
Probabilistic Worst-Case Response-Time Analysis for the Controller Area
Network

Thomas Nolte, Hans Hansson, and Christer Norström
Mälardalen Real-Time Research Centre

Department of Computer Science and Engineering
Mälardalen University, Västerås, SWEDEN

http://www.mrtc.mdh.se

Abstract

This paper presents a novel approach for calculating a
probabilistic worst-case response-time for messages in the
Controller Area Network (CAN). CAN uses a bit-stuffing
mechanism to exclude forbidden bit-patterns within a mes-
sage frame. The added bits eliminate the forbidden patterns
but cause an increase in frame length. How much the length
is increased depends on the bit-pattern of the original mes-
sage frame.

Traditional response-time analysis methods assume that
all frames have a worst-case number of stuff-bits. This in-
troduces pessimism in the analysis.

In this paper we introduce an analysis approach based
on using probability distributions to model the number of
stuff-bits. The new analysis additionally opens up for mak-
ing trade-offs between reliability and timeliness, in the
sense that the analysis will provide a certain probability for
missing deadlines, which in the reliability analysis can be
treated as a probability of failure. We evaluate the perfor-
mance of our method using a subset of the SAE1 benchmark.

1. Introduction

During the last decade real-time researchers have ex-
tended schedulability analysis to a mature technique which
for non-trivial systems can be used to determine whether a
set of tasks executing on a single CPU or in a distributed
system will meet their deadlines or not [2, 4, 12, 16]. The
essence of this analysis is to investigate if deadlines are met
in a worst case scenario. Whether this worst case actually
will occur during execution, or if it is likely to occur, is not
normally considered.

1See [11] for details.

In contrast with schedulability analysis, reliability mod-
elling involves study of fault models, characterization of
distribution functions of faults and development of meth-
ods and tools for composing these distributions and models
in estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability
analysis and stochastic reliability analysis is a natural sim-
plification of the total analysis. However the deterministic
schedulability analysis is unfortunately quite pessimistic,
since it assumes that a missed deadline in the worst case
is equivalent to always missing the deadline. There are also
other sources of pessimism in the analysis, including con-
sidering worst-case execution times and the usage of pes-
simistic fault models.

Reliability is defined as the probability that a system can
perform its intended function, under given conditions, for a
given time interval. A major issue is how to compose hard-
ware reliability, software reliability, environmental model,
and timely correctness to arrive at reasonable estimates of
overall system reliability, as depicted in Figure 1.

System
Reliability

Hardware Software

Message
Correctness

Timely Delivery
Reliability

Growth Models
Component
Reliability

Communications

Figure 1. System reliability: a top-down view.

The Controller Area Network is extensively used in
small scale distributed systems, such as automotive, med-
ical and industrial applications. In this paper we provide a
probabilistic response-time analysis method for messages in

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 2. CAN frame layout (standard format data frame).

the Controller Area Network (CAN). Several probabilistic
approaches for schedulability analysis of real-time systems
have been presented, e.g., [1, 7]. However, none of these
specifically address CAN.

We have in our previous work presented a method to
model the number of stuff-bits in a CAN message frame
[8, 9]. Stuff-bits are extra bits added by the CAN protocol.
There is a built in mechanism in the CAN protocol which
removes forbidden bit-patterns (e.g., patterns used for er-
ror signalling and the communication protocol) within the
message frame by “inserting” stuff-bits at specific positions.
This mechanism causes a variation in the CAN message
frame length.

When performing worst-case response-time analysis, the
worst case number of stuff-bits is traditionally used. In this
paper we will introduce a worst-case response time analysis
method which uses distributions of stuff-bits instead of the
worst-case values. This makes the analysis less pessimistic
in the sense that we obtain a distribution of worst-case re-
sponse times corresponding to all possible combinations of
stuff-bits of all message frames involved in the response-
time analysis. Using a distribution rather than a fixed value
makes it possible to select a worst-case response time based
on a desired probability � of violation, i.e., the selected
worst-case response time is such that the probability of a
response-time exceeding it is � � . Our main motivation
for calculating such probabilistic response-times is that they
allow us to reason about trade-offs between reliability and
timeliness.

However, it should be noted that this paper focuses on
a single aspect, namely a probabilistic worst-case response
time, based on using bit-stuffing distributions. There are
other parameters, including execution times and phasings of
message queuings, that have similar variations and effects
on the response-time analysis. However, our calculations
are based on the “critical instant” worst-case scenario.

Outline: Section 2 presents the traditional schedulability
analysis for CAN. In Section 3 we present the new proba-
bilistic response-time analysis, and in Section 4 the analysis
is evaluated using the SAE [11] benchmark. Finally Sec-
tion 5 concludes the paper and presents some future work.

2. Traditional Schedulability Analysis of CAN
Frames

The Controller Area Network (CAN) [10] is a broadcast
bus designed to operate at speeds of up to 1 Mbps. Data is
transmitted in frames containing between 0 and 8 bytes of
data and a number of control bits. Depending on the CAN
format (standard or extended) the number of control bits are
either 44 or 64. Between CAN frames sent on the bus, there
is also a 3 bit inter-frame space. The standard format CAN
frame (and the inter-frame space) is shown in Figure 2.

The difference between the standard and the extended
format is that the extended format has 29 identifier bits in-
stead of the 11 bits used in the standard format. The identi-
fier is required to be unique, in the sense that two simultane-
ously active frames originating from different sources (i.e.,
nodes or CAN-controllers) must have distinct identifiers.
The identifier serves two purposes: (1) assigning a prior-
ity to the frame, and (2) enabling receivers to filter frames.
For a more detailed explanation of the different fields in the
CAN frame, please consult [10, 5].

CAN is a collision-avoidance broadcast bus, which uses
deterministic collision resolution to control access to the
bus (so called CSMA/CA). The basis for the access mecha-
nism is the electrical characteristics of a CAN bus: if mul-
tiple stations are transmitting concurrently and one station
transmits a ‘0’ then all stations monitoring the bus will see
a ‘0’. Conversely, only if all stations transmit a ‘1’ will all
processors monitoring the bus see a ‘1’. During arbitration,
competing stations are simultaneously putting their identi-
fiers, one bit at the time, on the bus. By monitoring the
resulting bus value, a station detects if there is a compet-
ing higher priority frame and stops transmission if this is
the case. Because identifiers are unique within the system,
a station transmitting the last bit of the identifier without
detecting a higher priority frame must be transmitting the
highest priority queued frame, and hence can start transmit-
ting the body of the frame.

2.1. Classical CAN Bus Analysis

Tindell et al. [13, 14, 15] present analysis to calculate
the worst-case latencies of CAN frames. This analysis is

based on the standard fixed priority response time analysis
for CPU scheduling [2].

Calculating the response times requires a bounded worst
case queuing pattern of frames. The standard way of ex-
pressing this is to assume a set of traffic streams, each gen-
erating frames with a fixed priority. The worst-case be-
haviour of each stream, in terms of network load, is to
send as many frames as they are allowed, i.e., to periodi-
cally queue frames. In analogue with CPU scheduling, we
obtain a model with a set � of streams (corresponding to
CPU tasks). Each ������� is a triple �	�
�������������� , where�
� is the priority (defined by the message frame identifier),�� is the period and ��� the worst-case transmission time of
frames sent on stream ��� . The worst-case latency ��� of a
CAN frame sent on stream ��� is, if we assume the minimum
variation in queuing time relative to �� to be 0, defined by���
������������� ��� (1)

where ��� is the queuing jitter of the frame, i.e., the maxi-
mum variation in queuing time relative start of !� , inherited
from the sender task which queues the frame, and �"� repre-
sents the effective queuing time, given by

�$#� �&%���� '(*)�+-,$. � / 0 � #21�3� �4� (�65879� : (;=< � (��>?5879� :�@ (2)

whereA %��B� maxC)?D ,$. � / < � C @E�&>?5879� : is the worst-case blocking

time of frames sent on ��� , where F � <HG @ is the set of
streams with priority lower than ��� . The reason for
the blocking factor is that transmissions are non pre-
emptive, i.e., after bus arbitration has started the frame
with the highest priority among competing frames will
be transmitted until completion, even if a frame with
higher priority gets queued before the transmission is
completed.A I

� <HG @ is the set of streams with priority higher than �!� .A 5879� : (the bit-time) caters for the difference in arbitration
start times at the different nodes due to propagation
delays and protocol tolerances.A � (is the transmission time of message J . How to cal-
culate � (is presented in the next section.A >?5879� : represents the inter-frame space (traditionally
[13, 14, 15], the inter-frame space was considered a
part of the data frame, but separating it [3] removes a
small source of pessimism in the equations).

Note that Equation 2 is a recurrence relation, where the
approximation to the <HK �ML"@ th value is found in terms of
the K th approximation, with the first approximation set to�"N� �PO . A solution is reached either when the <HK �ML"@ th
value is equal to the K th, or when ��� exceeds its mes-
sage deadline or period. The recurrence relation will ter-
minate given that the total bus utilization is �QL , i.e.,R&S$T)?UWV�X THY�Z\[�] T ^_ Ta` �bL .

We rewrite Equation 1 and Equation 2 into a single ex-
pression since our probabilistic equations, in the following
section, will be based on having such an expression. Hav-
ing a single expression we will be able to separate the “fixed
size” part of the calculations from the “varying size part”
based on distributions. The new expression is

��#� ��������%���� ���� '(*)�+-,$. � /?c (ed � #21�3� f ��� f ���hg < � (��>?5879� :�@ (3)

where c (<Hi @ is defined as the worst-case number of periodic
message releases, for a message J , in a time interval of i

c (<Hi @j� 0 i �4� (�65879� : (; (4)

where � (is the worst-case release jitter, and (is the period
of the message.

As Equation 2, Equation 3 is a recurrence relation. The
only difference is that the first approximation is in this case
set to ��N� ������� ��� .
2.2. The Bit-Stuffing Mechanism

In CAN, six consecutive bits of the same polarity
(LkLkLkLkLkL or OkOkOkOkOkO) is used for error and protocol control
signalling. To avoid these special bit patterns in transmit-
ted frames, a bit of opposite polarity is inserted after five
consecutive bits of the same polarity. By reversing the pro-
cedure, these bits are then removed at the receiver side. This
technique, which is called bit-stuffing, implies that the ac-
tual number of transmitted bits may be larger than the size
of the original frame, corresponding to an additional trans-
mission delay which needs to be considered in the analysis.

Let us first define the number of bits, beside the data part
in the frame, which are exposed to the bit-stuffing mecha-
nism as lm�4n">?op��q$osr . This since we have either >?o (CAN
standard format) or q$o (CAN extended format) bits (beside
the data part in the frame) which are exposed to the bit-
stuffing mechanism. 10 bits in the CAN frame are not ex-
posed to the bit-stuffing mechanism (see Figure 2). Now
let us define the number of bytes of data in CAN message
frame G as tE����u Os�\v$w . Recall, a CAN message frame can

contain 0 to 8 bytes of data. According to the CAN stan-
dard [10], the total number of bits in a CAN frame before
bit-stuffing is thereforevktE�p� lB�ML8O (5)

where 10 is the number of bits in the CAN frame not ex-
posed to the bit-stuffing mechanism. Since only l �bvkt��
bits in the CAN frame are subject to bit-stuffing, the total
number of bits after bit-stuffing can be no more thanvktE��� lB�ML8O � � lB� vktE� f Lo � (6)

Intuitively the above formula captures the number of
stuffed bits in the worst case scenario, shown in Figure 3.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 3. The worst case scenario when stuff-
ing bits.

Let 5879� : be the worst-case time taken to transmit a bit on
the bus – the so-called bit time. The worst-case time taken
to transmit a given frame G is therefore

���
���svktE�p� lB�ML8Oe� � lB��vktE� f Lo ��� 5879� : (7)

3. New Approach

The expression (6) describes the length of a CAN frame
in the worst case. However, in our previous work [8, 9]
we represent the number of stuff-bits as a distribution. By
using a distribution of stuff-bits instead of the worst-case
number of stuff-bits, we obtain a distribution of response-
times allowing us to calculate less pessimistic (compared to
traditional worst-case) response-times based on probability.

Firstly, let us define � as the distribution of stuff-bits
in a CAN message frame. � is a set of pairs containing
the number of stuff-bits with corresponding probability of
occurrence. Each pair is defined as <	� �\� <	� @�@ �
� , where� <	� @ is the probability of exactly � stuff-bits in the CAN
frame. Note that

R���� N � <	� @E� L .
From [9] we can extract 9 different distributions of stuff-

bits depending on the number of bytes of data in the CAN
message frame. We define ��� T as the distribution repre-
senting a CAN frame containing t�� bytes of data. Recall

that tE� is the number of bytes of data (0 to 8) in a message
frame G .

We define K ��� < � @ as the worst-case number of stuff
bits, K , to expect with a probability � based on the stuff-bit
distribution � , i.e.,

R ��� # Y 3 � <	� @ � � , or to express it in
another way, the probability of finding more than K stuff
bits, based on the stuff-bit distribution � , is � � .

Note that the selection of a probability � should be done
based on the requirements of the application. With a proper
value for � , the worst case mean time to failure should suf-
ficiently exceed what is required.

Finally, by assuming (as in [9]) that CAN message
frames are independent in the sense of number of stuff-bits,
we can define � # � as the joint distribution corresponding

to the combination of K distributions of stuff-bits, i.e., the
number of stuff-bits caused by a sequence of K messages
sent on the bus is described by � # � �������������������� ��� # ,

where � denotes multiplicative combination of discrete dis-
tributions, as illustrated in the example below. If the distri-

butions happens to be equal, 1� # � is defined as the joint dis-

tribution of K equal distributions of stuff-bits, i.e., the num-
ber of data bytes are the same for all messages considered
by the expression.

3.1. Example

As an illustration, let us use an example where we as-

sume � �	n < Os�\O�! L"@-� < Lk�\O�! v�@-� <#" �\O�! L"@�r . Calculating 1� $%� is

done by multiplying the probabilities for all combinations
of stuff-bits, i.e., <'& �\� <'& @�@�(<#) �\� <#) @�@j� <'& �) �\� <'& @�(k� <#) @�@
where & �) � n"Os��Lk� " r . The result of a multiplication is a
new number of stuff-bits with a corresponding probability.
In our example the multiplication yields1* $ �	� n < Os�\O�! OsL"@-� < Lk�\O�! Okv�@-� <#" �\O�! OsL"@-� < Lk�\O�! Okvk@-� <#" �\O+! ,?o2@-�< >s�\O�! Okv�@-� <#" �\O�! OsL"@-� < >s�\O�! Okv�@-� < op�\O�! OsL"@�r

(8)

However, all probabilities in 1� $%� of equal number of stuff-

bits are added together leaving1* $ �b�bn < Os�\O�! OsL"@-� < Lk�\O�! L�,�@-� <#" �\O�! ,-,�@-� < >s�\O�! L�,k@-� < op�\O�! O L"@�r
(9)

In our example, with � � L8O 1�3 , � < � @ � L and� 1� $.� � < � @j�&> .

3.2. Probabilistic Worst-Case Response-Time

In order to include the bit-stuffing distributions in Equa-
tion 3 we need to redefine ��� and %�� to ��� < � @ and %�� < � @
whereA ��� < � @ is the transmission time of message G��� < � @j���*��� � � T < � @ 5879� : (10)

where � � T is the distribution of stuff-bits in the mes-
sage, and ��� is the transmission time of message G ex-
cluding stuff-bits

�*�
� < vktE�p� lB�ML8O�@�5879� : (11)

where 10 is the number of bits in the CAN frame not
exposed to the bit-stuffing mechanism.A %�� < � @ is the blocking time caused by message G having
to wait for a lower priority message sent on the bus.
Since the bus is non pre-emptive, the worst-case sce-
nario is that the biggest (in size) lower priority message
just started its transmission when message G becomes
ready to transmit. Thus we can define the blocking
time of a message G as%�� < � @j�) �p� �

max����� �	� T
 . � � / < � @ 5879� : (12)

where � max����� �	� T
 . � � / is the distribution of stuff-bits of the

blocking message
�

(the biggest lower priority mes-
sage), and) � is the blocking time not considering the
bit-stuffing mechanism

) �!� maxC)?D ,$. � / < � C @!��>?5879� : (13)

where >?5879� : is the inter-frame space. Note that (12)
is pessimistic in the sense that we always assume that
we will be blocked by a message. Taking probabil-
ity of blocking actually occurring into consideration as
well as not always assuming biggest blocking message
would give a less pessimistic result. However, since
we are basing the analysis on a “critical instant”, we
create a worst-case scenario but we use distributions
of values instead of worst-case ones when calculating
the response-time.

Taking the probabilistic definitions of Equation 10 and
Equation 12 into consideration we can reformulate Equa-
tion 3 as

��� # < � @E�b��� �) �p���*�� '(*)�+-,$. � /?c (< ��� #21�3 < � @ f ��� f �*�9@ < � (��>?5879� :�@���� < � @ 5879� :
(14)

where �� is defined as the distribution of the total number
of stuff-bits of all messages involved in the response time
analysis for message G
��!��� max����� �	� T
 . � � / ��� � T � *(*)�+-,$. � / 1*

��� . � T . , / 1 � T 1�� T / � � �
(15)

where � max����� �	� T
 . � � / is the distribution of stuff-bits caused by

the longest lower priority blocking message, � � T is the dis-
tribution of stuff-bits in the message under analysis, and�(*)�+-,$. � / 1���� . � T . , / 1 � T 1�� T / � � � is the distribution of stuff-bits in

all interfering messages of higher priority sent before mes-
sage G will be sent, i.e., the higher priority messages sent
causing message G to be queued.

Having the distribution �� , a proper total number of
stuff-bits is selected depending on the desired probability
of response time violation � , i.e., for every step in the recur-
rence relation (14), a value �� < � @ must be extracted from
Equation 15.

3.3. Complexity

Regarding the complexity of the analysis, the dominat-
ing component is the calculation in Equation 15. Since all
parameters in Equation 15 are distributions, and distribu-
tions are multiplied together causing multiplications of all
combinations of stuff-bits, the complexity of solving the ex-
pression is as follows

� < � D @ (16)

where F is the number of messages involved in Equation 15,
and

�
is the number of stuff-bits in the biggest size mes-

sage, having largest number of stuff-bits in its distribution.
However, due to the iterative nature of the equations, solv-
ing Equation 15 can be done with a much lower complexity.
In fact, the complexity of calculating the joint distribution
can be reduced to

� < F (� $ @ (17)

since we in each iteration can reduce the number of consid-
ered values to

� (�F by adding all values with equal number
of stuff-bits together, as illustrated in Section 3.1.

� � L8O 1 $�� � � L8O 1�3 $
Priority Bytes ��� �� � � ��� ��� < � @ gain ��� < � @ gain ��� � ��

(ID) (ms) (ms) (ms) (ms) (ms) (%) (ms) (%) (ms)
17 1 0.480 1000 5 1.416 1.384 2.26 1.328 6.21 0.680
16 2 0.560 5 5 2.016 1.936 3.97 1.864 7.54 1.240
15 1 0.480 5 5 2.536 2.448 3.47 2.360 6.94 1.720
14 2 0.560 5 5 3.136 3.032 3.32 2.920 6.89 2.280
13 1 0.480 5 5 3.656 3.536 3.28 3.424 6.35 2.760
12 2 0.560 5 5 4.256 4.120 3.20 4.000 6.02 3.320
11 6 0.864 10 10 5.016 4.840 3.51 4.720 5.90 4.184
10 1 0.480 10 10 8.376 5.368 35.91 5.248 37.34 4.664
9 2 0.560 10 10 8.976 8.480 5.53 8.336 7.13 5.224
8 2 0.560 10 10 9.576 9.144 4.51 9.000 6.02 8.424
7 1 0.480 100 100 10.096 9.728 3.65 9.592 4.99 8.904
6 4 0.712 100 100 19.096 15.256 20.11 10.304 46.04 9.616
5 1 0.480 100 100 19.616 18.472 5.83 18.176 7.34 10.096
4 1 0.480 100 100 20.136 19.224 4.53 18.968 5.80 18.320
3 3 0.632 1000 1000 28.976 19.928 31.23 19.704 32.00 18.952
2 1 0.480 1000 1000 29.496 27.920 5.34 20.400 30.84 19.432
1 1 0.480 1000 1000 29.520 28.352 3.96 27.944 5.34 19.912

Table 1. SAE CAN messages.

3.4. Example

To illustrate our method we use a small example with 3
messages, message 1-3, where message 1 has the highest
priority, and message 3 the lowest priority. We assume that
we have no jitter, i.e., � � O for all messages, and that all
messages have the same size. Note that the assumption re-
garding the message length to be equal is just for simplicity
for the reader. This is not a requirement. We assume � � L8O ,5879� :�� L , and � is as in Section 3.1. Finally, again for sim-
plicity, all message periods are so big causing Equation 4
never to exceed 1, i.e., c <Hi @j� L .Based on our assumptions, the worst-case scenario for
message 2 would be as illustrated in Figure 4, i.e., message
2 is blocked by message 3 (the lowest priority message) and
delayed by message 1 (the highest priority message).

Using Equation 14 we can calculate the response time� $ < � @ as

� $ < � @j�) $ ��� $ � < � 3 � >?5879� :�@!�� $ < � @ 5879� : (18)

where) $ ���
Z �W>?5879� : and $ ��� ���.� � ��� � � �
	�� 1� Z �

(since t 3 �&t $ �Mt Z) where 1� Z � is calculated to be

33 Lbitc Υ+τ
11 Lbitc Υ+τ

22 Lbitc Υ+τ

Message 3 Message 1 Message 2

Blocking
message

Higher priority
message

Message under
analysis

Figure 4. Worst-case message sequence for
message 2.

1* Z �b�Bn < Os�\O�! OkOsL"@-� < Lk�\O�! O " o2@-� <#" �\O�! L���q?@-� < >s�\O�! q ,�@-�< op�\O�! L���qk@-� < q �\O�! O " o2@-� < ,s�\O�! OkOsL"@�r (19)

We select an acceptable probability of worst-case response
time violation � to be L8O 1�3 . Based on � , $ < � @ �bo , caus-
ing � $ < � @j� < L8Oe��>�@��ML8Oe� < L8O ��>�@!�6o �Mo�O .
4. Evaluation

In order to demonstrate the performance of our new ap-
proach for calculating a probabilistic worst-case response

0

5

10

15

20

25

30

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Priority

R
es

po
n

se
 ti

m
e

WC

p=10-24

p=10-12

Sim

Figure 5. Message response times (priority is the message ID as in Table 1).

time we make use of the widely published simplification
[14] of the Society of Automotive Engineers (SAE) bench-
mark [11].

We use a bus speed of 125kbit/s, and we select the ac-
ceptable probability of violating the calculated worst case
response time, � , to be L8O 1 $�� and L8O 1�3 $ respectively. Then,
we calculate the worst-case response time both according to
the traditional approach (1) and the probabilistic approach
(14). The response times of all messages of the subset of
SAE messages are shown in Table 1, where �B� denotes the
results of traditional analysis and ��� < � @ the results of our
new probabilistic analysis. To have some “real” response
times to compare the analytic ones with, we simulated the
SAE message set using the worst-case transmission times.
The system was simulated for 2000000 ms. The worst-case
measured response time is presented as � � � �� in the right-
most column of Table 1. Note that the difference between
the simulated value and the analytic worst-case is due to
that in the simulation all messages are released at time “0”.
Hence, the worst-case blocking as defined by Equation 12
might not occur due to the phasings of messages.

What we see in Table 1 is that the probabilistic re-
sponse times ��� < � @ are significantly lower than the tradi-
tional worst-case response times ��� . An interesting obser-
vation is that the gain is substantially higher for some mes-
sages. The reason for this is that a slight additional inter-

ference, e.g., caused by an additional stuff-bit, will in these
cases extend the response-time such that transmission will
be delayed by one or more additional higher priority mes-
sage transmissions. Note that all calculated probabilistic
response times are never optimistic in comparison with the
simulation result (as seen in Figure 5). This even though we
are using worst-case transmission times. Using bit-stuffing
distributions in the simulation would give even shorter re-
sponse times.

5. Conclusions

In this paper we have presented a new probabilistic ap-
proach to calculate response times for messages in the Con-
troller Area Network. The key element to this approach is
that we use bit-stuffing distributions instead of worst-case
values. The performance of our method is evaluated using
a subset of the SAE benchmark.

Our main motivation for calculating probabilistic
response-times is that they allow us to reason about trade-
offs between reliability and timeliness. We have in [6] pre-
sented a method for such analysis of controller area net-
works subject to external interference. An obvious next
step would be to integrate the bit-stuffing distribution based
analysis presented here with that analysis.

Acknowledgements

The authors wish to express their gratitude to the anony-
mous reviewers for their helpful comments. The work
presented in this paper was supported by the Swedish
Foundation for Strategic Research (SSF) via the research
programme ARTES, the Swedish Foundation for Knowl-
edge and Competence Development (KK-stiftelsen), and
Mälardalen University.

References

[1] A. Atlas and A. Bestavros. Statistical Rate Monotonic
Scheduling. Proceedings of the

�������
IEEE Real-Time Sys-

tems Symposium, pages 123–132, December 1998.
[2] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell,

and A. J. Wellings. Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling. Software Engineer-
ing Journal, 8(5):284–292, September 1993.

[3] I. Broster and A. Burns. Timely Use of the CAN Protocol in
Critical Hard Real-Time Systems With Faults. Proceedings
of the

�������
Euromicro Conference on Real-Time Systems,

June 2001.
[4] A. Burns. Preemptive Priority Based Scheduling: An Ap-

propriate Engineering Approach. Technical Report YCS
214, University of York, 1993.

[5] CAN Specification 2.0, Part-A and Part-B. CAN in Au-
tomation (CiA), Am Weichselgarten 26, D-91058 Erlangen.
http://www.can-cia.de/, 2002.

[6] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Inte-
grating Reliability and Timing Analysis of CAN-based Sys-
tems. IEEE Transaction on Industrial Electronics, 49(6),
December 2002.

[7] S. Manolache. Schedulability Analysis of Real-Time Sys-
tems with Stochastic Task Execution Times. Licentiate The-
sis No. 985, Dept. of Computer and Information Science,
IDA, Linköping University, Sweden, December 2002.

[8] T. Nolte, H. Hansson, and C. Norström. Using Bit-Stuffing
Distributions in CAN Analysis. IEEE/IEE Real-Time Em-
bedded Systems Workshop (RTES’01), December 2001.

[9] T. Nolte, H. Hansson, and C. Norström. Minimizing CAN
Response-Time Analysis Jitter by Message Manipulation.
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS’02), pages 197–206, September
2002.

[10] Road Vehicles - Interchange of Digital Information - Con-
troller Area Network (CAN) for High-Speed Communica-
tion. International Standards Organisation (ISO). ISO
Standard-11898, Nov 1993.

[11] SAE. Class C Application Requirement Considerations-
SAE J2056/1. SAE Handbook, pages 23.366–23.371, June
1993.

[12] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheri-
tance Protocols: An Approach to Real-Time Synchroniza-
tion. IEEE Transactions on Computers, 39(9):1175–1185,
September 1990.

[13] K. W. Tindell and A. Burns. Guaranteed Message Laten-
cies for Distributed Safety-Critical Hard Real-Time Control
Networks. Technical Report YCS229, Dept. of Computer
Science, University of York, June 1994.

[14] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating
Controller Area Network (CAN) Message Response Times.
Control Engineering Practice, 3(8):1163–1169, 1995.

[15] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). Proceedings of RTSS’94 -

�
	����
IEEE Real-Time

Systems Symposium, pages 259–265, December 1994.
[16] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-

Time Scheduling. Real-Time Systems Journal, 18(1):7–23,
January 2000.

