
Developing Predictable Vehicular Distributed
Embedded Systems on Multi-core?

Saad Mubeen1, Thomas Nolte1, and Kurt-Lennart Lundbäck2

1 Mälardalen University Sweden, firstname.lastname@mdh.se
2 Arcticus Systems AB Sweden, kurt.lundback@arcticus-systems.com

Abstract. In this paper we address the challenges related to supporting
model- and component-based development of predictable software for
vehicular distributed embedded systems, utilizing multi-core platforms.
We present a research plan for the development of new methods and
techniques to deal with these challenges. The techniques will support
various aspects such as modeling of the software architecture; supporting
multiple criticality levels; verifying predictability of the system using end-
to-end timing analysis; code generation; and providing a predictable run-
time support on multi-core platforms by virtualizing a certified single-
core real-time operating system. As a proof of concept, we will implement
the newly developed techniques in a commercial tool chain (Rubus-ICE).
The efficacy of the newly developed techniques and the extended tool
chain will be demonstrated on the industrial case studies.

1 Introduction
A large share of customer value in modern vehicles comes from computer-
controlled functionality that is realized by distributed embedded systems. With
the recent advancements in the vehicular domain, the size and complexity of
software in such systems has drastically increased [4]. The traditional software
development techniques for these systems are no longer effective with respect
to handling the complexity; supporting reuse; reducing development costs, time
to test and time to market. These challenges can be addressed by developing
these systems using the principles of model- and component-based software en-
gineering [7, 9, 11]. The developers of the these systems have to not only deal
with their complexity but also guarantee their predictable timing behavior. This
means, the timing behavior of these systems has to be verified, for instance, by
using a priori schedulability analysis techniques such as end-to-end timing anal-
ysis [10,12]. In addition, the execution platform should also provide predictable
run-time support for these systems. There are several industrial tool chains, e.g.
Rubus-ICE [2] and AUTOSAR [1] that support model-based development and
predictable execution of the single-core systems. However, a lot of new challenges
have emerged with the introduction of multi-core platforms for the execution of
these systems [13]. A seamless tool chain for the development of vehicle soft-
ware with multiple criticality levels and its predictable execution on partitioned
single-core and multi-core platforms is missing in the state of the practice.

? The work in this paper is supported by the Swedish Foundation for Strategic Re-
search within the project PRESS.



Research Goals and Challenges. We aim to develop techniques for model-
and component-based software development of systems utilizing multi-core plat-
forms. The techniques will support various development steps, i.e., from modeling
of the software architecture to its synthesis and execution. The software in these
systems can have multiple criticality levels. For instance, a high-critical func-
tion may co-exist with other low-critical functions on the same ECU. Multiple
criticality levels in the vehicle software will be supported by means of virtual
partitions in the core(s) of single-core as well as multi-core platforms. The main
focus of this paper is on supporting predictable execution of these systems on
such platforms. In this context, an end-to-end timing analysis framework will
be developed to verify timing behavior of these systems. In order to provide a
predictable run-time support for these systems on multi-core platforms, we aim
to develop a virtualization technique that supports the reuse of a certified single-
core Real-Time Operating System (RTOS) by means of a multi-core hypervisor.

Our goal is to implement the newly developed techniques in a tool chain that
can be easily adopted by the vehicle industry. We plan to provide a proof-of-
concept demonstrator by implementing these techniques in existing commercial
tools that are actually used by the industry. The modeling and synthesis tech-
niques will be implemented in the existing industrial model, the Rubus Com-
ponent Model (RCM) and its tool suite Rubus-ICE [2]. The end-to-end timing
analysis will be implemented as a plug-in for Rubus-ICE. Rubus RTOS, already
certified in ISO 26262, currently supports single-core platforms. The newly devel-
oped multi-core hypervisor will reuse a separate instance of the Rubus RTOS per
core. The efficacy of the extended tool suite will be demonstrated on the indus-
trial use cases. The main research challenge can be formulated as follows. “How
to support model- and component-based development and predictable execution
of software for vehicular distributed embedded systems on multi-core platforms?”

2 Research plan and proposed contributions
We propose six phases to accomplish the research goals outlined in the paper.

1. A technique will be developed to support modeling of component-based ve-
hicular distributed embedded systems on multi-core platforms.

2. The technique developed in the first phase will be extended to support mod-
eling and development of systems that have more than one criticality level.
This means, some parts of the software architecture (e.g., subsystems or
chains of components) in these systems may have more stringent timing re-
quirements compared to other parts. The motivation behind the need for
multiple criticalities comes from the requirements on the certification of the
system. The modeling of the software architecture for these systems will
be implemented by means of virtual partitions in the core(s) of single-core
and multi-core platforms respectively. The idea is to allocate the parts of
the software architecture with different criticality levels to separate virtual
partitions or cores. In this context, policies will be developed to handle de-
pendencies and interferences among partitions.

3. In order to provide pre-runtime guarantees on the timing behavior of the sys-
tem, the existing end-to-end timing analysis will be extended. Here, the focus



will be on analyzing the end-to-end delays (age and reaction delays) [10] on
distributed cause-and-effect chains. The analysis framework will also con-
sider partitioned systems and multi-core platforms.

4. In order to provide a predictable run-time support for these systems on
multi-core platforms, we will develop a virtualization technique that supports
the reuse of certified single-core RTOS. This objective will be realized by
developing a multi-core hypervisor that will instantiate the certified single-
core RTOS for each core. One of the benefits for this approach is that there
is no need to recertify the RTOS if the multi-core hypervisor can be certified.
Moreover, virtual partitions will be supported.

5. We will provide the proof of concept by assembling a complete tool chain that
will support modeling, timing analysis, synthesis and predictable execution of
the systems on multi-core platforms. The modeling and synthesis techniques
will be implemented in RCM and Rubus-ICE. The end-to-end timing analysis
will be implemented as a plug-in for Rubus-ICE. The multi-core hypervisor
will reuse a separate instance of the certified Rubus RTOS per core.

6. In this phase the validation of the newly developed techniques will be carried
out. The tool chain, implementing the new techniques, will be validated on
several industrial case studies provided by the industrial partners.

3 Related work
The research community has produced a large body of research on schedulability
analysis of mixed-criticality systems since the seminal paper by Vestal [14]. Burns
and Davis [5] provide a survey on mixed criticality systems for both single-core
and multi-core platforms. However, none of the existing works has addressed end-
to-end path delay analysis for distributed systems with multiple criticality levels
on multi-core platforms. We will address this analysis in our work. The focus of
the survey and related works is on scheduling and schedulability analysis. These
works can be regarded as complementary to our work because schedulability
analysis is one of our sub-goals in providing a model- and component-based
development and predictable execution support for mixed criticality systems on
partitioned single-core as well as multi-core platforms.

There are several ongoing research projects that explore prospects of multi-
core platforms for embedded systems. EMC2, a large European project3, aims
to utilize multi-core technology for the execution of mixed-criticality systems. In
this context, the focus of the project is to support adaptive systems in dynamic
and changeable real-time environments by means of a service-oriented architec-
ture approach. On the other hand, our focus is on the development of a seamless
tool chain for model-based development and predictable execution of such sys-
tems. Moreover, we focus on a component-based architecture. Unlike EMC2,
we aim to develop a virtualization technique by reusing the certified single-core
RTOS to support predictable multi-core run-time support.

The MCC project4 focuses on development of mixed-criticality systems on
many-core platforms [3]. Whereas the focus of our work is on both partitioned

3 http://www.artemis-emc2.eu/
4 https://www.cs.york.ac.uk/research/research-groups/rts/mcc/



single-core and multi-core platforms. Also, MCC does not provide the model-
and component-based development support. SMARTCore [6] and other related
works [8] exploit model-driven engineering for the development of multi-core
systems. They focus on run-time monitoring, deployment optimization and back
propagation of extra-functional properties from run-time to the system models.
Whereas, our aim is to develop a seamless tool chain that supports various ac-
tivities including modeling, timing analysis, synthesis and predictable execution
of such systems. Also, these works do not address multiple criticality systems.

Similarly, there are other projects that address various aspects of mixed criti-
cality and multi-core systems, e.g., RECOMP, CERTAINTY, PROXIMA, CON-
TREX and DREAMS. To the best of our knowledge, none of these projects
seemingly address our sub-goals that include focus on the vehicular domain;
model- and component-based software development; predicting the timing be-
havior with respect to the end-to-end path delays; and virtualization of certified
single-core RTOS to support predictable multi-core run-time support.

References

1. AUTOSAR Techincal Overview, Release 4.1, Rev.2, Ver.1.1.0., http://autosar.org
2. Rubus models, methods and tools, http://www.arcticus-systems.com
3. Bate, I., Burns, A., Davis, R.: A bailout protocol for mixed criticality systems. In:

27th Euromicro Conference on Real-Time Systems (2015)
4. Broy, M., Kruger, I., Pretschner, A., Salzmann, C.: Engineering automotive soft-

ware. Proceedings of the IEEE 95(2), 356 –373 (Feb 2007)
5. Burns, A., Davis, R.: Mixed criticality systems - a review. Tech. rep., Dept. of

Computer Science, University of York (2015)
6. Ciccozzi, F., Corcoran, D., Seceleanu, T., Scholle, D.: Smartcore: Boosting model-

driven engineering of embedded systems for multicore. In: 12th International Con-
ference on Information Technology - New Generations. pp. 89–94 (April 2015)

7. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA (2002)

8. Feljan, J., Ciccozzi, F., Carlson, J., Crnkovic, I.: Enhancing model-based architec-
ture optimization with monitored system runs. In: 41st Euromicro Conference on
Software Engineering and Advanced Applications. pp. 216–223 (Aug 2015)

9. Henzinger, T.A., Sifakis, J.: The Embedded Systems Design Challenge. In: 14th
International Symposium on Formal Methods (2006)

10. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Support for end-to-end response-time and
delay analysis in the industrial tool suite: Issues, experiences and a case study.
Computer Science and Information Systems 10(1) (2013)

11. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Communications-Oriented Development of
Component- Based Vehicular Distributed Real-Time Embedded Systems. Journal
of Systems Architecture 60(2), 207–220 (2014)

12. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocess. Microprogram. 40, 117–134 (April 1994)

13. Vector Informatic GmbH: Autosar goes multi-core the safe way. In: Techncal
Article (June 2014), https://vector.com

14. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: 28th IEEE International Symposium on Real-Time
Systems. pp. 239–243 (Dec 2007)


