, the ARM9 and the V850E. We
extract hardware timing for a CPU by using its corresponding CPU model in the
pipeline time analysis, while the rest of the analysis modules are kept unchanged.
This indicates that our modular architecture provides for easy retargetability.

The results indicate that our pipeline analysis is able to capture the hardware
timing dependencies between instructions in our targeted processors, and that
our timing model is expressive enough to hold the timing information extracted
by the pipeline analysis. The results also tell us that we can perform hardware

11.3 Future work in WCE'T analysis 187

timing analysis in a stage clearly separated from the calculation, and still obtain
high quality WCET estimates.

We have constructed three distinct calculation methods, all based on the
same input structures: a scope graph with flow facts (representing possible
program flow) and a timing model (representing the hardware timing). All three
calculation methods are able to handle complex flow and timing information.
For all our benchmark programs, all presented calculation methods produce
WCET estimates that are safe.

By selecting different calculation modules we have a possibility to trade
WCET estimate precision against WCET calculation computation time. Our
experiments show that the path-based calculation method is very efficient, usu-
ally only exploring a few of the total number of possible execution paths. How-
ever, the path-based method does not always produce tight WCET estimates,
mainly because it can not handle all type of flow information.

The extended IPET and clustered calculation methods handle more complex
types of flow information, but have potentially higher computational complex-
ity. For large programs with a lot of flow facts, experiments indicate that the
clustered calculation scales better than extended IPET. However, the clustered
calculation might produce slightly less tight WCET estimates due to its inability
to properly handle long timing effects over calculation borders.

Overall, the results indicate that it is possible to perform WCET analysis
in a modular fashion, keeping different analysis and calculation stages clearly
separated, and still producing high quality WCET estimates.

11.3 Future work in WCET analysis

This overall target for this thesis has been to outline how a general purpose
WCET analysis tool should be constructed. To support this we have presented
analysis and methods solving some of the problems which are encountered. How-
ever, we have not targeted all problems that should be solved in the search for
the ultimate general purpose WCET tool. This section summarize what is left
to do and the different problems that we believe future work on static WCET
analysis should be targeting.

11.3.1 Flow analysis

High precision flow information is necessary to achieve good precision in WCET
estimates. None of the currently available automatic flow analysis methods come
close to managing all types of constructs found in real code, such as function
pointers, recursion or loops using non-arithmetic operations. Current methods
are basically limited to well-written programs with well-structured loops. It
is not likely that a single type of flow analysis will provide all information.
Instead a combination of several flow analysis methods will have to be used,
each handling a particular part of the overall problem.

188 Chapter 11. Conclusions and Future Work

However, even if automatic flow analyses are developed, there will always be
complex programs for which it is not possible to derive the intended program
execution behaviour. In those cases the user should be able to manually provide
extra flow information. It would also be beneficial for the overall precision if
the user can aid the analysis with extra guiding information, such as bounds for
variables.

Since the source code level is the semantically clearest and most easily ana-
lyzed level, the problem of mapping flow information from the source code to the
(maybe heavily optimized) object code has to be solved (see Section 2.2.3). In
our view, the most practical solution to this is to integrate the WCET analysis
into a compiler framework. This both solves the mapping problem, and gives the
analysis access to all the information about a program that is available inside
the compiler.

The alternative route, chosen by many WCET researchers today, is to try
to derive the flow information directly from the object code. This is certainly
possible for some programs and architectures, but it is in general hard to get
good precision with this method, since it is much harder to identify the variables
and data objects that affect the program flow in the object code.

For future work we would like to see WCET researchers agree upon a stan-
dardized format for describing possible program flows, either at the object-code
or preferably, source-code level. This would allow the possibility for WCET
researchers to exchange flow analysis results, compare methods, and simplify
the construction of tool frameworks.

11.3.2 Low-level analysis

Most research in the WCET analysis area has been targeting the impact of
different hardware features, such as pipelines, caches, branch predictors etc.
We believe that this will be important also in the future, basically because new
performance enhancing features will be invented and added to CPUs, and new
CPUs will constantly be released on the market. However, this unfortunately
means that WCET analysis research will always be a step behind hardware
design, trying to analyze the impact of whatever features that has been added
to a particular CPU.

We would like WCET researchers to take a more active role in the design
of real-time embedded systems, trying to show real-time practitioners how to
design systems that are predictable, rather than just chasing whatever hardware
designers happen to put out on the market.

For engineers building real-time systems, selecting hardware which in itself
is predictable and analyzable is of key importance to ensure the ultimate re-
liability of the system. Performance enhancing features, such as caches and
branch predictors, are often designed to optimize the average case execution
time. This indirectly means that they will potentially introduce more execution
time variability, i.e., an increase in the difference between the worst and average
case execution time. These features will also make WCET estimates more pes-

11.3 Future work in WCE'T analysis 189

simistic, since conservative assumptions will have to be made in the situations
when precise analysis is not possible. The literature on WCET analysis offers
some guidelines on which types of hardware features that make systems less
predictable [AP01, BAO1, Lun02, Eng02, HLTWO03, Eng03].

CPU manufacturers should design their hardware with predictability in
mind, and provide CPU manuals with sufficient detail to allow for good hard-
ware models to be constructed. Our ability to predict the execution time of a
program is critically dependent on the ability to obtain a correct and sufficient
detailed model of the processor used.

11.3.3 Calculation

The calculation methods presented in this thesis gives a number of choices for
trading WCET estimate precision against computation time. In general, which
calculation method to use is highly dependent on what type of flow and tim-
ing information that needs to be handled and the WCET estimation precision
that is required. IPET-based calculation methods are able to handle the most
complicated types of flows and unstructured programs, making them the most
probable choice for future WCET tools.

We believe that keeping the calculation clearly separated from the other
analysis stages is crucial for producing a WCET tool allowing for easy hardware
retargeting and replacement of analyses.

Parametrized WCET calculation methods might help the user getting bet-
ter insight in how different parameters affect the worst-case program execution.
However, the usefulness of a parameterized WCET calculation method highly
depends on the ability to reduce the WCET calculation to a simple understand-
able parametric formula. For complex hardware, the combined effects of caches,
pipelines, and unknown program make this hard.

A future trend of interest for calculation is that automatic flow analyses
are likely to produce a large number of flow facts. While a human user will
provide a handful of facts for a typical program, preliminary experiments with
automatic flow analysis indicates that many more facts are generated [GLSB03].
In this scenario, the clustered calculation method becomes important to keep
calculation times down.

11.3.4 WCET analysis tools

As discussed in Chapter 2, a lot of research effort has been spent on static WCET
analysis. However, it is not likely that WCET researchers can have an impact
on the development of real-life real-time systems without providing a WCET
analysis tool useful for practitioners. We believe that the WCET technology is
mature enough, and that the main focus for future WCET research should be
on the practical development of usable tools.

We see an encouraging trend in that some WCET analysis tools are being
deployed in industry. For example, the first major use of WCET tools in a

190 Chapter 11. Conclusions and Future Work

commercial setting has recently been presented by Thesing et al. [TSHT03],
with very encouraging results. However, practical experience of WCET analysis
in industrial settings has so far been quite limited, used in a few case studies in
space [HLS00b, HLS00a] and aerospace industry [FHL1T01, HLTWO03]. Also, the
WCET tools are still too hard-to-use to reach a broader audience. For instance,
we believe that automatic flow analysis is necessary to make WCET analysis
useful to other than experts.

When a broader market develops, it is possible that the main use for WCET
tools will be for other purposes than scheduling and schedulability analysis,
since most embedded real-time systems are not built using operating systems
that really support advanced schedulability analysis. For most embedded system
developers, getting some type of timing estimates would be of great value in its
own.

Today, real-time system designers are in general unaware of the potential
benefits of static WCET analysis. Students and system developers should there-
fore be educated about the benefits of WCET analysis and WCET analysis tools.
One possibility for doing this would be to integrate the WCET analysis in more
general system development environments, such as those available for compilers
and/or real-time operating systems.

Bibliography

[ABD*95]

[Abs03]
[AFM*02)

[AKPO1]

[A1t96]

[AMO95]

[AMWH94]

[APO1]

[ARMOO]
[ART00]
[ASUS6]

[AT96]

[AWVWO6]

[BAO1]

N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed priority pre-
emptive scheduling: an historical perspective. Real-Time Systems, 8(2/3):129—
154, 1995.

2003. AbsInt company homepage: http://www.absint.com.

T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: A
Tools for Modelling and Implementation of Embedded Systems. In 8" Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’02), LNCS 2280, pages 460-464, April 2002.

P. Atanassov, R. Kirner, and P. Puschner. Using Real Hardware to Create
an Accurate Timing Model for Execution-Time Analysis. In IEEE Real-Time
Embedded Systems Workshop, held in conjunction with RTSS2001, 2001.

P. Altenbernd. On the false path problem in hard real-time programs. In Proc.
of the 8" Euromicro Workshop of Real-Time Systems, 1996.

M. Alt and F. Martin. Generation of Efficient Interprocedural Analyzers with
PAG. In Proc. of SAS’95, Static Analysis Symposium. Springer-Verlag, 1995.
LNCS 983.

R. Arnold, F. Miiller, D. Whalley, and M. Harmon. Bounding Worst-Case In-
struction Cache Performance. In Proc. 15" IEEE Real-Time Systems Sympo-
sium (RTSS’94), pages 172-181, 1994.

P. Atanassov and P. Puschner. Impact of DRAM Refresh on the Execution
Time of Real-Time Tasks. In Proc. of the Interantionall Workshop on Applica-
tion of Reliable Computing and Communication (WARCC), held along with the
IEEE 2001 Pacific Rim International Symposium on Dependable Computing
(PRDC’2001), 2001.

ARM Ltd. ARM 9TDMI Technical Reference Manual, 2000. Document no. DDI
0180A.

Embedded systems and the Future of Swedish IT-reserach.
URL: http://wuw.artes.uu.se/reports/Embedded-IT-000427.pdf, April 2000.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986. Generally known as the “Dragon Book”.

A. Adl-Tabatabai. Source-Level Debugging of Global Optimized Code. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1996.
URL: ftp://reports.adm.cs.cmu.edu/usr/anon/1996/CMU-CS-96-133.ps, and
as technical report CMU-CS-96-133.

J. Armstrong, M. Williams, R. Virding, and C. Wikstréom. Concurrent Program-
ming in Erlang. Prentice-Hall, 2 edition, 1996.

M. D. Bennet and N. C. Audsley. Predictable and Efficient Virtual Addressing
for Safety-Critical Real-Time Systems. In Proc. 18" Euromicro Conference of
Real-Time Systems, (ECRTS’01). IEEE Computer Society Press, 2001.

191

192

[BBMPO0]

[BC9S)

[BCP02

[BDM 98]

[Ber03]

[BMSO*96]

[B&r9s]

[BS98]
[BWY5]

[CB02]

[CBW94]

[CEET02]

[Cha95]
[Cin97]
[CLR90]

[Cousl]

[Cou96]

[CP99)

Bibliography

I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-level Analysis of a Portable
Java Byte Code WCET Analysis Framework. In Proc. 7" International Con-
ference on Real-Time Computing Systems and Applications (RTCSA’00), pages
39-48, 2000.

P. Bose and T. M. Conte. Performance Analysis and Its Impact on Design. IEEE
Computer, 31(5):41-49, May 1998.

G. Bernat, A. Colin, and S. M. Petters. WCET Analysis of Probabilistic
Hard Real-Time Systems. In Proc. 23"% IEEE Real-Time Systems Symposium
(RTSS’02), 2002.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. KRONOS:
A Model-Checking Tool for Real-Time Systems. In Proc. of the 10" Interna-
tional Conference on Computer Aided Verification, pages 546-550. Springer-
Verlag, 1998. LNCS 1427.

M. Berkelaar. Ip_solve: (Mized Integer) Linear Programming Problem Solver,
2003.
URL: ftp://ftp.es.ele.tue.nl/pub/lp_solve.

J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding
Instruction Cache Effects to Schedulability Analysis of Preemptive Real-Time
Systems. In Proc. 2" IEEE Real-Time Technology and Applications Symposium
(RTAS’96), pages 204-212. IEEE Computer Society Press, June 1996.

H. Borjesson. Incorporating worst-case execution time in a commercial c-
compiler. Master’s thesis, Department of Computer Systems, Uppsala University,
1995. DoCS MSc Thesis 95/69.

B. Black and J. Shen. Calibration of Microprocessor Performance Models.
31(5):59-65, May 1998.

M. R. Boyd and D. B. Whalley. Graphical visualization of compiler optimiza-
tions. Journal or Programming Languages, pages 69-94, 1995.

A. Colin and G. Bernat. Scope-tree: a program representation for symbolic
worst-case execution t8me analysis. In Proc. 14" Euromicro Conference of
Real-Time Systems, (ECRTS’02), pages 50-59, 2002.

R. Chapman, A. Burns, and A. Wellings. Integrated Program Proof and Worst-
Case Timing Analysis of SPARK Ada. In Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems (LCT-RTS’94), 1994.

M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and B. Lisper. Worst-case
Execution Time Analysis of Disable Interrupt Regions in a Commercial Real-
Time Operating System. 2002.

R. Chapman. Static Timing Analysis and Program Proof. PhD thesis, Depart-
ment of Computer Science, University of York, England, 1995.

WWW homepage for the cinderella system, 1997.
URL: http://wuw.ee.princeton.edu/"yauli/cinderella-3.0/.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

P. Cousot. Semantic foundations of program analysis. In Steven S. Muchnick
and Neil D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, pages 303—342. Prentice-Hall, 1981.

P. Cousot. Abstract interpretation. ACM Computing Surveys, 28(2):324-328,
1996.

A. Colin and I. Puaut. Worst-Case Execution Time Analysis of the RTEMS
Real-Time Operating System. Technical Report Publication Interne No 1277,
IRISA, 1999.

Bibliography 193

[CPOO]

[CPO1a]

[CPO1D)]

[CPLO3]
[CRTMOYS]

[Das00]

[DBKO1]

[Dot97]

[EAE9S]

[EE99]

[EE00]

[EEST99]

[EES00]

[EESO01]

[EES*03]

[EG97]

[EHO4]

[Ene03]

A. Colin and I. Puaut. Worst Case Execution Time Analysis for a Processor
with Branch Prediction. Journal of Real-Time Systems, 18(2/3):249-274, May
2000.

A. Colin and I. Puaut. A Modular and Retargetable Framework for Tree-Based
WCET Analysis. In Proc. 13" Euromicro Conference of Real-Time Systems,
(ECRTS’01), 2001.

A. Colin and I. Puaut. Worst-Case Execution Time Analysis for the RTEMS
Real-Time Operating System. In Proc. 13" Euromicro Conference of Real-Time
Systems, (ECRTS’01), 2001.

ILOG CPLEX homepage, 2003.
URL: http://www.ilog.com/products/cplex/.

L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano — A Revolution
in On-Board Communications. Volvo Technology Report, 1:9-19, 1998.

M. Das. Unification-based pointer analysis with directoral assignment. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’00), pages 35-46, 2000.

R. Desikan, D. Burger, and S. Keckler. Measuring Experimental Error in Micro-
processor Simulation. In Proc. of the 28" International Symposium on Com-
puter Architecture (ISCA 2001). ACM Press, 2001.

WWW homepage for the graphics visualizations at AT&T Research, 1997.
URL: http://www.research.att.com/sw/tools/graphviz/.

J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating worst-case execution
times analysis for optimized code. In Proc. of the 10" Euromicro Workshop of
Real-Time Systems, pages 146-153, June 1998.

J. Engblom and A. Ermedahl. Pipeline Timing Analysis Using a Trace-Driven
Simulator. In Proc. 6! International Conference on Real-Time Computing
Systems and Applications (RTCSA’99). IEEE Computer Society Press, 1999.

J. Engblom and A. Ermedahl. Modeling Complex Flows for Worst-Case Ex-
ecution Time Analysis. In Proc. 21" IEEE Real-Time Systems Symposium
(RTSS’00), 2000.

J. Engblom, A. Ermedahl, M. Sjédin, J. Gustafsson, and H. Hansson. Towards
industry-strength worst case execution time analysis. Technical Report ASTEC
99/02, Advanced Software Technology Center (ASTEC), 1999.

J. Engblom, A. Ermedahl, and F. Stappert. Comparing Different Worst-Case
Execution Time Analysis Methods. In Proc. of the Work-in-progress Session at
the 215¢ Real-Time System Symposium (RTSS/WIP’00), December 2000.

J. Engblom, A. Ermedahl, and F. Stappert. Validating a Worst-case Execution
Time Analysis Method for an Embedded Processor. Technical report, Dept. of
Information Technology, Uppsala University, Uppsala, Sweden, 2001.

J. Engblom, A. Ermedahl, M. Sjodin, J. Gustafsson, and H. Hansson. Worst-Case
Execution-Time Analysis for Embedded Real-Time Systems. Software Tools for
Technology Transfer, 2003. Accepted for publication.

A. Ermedahl and J. Gustafsson. Deriving Annotations for Tight Calculation of
Execution Time. In Proc. Euro-Par’97 Parallel Processing, LNCS 1300, pages
1298-1307. Springer Verlag, 1997.

M. Emami and R. Ghiyaand L. Hendren. Context-sensitive interprocedural
points-to analysis in the precense of function pointers. Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’94),
June 1994.

Enea WWW Homepage.
URL: http://www.enea.com, 2003.

194

[Eng97]

[Eng99a]

[Eng99b]

[Eng02]

[Eng03]

[ESE00]

[ESS99]

[EY97)

[FHL*01]

[FMW97]

[Fre00]

[Gan01]

[GLSBO3]

[GSW95]

[Gus94]

[Gus00]

Bibliography

J. Engblom. Worst-case execution time analysis for optimized code. Master’s
thesis, Department of Computer Systems, Uppsala University, 1997. DoCS MSc
Thesis 97/94.

J. Engblom. Static Properties of Embedded Real-Time Programs, and Their
Implications for Worst-Case Execution Time Analysis. In Proc. 5" IEEE Real-
Time Technology and Applications Symposium (RTAS’99). IEEE Computer So-
ciety Press, 1999.

J. Engblom. Why SpecInt95 Should Not Be Used to Benchmark Embedded
Systems Tools. In Proc. SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems (LCTES’99), May 1999.

J. Engblom. Processor Pipelines and Static Worst-Case Ezxecution Time Analy-
sts. PhD thesis, Uppsala University, Dept. of Information Technology, Box 337,
Uppsala, Sweden, April 2002.

Jakob Engblom. Analysis of the Execution Time Unpredictability caused by Dy-
namic Branch Prediction. In Proc. 8" IEEE Real-Time/Embedded Technology
and Applications Symposium (RTAS’03), May 2003.

J. Engblom, F. Stappert, and A. Ermedahl. Structured Testing of Worst-Case
Execution Time Analysis Tools. In Proc. of the Work-in-progress Session at the
215t Real-Time System Symposium (RTSS/WIP’00), December 2000.

E. Erpenbach, F. Stappert, and J. Stroop. Compilation and Timing Analysis of
Statecharts Models for Embedded Systems. In Proc. 2*¢ International Workshop
on Compiler and Architecture Support for Embedded Systems, (CASES’99),
1999.

R. Ernst and W. Ye. Embedded program timing analysis based on path clustering
and architecture classification. In International Conference on Computer-Aided
Design (ICCAD °97), 1997.

C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theil-
ing, S. Thesing, and R. Wilhelm. Reliable and Precise WCET Determination
for a Real-Life Processor. In Proc. 15t International Workshop on Embedded
Systems, (EMSOFT2000), LNCS 2211. Springer-Verlag, 2001.

C. Ferdinand, F. Martin, and R. Wilhelm. Applying Compiler Techniques to
Cache Behavior Prediction. In Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems (LCT-RTS’97), 1997.

U. Fredriksson. JAS 39 Gripen - an overview: The internal network, 2000.
URL: http://wuw.canit.se/ griffon/aviation/gripen/gripen-network.html.

J. Ganssle. Really Real-Time Systems. In Proceedings of the Embedded Systems
Conference San Fransisco (ESC SF) 2001, 2001.

J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo. A Tool for Automatic
Flow Analysis of C-programs for WCET Calculation. In 8" IEEE International
Workshop on Object-oriented Real-time Dependable Systems (WORDS 2003),
Guadalajara, Mexico, 2003.

M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables, detecting
and classifying sequences using a demand-driven ssa form. AVM Transactions
on Programming Languages and Systems, 17(1):85-122, January 1995.

J. Gustafsson. Calculation of Execution Times in Object-Oriented Real-Time
Software. Licentiate Thesis, department of Machine Elements, the Royal Insti-
tute of Technology, Sweden, 1994.

J. Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Using
Abstract Interpretation. PhD thesis, Department of Computer Systems, In-
formation Technology, Uppsala University, May 2000. DoCS Report 00/115,
www.docs.uu.se/docs/research/reports/.

Bibliography 195

[Gwe95]
[Hal00]

[HAMT99]

[Hav97]
[Hep03]

[HHWT97]

[HLS00a]

[HLS00b)

[HLTW03)

[Hol97]

[HP96)

[HPOO]

[HS02]

[HSR*00]

[HSRWOS]

[HW99]

[I-L03]

[IAR99)
[IARO3)

[Int95]

L. Gwennap. New Algorithm Improves Branch Prediction. Microprocessor Re-
port, January 17, 9(4), December 1995.

T. R. Halfhill. Embedded Market Breaks New Ground. Microprocessor Report,
January 17, 2000.

C. Healy, R. Arnold, F. Miiller, D. Whalley, and M. Harmon. Bounding Pipeline
and Instruction Cache Performance. IEEE Transactions on Computers, 48(1),
1999.

P. Havlak. Nesting of Reducible and Irreducible Loops. ACM Transactions on
Programming Languages and Systems, 19(4):557-567, July 1997.

WWW homepage for the heptane system, 2003.
URL: http://wuw.irisa.fr/aces/work/heptane-demo/heptane.html.

T. A. Henzinger, P-H. Ho, and H. Wong-Toi. HYTECH: A Model Checker for
Hybrid Systems. In Proc. of the 9" International Conference on Computer
Aided Verification, pages 460-463, 1997. LNCS 1254.

N. Holsti, T. Langbacka, and S. Saarinen. Using a Worst-Case Execution-Time
Tool for Real-Time Verification of the DEBIE software. In Proceedings of the
DASIA 2000 Conference (Data Systems in Aerospace 2000, ESA SP-457), 2000.

N. Holsti, T. Langbacka, and S. Saarinen. Worst-Case Execution-Time Analysis
for Digital Signal Processors. In Proceedings of the EUSIPCO 2000 Conference
(X European Signal Processing Conference), 2000.

R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The Influence of
Processor Architecture on the Design and the Results of WCET Tools. IEEE
Proceedings on Real-Time Systems, 2003. Accepted for publication.

G. J. Holzmann. The model checker spin. [IEEE Transactions on Software
Engineering, 23(5):279-295, May 1997.
J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative

Approach. Morgan Kaufmann Publishers Inc., 2% edition, 1996. ISBN 1-55860-
329-8.

M. Hind and A. Pioli. Which pointer analysis should i use? ACM SIGSOFT In-
ternational Symposium on software Testing and Analysis (ISSTA 200), August
2000.

N. Holsti and S. Saarinen. Status of the bound-t wcet tool. In Proc. 274 In-
ternational Workshop on Worst-Case Ezxecution Time Analysis, (WCET’2002),
2002.

C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. van Engelen. Supporting
timing analysis by automatic bounding of loop iterations. Journal of Real-Time
Systems, May 2000.

C. Healy, M. Sjodin, V. Rustagi, and D. Whalley. Bounding Loop Iterations for
Timing Analysis. In Proc. 4" IEEE Real-Time Technology and Applications
Symposium (RTAS’98), June 1998.

C. Healy and D. Whalley. Tighter Timing Predictions by Automatic Detection
and Exploitation of Value-Dependent Constraints. In Proc. 5" IEEE Real-Time
Technology and Applications Symposium (RTAS’99), pages 79-88, June 1999.
I-Logix WWW Homepage.

URL: http://wuw.ilogix.com, 2003.

IAR Systems. V850 C/EC++ Compiler Programming Guide, 15t edition, 1999.

TAR Systems. Reference Applications of VisualSTATE, 2003.
http://www.iar.dk/products/references.htm.

Intelligent Systems Laboratory. SICStus Prolog user’s manual. ISBN 91-630-
3648-7, Swedish Institute of Computer Science, 1995.

196

[Ive9s)

[KHR196]

[Kir02]

[KMHI6]

[KPO1]

[KPO03]

[KWH95]

[LBJ*95]

[LEMCO02]

[LFW02]

(LG9S

[LHKMO8]

[LHS196]

[LHT00]

[Lin02]

[Lis03)

Bibliography

A. Ive. Presented at the 8'* Nordic Workshop on Programming Enviroment
Research, August 1998.
URL: http://www.ifi.uib.no/konf/nwper98/proceedings.html.

L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M.G. Harmon. Sup-
porting the specification and analysis of timing constraints. In Proc. 2"¢ IEEE
Real-Time Technology and Applications Symposium (RTAS’96), pages 170-178,
1996.

R. Kirner. The Programming Language WcetC. Technical Report 2/2002, Tech-
nische Universitdt Wien, Institut f’ur Technische Informatik, January 2002.

S.-K. Kim, S. L. Min, and R. Ha. Efficient Worst Case Timing Analysis of Data
Caching. In Proc. 2"% IEEE Real-Time Technology and Applications Symposium
(RTAS’96), pages 230-240. IEEE, 1996.

R. Kirner and P. Puschner. Transformation of Path Information for WCET
Analysis during Compilation. In Proc. 13" Euromicro Conference of Real-Time
Systems, (ECRTS’01). IEEE Computer Society Press, 2001.

R. Kirner and P. Puschner. Timing analysis of optimised code. In &%
IEEE International Workshop on Object-oriented Real-time Dependable Sys-
tems (WORDS 2003), Guadalajara, Mezico, 2003.

L. Ko, D. Whalley, and M. Harmon. Supporting User-Friendly Analysis of Tim-
ing Constraints. Proc. ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Real-Time Systems (LCT-RTS’95), pages 107-115, June 1995.

S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, and C. S. Ki. An Accurate Worst-Case Timing Analysis for RISC
Processors. IEEE Transactions on Software Engineering, 21(7):593-604, 1995.

S. Lee, A. Ermedahl, S.L.. Min, and N. Chang. Statistical Derivation of an Ac-
curate Energy Consumption Model for Embedded Processors. Technical report,
Dept. of Information Technology, Uppsala University, Uppsala, Sweden, 2002.

M. Langenbach, C. Ferdinand, and R. Wilhelm. Worst case Execution Time
Prediction. In Proc. 2'% International Workshop on Worst-Case Ezecution
Time Analysis, (WCET’2002), 2002.

Y. A. Liu and G. Gomez. Automatic accurate time-bound analysis for high-level
languages. In Proc. SIGPLAN Workshop on Languages, Compilers and Tools
for Embedded Systems (LCTES’98), pages 31-40, 1998.

S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A Worst Case Timing Analysis
Technique for Multiple-Issue Machines. In Proc. 19" IEEE Real-Time Systems
Symposium (RTSS’98), 1998.

C. Lee, J. Han, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and
C. Kim. Analysis of Cache-Related Preemption Delay in Fixed-Priority Preemp-
tive Scheduling. In Proc. 17" IEEE Real-Time Systems Symposium (RTSS’96),
December 1996.

M. Lindgren, H. Hansson, and H. Thane. Using Measurements to derive the
Worst-case Execution Time. In Proc. 7" International Conference on Real-
Time Computing Systems and Applications (RTCSA’00), pages 15-22, 200.

M. Lindgren. Measurement and simulation based techniques for real-time sys-
tems analysis. Licentiate Thesis, Uppsala University Printers, Uppsala, Sweden,
December 2002.

B. Lisper. Fully Automatic, Parametric Worst-Case Execution Time Analysis.
Technical report, Méalardalen Real-Time Research Centre, Malardalen Univer-
sity, Sweden, April 2003. MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-
97/2003-1-SE.

Bibliography 197

[LKMO8]

[LM95]

[LMW96]

[LPY97]

[LS98]

[LS99]

[LS00]

[Lun02]

[Mar99]
[Mel9g]

[Mon00]

[MRO1]

[MR02]

[MS00]
[Muc97]

[Miil97]

[NEC99)

[0597]

S-S. Lim, J. Kim, and S. L. Min. A Worst Case Timing Analysis Technique
for Optimized Programs. In Proc. of the fifth International Conference on Real-
Time Computing Systems and Applications (RTCSA); Hiroshima, Japan, pages
151-157, October 1998.

Y-T. S. Li and S. Malik. Performance Analysis of Embedded Software Using Im-
plicit Path Enumeration. In Proc. of the 82:nd Design Automation Conference,
pages 456-461, 1995.

Y-T. S. Li, S. Malik, and A. Wolfe. Cache Modelling for Real-Time Software:
Beyond Direct Mapped Instruction Caches. In Proc. 17" IEEE Real-Time
Systems Symposium (RTSS’96), pages 254-263. IEEE Computer Society Press,
1996.

K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell,. Springer Inter-
national Journal of Software Tools for Technology Transfer, (STTT), 1(1-2),
pages 134-152, December 1997.

T. Lundqvist and P. Stenstrém. Integrating Path and Timing Analysis using
Instruction-Level Simulation Techniques. In Proc. SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems (LCTES’98), June 1998.

T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled
microprocessors. Technical Report 99-5, Chalmers University of Technology,
1999.

T. Lundqvist and P. Stenstrom. An integrated path and timing analysis method
based on cycle-level symbolic execution. Journal of Real-Time Systems, May
2000.

T. Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with
Cache Memories. PhD thesis, Department of Computer Engineering, Chalmers
University of Technology, Goteborg, Sweden, 2002.

F. Martin. Experimental comparison of call string and functional approaches to
interprocedural analysis. In Computational Complexity, pages 63—75, 1999.

K. Melin. Volvo S80: Electrical system of the future. Volvo Technology Report,
1:3-7, 1998.

S. Montén. Validation of Cycle-Accurate CPU Simulator against
Actual Hardware. Master’s thesis, Dept. of Information Tech-
nology, Uppsala University, 2000. Technical Report 2001-007,

http://www.it.uu.se/research/reports/2001-007/.

T. Mitra and A. Roychoudhury. Effects of Branch Prediction on Worst Case
Execution Time of Programs. Technical Report 11-01, National University of
Singapore (NUS), 2001.

T. Mitra and A. Roychoudhury. A framework to model branch prediction for
weet analysis. In Proc. 2% International Workshop on Worst-Case Ezecution
Time Analysis, (WCET’2002), 2002.

E. Martins and J. Santos. A New Shortest Paths Ranking Algorithm. Investi-
gacao Operational, 20(1):47-62, 2000.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997. ISBN: 1-55860-320-4.

F. Miiller. Timing Predictions for Multi-Level Caches. In Proc. ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Real-Time Systems (LCT-
RTS’97), pages 29-36, June 1997.

NEC Corporation. V850E/MS1 32/16-bit Single Chip Microcontroller: Archi-
tecture, 3" edition, 1999. Document no. U12197EJ3VOUMO0.

G. Ottosson and M. Sjodin. Worst-Case Execution Time Analysis for Modern
Hardware Architectures. In Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems (LCT-RTS’97), 1997.

198

[Par93]

[Pat95]

[PD02]

[Pet00]

[PF99)]

[PHOS)

[PK89]
[PPVZ92]

[PS90)

[PS95]

[Pus94]

[Ram00]

[Rat03]
[Ray00]
[Rea03]

[RGLO2]

[RK02]

[SA00]

Bibliography

C. Park. Predicting Program Execution Times by Analyzing Static and Dynamic
Program Paths. Real-Time Systems, 5(1):31-62, 1993.

J. Patterson. Accurate Static Branch Prediction by Value Range Propagation.
In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’95), June 1995.

I. Puaut and D. Decotigny. Low-Complexity Algorithms for Static Cache Locking
in Multitasking Hard Real-Time Systems. Proc. of the 23rd IEEE International
Real-Time Systems Symposium, Austin, TX, USA, December 2002. . In Proc.
2374 IEEE Real-Time Systems Symposium (RTSS’02), 2002.

S. Petters. Bounding the Execution Time of Real-Time Tasks on Modern Proces-
sors. In Proc. 7" International Conference on Real-Time Computing Systems
and Applications (RTCSA’00). IEEE Computer Society Press, 2000.

S. Petters and G. Farber. Making Worst-Case Execution Time Analysis for
Hard Real-Time Tasks on State of the Art Processors Feasible. In Proc. 6t
International Conference on Real-Time Computing Systems and Applications
(RTCSA’99), 1999.

P. Persson and G. Hedin. Interactive execution time predictions using reference
attributed grammars. In Proc. of the 2:nd Workshop on Attribute Grammars
and their Applications (WAGA’99), Amsterdam, Netherlands, pages 173-184,
August 1998. URL: http://www.dna.lth.se/home/Patrik_Persson.

P. Puschner and C. Koza. Calculating the Maximum Execution Time of Real-
Time Programs. The Journal of Real-Time Systems, 1(1):159-176, 1989.

G. Pospischil, P. Puschner, A. Vrchoticky, and R. Zainlinger. Developing Real-
Time Tasks With Predictable Timing. IEEE Software, 9(5), September 1992.

C.Y. Park and A. C. Shaw. Experiments with a program timing tool based on a
source-level timing schema. In Proc. 11" IEEE Real-Time Systems Symposium
(RTSS’90), pages 72—81, 1990.

P. Puschner and A. Schedl. Computing Maximum Task Execution Times with
Linear Programming Techniques. Technical report, Technische Universitat Wien,
Institut fiir Technische Informatik, 1995.

P. Puschner. Zeitanalyze von Echtzeitprogrammmen. PhD thesis, Technische
Universitat, Institut fiir Technische Informatik, Vienna, Austria, 1994.

G. Ramalingam. On Loops, Dominators, and Dominance Frontier. Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’00), 2000.

Rational. UML Reseource Center, 2003.
http://www.rational.com/uml/.

E. Raymond. The jargon file, version 4.2.0.
URL: http://www.tuxedo.org/ esr/jargon/html/index.html, 2000.

Realogy Real-Time Architect Product Brochure.
URL: http://www.realogy.com, 2003.

D. Renaux, J. Gées, and R. Linhares. WCET Estimation from Object Code
implemented in the PERF Environment. In Proc. 2" International Workshop
on Worst-Case Ezxecution Time Analysis, (WCET’2002), 2002.

G. Freiberger P. Puschner R. Kirner, R. Lang. Fully Automatic Worst-Case
Execution Time Analysis for Matlab/Simulink Models. In Proc. 14t* Euromicro
Conference of Real-Time Systems, (ECRTS’02), pages 31-40, June 2002.

F. Stappert and P. Altenbernd. Complete Worst-Case Execution Time Analysis
of Straight-line Hard Real-Time Programs. Journal of Systems Architecture,
46(4):339-355, 2000.

Bibliography 199

[Sch00]

[SEE01]

[SF99]

[SKO*96]

[Sta97]

[Ste93)

[Ste96]

[Ste01]
[Ste02]
[Tel03]

[TF98]

[TheOla]
[The01b]

[The02]

[TSH*03]

[Tur02]

[VHMWO1]

[Vrc94]

J. Schneider. Cache and Pipeline Sensitive Fixed Priority Scheduling for Pre-
emptive Real-Time Systems. In Proc. 21" IEEE Real-Time Systems Symposium
(RTSS°00), pages 195-204, November 2000.

F. Stappert, A. Ermedahl, and J. Engblom. Efficient Longest Executable Path
Search for Programs with Complex Flows and Pipeline Effects. Technical Report
Report 2001-012, Dept. of Information Technology, Uppsala University, 2001.

J. Schneider and C. Ferdinand. Pipeline Behaviour Prediction for Superscalar
Processors by Abstract Interpretation. In Proc. SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems (LCTES’99). ACM Press,
May 1999.

V. Seppédnen, A-M Kahkonen, M. Oivo, H. Perunka, P. Isomursu, and P. Pulli.
Strategic needs and future trends of embedded software. Technical Report Tech-
nology Review 48/96, TEKES Technology Development Center, Oulu, Finland,
1996.

F. Stappert. Predicting pipelining and caching behaviour of hard real-time pro-
grams. In Proc. of the 9" Buromicro Workshop of Real-Time Systems, 1997.

B. Steensgard. Sequentializing Program Dependence Graphs for Irreducible
Pprograms. Technical report, Microsoft Reserach, Redmond, Wash, October
1993. Technical Report: MSR-TR-93-14.

B. Steensgard. Points-to analysis in almost linear time. Proc. in 25"d An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 3241, january 1996.

D. B. Stewart. Introduction to real time, 2001.
URL: http://www.embedded. com/story/0EG2001101650120.

D. B. Stewart. Measuring Execution Time and Real-Time Performance. In
Proceedings of the Embedded Systems Conference (ESC SF) 2002, March 2002.

Telelogic WWW Homepage.
URL: http://wuw.telelogic.com, 2003.

H. Theiling and C. Ferdinand. Combining Abstract Interpretation and ILP for
Microarchitecture Modelling and Program Path Analysis. In Proc. 19" IEEE
Real-Time Systems Symposium (RTSS’98), 1998.

H. Theiling. Generating Decision Trees for Decoding Binaries. 2001.

H. Theling. Generating Decison Trees for Decoding Binaries. In Proc. SIG-
PLAN Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES’01), pages 112-120, 2001.

H. Theiling. ILP-Based Interprocedural Path Analysis. In Proc. 2*¢ Inter-
national Workshop on Embedded Systems, (EMSOFT2001), pages 349-363.
Springer-Verlag, 2002.

S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach,
R. Wilhelm, and C. Ferdinand. An Abstract Interpretetation-Base Timing Vali-
dation of Hard Real-Time Avionics Software. In Proc. of the IEEE International
Conference on Dependable Systems and Networks (DSN-2003), 2003.

J. Turley. Embedded processors. In Extremetech.com, January 2002.
URL: http://www.extremetech.com/article2/0,3973,18917,00.asp.

E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric timing analysis.
In Proc. SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
Systems (LCTES’01), pages 88-93, June 2001.

A. Vrchoticky. The Basis for Static Execution Time Prediction. PhD thesis,
Institut fiir Technische Informatik, Technische Universitat Wien, Treitlstrafle
3/182.1, A-1040 Wien, Austria, 1994.

200

[VSL96]

[WEO1]

[Whi97)

[Wis94]

[WMH197]

[YP93]

[Zel84]

[ZWR01]

Bibliography

G.R. Gao V.C. Sreedhar and Y-F. Lee. Identifying Loops using DJ Graphs.
ACM Transactions on Programming Languages and Systems, 18(6):649-658,
November 1996.

F. Wolf and R. Ernst. Execution Cost Interval Refinement in Static Software
Analysis. Journal of Systems Architecture, The EUROMICRO Journal, Special
Issue on Modern Methods and Tools in Digital System Design, 47(3-4):339-356,
2001.

R. T. White. Bounding Worst-Case Data Cache Performance. PhD thesis,
Florida State University, 1997.

R. Wismiiller. Debugging of globally optimized programs using data flow anal-
ysis. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’94), pages 278-289. ACM, 1994.

URL: http://wwwbode.informatik.tu-muenchen.de/ wismuell/.

R. White, F. Miiller, C. Healy, D. Whalley, and M. Harmon. Timing Analysis
for Data Caches and Set-Associative Caches. In Proc. 3'¢ IEEE Real-Time
Technology and Applications Symposium (RTAS’97), pages 192-202, 1997.

T.Y. Yeh and Y.N. Patt. A Comparasion of Dynamic Branch Predictors that use
Two Levels of Branch History. In Proc. of the 20" International Symposium
on Computer Architecture (ISCA 19983), pages 257-266, May 1993.

P. Zellweger. Interactions between high-level debugging and optimised code. PhD
thesis, Computer Science Division, University of California, Berkeley, 1984. Pub-
lished as Xerox PARC Technical Report CSL-84-5.

D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, and R. Ernst. Interval-based
analysis of software processes. In Proc. SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems (LCTES’01), June 2001.

	ABSTRACT
	Acknowledgements
	Contents
	Publications by the Author
	1 Introduction
	2 WCET Analysis Overview and Previous Work
	3 A Modular WCET Tool Architecture
	4 Representing Program Flow
	5 The Scope Graph and Flow Fact Language
	6 Low-level Analysis
	7 E.cient Path-based Calculation
	8 Extended IPET Calculation
	9 Clustered Calculation
	10 Prototype Tool and Experiments
	11 Conclusions and Future Work
	Bibliography

