
The Journal of Systems and Software 111 (2016) 128–148

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Twenty-eight years of component-based software engineering

Tassio Vale a,b,c,∗, Ivica Crnkovic e, Eduardo Santana de Almeida b,c,
Paulo Anselmo da Mota Silveira Neto c,d, Yguaratã Cerqueira Cavalcanti c,d,
Silvio Romero de Lemos Meira d

a Center of Exact Sciences and Technology, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil
b Computer Science Department, Federal University of Bahia, Salvador, BA, Brazil
c RiSE, Reuse in Software Engineering, Recife, PE, Brazil
d Informatics Center, Federal University of Pernambuco, Recife, PE, Brazil
e School of Innovation, Design and Engineering (IDT), Mälardalen University (MDH), Västerås, Sweden

a r t i c l e i n f o

Article history:

Received 18 July 2014

Revised 20 July 2015

Accepted 14 September 2015

Available online 25 September 2015

Keywords:

Systematic mapping study

Component-based software engineering

Component-based software development

Software component

a b s t r a c t

The idea of developing software components was envisioned more than forty years ago. In the past two

decades, Component-Based Software Engineering (CBSE) has emerged as a distinguishable approach in soft-

ware engineering, and it has attracted the attention of many researchers, which has led to many results being

published in the research literature. There is a huge amount of knowledge encapsulated in conferences and

journals targeting this area, but a systematic analysis of that knowledge is missing. For this reason, we aim

to investigate the state-of-the-art of the CBSE area through a detailed literature review. To do this, 1231 stud-

ies dating from 1984 to 2012 were analyzed. Using the available evidence, this paper addresses five dimen-

sions of CBSE: main objectives, research topics, application domains, research intensity and applied research

methods. The main objectives found were to increase productivity, save costs and improve quality. The most

addressed application domains are homogeneously divided between commercial-off-the-shelf (COTS), dis-

tributed and embedded systems. Intensity of research showed a considerable increase in the last fourteen

years. In addition to the analysis, this paper also synthesizes the available evidence, identifies open issues

and points out areas that call for further research.

© 2015 Elsevier Inc. All rights reserved.

e

t

o

R

S

i

i

i

(

m

s

t

i

S

1. Introduction

Component-Based Software Engineering (CBSE) promotes the de-

velopment of software systems through construction from existing

software components, the development of components as reusable

entities, and system evolution realization by the customization and

replacement of components (Szyperski, 2002). The CBSE idea is not

new. It was envisioned more than forty years ago by McIlroy (1968)

who provided an idea of commercial component production similar

to that found in other engineering fields. However, most of the re-

search work on CBSE has emerged in the last two decades. The moti-

vations behind CBSE have been of a business and technical nature, i.e.

increased efficiency and effectiveness, lower costs, and shorter time-

to-market on one side, and improved quality with regards to fewer

errors, improved performance, maintainability, portability, etc. on the

other side. However, for many of these claims there is no proper
∗ Corresponding author at: Centro de Ciências Exatas e Tecnológicas (CETEC) da Uni-

versidade Federal do Recôncavo da Bahia (UFRB) - Rua Rui Barbosa, 710, Centro, Crus

das Almas/BA, Brasil, CEP 44.380-000 - Phone: +55 75 3621 9747.

E-mail address: tassio.vale@ufrb.edu.br, tassio.vale@gmail.com (T. Vale).

s

http://dx.doi.org/10.1016/j.jss.2015.09.019

0164-1212/© 2015 Elsevier Inc. All rights reserved.
vidence. Furthermore, after many years of development, the ques-

ion arises whether the research in this field has fulfilled its goals,

r if there are still important issues that require further research.

egarding these years of development in the CBSE research field,

chneider and Han (2004) argue that a literature review on CBSE

s important in order to investigate the state-of-the-art, point-

ng out research topics which researchers and practitioners should

nvestigate.

In this context, we present a systematic mapping study

Kitchenham and Charters, 2007; Petersen et al., 2008) performed to

ap out the CBSE area in the period 1984–2012. The goal is to synthe-

ize evidence of contributions from academic publications. We iden-

ify the existing research trends, open issues, and areas for further

mprovement.

The remainder of this paper is organized as follows: Next,

ection 2 describes the mapping process undertaken in this

tudy. Sections 3 and 4 present data analysis and synthesis re-

sults. Section 5 considers the threats to the validity of this re-

search, and Section 6 presents the related work. Finally, Section 7

presents a summary of the work and directions for future

research.

http://dx.doi.org/10.1016/j.jss.2015.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.09.019&domain=pdf
mailto:tassio.vale@ufrb.edu.br
mailto:tassio.vale@gmail.com
http://dx.doi.org/10.1016/j.jss.2015.09.019

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 129

Fig. 1. Mapping study process (Petersen et al., 2008).

Table 1

List of journals and magazines with their h-indexes on 23 Dec 2013.

Acronym Journal and magazines h-index

CACM Communications of the ACM 118

IEEE TSE IEEE Transactions on Software Engineering 100

- IEEE Software 67

JSS Journal of Systems and Software 54

TOSEM ACM Transactions on Software Engineering and Methodology 49

IST Information and Software Technology 48

SPE Software - Practice & Experience 45

STVR Software Testing, Verification and Reliability 29

JSME Journal of Software Maintenance and Evolution 29

SQJ Software Quality Journal 21

- IEEE Computer Not found

2

a

r

p

C

s

m

s

a

p

m

2

fl

i

fi

p

f

2

(

m

i

T

r

s

2

c

a

i

s

m

2

e

t

1 H-index reference journals - http://www.scimagojr.com/
2 H-index reference for conferences - http://shine.icomp.ufam.edu.br/
3 By using keywords “software” and “component” and searching for studies in SCO-

PUS database, the first 200 most-cited relevant publications originate from the selected

sources.
. Systematic mapping study method

The review method is based on guidelines for performing system-

tic mapping studies Petersen et al. (2008) and systematic literature

eviews Kitchenham and Charters (2007). We adopted the mapping

rocess defined in Petersen et al. (2008), as illustrated in Fig. 1.

The definition of research questions reflects the goal of this study.

BSE papers are identified by following search procedures, and the

creening of these papers is the primary focus of this study. Further-

ore, keywording using abstracts helps to develop the classification

cheme and ensure that the scheme takes the existing studies into

ccount. This classification will be used for data extraction from the

rimary studies, with the aim of synthesizing all data through the

apping process.

.1. Research questions

The main question which drives this mapping study and re-

ects our goal is: “How can we characterize the contributions of CBSE

n the last twenty-eight years?”. In order to answer this question,

ve different questions were formulated, addressing different as-

ects of the CBSE area. The research questions are described as

ollows:

• RQ1. What is the intensity of research activity on CBSE?

Rationale: In this question, “intensity” is represented by a quan-

tification of studies, journals, conferences and countries that are

involved in CBSE publications. This analysis indicates the intensity

of research activities and identifies CBSE research communities.
• RQ2. Which are the main objectives of applying CBSE?

Rationale: This question investigates the main technical and

non-technical objectives addressed in the CBSE studies, such

as productivity improvement, quality improvement or cost sav-

ings. The limitations of applying CBSE are also identified in this

question.
• RQ3. Which are the most frequently investigated CBSE research

topics and how they have changed over time?

Rationale: This question analyzes research topics addressed by the

CBSE studies. The research topics identified are further investi-

gated and used for identifying research gaps.
• RQ4. In which domains has CBSE been applied?

Rationale: This question aims at finding application domains in

which CBSE has been most frequently applied, i.e., the specifics

of CBSE utilization.
• RQ5. Which are the most frequently applied research types and

methods? How have they changed over time?

Rationale: This question identifies the applied research ap-

proaches and empirical research methods, analyzing how they

have evolved over the years.

.2. Conduct search

Although Kitchenham and Charters (2007) and Petersen et al.

2008) advocate the use of two search strategies, manual and auto-

atic, manual search was considered as the primary source, given the

nfeasibility of analyzing all studies collected from automatic search.

herefore, we decided to perform a manual search which considers

elevant journals and conferences related to the CBSE area.

The use of manual search as a unique way to search primary

tudies is commonly used in the literature (Jorgensen and Shepperd,

007; Sjoberg et al., 2005). In fact, according to Brereton et al. (2007),

urrent academic search engines are not designed to support system-

tic literature reviews.

Tables 1 and 2 show the journals and magazines with their h-

ndices1 and conferences/workshops2 that have been used in the

tudy. These journals, conferences and workshops make up the vast

ajority of the publications related to CBSE 3.

.3. Selection criteria

Each study was analyzed according to the defined inclusion and

xclusion criteria, in order to verify whether it was suitable to address

he research questions. The criteria are described as follows:

http://www.scimagojr.com/
http://shine.icomp.ufam.edu.br

130 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Table 2

List of conferences and workshops and their h-indexes on Dec 23 2013.

Acronym Conference h-index

ICSE International Conference on Software Engineering 110

OOPSLA Intl. Conf. on Object-Oriented Programming, Systems, Languages, and Applications 74

ASE IEEE/ACM International Conference on Automated Software Engineering 52

ESEC/FSE European Software Engineering Conference 48

SPLC Software Product Line Conference 40

GPCE International Conference on Generative Programming and Component Engineering 37

WICSA Working IEEE/IFIP Conference on Software Architecture 32

SEAA Euromicro Conference on Software Engineering and Advanced Applications 31

CBSE International ACM SIGSOFT Symposium on Component Based Software Engineering 25

TOOLS Technology of Object-Oriented Languages and Systems 21

ICCBSS (CCBS) IEEE International Conference on COTS-Based Software Systems 20

ICSR International Conference on Software Reuse 20

ECSA European Conference on Software Architecture 15

SAVCBS Specification and Verification of Component-Based Systems Workshop 7

QoSA Conference on the Quality of Software Architectures 2

WCOP Workshop on Component-Oriented Programming Not found

b

r

i

i

s

3

t

• Inclusion Criteria. All studies published in the selected journals

and conferences which address any CBSE topic; primary studies

based on the same data and different focus are considered as dif-

ferent studies.
• Exclusion Criteria. gray literature (e.g. books, technical reports,

etc.); short papers (fewer than five pages); studies which address

only commercial-off-the-shelf (COTS) products without mention-

ing software components; studies which address components

only as architectural units4; when the same study is reported by

more than one paper, the most complete study was included.

2.4. Screening of papers

The selection of studies comprises a screening process composed

of two iterations (see Fig. 3). These iterations were performed using

peer review. Peer review involved two researchers assessing the same

paper, and if there was any conflict of judgment, a third researcher

resolved it. The relevant studies selected from this screening process

are called primary studies (Kitchenham and Charters, 2007).

After performing manual search on the selected conferences and

journals, 1396 studies were identified. The inclusion and exclusion

criteria were applied in the first iteration on the title and abstracts.

In the second iteration, a more detailed review was performed, by

reading the introduction and conclusion of the papers, resulting in

1231 primary studies.

2.5. Classification scheme

Instead of using keywording with abstracts (Petersen et al., 2008),

we adopted two taxonomies from other studies. They are described

as follows:

• Research Topic. Schneider and Han (2004) summarize six re-

search topics in the CBSE field based on Nierstrasz and Meijler

(1995): functionality, interaction, quality, management, evolution

and tools and methodology. (each category is described in Table 4).

This is used to answer the RQ2 research question.
• Research Type. To analyze which type of research is provided in

CBSE research literature, we adopt an approach from Wieringa

et al. (2005), originally applied on requirements engineering. In

Wieringa et al. (2005) a software engineering lifecycle is dis-

cussed, and related research activities are identified: (i) prob-

lem investigation (i.e. which problems exist in CBSE), (ii) solution
4 Components are intrinsic parts of software and there are many publications re-

ferring to components and software architecture. However, in CBSE, components have

extended meaning and purpose when compared to “just” being part of an architecture.

J

validation (i.e. what are the properties of a proposed solution?),

and (iii) implementation evaluation (i.e. what are the experiences

with this implemented solution?). According to these activities,

in Wieringa et al. (2005) the following classification of the re-

search type has been derived: evaluation, validation, solution pro-

posal, philosophical argumentation, opinion and experience report.

See Table 5 for more details. This classification is used to answer

the RQ5 research question.
• Contribution Type. The contribution types are based on Petersen

et al. (2008). They are method, process, modeling, technology and

metric. However, they were complemented with a new facet, dis-

cussion, since some of the primary studies did not fit Petersen et al.

(2008) classification. See Table 6 for more details.

2.6. Data extraction

We designed a data extraction form5 to collect all the informa-

tion required to address the research questions and study objectives.

The data extracted are: paper ID, paper title, authors, venue (conference

or journal), publication year, involved countries, research topic, specific

topics, main objectives of applying CBSE, domain, research type, research

method and contribution type.

3. Data analysis and synthesis

In this section, we present the answers to the research questions

by analyzing and synthesizing the data extraction results. In order to

etter understand the results, we grouped them according to each

esearch question. Given space constraints, the primary studies cited

n this section are represented by an ID (e.g. P145, P233), and further

nformation about them is on the web6. A list of the the cited primary

tudies in available in Appendix A.

.1. RQ1. What is the intensity of research activity on CBSE?

In the first question, four aspects were investigated: the evolu-

ion of publications over the years, the conferences and journals ad-

dressed, the countries involved, the citations, and the most influential

authors (in publishing and citations).

A total of 1231 publications are spread across the years 1984 and

2012. Fig. 2 shows the distribution of these studies over the 28-year

period. CBSE exhibited a linear growth until 2006, when 115 studies
5 The data extraction spreadsheet is available at http://tassiovale.com/

SS-ValeEtAl-DataExtraction.html (File size: 2.4MB)
6 Available at http://tassiovale.com/JSS-ValeEtAl-DataExtraction.html (File size:

2.4MB)

http://tassiovale.com/JSS-ValeEtAl-DataExtraction.html
http://tassiovale.com/JSS-ValeEtAl-DataExtraction.html

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 131

Fig. 2. Number of publications per year.

Fig. 3. Addressed journals.

w

u

o

t

c

a

(

(

i

B

w

t

A

F

i

c

t

w

b

t

t

t

c

t

o

t

t

(

c

m

3

t

c

r

i

n

b

p

o

ere published. Intensity of research activity on CBSE was moderate

ntil 1997, showing considerable growth in 1998, when the number

f primary studies more than doubled. After 2006, there was a reduc-

ion in CBSE studies.

This mapping covered 13 conferences, 11 journals, almost 50

ountries and more than 1400 authors involved in CBSE research. By

nalyzing the number of primary studies per journal and conference

Tables 3 and 4), most of the studies published are conference papers

988, i.e. 80%) against 243 (20%) journal papers.

Regarding the journals and conferences which publish CBSE stud-

es (see Figs. 3 and 4), the International Symposium on Component-

ased Software Engineering (CBSE) and Journal of Systems and Soft-

are (JSS) were the top contributors. Both of them had almost twice

he number of primary studies compared to those in second position.

CBSE is a research area investigated in most continents (see Fig. 5):

sia, Africa, North America, South America, Europe, and Oceania.

orty-nine different countries have published CBSE primary studies

n different journals and conferences. Among them, the USA is the

ountry which has the highest number of publications, 358 (29% of

he total). It is followed by Germany, France and the United Kingdom,

ith 130, 117 and 97 publications respectively.

What is the impact of the CBSE papers? Fig. 6 shows the num-

er of citation for the 100 most cited papers7, and Table A.1 presents

he complete list. There are ten papers that stand out with more

han 450 citations each. The h-index of these papers is 97, i.e.,

here are 97 studies cited at least 97 times. The total number of

itations is 40,1330, and the average number of citations is 33. To

hese citations we should add three books not included in the list

f selected studies (due to being excluded by the exclusion cri-

eria), but which had a great impact on CBSE research and prac-

ice: Szyperski (2002) with 7450 citations, Heineman and Councill
7 Source: Google Scholar, 10 June 2014

p

d

i

2001) with 1213 citations, and Crnkovic and Larsson (2002) with 591

itations.

Table 7 shows the top 47 authors’ citations for the selected pri-

ary studies.

Summary: RQ1. What is the intensity of research activity on

CBSE?

The distributions clearly show an increasing interest in

CBSE in the late nineties, keeping the interest high in 2000s,

and a lower, but still stable interest in the 2010s. Observa-

tion: There are several reasons for the lower publication rates:

the process for reviewing and publishing CBSE primary stud-

ies is more rigorous, since there is already a large body of

knowledge; CBSE has been integrated into other approaches,

such as service-oriented development, software product lines

and model-based engineering; and new approaches (service-

oriented development, cloud).

.2. RQ2. Which are the main objectives of applying CBSE?

The first question aims to investigate the technical and non-

echnical objectives of CBSE. By technical objective we mean the

oncerns and results based on technical challenges and solutions

elated to engineering (e.g. specification and implementation of

nterfaces and components interactions through the interface), while

on-technical objectives include concerns related to other areas (e.g.

usiness, organization, ability, etc.). Only 33% of the studies (411

rimary studies) explicitly reported the main objectives that are

ften related to benefits that CBSE can offer.

Fig. 7 shows the most commonly referred objectives: increasing

roductivity, cost savings, increasing quality, increasing reusability,

ecreasing complexity, increasing maintainability, increasing flexibil-

ty, decreasing risks, increasing efficiency, increasing adaptability and

132 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Table 3

Screening process.

Iteration Action No. of papers

Iteration 1 Include studies on the basis if the inclusion criteria applied to titles and abstracts N = 1396

Iteration 2 Exclude studies by applying then exclusion criteria on introductions and conclusions N = 1231

Table 4

Research topics (Schneider and Han, 2004).

Research Topics Description

Functionality: This category represents proposals to characterize software components; abstractions, languages and notations to specify functional properties

of components. They can be general-purpose or domain-specific components.

Interaction: Suitable ways of expressing compositions of components are presented; languages for composition; implicit/explicit, declarative/imperative

composition; it investigates how composition helps in application evolution; correctness of component compositions given a set of

requirements; interaction protocols.

Quality: Specification of (non-functional) quality attributes of components and verification of these attributes given their implementations; quality

attributes of a composition of components given the quality attributes of the components involved (i.e. can we perform compositional

reasoning).

Management: Ontologies to create suitable component repositories; how effectively to search for components given a set of requirements.

Evolution and Tools: Software tools, development environments etc. to facilitate Component-Based Software Engineering; how to manage framework development

and component repositories to provide the best possible support for both component engineers and application developers.

Methodology: Primary studies in this category investigate the impact of component- and reuse-based development on software engineering methodologies;

development processes and methods to facilitate component-based software engineering; the impacts of CBSE from a business perspective.

Fig. 4. Addressed conferences.

Fig. 5. Top countries.

c

a

p

p

d

t

e

r

e

T

c

optimized evolution. The majority of objectives are of non-functional

character, including non-technical (productivity and cost as business

issues), and the others being technical issues related to software qual-

ity. We provide short essence of the objectives extracted from the pri-

mary studies as follows.

Increasing productivity. This objective is related to shorten system

development time and consequently, reduced time-to-market. Sys-

tems are no longer built from scratch, and developers can save time

using prefabricated components, through a larger-grained software

reuse (P529; P443).

Using pre-existing, well designed, tested, and documented el-

ements as components of programs amplifies the programming
apabilities, reduces the amount of work needed on new programs

nd systems, and achieves better overall control over the production

rocess and the quality of its products (P412; P452). Most of the

rimary studies in their motivations and analysis refer to system

evelopment with reuse, while there are a few studies that measure

he effort involved in building for reuse (i.e. components), or total

ffort. The study (P496) refers to industry experience that building

eusable components on average requires three to five times more

ffort than building the same function but not building for reuse.

his is one of the main challenges in starting to apply CBSE (P890).

Cost savings. Most studies mention productivity increasing and

osts reduction together as main objectives. CBSE can be used

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 133

Fig. 6. Number of citations for the 100 most cited papers.

Fig. 7. Main objectives of applying CBSE.

p

t

n

e

p

c

w

O

i

a

o

n

w

l

o

i

s

W

i

t

n

e

i

p

r

(

p

h

b

t

m

c

(

t

m

t

a

t

t

t

q

c

otentially to reduce costs, as well as reducing software development

ime by bringing the system to market as early as possible (P457).

Such savings are related to software development and mainte-

ance. Rather than starting from scratch with new development

fforts, an emphasis must be placed on using and integrating

re-fabricated software components. This approach avoids the dupli-

ation of work and lowers the overall development costs associated

ith the construction of new software applications (P413; P630).

n the other side, maintenance of reusable components may lead to

ncreased costs (P1216), which can be paid off by higher reuse.

Voas (P6) argues “the savings for developers could be staggering. If

world-class programmer costs $500 per day, purchasing 100,000 lines

f code would result in saving $5 million (minus licensing fees). Compa-

ies producing components would also see great rewards. If $1 million

ere an acceptable licensing fee for 100,000 lines of code, then only five

icenses would pay for that component, and the producer would profit

n subsequent sales.”. This analysis is in line with the experience in

ndustry (P496).

Increasing quality. This objective can be achieved by reusing of

oftware components already tested and validated (P514).

Increasing reusability, increasing flexibility and optimized evolution.

ang et al. (P14) address three main objectives: increasing reusabil-

ty, increasing flexibility and optimized evolution. According to him,

he separation of concerns in CBSE substantially increases compo-

ent reusability and provides more flexibility in system design and
volution. s
Decreasing complexity. The means for decreasing complex-

ty in CBSE is reusing components with encapsulated functions,

referably treated as black boxes, and providing standardised

ules for component compositions through component interfaces.

P36,P365).

Increasing maintainability. Maintainability is improved in CBSE by

roviding easy replacement of obsolete components with new en-

anced ones (P444). Maintainability of components also improves,

ut only after a period during which the component reaches “ma-

urity”. During the initial period of reuse a component may require

ore adoption to different products before its use becomes suffi-

iently widespread, at which point it enters a more stable phase

P1024).

Increasing efficiency. It is more efficient composing software sys-

ems by using components rather than building systems with non-

odular solutions (P518).

Increasing adaptability. The means for increased adaptability are

ypically achieved by component adaptation techniques such as using

dapters and wrappers (P319), or by building middleware that adapt

o different protocols (P603; P670; P786)

Decreasing risks. Some studies (for example P7; P181), claim

hat by reusing components and reusing architectural solutions

hat component models provide, in general the risks (for lower

uality, for increased costs, or time-to-market problems) de-

rease. However no empirical evidence is provided in these
tudies.

134 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Fig. 8. Addressed research topics.

3

h

e

m

(

t

d

t

p

b

p

C

I

t

i

t

In addition to the objectives related to improvements in the de-

velopment process, product quality or better development perfor-

mance, in a smaller number of studies the inherited limitations and

disadvantages are discussed. The characteristics of these limitations

are described in Crnkovic (2001). In addition, several studies address

some of these limitations and problems in their research, which are

specified in the following:

• Traceability. Generality and interoperability of components and

their black box characteristics create problems, such as architec-

tural mismatches, and hidden behavior not visible from compo-

nent specifications. When such problems appear in component-

based systems, they are very difficult to trace (P77). Traceability

in this context means the ability to identify problems across com-

ponents given their black-box nature.
• Compatibility. Difficulty in finding compatible software compo-

nents, either for the previous versions, or for the development or

run-time environment (P201).
• High initial efforts. The development and the run-time environ-

ment for efficient use of components is complex and requires ad-

ditional efforts and skills (P34).
• Information problem. Insufficient information exchange between

a component developer and component consumer. In specifi-

cation languages used in many component models the compo-

nent specification is not sufficient for understanding its behavior

(P307,P653).
• Long-term component management. Many important issues related

to long-term system evolution and its support remain unsolved or

unclear in relation to the components used in the system (com-

ponent evolution support responsibility, ability to evolve with the

system evolution, etc.) (P890).

Summary - RQ2. Which are the main objectives of applying

CBSE?

The main objectives, explicitly addressed, of applying

CBSE are of a non-technical nature. The main driving forces for

CBSE are time-to-market, and increased productivity during

system development. The quality issues related to both techni-

cal and non-technical solutions are also in focus as objectives

of CBSE. The means of achieving these objectives are, how-

ever, in the vast majority of cases of a technical nature (e.g.

introduction of a new technology, or a specification language,

dynamic uploading, etc.). Observation: In most of the stud-

ies the main CBSE objectives are not referred to, but, rather,

are implicitly assumed. Very few studies provide empirical ev-

idence of the objective achievements.
.3. RQ3. Which are the most investigated CBSE research topics and

ow they have changed over time?

This question identified the most addressed CBSE topics and their

volution over the years. To answer to this question we adopt a classi-

fication from Schneider and Han (2004), who identified the six main

research topics in CBSE:

• Functionality and specification. This concerns the components –

What are the characteristics of the components? What kind of ab-

stractions, languages, etc. are used for specification of functional

properties?
• Interaction. This focuses on component composites – What are

suitable ways of expressing compositions of components, ensur-

ing their correctness?
• Quality. How to specify quality attributes of components and ver-

ify that these attributes are met by a given implementation?
• Management. How to facilitate the design and implementation

of component frameworks? How to store and search for compo-

nents?
• Evolution and tools. What kind of software tools, development en-

vironments etc. are needed to facilitate CBSE?
• Methodology. What is the impact of the component-based devel-

opment on software engineering methods?

Functionality was the most frequently covered topic in 320 pri-

ary studies, followed by quality (241 primary studies), interaction

217 primary studies), methodology (210 primary studies), and evolu-

ion and tools (144 primary studies). Management was the least ad-

ressed topic, with 99 primary studies. Fig. 8 presents a summary of

his distribution.

Regarding the evolution of topics over the years, during the early

eriod (1984–1997) there was not a significant difference in the num-

er of primary studies per topic. Moreover, the rate of primary studies

er topic began changing from 1998, when the research activity in the

BSE field started to grow.

Fig. 9 shows the evolution of each research topic over the years.

n order to obtain more precise evidence, a set of specific research

opics is also identified. Most of the primary studies were classified

n just one specific topic, and the remaining ones were classified in

wo different topics.

Using the keyword technique (Petersen et al., 2008), the specific

topics were identified. Table 8 shows them grouped in the topics clas-

sified according to Schneider and Han (2004) (shown in Table 4).

Fig. 10 shows the eight most frequently addressed specific top-

ics: component composition, component models, software architec-

ture, frameworks, tools, component search and retrieval, testing and

quality. Primary studies explaining each specific topic were selected

based on the strong relationship between their objectives and the

specific topic in question.

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 135

Fig. 9. Research topic by year.

Fig. 10. Top 8 specific topics.

q

3

t

f

(

c

m

s

o

i

e

(

s

P

P

s

c

t

P

c

c

i

t

p

P

(

3

p

e

p

f

Below we discuss the research topics addressed the most fre-

uently in the primary studies.

.3.1. Interaction: component composition

Component composition is the process of constructing applica-

ions by interconnecting software components through their inter-

aces (Nierstrasz and Meijler, 1995). Interaction (P641), assembly

P14; P588), integration (P303; P363; P688), binding (P1107) and

omposition (P49; P369; P585; P982) are all terms found in the pri-

ary studies. They correspond to the same concept “composition”

ince the studies are addressing issues related to the interconnection

f components.

Furthermore, four studies propose techniques to ensure the qual-

ty of compositions. These techniques are intended to validate (P77),

valuate (P562), ensure integrity (P33) and detect vulnerabilities

P654) of connections among software components.

A set of primary studies investigate and improve elements respon-

ible for connecting software components: interfaces (P150; P355;

453; P594; P693), connectors (P350; P540) and adapters (P203;

469).
Software components are composed several times during a

ystem lifecycle. In order to meet new business requirements,

omponents are modified and must replace older ones. Substitu-

ion mechanisms are applied to solve this problem (P21; P304;

1105). This substitution can be performed in a static way, where

omponents are composed before running, or dynamically, where

omponents are updated during execution (P67; P618; P1036; P1101).

In addition to the composition of functional properties (i.e. bind-

ng, or functional composition), many studies discuss the composi-

ion of particular non-functional properties, for example real-time

roperties, resource usage, performance (P170; P187; P495; P395;

441), or the composition of non-functional properties in general

P398; P809).

.3.2. Functionality: component models

A component model defines a set of standards for component im-

lementation, naming, interoperability, customization, composition,

volution, and deployment (Heineman and Councill, 2001). There are

lenty of component models (i.e. more than 50) in the literature re-

erred as state of the practice and state-of-the-art.

136 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

d

p

o

p

P

3

S

t

l

s

C

f

c

s

m

c

f

P

P

T

C

w

c

m

e

T

n

3

s

s

v

C

(

(

v

n

C

t

o

a

t

o

3

r

s

t

p

c

t

c

(

P

Lau and Wang (2005/2006, P638; P341) propose a taxonomy of

component models that enables characterization of component mod-

els in relation to their specification, interaction and composability.

Component models are divided into (i) component models in which

components are classes, (ii) models in which components are ob-

jects, and (iii) those in which components are architectural units.

Crnkovic et al. (2011, P653) present a framework for classifying com-

ponent models, where different dimensions of component model

characteristics are identified: (i) a lifecycle dimension (characterized

by architectural modeling & design, implementation, storage, deploy-

ment), (ii) interconnection (whose characteristics are interface, bind-

ing, and interaction), and (iii) extra-function properties (character-

ized by management, specification and composability). In addition,

a classification for twenty different component models is presented.

Brada (2009, P390) reports a survey of typical representatives of in-

dustrial and research component models.

We identified several component models, and the most frequently

addressed are: the Fractal, “Lau et al.” component model, the ProCom

and the CORBA Component Model (CCM).

The Fractal is a general component model which is intended to

implement, deploy and manage complex systems, in particular op-

erating systems and middleware (P979). It is a hierarchical and re-

flective model with sharing, supporting a set of component control

capabilities (P345; P688; P979; P1038; P1049; P1114).

In the Lau et al. (2006) component model, components encapsu-

late computation (and data), and composition operators encapsulate

control. Therefore, components are constructed from computation

units and connectors. Moreover, there are proposals for improvement

of this model (P355; P658; P1063; P1064; P1102; P1113; P1129).

ProCom is a two-layer component model for design and de-

velopment of embedded systems with the aim of using CBSE for

decreasing the complexity in design and providing the grounds for

analyzing them and predicting their properties, such as resource

consumption and timing behavior (P1087). Other primary studies re-

ported improvements for this component model (P657; P671; P668;

P1130).

The CORBA Component Model (CCM) extends the CORBA object

model and defines features that allow software developers to im-

plement, manage, and deploy software units (components) that in-

tegrate commonly used functionality and allow for greater software

reuse (P656). Extensions for this model were identified in this map-

ping study (P284; P285; P656; P661).

Several other component models were addressed: Microsoft

COM (P425; P630), Koala (P16,P51), CoOWA (P604), KOM (P609), SC

(P462), JavaBeans and OSGi (P286), Robocop (P311), SaveCCM (P333;

P398), CSCM (P314), UM-RTCOM (P531), PECOS (P598), CAmkES

(P525), MidGate (P366), PCM (P535; P845; P1221), SCA (P1036), RCM

(P664), and others (P32; P61; P85; P122; P124; P141; P239; P310;

P312; P536; P594; P598; P615; P667; P631; P1076).

3.3.3. Functionality: software architecture

Software architecture is closely related to components and com-

ponent models, and software architecture issues have been addressed

together with them. In addition particular software architectures

were identified in order to structure the development and main-

tenance of component-based systems. They are: CASiNO (P27), IRL

(P31), Boca (P549), Malaca (P483) and others (P113; P146; P247;

P294; P340; P368; P465; P495; P551; P570; P571; P579; P977; P1015;

P1058).

Moreover, there are proposals for domain-specific architectures.

The addressed domains are: product lines (P54), avionics (P55) and

COTS products (P147; P155; P180).

Aspects considered by component-based architectures are stan-

dardization and quality properties. Standards for these architectures

are realized by patterns (P34), styles (P205), reference architectures

(P412), architectural description languages (P254; P261; P632) or ar-
chitectural description methods (P125; P324). Exploration and eval-

uation of quality properties (or non-functional properties) are ad-

ressed in CBSE (P288; P1030). Some of the primary studies also ex-

lore reusability at the architectural level, proposing the specification

f component architectures by reusing available components, com-

onent interfaces and interconnections between components (P74;

105; P454).

.3.4. Functionality: frameworks

The definitions of frameworks vary (P423). We adopted the

chmidt (1996, P542) definition: “an application framework provides

he basic functionality of a working application, which can be easily tai-

ored to a specialized application”. The frameworks identified in this

tudy are heterogeneous, and address different issues.

Certain groups can be highlighted: domain-specific frameworks,

ORBA-based frameworks (P25; P345; P611), conceptual/semantic

rameworks (P41; P316; P988), and frameworks that support runtime

omposition (P201; P539; P980).

The domain-specific frameworks aim at customizing the CBSE for

pecific domains. Such domains are: embedded systems (P351; P374),

edical imaging (P52; P213), radio-astronomical imaging (P38), tele-

ontrol applications (P37), and voice applications (P1019).

Besides these groups, there are several different proposals for

rameworks in the primary studies (P85; P173; P154; P232; P299;

306; P329; P335; P386; P389; P410; P424; P427; P473; P542;

532; P582; P593; P602; P617; P651; P652; P1025; P1049; P1131).

wo studies perform an analysis of component-based frameworks.

asagni and Lyell (2003, P233) compare and contrast two frame-

orks, the Java Enterprise Edition (J2EE) framework and the FIPA-

ompliant multi-agent system (MAS). Hosek et al. (2010, P1110),

eanwhile, discuss the distinguishing features of selected mod-

rn component-based frameworks for real-time embedded systems.

hey identify important features for building systems from compo-

ents in this domain.

.3.5. Evolution and tools

CBSE’s main concerns relate to technologies and tools, and tool

upport is inevitable for the success of CBSE. For this reason many

tudies emphasize the tool support. Such tools can be integrated de-

elopment environments and platforms such as PCLAgenda (P591),

adena (P231), DesCOTS (P318), Concerto platform (P320), PRIDE

P1219), Save-IDE (P1218), REMES (P681), or platforms such as CIF

P1118), and middleware (P656). The remaining tools for CBSE de-

elopment are: PEEL (P207), GOPCSD (P101), SYNTHESIS (P245), Ge-

ie (P249), eC3M (P675), visualization tools (P326; P347; P361),

omputer-Aided Software Engineering (CASE) tools (P397), architec-

ure (P600), testing (P633), model-driven development (P284) and

thers (P29; P141; P396; P422; P608; P678).

Furthermore, Barn and Brown (1998, P597) examine the role of

ppropriate new methods and tools in encouraging the wider prac-

ice of CBSE. They also describe the development of a new generation

f tools for CBSE.

.3.6. Methodology: search, selection and retrieval

Since in CBSE the component development process is sepa-

ated from the system development process, activities related to

earching for and retrieving components, as well as preparations

o facilitate these activities, are important parts in the entire CBSE

rocess.

First, primary studies present proposals for the characterization of

omponents before search, selection and retrieval. This involves iden-

ification (P186; P187; P276), ranking (P121; P229; P276), selection

riteria (P564) and classification of components within a repository

P186; P187; P270; P628).

Second, they propose techniques for search and selection (P88;

160; P202; P485; P581; P592), specially the selection of COTS

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 137

c

p

P

p

o

P

s

t

c

d

(

t

m

P

m

3

i

m

i

(

t

w

t

(

o

P

(

t

d

i

a

n

w

i

c

a

P

c

d

3

s

p

b

m

u

c

a

v

i

r

P

a

c

b

m

n

m

3

T

d

t

i

t

t

t

o

m

s

t

c

v

e

b

t

s

c

c

n

r

e

s

f

s

a

a

v

“

s

a

c

t

P

omponents (P102; P133; P159; P170; P318). In addition, there are

roposals for component retrieval (P86; P98; P116; P204; P416;

458; P512; P634). Nevertheless, two studies report problems when

erforming component selection (P198; P362). Consequently, a set

f search engines (P189; P392; P1029; P1033) and systems (P99;

413; P506; P511) automatize techniques for component search,

election and retrieval. Some of the primary studies address a

rade-off analysis in combination with component retrieval which

omponent version is better suited to a particular system, or form a

ecision about whether it is better to develop or to buy a component

P1217).

In order to analyze the existing component search and retrieval

echniques, Lucredio et al. (2004, P321) present a survey about the

ain research on component search. In addition, Mili et al. (2003,

466) perform an experiment in which different component retrieval

ethods are tested.

.3.7. Quality: testing

Developers (re-)using a component need to do considerable test-

ng to ensure the software behaves properly in its new environ-

ent. They should test the components both in isolation and once

ntegrated (P548). Third-party testing should also be considered

P554).

Component testing proposals identified in this work comprise

he following topics: interaction and integration testing, frame-

orks, black-box testing, COTS components testing, testing architec-

ure (P40), test-driven development (TDD) (P1099), runtime testing

P144; P396), tools (P397; P633), discussion papers (P548; P554) and

thers (P44; P45; P142; P156; P200; P305; P388; P608; P625; P1039;

1138).

In terms of interaction and integration, Jaffar-ur Rehman et al.

2007, P48) propose the testing of a component when put in the con-

ext of other interacting components. Sundmark et al. (2008, P1090)

escribe the added test effort required by component integration, by

ntroducing the concept of compositionally introduced test items. In

ddition, two frameworks are proposed, in order to test the compo-

ent in a deployment environment (P232; P240).

Considering black-box approaches for component testing, Ed-

ards (2001, P43) outlines a strategy for automated black-box test-

ng of software components that includes automatic generation of

omponent test drivers, blackbox test data, and automatic or semi-

utomatic generation of component wrappers. Zhang et al. (2006,

191) present a process for selection of regression tests for user/glue

ode that uses COTS components. Testing COTS components is ad-

ressed by two other studies (P244; P307).

.3.8. Quality

Quality issues treated in CBSE have two aspects: either the ab-

ence of failures and related methods to achieve that goal as much as

ossible, or non- functional properties of components or component-

ased systems, with their specifications, modeling, compositions or

easurements. The identified topics of component quality are: fail-

re handling, quality of service (QoS), quality properties, trusted

omponents (P143; P150; P608), correctness verification (P64; P986)

nd others (P327; P343; P372; P481).

Failure handling is performed by predicting (P241; P489), pre-

enting (P250; P394), detecting (P328), monitoring (P507) or analyz-

ng (P503) failures in component-based systems.

Furthermore, a set of studies develops solutions to satisfy QoS

equirements of component-based systems (P516; P983; P1024;

1041). Quality properties (P352; P524; P1128), attributes (P1051)

nd criteria (P383) are used to evaluate software components, espe-

ially the reliability property (P222; P242; P248).

Mahmood et al. (2005, P475) present a survey of component-

ased system quality assurance and assessment. They analyze for-

alism, cost estimation, and assessment and measurement tech-
iques for the following quality attributes: performance, reliability,

aintainability and testability.

Summary - RQ3. Which are the most investigated CBSE re-

search topics and how they have changed over time?

CBSE can be seen as an overall software engineering area

– covering practically all concerns that are covered by SE (e.g.

requirements engineering, architecting, testing, etc. for com-

ponents and component-based systems). In addition there are

concerns that are specific to CBSE, and these concerns are

covered by more than 50% of CBSE-related studies. The dom-

inant research topics are related to the specification (and un-

derstanding of principles) of components, component-based

systems, component models, and interfaces, and to the ques-

tion of component interactions and compositions. Interest for

the most of the research topics remained on the same level

through the entire period (with a significant jump of research

contributions in late nineties) but new domains have been

added. Methodology is an exception to that rule - it shows

more results in early 2000 while less in 2010s. Observation:

The studies show a vast diversity of concepts, theories, and

implementations. This suggests that CBSE is still an active

area for research with, as yet, not all goals achieved and es-

tablished in practice.

.4. RQ4. In which domains has CBSE been applied?

This question analyzed application domains addressed by CBSE.

he keywording technique (Petersen et al. (2008)) was used to extract

ata for this question. Most primary studies do not mention/evaluate

heir application domains. There were 394 studies (32%) that explic-

tly addressed a particular domain, and in several cases they referred

o multiple domains.

The software engineering domains identified are: commercial off-

he-shelf (COTS) systems, embedded systems, real-time systems, dis-

ributed systems, web-based systems, software product lines (SPL),

perating systems, aspect-oriented software development (AOSD),

odel-driven development (MDD), open-source software (OSS),

ervice-oriented systems, programming languages, graphical user in-

erface, legacy systems, safety-critical systems, mission-critical appli-

ations, large-scale systems, feature-oriented software development,

oice applications, etc. Fig. 11 shows the ten most addressed domains,

xplained below.

When analyzing the business domains, the following areas have

een addressed in the studies: telecommunication, automotive sys-

ems, industrial automation, avionics, healthcare systems, financial

ystems, space-based systems, consumer electronics software, edu-

ational systems, enterprise systems, mass-market applications, nu-

lear systems, process control systems, compiler systems, radio astro-

omical systems, games, multimedia systems, network applications,

obotics, ubiquitous systems, government systems, cloud computing,

tc.

COTS and OSS. COTS is the most frequently addressed domain. 100

tudies apply CBSE to develop COTS systems. Reusing components

rom third- party providers is one key technology used to develop

ystems quickly and cost-efficiently. These components, also known

s OTS (off-the-shelf) components, come in two different types: COTS

nd OSS components (P103).

CBSE has been adopted as one of the main approaches to de-

elop COTS components. According to Morisio and Torchiano (2002),

COTS products and components are two sets with a non-empty inter-

ection”. Primary studies regarding the intersection between COTS

nd software components are handled in several topics such as se-

urity (P8; P134; P153), integration (P9; P149; P158; P218), architec-

ure (P135), methodologies (P152), component selection (P170; P171;

206; P553), testing (P240; P244), and so on.

138 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Fig. 11. Top 10 CBSE application domains.

t

a

w

f

v

a

s

(

p

a

m

i

H

s

n

e

c

b

p

e

d

t

i

i

e

On top of that, eight studies address OSS components. In many

cases, the adoption of open source software (OSS) components can

be a way of overcoming problems related to COTS components, such

as source code not being available, the impossibility of driving the

evolution of the product, the obligation to upgrade the product and

the need for the new version to conform to the wrap code already

written (P182).

Real-time and embedded systems. CBSE also has prominence in

embedded and real-time systems (P1136), addressed in 84 and 54

studies, respectively. In addition, distributed systems (independent,

or as real-time and sometimes embedded systems) are the applica-

tion domain in 46 studies. Such systems can be used in business do-

mains such as: robotics, industrial control, automotive, automation

systems, distributed wireless networks, air-traffic management, ship-

board computing, etc.

The main concerns in these studies are non-functional proper-

ties – timing (response time, execution time, worst-case execution

time), resources (memory and CPU consumption, energy savings),

and questions relating to dependability (reliability, safety, availabil-

ity, security). These systems have specific architecture and, often due

to some specific solutions at run-time, they have different models

during the design phase and at run-time (P67; P105; P115; P116;

P171; P281; P387; P402; P417; P418; P419; P438; P441; P467; P494;

P631; P812). At the same time CBSE imposes some disadvantages

such as overhead in resource utilization, difficulties in achieving pre-

dictability and composability of important non-functional properties

(P805).

AOSD. Aspect-Oriented Software Development is addressed by 23

studies. By employing CBSE, the implementation of certain concerns,

such as logging, security and caching, cannot be confined into a single

logical module. These concerns are called crosscutting as their imple-

mentation virtually crosscuts the traditional decomposition of a soft-

ware application. AOSD provides a solution for modularizing these

crosscutting concerns by introducing a new modularization entity,

called an aspect (P1050).

SPL. This domain is addressed by 21 studies. Derivation of prod-

ucts in a product line is a transformation from common and varying

requirements (or features) in the problem space to reusable compo-

nents in the solution space of a product line (P694). Additionally, soft-

ware product lines today can be built from components supplied by

different vendors (P693).

Web-based systems. Today’s enterprises increasingly rely on the

Web to support their operations and integration of their business pro-

cesses with those of their suppliers, partners, and customers (P473).

These businesses must respond to changing business and competi-

tive environments in near real-time. Web-based systems (addressed

by 21 studies) implement software as components, and their func-

tions appear as a set of services. In this context, change becomes a

first-class design goal, requiring business and technology architec-
ure whose software components can be added, modified, replaced,

nd reconfigured (P433).

SOA. Twenty primary studies propose the combination of soft-

are components and service-oriented architecture, since benefits

rom both areas are achieved in the same application. Services pro-

ide the advantages of abstraction as well as large-scale interoper-

bility, and components are a robust approach based on the compo-

ition and reuse of clearly defined elements through their interfaces

P1183). In addition, a service has all the characteristics of a com-

onent and more: it can be developed using different technologies,

nd it can be executed independently in different run-time environ-

ents. In this paradigm shift, researchers and developers are mov-

ng from component-based to service-based development (P121).

owever, the component concept remains present since the core of

ervice-oriented architectures (SOAs) is distributed software compo-

ents provided or accessed by independent third parties (P18).

MDD. Model-driven development, addressed by 15 studies, can be

mployed in an efficient way in the design and implementation of

omponent-based systems. According to (P121), MDD and CBSE can

e considered as two orthogonal ways of reducing development com-

lexity. The use of meta-models significantly reduces the time nec-

ssary to develop components and the supporting tools in both the

esign and run-time infrastructures (P655).

Operating systems. Eight studies applied CBSE in the operating sys-

ems domain. In particular, most studies address embedded operat-

ng systems. One of the issues in this field that is addressed by CBSE

s dynamic reconfiguration, i.e. the ability to alter a system during its

xecution (P364; P654).

Summary - RQ4. In which domains has CBSE been applied?

The studies show that CBSE has been applied in many ap-

plication and business domains. In many cases, the CBSE ap-

proach is used to address concerns specific to the domain

and to enable a more efficient development process and bet-

ter product quality. For example, in real-time embedded sys-

tems domains, functions implemented are quite simple, and

thus the component interfaces are also simple. The empha-

sis is on non-functional properties (such as timing, resources)

and the component models used in the domain are usually ac-

companied by time- and resource analysis. The main concerns

in large distributed systems are complexity and evolution,

which are supported by the dedicated component models for

this domain. These component models include support for in-

terface evolution, interaction protocols, and dynamic deploy-

ment. Observation: The domain support explains the large

number of component models and technologies. While the ba-

sic principles such as interfaces, components, compositions,

bindings, reusability, substitutability, etc. are the same, their

realizations are quite different for different domains, which re-

sults from the main concerns of different domains.

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 139

Table 5

Research types (Wieringa et al., 2005).

Research Type Description

Evaluation: Techniques are implemented in practice and an evaluation of the technique is conducted. Implementation of the technique is shown in practice

(solution implementation) and the consequences of the implementation in terms of benefits and drawbacks (implementation evaluation)

are demonstrated.

Validation: Techniques investigated are novel and have not yet been implemented in practice. The investigation uses a thorough, methodologically sound

research setup, using for example experiments, prototyping, formal analysis, and similar.

Solution Proposal: A solution for a problem is proposed, the solution can be either novel or a significant extension of an existing technique. The potential benefits

and the applicability of the solution are shown by a small example, or demonstrator, or as a thorough line of argumentation.

Philosophical Argumentation: These primary studies sketch a new way of looking at existing things by structuring the field in form of a taxonomy or conceptual framework.

Opinion: These primary studies express opinions whether a certain technique is good or bad, or how things should been done, and similar. They do not

rely on related work and research methodologies.

Experience Report: Experience reports explain what and how something has been done in practice, for example case studies, surveys, and similar research from

empirical software engineering.

Fig. 12. Research type.

3

m

r

t

e

e

t

t

H

t

g

t

v

t

q

c

p

i

t

t

g

c

c

a

q

i

p

s

i

q

f

m

h

t

a

w

s

m

a

d

e

p

.5. RQ5. What are the most frequently applied research types and

ethods? How have they changed over time?

This question investigates the research types addressed, empirical

esearch methods and contribution types. According to our classifica-

ion scheme presented in Table 5, the research types are: validation,

valuation, solution proposal, philosophical argumentation, opinion, and

xperience report.

According to the number of primary studies recorded (Fig. 12),

hese research types have not been addressed homogeneously. Solu-

ion proposal is the most frequently addressed type (59% of the total).

owever, the majority of solution proposals are evaluated or validated

hrough small examples and in little detail, or through presenting ar-

uments to show the feasibility and benefits of such a solution.

For evaluation research, addressed by 243 primary studies (20% of

he total), the proposals are evaluated through case studies or sur-

eys. Validation research is applied in 110 primary studies (8% of the

otal). These primary studies are validated through experiments or

uasi-experiments. Opinion papers (72, 6% of the total) present dis-

ussions relating to the point-of-view of experts in the CBSE area. Ex-

erience papers (52, 4% of the total) describe the industrial experience

n CBSE. The philosophical papers (24, 1% of the total) intend to struc-

ure concepts and definitions. Fig. 13 shows an evolution of research

ypes over the years.

Empirical studies have become an important part of software en-

ineering research and practice (Shull et al., 2007). Three empiri-

al research methods applied in primary studies were identified:

ase study, survey and experiment. Case studies and surveys are

pplied in evaluation research primary studies; experiments (and

uasi-experiments) are applied in validation research primary stud-

es. Fig. 14 shows the applied empirical research methods.
The most frequently applied methods were case studies (228

rimary studies, 18% of the total) and experiments (107 primary

tudies, 8% of the total). As a matter of fact, the case studies identified

n the primary studies do not report proper details such as research

uestions, protocol, and data extraction techniques. This can make

uture replications difficult. This observation also holds for experi-

ents, since primary studies do not present details such as subjects,

ypotheses, or dependent and independent variables.

On the other hand, surveys (16 primary studies, 1% of the total)

hat are applied in evaluation research studies present an extensive

nalysis of the topic under study. In general, these studies follow a

ell-defined method with research questions or evaluation criteria,

ample selection and questionnaire design. In contrast to the research

ethods mentioned above, some of the solution proposals present ex-

mples aimed at validating or evaluating their work. These examples

iffer in detail and structure across each primary study, however, all

xamples are used to present the strengths and drawbacks of the pro-

osals.

Summary - RQ5. What are the most frequently applied re-

search types and methods? How have they changed over

time?

The studies presented show a clear tendency to pro-

vide “solutions” – i.e. new methods, processes, theories, for-

malisms, tools, etc. The number of case studies (18.5%) is not

high, but it is significant. Observation: This shows that the

CBSE area has reached a certain level of implementation and

application in practice. However, further analysis of the case

studies shows that many are demonstrators or studies of sim-

ple academic cases rather than industrial case studies.

140 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Fig. 13. Research type per year.

Fig. 14. Empirical research methods.

4

b

4. Gap analysis and topics for further research

The analysis of the primary studies showed the characteristics and

their evolution through more than two decades. Here we analyze

combinations of the results from the stated questions and investigate

whether these combinations can indicate possible missing links in

the research. Based on these results we identify possible future steps

in CBSE research.

Fig. 15 summarizes the results from the three research questions

posed in this mapping study: research topics (classified according to

Table 4: functionality, methodology, quality, management, interaction,

and evolution and tools), research types (according to Table 5: solu-

tions, evaluation, validation, philosophical argumentation, opinion, ex-

perience reports) and contribution types (according to Table 6: process,

modeling, discussion, method, technology, and metrics).

From Fig. 15 we can identify several gaps in the research per-

formed – i.e. a difference between a given and new potential re-

search. We refer to research topics in combination with (a) research

types discussed in Section 4.1, (b) contribution types discussed in

Section 4.2, and (c) the studies themselves classified in these cate-

gories, as specified in the repository8. Based on this analysis we pro-

pose topics for further research in Section 4.3.
8 Available at http://tassiovale.com/JSS-ValeEtAl-DataExtraction.html (File size:

2.4MB)
.1. Research topics vs. research types

We have already identified that the research type is dominated

y new solution proposals (which is quite expected for research in a

new area). Most of the new solution proposals address functionality;

the second largest topic is interaction (i.e. interaction between com-

ponents, and component compositions) which is at the heart of CBSE.

Solutions for quality concerns are the third most common research

type.

The research type evaluation (i.e. analysis of existing solutions) is

ranked second, though considerably lower than solution proposals.

Evaluation research is equally distributed among the research top-

ics, approximately following the distribution for solution proposals.

For both solution and evaluation we can see lower contribution in

management-related research (gap G1).

A similar distribution exists for validation research, though it is

less prevalent in the studies. However, a gap is visible from a small

number of validation research in relation to functionality; While there

are many proposed solutions, their validations are significantly less

present. This indicates a gap between solutions and their validations

in practice. (gap G2).

The experience reports, philosophical argumentation and opinion re-

search types are considerably less frequently represented in compar-

ison to solution proposals, evaluation and validation. While it is to be

expected that philosophical and opinion research types are less preva-

lent, due to the nature of CBSE problems which are more related to

http://tassiovale.com/JSS-ValeEtAl-DataExtraction.html

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 141

Fig. 15. CBSE evidence.

Table 6

Contribution types.

Contribution Type Description

Method: In this category, the contribution of the study can propose an algorithm, a mechanism, a theory, etc. to deal with different aspects of CBSE.

Process: A methodology is proposed which describes rules, guidelines and a sequence of steps for how things should be performed, e.g., activity for

creating and developing reusable assets, architecture, etc.

Modeling: The contribution of the study can be either conceptual modeling/design for the problem under study or, novel or a significant extension of an

existing modeling notation.

Technology: A software tooling support or component platform is developed in order to support different aspects of the problem under study.

Discussion: In this category, comparison of different characteristics of existing approaches or area overview are considered.

Metric: This category proposes metrics to evaluate different CBSE aspects.

Table 7

List of authors with top 47 citations.

No Author Publ. Citat. Author Publ. Citat.

1 Basili, Victor 9 1331 25 Quema, Vivien 1 617

2 Coupaye, Thierry 6 1145 26 Lau, Kung-Kiu 20 612

3 Crnkovic, Ivica 23 1053 27 Visnovsky, Stanislav 2 539

4 van Ommering, Rob 4 1050 28 Brown, Alan W. 1 534

5 Bruneton, Eric 2 972 29 Neighbors, James 1 527

6 Leclercq, Matthieu 2 972 30 Chaki, Sagar 1 515

7 Batory, Don 5 855 31 Clarke, Edmund 1 515

8 Caldiera, Gianluigi 3 838 32 Groce, Alex 1 515

9 Kramer, Jeff 1 802 33 Jha, Somesh 1 515

10 Magee, Jeff 1 802 34 Veith, Helmut 1 515

11 van der Linden, Frank 2 802 35 Wang, Zheng 4 485

12 Jezequel, Jean-Marc 4 788 36 Notkin, David 2 460

13 Plouzeau, Noel 4 764 37 Ncube, Cornelius 4 449

14 O’Malley, Sean 1 730 38 Ball, Thomas 1 447

15 Johnson, Ralph 1 710 39 Nagappan, Nachiappan 1 447

16 Beugnard, Antoine 1 704 40 Zeller, Andreas 1 447

17 Watkins, Damien 1 704 41 Morisio, Maurizio 7 437

18 Stefani, Jean-Bernard 5 688 42 Gorton, Ian 10 417

19 Reussner, Ralf 9 681 43 Mezini, Mira 4 406

20 Voas, Jeffrey 6 679 44 Schmidt, Heinz 6 403

21 Zaremski, Moormann 1 676 45 Canal, Carlos 2 389

22 Wing, Jeannette 1 676 46 Becker, Steffen 5 384

23 Wallnau, Kurt 6 635 47 Cervantes, Humberto 5 382

24 Plasil, Frantisek 7 629

142 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Table 8

Research topics and subtopics.

Research topics Subtopic

Functionality: (312 studies) Component models (134 studies), software architecture (96 studies), component specifications (54 studies), languages (48

studies)

Interaction: (208 studies) Component composition (150 studies), middleware (6 studies), contracts (17 studies), documentation (2 studies),

algorithms (1 study)

Quality: (231 studies) Quality in general (45 studies), testing (48 studies), verification (45 studies), performance (35 studies), reliability (17

studies), security (12 studies), fault management (9 studies), metrics (2 studies)

Management: (96 studies) Certification (19 studies), configuration (22 studies), deployment (9 studies), repositories (8 studies), guidelines (1 study),

component management in general

Evolution and Tools: (141 studies) Development tools (60 studies), libraries (9 studies), adaptation (34 studies), updating (7 studies), evolution in general (11

studies), environments (6 studies), techniques (4 studies), technologies (3 studies), platforms (1 study), customization

(1 study)

Methodology: (196 studies) Search and retrieval (59 studies), design (29 studies), methodologies in general (4 studies), requirements elicitation (1

study)

a

t

C

t

l

w

c

t

s

c

e

u

s

a

l

a

4

i

e

c

l

i

d

i

t

o

s

o

e

4

t

practical solutions than principles questions of software engineering,

it is indicative that the presence of experience reports is low. This char-

cterizes a clear gap in CBSE research (gap G3). This also indicates

hat CBSE concepts are not fully established in industry, or that the

BSE concepts may be integrated into overall development and main-

enance processes, but not identified as CBSE principles (gap G4). The

ack of principles questions could also be the explanation for some-

hat unclear concepts (e.g. what is a software component? What is a

omponent model?), or for concepts that are difficult to integrate into

he overall development process. Bosch (2002) claims that under-

tanding components in industry is different from academia: while

omponents in academia are understood as small, well-defined ex-

cutable units (through their interface), in industry a component is

nderstood as an executable unit, but more like a large package of

oftware, most likely not formally defined (if defined at all). This may

lso be a reason for the small number of experience reports directly re-

ated to CBSE, calling for further research on how to deploy the CBSE

pproach in industry in an efficient way.

.2. Research topics vs. contribution types

The process contribution type (see Fig. 15) is rather small (only 106

studies, or less than 10%) and this is a matter of tradition; CBSE has

emerged from object-oriented language communities and software

architecture communities in which modeling and methods are of

greater interest than the processes. Consequently, relations between

processes and different research topics (e.g. functionality, methodol-

ogy, management) can be further developed – for example how does

CBSE work in agile processes? How to increase efficiency in reuse pro-

cesses? How to assess components?, etc.) (gap G5)

The modeling contribution type (with 309 studies, or 20%) is dom-

nated by functionality (245 of 309 studies). The studies address com-

ponent models, new or refined from existing component models,

or component model specialization in particular domains. Other re-

search topics are considerably less represented. While we can ex-

pect that evolution and tools, management, and methodology are less

present because of weaker relations with modeling in general (e.g.

modeling of tools, or management modeling), there is a surprisingly

low number of studies in relation to quality modeling. This is in line

with the findings from Crnkovic et al. (2011a) where the majority of

component models, specially those used in industry, have poorer sup-

port for managing non-functional properties (gap G6).

Among all contribution types, the method type dominates (535

studies, or 43%) between the contribution types, and covers all kinds

of research results, but mostly frequently interactions (together 217

studies, or 17%), and quality-related results (241 studies, or 19%). In

these studies the research results are often built on existing research

results from software engineering and applied to CBSE. For example,
the known solutions for reliability in software engineering are ap-

plied specifically to CBSE by using rules defined by component mod-

ls.

The other contribution types (discussion, technology, metrics) are

onsiderably less represented (166 studies, or 14%, 97 or 8%, and 18 or

ess than 2%, respectively), which is in line with software engineering

n general, as shown in Shaw (2003). Metrics are rarely used, which in-

icates that CBSE metrics are not yet fully developed (gap G7), which

s related to a lack of formal definitions of components (gap G8). The

echnology contribution type is mostly underpinned by tools devel-

ped to support CBSE (gap G9). One of the interesting and yet unan-

wered questions is whether CBSE support can be more efficiently

btained by developing new, CBSE-specific tools, or by improving the

xisting tools being able to support CBSE.

.3. Incentives for further research

Table 9 summarizes the identified gaps related to the research

ypes.

From Table 9, Fig. 15, and the discussions in Sections 4.1 and 4.2

we have derived some directions in research that can advance CBSE

state of the art and improve state of the practice. These are: evidence

and analysis of CBSE use in industry; new support for CBSE lifecycle ac-

tivities.; improved formalisms.; development of CBSE-related tools.; and

successful integration of CBSE in new areas. A more detailed description

of these directions is presented as follows.

• Evidence and analysis of CBSE use in industry.

From state-of-practice (e.g use of component-based technologies

in industry) it is observable that CBSE is widely used in industry.

It is, however, not evident to what extent component-based prin-

ciples are applied, and which parts of CBSE have been success-

fully applied and which not. In general there is a lack of evidence

concerning industrial applications of CBSE, which is visible from

the low number of experience papers as research types. This calls

for different types of empirical studies of industrial CBSE applica-

tions:

– Empirical studies of use/benefits of CBSE in industry (related to

gaps G1 and G2). There is a huge potential for CBSE application

in different business areas, but each area has its own charac-

teristic benefits and challenges. Empirical studies about CBSE

use, benefits and associated challenges in different business

domains can provide interesting answers for further improve-

ments;

– CBSE deployment in industry (related to gap G3). How can CBSE

be successively introduced into a company’s development pro-

cess? To what extent should the development process be CBSE

oriented? Which types of components (COTS, internally de-

veloped components or open-source components) should be

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 143

Table 9

Identified gaps.

Gap Description Gap type

G1 Lack of research of CBSE-related management. Management vs. all research type

G2 Lack of validation in industrial context. Solution vs. validation

G3 Lack of experience reports of CBSE use in practice. Experience vs. research topics

G4 Lack of clear concepts of CBSE in practice. Experience vs. research topics

G5 Lack of CBSE integration in lifecycle processes. Process vs. research topics

G6 Lack of quality attributes modeling in CBSE. Quality vs. modeling

G7 Lack of metrics related to CBSE. Metrics vs. research topics

G8 Lack of formal definitions of components. Metrics and modeling vs. quality

G9 Lack of CBSE tool support. Tools vs. process & modeling.

5

r

(

reused? Does the CBSE deployment require organizational and

managerial changes? Answers to these and similar questions

are still not widely known and need further investigation.

– Empirical studies about tool implementation and tool usage (re-

lated to gap G9). To make CBSE approach efficient, significant

automation of the development process must be introduced

(Szyperski, 2002; Schneider and Han, 2004; Crnkovic, 2001).

That requires substantial investment in tools - both in the ex-

isting tools that implement particular technologies, and in de-

velopment of new tools for automation of different activities in

the development process, and in particular automation of in-

formation transfer and transformation between different life-

cycle phases (for example generating search for components

from requirement specifications, or test generation from com-

ponent specifications). Which tools are the most beneficial,

which are needed, and which should be improved? Those are

some of the questions that should be addressed by empirical

studies about tool usage in industrial contexts.
• New support for CBSE lifecycle activities (related to gaps G3 and G5).

Compared to other research topics (see Fig. 15, Process contribu-

tion type), there are considerably fewer results relating to the

CBSE development process and lifecycle models related to CBSE.

In particular there are not many studies about how the new ag-

ile methods should be applied to component-based development.

Does CBSE require some specific activities in agile development,

for example component testing or refactoring? How can CBSE im-

prove software evolution and continuous software deployment?

What is the relationship between software component evolution

and software system evolution? Such questions require further re-

search in order to take advantage of CBSE in modern development

processes.
• Improved formalisms.

CBSE includes a number of well-defined formalisms (Fig. 15, Mod-

eling contribution type), which enables automation and thereby

more efficient development and high-quality software. These for-

malisms are mainly related to component specification (inter-

face) and their functional compositions. There are however areas

in which formalisms have not been fully developed and imple-

mented. There is a lack of:

– Improved formalisms for non-functional properties in compo-

nents (related to gaps G6 and G8). Non-functional properties

(Fig. 15, Modeling, Quality research topic) address a very large

number of components, system requirements and characteris-

tics, and their importance depends on the business and engi-

neering domains. While we can find developed theories and

formalisms in analysis of certain non-functional properties

(e.g. resource-usage in resource-constraint systems, timing

properties in real-time systems, or variability in product lines),

applications of these theories on components and component-

based systems still need further development.

– Improved formalisms for component behavior – i.e. dynamic as-

pects of interactions (related to gaps G7 and G8). Component

specifications in the form of interfaces defining signatures and
possibly their semantics are more developed than dynamic as-

pects of component interactions, or the dynamic behavior of

a component. Further development of these topics will lead

to improved analysis and increased automation of component

compositions.

– CBSE metrics – formalization and empirical studies (related to

gaps G4 and G7). Specific metrics (Fig. 15, Metrics contribu-

tion type) for CBSE are not identified. What is a good use of

CBSE? How are CBSE principles well utilized in specific do-

mains? These are the questions that need further research.

These questions are related to the number of metrics for CBSE

that need to be developed.
• Development of CBSE-related tools (related to gap G9). There ex-

ists many tools that include a term “component” and some oper-

ations related to “components” (for example UML tools, different

ADL tools, Simulink, etc.). In these tools components are archi-

tectural units. Additional features, such as component attributes

compositions, reusability, component adaptions, etc. are missing.

This gives opportunities to enrich different tools with the basic

features of CBSE.
• Successful integration of CBSE in new areas.

Fig. 2 shows the trend of a decreasing number of CBSE-related

publications in the last five years (2007–2012). The use of compo-

nents is, however, increasing (in the form of the reuse of standard

components, services, infrastructural components, open source,

etc.). In recent years new trends in software development have

started to receive attention: cloud computing, real-time big data

processing, machine learning, use of heterogeneous computing

units, ubiquitous computing – these are some of the new areas

that require new architectural solutions, new communication pat-

terns, etc. The demand for efficiency leads to the usage of compo-

nents in such areas, which calls for research into how to optimally

apply the existing component models, or which type of adapta-

tions might be useful, and finally whether some new component

models are desirable. Requirements for management of particu-

lar non-functional properties (e.g. finding components for specific

services, ensuring quality of services like response time or scal-

ability, etc.) may appear. When developing systems running on

heterogeneous platforms (i.e. different executable units) a need

for different component implementations arises. This requires ef-

ficient development of components with different implementa-

tions. Adaptation requirements put new demands on component

adaptations that go beyond the use of adapters and/or wrappers.

. Threats to validity

In empirical software engineering, validity threats are catego-

ized under four distinct concerns Petersen et al. (2008); Perry et al.

2000):

• Construct validity relates to the collected data and how well the

data represent the investigated phenomenon.

144 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

5

e

l

o

p

s

r

6

i

fi

i

p

• Internal validity concerns the connection between the observed

behavior and the proposed explanation for the behavior, i.e., it is

about ensuring that the actual conclusions are true.
• External validity concerns the possibility of generalizing the re-

sults of a study.
• Reliability concerns the possibility of reaching the same conclu-

sions if the study was repeated by another researcher.

We discussed these concerns below.

5.1. Construct validity

In this study, construct validity relates to the questions of whether

all important sources have been investigated, and whether non-

relevant sources have been taken into consideration. This includes:

• Selected conferences and journals: Not all potential journals and

conferences were included in the manual search. Our selection

criterion was to consider only conferences and journals present-

ing a high percentage of CBSE primary studies, analyzing an im-

portant set of representative studies. In order to determine a re-

liable list, we had several discussion meetings with the project

members. We also analyzed backward references, i.e., look at the

references of the primary studies. A few new primary studies were

identified in this way.
• Inclusion criteria: The decision of whether or not to include a

candidate study was based primarily on reading the title and ab-

stract of each study. Thus, some studies may have been erro-

neously included or excluded. The mitigation strategy was to per-

form it using peer review and applying the exclusion criteria on

introduction and conclusion of the resulting candidate studies

from the first iteration.
• Publication bias: Regarding the publication bias, we cannot guar-

antee that all relevant primary studies were selected, since only

a manual search was performed. Only primary studies that an-

swered our research questions were included. By selecting the

most relevant journals and conferences, this risk was minimized.

Checking backward references minimized the risk of omitting

some important sources.

5.2. Internal validity

Internal validity in our research concerns the risk of whether our

methods could lead to wrong or irrelevant conclusions. The following

activities could threaten internal validity.

• Research questions: The set of questions we defined might

not have covered the whole CBSE area, which implies that one

may not find answers to the questions that concern them. As

we considered this a feasible threat, we had several discussion

meetings with project members and experts in the area aiming

to calibrate the questions. Furthermore, we analyzed whether

a particular study addressed concerns that were outside of our

questioning (i.e. whether a study could not be categorized in

respect to a research question), which was not the case.
• Studies classification: During the data extraction process, the

studies were classified based on our judgment. In order to miti-

gate this threat, the classification process was performed by peer

review in several iterations.
• Studies validation/evaluation: We did not analyze the research

rigor applied in the studies validation/evaluation. However, we

performed quality assessment of our selection: Only the studies

from peer-reviewed events and journals were selected. Further-

more, we identified the studies with higher impact (i.e. a higher

citation number and published in journals and proceedings of

higher impact).
.3. External validity

This concern is covered in our observations and conclusions. How-

ver, a mapping study does not aim to generalize the findings outside

the subject of the research (in this case CBSE), and for this reason ex-

ternal validity is not relevant as a threat. Some of the questions, and

the results, could certainly be applied to other approaches or tech-

nologies in software engineering, but this concern is out of the scope

of this research.

5.4. Reliability

The research protocol specification and its strict realization make

it possible to repeat the first part of the selection process (from the se-

ected sources). This part is fully repeatable. Further selection, based

n assessments by reading the primary studies is part of a subjective

rocess and may lead to different selection and classification of the

tudies, but this part includes research creativity, and belongs to the

esearch contribution.

. Related work

The literature on CBSE provides a large number of studies, regard-

ng both general and specific issues. Amongst them, we have identi-

ed some works developed to gather and evaluate available evidence

n the area. They are thus considered to have similar ideas to our map-

ing study and are described below.

Brown and Wallnau (1998) present a report about some discus-

sion points from a workshop on Component-Based Software Engi-

neering (CBSE), providing a useful synthesis of participants’ diverse

perspectives and experiences. The results suggested that CBSE is a

coherent engineering practice, and there has been good progress in

identifying its core concepts, as well as different perspectives on

them. The discussion involved conceptual (what is the core part of

CBSE?), skeptical (why will it work now if it did not before?), and

practical (what will it mean to organisations if CBSE does work?) as-

pects. This early work was a very important analysis in the starting

period of extensive CBSE research, but comparing to our mapping

study does not include evidence and state-of-the-art based on such

evidence.

Crnkovic (2001) provided an overview of current CBSE challenges

at that time, and some principle disadvantages that make CBSE de-

ployment more difficult. Examples of these difficulties are time and

effort required for developing components, unclear and ambiguous

requirements, conflict between usability and reusability, and compo-

nent maintenance costs. Most of these disadvantages have been ad-

dressed and have decreased in the years since. Similarly to Brown and

Wallnau (1998) this work is rather a list of challenges and a source of

inspiration for further research than evidence-based analysis.

Schneider and Han (2004) reviewed some of the component-

based development goals, and proposed thoughts and discussions

about the next decade of component technology. The work inves-

tigated whether the issues stated previously had been addressed.

Furthermore, the authors investigated what remains to be done and

where the efforts should be focused to improve component technolo-

gies, propose topics for further investigation such as functionality,

interaction, quality, management, evolution/tools and methodology.

The work is a result of an analysis of CBSE in its exploration and start

of implementation phase, but it does not provide a complete analysis

of the state-of-the-art and state-of-the-practice.

Mahmood et al. (2007) presented a literature survey about pro-

posed techniques for the CBSE lifecycle phases. Basically, this work

considers the following activities for CBSE: component identification

and selection; component integration; deployment; and component

evolution. This study aimed to provide a better understanding of the

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 145

e

t

f

c

S

T

l

q

p

i

e

a

i

i

c

c

c

s

“

p

t

a

t

n

w

S

C

C

p

p

s

h

c

c

w

7

s

1

r

l

i

m

o

g

m

a

d

o

t

a

b

d

l

t

a

c

s

v

w

i

t

a

i

A

e

C

t

R

S

l

A

9 http://www.ines.org.br
xisting different techniques for each area. Although the aforemen-

ioned studies present a literature review, none of them were per-

ormed in a systematic way. Further the emphasis is on software life-

ycle, while other aspects are omitted.

Maras et al. (2012) analyze 15 years of activities of the ACM SIG-

OFT Symposium on Component-Based Software Engineering (CBSE).

hey apply systematic review guidelines specifically for papers pub-

ished in the CBSE Symposium to investigate four stated research

uestions concerning the impact of publications, research topics, re-

orted questions, results and research methods. The research top-

cs identified there are component models, component technologies,

xtra-functional properties, composition & predictability, software

rchitecture, quality, lifecycle, domains and methodology. The topics

dentified in these events are somewhat different than those defined

n Schneider and Han (2004) and used in this paper, but there is a

lear correspondence between them.

An overview of the CBSE objectives and their feasibilities is dis-

ussed in Almeida et al. (2007), in which it is claimed that software

omponents may be the most appropriate solution for real-world

ystems, considering that, instead of replacing the whole system,

pieces” of software or components may be added, removed or re-

laced, attending to new possible requirements, which can reduce

ime-to-market and improve product quality.

Crnkovic et al. (2011b) provide a short retrospective of CBSE, the

ccumulated experience in using CBSE, the remaining challenges, and

he opportunities to increase use of CBSE in different software engi-

eering areas and domains (e.g. model-driven engineering and soft-

are product lines).

Despite most studies (Brown and Wallnau, 1998; Crnkovic, 2001;

chneider and Han, 2004; Mahmood et al., 2007; Almeida et al., 2007;

rnkovic et al., 2011b) propose overviews or discussion points on the

BSE field, they do not apply systematic techniques to analyze the pa-

ers. In addition, they do not select a representative sample of CBSE

rimary studies if compared with this study. Maras et al. (2012) apply

ystematic review techniques to synthesize evidence on CBSE studies,

owever, they focus on a specific venue, the CBSE Symposium. The

ontributions from this related work are partially and indirectly in-

luded in our work, when their findings correspond to the evidences

e provided for the literature review.

. Concluding remarks

In this paper, we performed a literature review to investigate the

tate- of-the-art in the CBSE area. As the result of a manual search,

396 primary studies were identified, of which 1231 were considered

elevant as primary studies. Five aspects of these studies were ana-
Table A.1

Most cited primary studies.

Index ID Primary study title

1 P16 R. van Ommering, F. van der Linden, J. Kramer, J. Magee, The koala co

33 (2000) 78–85.

2 P415 D. Batory, S. O’Malley, The design and implementation of hierarchica

on Software Engineering and Methodology 1 (1992) 355–398.

3 P423 R.E. Johnson, Frameworks = (components + patterns), Communicatio

4 P10 A. Beugnard, J.M. Jézéquel, N. Plouzeau, D. Watkins, Making compon

5 P418 A.M. Zaremski, J.M. Wing, Specification matching of software compo

Methodology 6 (1997) 333–369.

6 P35 E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.B. Stefani,

The fractal component model and its support in java: Experiences

& Experience 36 (2006) 1257–1284.

7 P1216 A.W. Brown, K.C. Wallnau, The current state of cbse, IEEE Software 15

8 P623 J.M. Neighbors, The draco approach to constructing software from re

(1984) 564–574.

9 P235 S. Chaki, E.M. Clarke, A. Groce, S. Jha, H. Veith, Modular verification o

Engineering 30 (2004) 388–402.
yzed: main objectives, research topics, application domains, research

ntensity and research types and methods.

Increasing productivity, cost savings and increasing quality are the

ost frequently mentioned CBSE objectives. In order to achieve these

bjectives, six research topics were homogeneously addressed, with

reater attention devoted to functionality issues, such as component

odels, specification techniques, properties and component-based

rchitectures.

In addition, software components are used in several application

omains. CBSE has become part of some of these domains. The first

ne is COTS, the domain with the highest number of studies, due

o the synergy between these two areas where most COTS systems

re supported by off-the-shelf components. COTS is followed by em-

edded, real-time and distributed systems as the most frequently ad-

ressed domains.

When considering research types, the solution proposal is preva-

ent. Solution proposals are followed by evaluation research and valida-

ion research. Case studies and experiments are the most frequently

pplied research methods, however, the rigor with which research is

onducted should be investigated.

This work forms the basis for identifying gaps in research which

hould be addressed, and for pinpointing areas where further in-

estigation of the existing studies should be performed. As future

ork, we intend to analyze the fifty most-cited publications (includ-

ng books and technical reports) in the CBSE field. The goal is to ex-

ract information about our research questions as well as to perform

detailed analysis of specific topics, and probably to make a compar-

son with the available evidence gathered for this work (Table A.1).

cknowledgment

This work was partially supported by the National Institute of Sci-

nce and Technology for Software Engineering (INES9), funded by

NPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08, by

he project RALF3, funded by the Swedish Foundation for Strategic

esearch, and project ORION funded by The Knowledge Foundation,

weden. We would also like to thank Josip Maras who automated col-

ection of some data.

ppendix A. The most cited primary studies
Citations

mponent model for consumer electronics software, IEEE Computer 802

l software systems with reusable components, ACM Transactions 730

ns of the ACM 40 (1997) 39–42. 710

ents contract aware, IEEE Computer 32 (1999) 38–45. 704

nents, ACM Transactions on Software Engineering and 676

with auto-adaptive and reconfigurable systems, Software Practice

617

(1998) 37–46. 534

usable components, IEEE Transactions on Software Engineering 10 527

f software components in c, IEEE Transactions on Software 515

(continued on next page)

http://www.ines.org.br
http://dx.doi.org/10.1109/2.825699
http://doi.acm.org/10.1145/136586.136587
http://doi.acm.org/10.1145/262793.262799
http://dx.doi.org/10.1109/2.774917
http://doi.acm.org/10.1145/261640.261641
http://dx.doi.org/10.1002/spe.v36:11/12
http://dx.doi.org/10.1109/52.714622
http://dx.doi.org/10.1109/TSE.1984.5010280
http://dx.doi.org/10.1109/TSE.2004.22

146 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

Table A.1 (continued)

Index ID Primary study title Citations

10 P632 F. Plasil, S. Visnovsky, Behavior protocols for software components, IEEE Transactions on Software Engineering 28 (2002) 1056–1076. 465

11 P241 N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component failures, in: Proceedings of the 28th International Conference on

Software Engineering, ICSE ’06, ACM, New York, NY, USA, 2006, pp. 452–461.

447

12 P979 E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.B. Stefani, An open component model and its support in java, in: I. Crnkovic, J. Stafford,

H. Schmidt, K. Wallnau (Eds.), Component-Based Software Engineering, Vol. 3054 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 2004, pp. 7–22.

355

13 P1 G. Caldiera, V.R. Basili, Identifying and qualifying reusable software components, IEEE Computer 24 (1991) 61–70. 340

14 P535 S. Becker, H. Koziolek, R. Reussner, The palladio component model for model-driven performance prediction, Journal of Systems and

Software 82 (2009) 3–22.

334

15 P548 E.J. Weyuker, Testing component-based software: A cautionary tale, IEEE Software 15 (1998) 54–59. 330

16 P767 E. Bruneton, T. Coupaye, J.B. Stefani, Recursive and dynamic software composition with sharing, in: Seventh International Workshop on

Component-Oriented Programming (WCOP 2002), 2002.

315

17 P628 W.B. Frakes, T.P. Pole, An empirical study of representation methods for reusable software components, IEEE Transactions on Software

Engineering 20 (1994) 617–630.

18 P638 K.K. Lau, Z. Wang, Software component models, IEEE Transactions on Software Engineering 33 (2007) 709–724. 299

19 P553 N.A. Maiden, C. Ncube, Acquiring cots software selection requirements, IEEE Software 15 (1998) 46–56. 285

20 P206 J. Kontio, A case study in applying a systematic method for cots selection, in: Proceedings of the 18th International Conference on

Software Engineering, ICSE ’96, IEEE Computer Society, Washington, DC, USA, 1996, pp. 201–209.

272

21 P402 M. VanHilst, D. Notkin, Using role components in implement collaboration-based designs, in: Proceedings of the 11th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’96, ACM, New York, NY, USA, 1996,

pp. 359–369.

270

22 P510 A. Bracciali, A. Brogi, C. Canal, A formal approach to component adaptation, Journal of Systems and Software 74 (2005) 45–54. 269

23 P500 R.H. Reussner, H.W. Schmidt, I.H. Poernomo, Reliability prediction for component-based software architectures, Journal of Systems and

Software 66 (2003) 241–252.

262

24 P403 M. Mezini, K. Lieberherr, Adaptive plug-and-play components for evolutionary software development, in: Proceedings of the 13th ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’98, ACM, New York, NY, USA,

1998, pp. 97–116.

243

25 P413 E. Ostertag, J. Hendler, R.P. Díaz, C. Braun, Computing similarity in a reuse library system: An ai-based approach, ACM Transactions on

Software Engineering and Methodology 1 (1992) 205–228.

234

26 P625 R.S. Freedman, Testability of software components, IEEE Transactions on Software Engineering 17 (1991) 553–564. 229

27 P53 C. Atkinson, J. Bayer, D. Muthig, Component-based product line development: The kobra approach, in: Proceedings of the First

Conference on Software Product Lines : Experience and Research Directions: Experience and Research Directions, Kluwer Academic

Publishers, Norwell, MA, USA, 2000, pp. 289–309.

228

28 P1232 I. Crnkovic, Component-based software engineering - new challenges in software development, in: Proceedings of the 25th

International Conference on Information Technology Interfaces, 2003, pp. 9–18.

224

29 P428 D. Sprott, Enterprise resource planning: Componentizing the enterprise application packages, Communications of the ACM 43 (2000)

63–69.

220

30 P430 J. Hopkins, Component primer, Communications of the ACM 43 (2000) 27–30. 216

31 P407 M. Odersky, M. Zenger, Scalable component abstractions, in: Proceedings of the 20th Annual ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, ACM, New York, NY, USA, 2005, pp. 41–57.

215

32 P231 J. Hatcliff, X. Deng, M.B. Dwyer, G. Jung, V.P. Ranganath, Cadena: An integrated development, analysis, and verification

environment for component-based systems, in: Proceedings of the 25th International Conference on Software Engineering, ICSE ’03,

IEEE Computer Society, Washington, DC, USA, 2003, pp. 160–173.

213

33 P486 J.M. Voas, Certifying off-the-shelf software components, IEEE Computer 31 (1998) 53–59. 213

34 P226 R. van Ommering, Building product populations with software components, in: Proceedings of the 24th International Conference on

Software Engineering, ICSE ’02, ACM, New York, NY, USA, 2002, pp. 255–265.

210

35 P239 H. Cervantes, R.S. Hall, Autonomous adaptation to dynamic availability using a service-oriented component model, in: Proceedings of

the 26th International Conference on Software Engineering, ICSE ’04, IEEE Computer Society, Washington, DC, USA, 2004, pp.

614–623.

208

36 P405 S. McDirmid, M. Flatt, W.C. Hsieh, Jiazzi: New-age components for old-fasioned java, in: Proceedings of the 16th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’01, ACM, New York, NY, USA, 2001,

pp. 211–222.

208

37 P9 B. Boehm, C. Abts, Cots integration: Plug and pray?, IEEE Computer 32 (1999) 135–138. 204

38 P238 C. Szyperski, Component technology: What, where, and how?, in: Proceedings of the 25th International Conference on Software

Engineering, ICSE ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 684–693.

201

39 P456 J. Bosch, Superimposition: a component adaptation technique, Information and Software Technology 41 (1999) 257 – 273. 198

40 P414 K.J. Sullivan, D. Notkin, Reconciling environment integration and software evolution, ACM Transactions on Software Engineering and

Methodology 1 (1992) 229–268.

190

41 P222 D. Hamlet, D. Mason, D. Woit, Theory of software reliability based on components, in: Proceedings of the 23rd International Conference

on Software Engineering, ICSE ’01, IEEE Computer Society, Washington, DC, USA, 2001, pp. 361–370.

182

42 P237 B. Meyer, The grand challenge of trusted components, in: Proceedings of the 25th International Conference on Software Engineering,

ICSE ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 660–667.

180

43 P1193 D. Giannakopoulou, C.S. P“s”reanu, H. Barringer, Assumption generation for software component verification. In: Proceedings of the

17th IEEE International Conference on Automated Software Engineering, ASE ’02, IEEE Computer Society, Washington, DC, USA,

2002, pp. 3–.

176

44 P2 R. Adler, Emerging standards for component software, IEEE Comput. 28 (1995) 68–77. 175

45 P626 L. Briand, V. Brasili, C. Hetmanski, Developing interpretable models with optimized set reduction for identifying high-risk software

components, IEEE Trans. Softw. Eng. 19 (1993) 1028–1044.

174

46 P209 R.B. Kieburtz, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis, D.P. Oliva, T. Sheard, I. Smith, L. Walton,

A software engineering experiment in software component generation. In: Proceedings of the 18th International Conference on

Software Engineering, ICSE ’96, IEEE Computer Society, Washington, DC, USA, 1996, pp. 542–552.

167

47 P546 W. Kozaczynski, G. Booch, Guest editors’ introduction: Component-based software engineering, IEEE Softw. 15 (1998) 34–36. 163

48 P412 V.R. Basili, G. Caldiera, G. Cantone, A reference architecture for the component factory, ACM Trans. Softw. Eng. Methodol. 1 (1992)

53–80.

160

(continued on next page)

http://doi.acm.org/10.1145/1134285.1134349
http://dx.doi.org/10.1007/978-3-540-24774-6_3
http://dx.doi.org/10.1109/2.67210
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/52.714817
http://dx.doi.org/10.1109/32.310671
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/52.663784
http://dl.acm.org/citation.cfm?id=227726.227761
http://doi.acm.org/10.1145/236337.236375
http://dx.doi.org/10.1016/j.jss.2003.05.007
http://dx.doi.org/10.1016/S0164-1212(02)00080-8
http://doi.acm.org/10.1145/286936.286950
http://doi.acm.org/10.1145/131736.131739
http://dx.doi.org/10.1109/32.87281
http://dl.acm.org/citation.cfm?id=355461.357556
http://doi.acm.org/10.1145/332051.332074
http://doi.acm.org/10.1145/352183.352198
http://doi.acm.org/10.1145/1094811.1094815
http://dl.acm.org/citation.cfm?id=776816.776836
http://dx.doi.org/10.1109/2.683008
http://doi.acm.org/10.1145/581339.581373
http://dl.acm.org/citation.cfm?id=998675.999465
http://doi.acm.org/10.1145/504282.504298
http://dx.doi.org/10.1109/2.738311
http://dl.acm.org/citation.cfm?id=776816.776916
http://doi.acm.org/10.1145/131736.131744
http://dl.acm.org/citation.cfm?id=381473.381511
http://dl.acm.org/citation.cfm?id=776816.776911
http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=227726.227842
http://dx.doi.org/10.1109/MS.1998.714621
http://doi.acm.org/10.1145/125489.122823

T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148 147

Table A.1 (continued)

Index ID Primary study title Citations

49 P624 D.E. Harms, B.W. Weide, Copying and swapping: Influences on the design of reusable software components, IEEE Trans. Softw. Eng. 17

(1991) 424–435.

158

50 P15 J. Roschelle, C. DiGiano, M. Koutlis, A. Repenning, J. Phillips, N. Jackiw, D. Suthers, Developing educational software components, IEEE

Comput. 32 (1999) 50–58.

154

51 P417 S. Henninger, An evolutionary approach to constructing effective software reuse repositories, ACM Trans. Softw. Eng. Methodol. 6

(1997) 111–140.

154

52 P439 K. Levi, A. Arsanjani, A goal-driven approach to enterprise component identification and specification, Commun. ACM 45 (2002) 45–52. 152

53 P217 M. Morisio, C.B. Seaman, A.T. Parra, V.R. Basili, S.E. Kraft, S.E. Condon, Investigating and improving a cots-based software development.

In: Proceedings of the 22nd International Conference on Software Engineering, ICSE ’00, ACM, New York, NY, USA, 2000, pp. 32–41.

150

54 P445 T. Ravichandran, M.A. Rothenberger, Software reuse strategies and component markets, Commun. ACM 46 (2003) 109–114. 147

55 P629 A. Arora, S. Kulkarni, Component based design of multitolerant systems, IEEE Trans. Softw. Eng. 24 (1998) 63–78. 146

56 P13 P. Narasimban, L. Moser, P. Melliar-Smith, Using interceptors to enhance corba, IEEE Comput. 32 (1999) 62–68. 144

57 P543 L. Hatton, Reexamining the fault density-component size connection, IEEE Softw. 14 (1997) 89–97. 142

58 P73 T. Biggerstaff, The library scaling problem and the limits of concrete component reuse. In: Proceedings of the Third International

Conference on Software Reuse: Advances in Software Reusability, 1994, pp. 102–109.

139

59 P433 P. Fingar, Component-based frameworks for e-commerce, Commun. ACM 43 (2000) 61–67. 138

60 P5 D. Krieger, R. Adler, The emergence of distributed component platforms, IEEE Comput. 31 (1998) 43–53. 134

61 P220 E. Truyen, B. Vanhaute, B.N. Jørgensen, W. Joosen, P. Verbaeton,

Dynamic and selective combination of extensions in component-based applications. In: Proceedings of the 23rd International

Conference on Software Engineering, ICSE ’01, IEEE Computer Society, Washington, DC, USA, 2001, pp. 233–242.

130

62 P416 A. Podgurski, L. Pierce, Retrieving reusable software by sampling behavior, ACM Transactions on Software Engineering and

Methodology 2 (1993) 286–303.

130

63 P493 K.E. Emam, S. Benlarbi, N. Goel, S.N. Rai, Comparing case-based reasoning classifiers for predicting high risk software components,

Journal of Systems and Software 55 (2001) 301–320.

130

64 P333 H. Hansson, M. Akerholm, I. Crnkovic, M. Torngren, Saveccm - a component model for safety-critical real-time systems, in: Proceedings

of the 30th EUROMICRO Conference, EUROMICRO ’04, IEEE Computer Society, Washington, DC, USA, 2004, pp. 627–635.

128

65 P635 K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, S. Kusumoto, Ranking significance of software components based on use relations,

IEEE Transactions on Software Engineering 31 (2005) 213–225.

128

66 P965 H. Cervantes, R.S. Hall, Automating service dependency management in a service-oriented component model, in: Proceedings of the

6th ICSE Workshop on Component-Based Software Engineering, 2003.

126

67 P60 K. Czarnecki, U.W. Eisenecker, Components and generative programming (invited paper), in: Proceedings of the 7th European Software

Engineering Conference Held Jointly with the 7th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

ESEC/FSE-7, Springer-Verlag, London, UK, UK, 1999, pp. 2–19.

125

68 P444 P. Vitharana, Risks and challenges of component-based software development, Communications of the ACM 46 (2003) 67–72. 125

69 P637 S. Kounev, Performance modeling and evaluation of distributed component-based systems using queueing petri nets, IEEE Transactions

on Software Engineering 32 (2006) 486–502.

125

70 P1141 C. Ncube, N.A. Maiden, Pore: Procurement-oriented requirements engineering method for the component-based systems engineering

development paradigm, in: International Workshop on Component-Based Software Engineering, 1999, pp. 1–12.

125

71 P211 R.K. Keller, R. Schauer, Design components: Toward software composition at the design level, in: Proceedings of the 20th International

Conference on Software Engineering, ICSE ’98, IEEE Computer Society, Washington, DC, USA, 1998, pp. 302–311.

124

72 P437 I. Crnkovic, B. Hnich, T. Jonsson, Z. Kiziltan, Specification, implementation, and deployment of components, Communications of the

ACM 45 (2002) 35–40.

124

73 P87 M.L. Griss, Implementing product-line features with component reuse. In: Proceedings of the 6th International Conference on Software

Reuse: Advances in Software Reusability, ICSR-6, Springer-Verlag, London, UK, UK, 2000, pp. 137–152.

122

74 254 M. Pinto, L. Fuentes, J.M. Troya, Daop-adl: An architecture description language for

dynamic component and aspect-based development. In: Proceedings of the 2nd International Conference on Generative

Programming and Component Engineering, GPCE ’03, Springer-Verlag New York, Inc., New York, NY, USA, 2003, pp. 118–137.

121

75 P640 C. Canal, P. Poizat, G. Salaün, Model-based adaptation of behavioral mismatching components, IEEE Trans. Softw. Eng. 34 (2008)

546–563.

120

76 P248 L. Cheung, R. Roshandel, N. Medvidovic, L. Golubchik, Early prediction of software component reliability. In: Proceedings of the 30th

International Conference on Software Engineering, ICSE ’08, ACM, New York, NY, USA, 2008, pp. 111–120.

119

77 P406 M. Mezini, K. Ostermann, Integrating independent components with on-demand remodularization. In: Proceedings of the 17th ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’02, ACM, New York, NY, USA,

2002, pp. 52–67.

118

78 P441 J. Sutherland, W.J. van den Heuvel, Enterprise application integration and complex adaptive systems, Commun. ACM 45 (2002) 59–64. 116

79 P1087 S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, I. Crnkovic, A component model for control-intensive distributed embedded systems., In:

M. Chaudron, C. Szyperski, R. Reussner (Eds.), Component-Based Software Engineering, Vol. 5282 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2008, pp. 310–317.

116

80 P432 M. Sparling, Lessons learned through six years of component-based development, Commun. ACM 43 (2000) 47–53. 112

81 P442 A. Gokhale, D.C. Schmidt, B. Natarajan, N. Wang,

Applying model-integrated computing to component middleware and enterprise applications, Commun. ACM 45 (2002) 65–70.

112

82 P522 M. kerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson, A. Möller, P. Pettersson, M. Tivoli,

The save approach to component-based development of vehicular systems, J. Syst. Softw. 80 (2007) 655–667.

111

83 P431 C. Kobryn, Modeling components and frameworks with uml, Commun. ACM 43 (2000) 31–38. 108

84 P447 A.I. Mørch, G. Stevens, M. Won, M. Klann, Y. Dittrich, V. Wulf, Component-based technologies for end-user development, Commun.

ACM 47 (2004) 59–62.

106

85 P552 J. Voas, Cots software: The economical choice?, IEEE Softw. 15 (1998) 16–19. 106

86 P61 M. Hauswirth, M. Jazayeri, A component and communication model for push systems., In: Proceedings of the 7th European Software

Engineering Conference Held Jointly with the 7th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

ESEC/FSE-7, Springer-Verlag, London, UK, UK, 1999, pp. 20–38.

103

87 P156 Y. Wu, M.H. Chen, J. Offutt, Uml-based integration testing for component-based software. In: Proceedings of the Second International

Conference on COTS-Based Software Systems, ICCBSS ’03, Springer-Verlag, London, UK, UK, 2003, pp. 251–260.

103

88 P653 I. Crnkovic, S. Sentilles, A. Vulgarakis, M.R.V. Chaudron, A classification framework for software component models, Softw. Eng., IEEE

Trans. 37 (2011) 593–615.

102

http://dx.doi.org/10.1109/32.90445
http://dx.doi.org/10.1109/2.789751
http://doi.acm.org/10.1145/248233.248242
http://doi.acm.org/10.1145/570907.570930
http://doi.acm.org/10.1145/337180.337186
http://doi.acm.org/10.1145/859670.859678
http://dx.doi.org/10.1109/52.582978
http://doi.acm.org/10.1145/352183.352204
http://dl.acm.org/citation.cfm?id=381473.381498
http://doi.acm.org/10.1145/152388.152392
http://dx.doi.org/10.1016/S0164-1212(00)00079-0
http://dx.doi.org/10.1109/EUROMICRO.2004.72
http://dl.acm.org/citation.cfm?id=318773.318779
http://doi.acm.org/10.1145/859670.859671
http://dx.doi.org/10.1109/TSE.2006.69
http://dl.acm.org/citation.cfm?id=302163.302193
http://doi.acm.org/10.1145/570907.570928
http://dl.acm.org/citation.cfm?id=645546.658830
http://dl.acm.org/citation.cfm?id=954186.954194
http://dx.doi.org/10.1109/TSE.2008.31
http://doi.acm.org/10.1145/1368088.1368104
http://doi.acm.org/10.1145/582419.582426
http://doi.acm.org/10.1145/570907.570932
http://dx.doi.org/10.1007/978-3-540-87891-9_21
http://doi.acm.org/10.1145/352183.352202
http://doi.acm.org/10.1145/570907.570933
http://dx.doi.org/10.1016/j.jss.2006.08.016
http://doi.acm.org/10.1145/352183.352199
http://doi.acm.org/10.1145/1015864.1015890
http://dx.doi.org/10.1109/52.663777
http://dl.acm.org/citation.cfm?id=318773.318784
http://dl.acm.org/citation.cfm?id=646853.707766

148 T. Vale et al. / The Journal of Systems and Software 111 (2016) 128–148

T

B
r

i
o

d

F
w

e

I
s

H

c
a

m
a

“
M

s

C
m

c

E
a

l

c
i

C

P
C

U

w
P

o
(

T
i

(

Y

v
U

o
t

i
C

s

S

t
d

a
b

w

s

References

Almeida, E.S., Alvaro, A., Garcia, V.C., Mascena, J.C.C.P., Burgio, V.A.A., Nascimento, L.M.,

Lucrdio, D., Meira, S.R.L., 2007. C.R.U.I.S.E: Component Reuse in Software Engineer-

ing. C.E.S.A.R e-book.
Bosch, J., 2002. Architecture-centric software engineering. Proceedings of the 24th In-

ternational Conference on Software Engineering, ICSE ’02. ACM, New York, NY, USA,
pp. 681–682. http://doi.acm.org/10.1145/581339.581443

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons from
applying the systematic literature review process within the software engineering

domain. J. Syst. Softw. 80, 571–583.

Brown, A.W., Wallnau, K.C., 1998. The current state of cbse. IEEE Softw. 15, 37–46.
Crnkovic, I., 2001. Component-based software engineering - new challenges in soft-

ware development. Softw. Focus 2, 127–133. http://dx.doi.org/10.1002/swf.45
Crnkovic, I., Larsson, M., 2002. Building Reliable Component-Based Software Systems.

Artech House publisher.
Crnkovic, I., Sentilles, S., Aneta, V., Chaudron, M.R.V., 2011a. A classification framework

for software component models. IEEE Trans. Softw. Eng. 37, 593–615.
Crnkovic, I., Stafford, J., Szyperski, C., 2011b. Software components beyond program-

ming: from routines to services, Software. IEEE 28, 22–26.

Heineman, G.T., Councill, W.T., 2001. Component-based software engineering: putting
the pieces together. Addison-Wesley Professional.

Jorgensen, M., Shepperd, M., 2007. A systematic review of software development cost
estimation studies. IEEE Trans. Softw. Eng. 33, 33–53.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic literature re-
views in software engineering. Keele University and Durham University Joint Re-

port Tech. rep. ebse 2007-001.

Lau, K.K., Ornaghi, M., Wang, Z., 2006. A software component model and its preliminary
formalisation. Proceedings of the 4th International Conference on Formal Methods

for Components and Objects, FMCO’05. Springer-Verlag, Berlin, Heidelberg, pp. 1–
21.

Mahmood, S., Lai, R., Kim, Y., 2007. Survey of component-based software development.
IET Softw. 1, 57–66.

Maras, J., Lednicki, L., Crnkovic, I., 2012. 15 years of cbse symposium: impact on the

research community. In: International Symposium on Component-Based Software
Engineering (CBSE), CBSE ’12, pp. 61–70.

McIlroy, D., 1968. Mass-produced software components. In: NATO Conference, pp. 88–
98.

Morisio, M., Torchiano, M., 2002. Definition and classification of cots: a proposal. In-
ternational Conference on COTS-Based Software Systems (ICCBSS), ICCBSS ’02.

Springer-Verlag, London, UK, pp. 165–175.

Nierstrasz, O., Meijler, T.D., 1995. Research directions in software composition. ACM
Comput. Surv. 27, 262–264.

Perry, D.E., Porter, A.A., Votta, L.G., 2000. Empirical studies of software engineering:
a roadmap. Proceedings of the Conference on The Future of Software Engineer-

ing, ICSE ’00. ACM, New York, NY, USA, pp. 345–355. http://doi.acm.org/10.1145/
336512.336586

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies in

software engineering. In: International Conference on Evaluation and Assessment
in Software Engineering (EASE). University of Bari, Italy.

Schneider, J.G., Han, J., 2004. Components: the past, the present, and the future. In:
International Workshop on Component-Oriented Programming (WCOP).

Shaw, M., 2003. Writing good software engineering research papers: Minitutorial.
Proceedings of the 25th International Conference on Software Engineering, ICSE

’03. IEEE Computer Society, Washington, DC, USA, pp. 726–736. http://dl.acm.org/

citation.cfm?id=776816.776925
Shull, F., Singer, J., Sjøberg, D.I., 2007. Guide to Advanced Empirical Software Engineer-

ing. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Sjoberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N.K.,

Rekdal, A.C., 2005. A survey of controlled experiments in software engineering.
IEEE Trans. Softw. Eng. 31, 733–753.

Szyperski, C., 2002. Component Software: Beyond Object-Oriented Programming, 2nd
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Wieringa, R., Maiden, N., Mead, N., Rolland, C., 2005. Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requir. Eng. 11,

102–107.

assio Ferreira Vale is an assistant professor at Federal University of Recôncavo da

ahia, a graduate of computer science from Universidade Salvador (UNIFACS) in 2009,
eceived his M.Sc. degree in Computer Science from Federal University of Pernambuco

n 2012, and is currently a PhD candidate in Computer Science at Federal University
f Bahia. He is an IT consultant, lecturer and software development freelancer. In ad-

ition, he is member of the Reuse in Software Engineering Research (RiSE) group and

raunhofer Project Center (FPC) Brazil. His primary interest is software engineering,
ith an emphasis on software product lines traceability, component-based software

ngineering and software reuse.

vica Crnkovic is a professor of industrial software engineering at Mälardalen Univer-
ity where he is the scientific leader of the industrial software engineering research.

is research interests include component-based software engineering, software ar-

hitecture, software configuration management, software development environments
nd tools, and software engineering in general. Professor Crnkovic is the author of

ore than 150 refereed articles and papers on software engineering topics and a co-
uthor and co-editor of two books: “Building reliable component-based Systems” and

Implementing and integrating Product Data Management and Software Configuration
anagement”. He has co-organized several conferences and other events related to

oftware engineering (such as ESEC/FSE, ASE, ECSA, Euromicro SEAA conferences,

ompArch/WICSA federated conferences, etc.), and participated in Program Com-
ittees major software engineering conferences. His teaching activities cover several

ourses in the area of Software Engineering undergraduate and graduate courses.

duardo Santana de Almeida is an assistant professor at Federal University of Bahia
nd head of the Reuse in Software Engineering Labs. He has more than 100 papers pub-

ished in the main conferences and journals related to software engineering, and has

haired several national and international conferences and workshops. His research
nterests include methods, processes, tools, and metrics to develop reusable software.

ontact him at esa@dcc.ufba.br.

aulo Anselmo da Mota Silveira Neto has a Bachelor of Computer Science degree from
atholic University of Pernambuco (UNICAP), specialist in software engineering from

niversity of Pernambuco (UPE), Master of Science degree in computer science (soft-

are engineering) from Federal University of Pernambuco (UFPE). Nowadays, he is a
hD candidate in computer science at Federal University of Pernambuco and member

f the RiSE group, which has executed research regarding to Software Product Lines
SPL) Testing, SPL Architecture Evaluation, Test Selection Techniques, and Regression

esting. He is also participating on important research projects in software engineer-
ng area, as the National Institute of Science and Technology for Software Engineering

I.N.E.S.).

guarat Cerqueira Cavalcanti is a graduate of computer science from Federal Uni-

ersity of Alagoas in 2007, received his MS degree in Computer Science from Federal
niversity of Pernambuco in 2009, and PhD in Computer Science at Federal University

f Pernambuco. He is a system development analyst at the Brazilian Federal Organiza-
ion for Data Processing (SERPRO). He is member of the Reuse in Software Engineer-

ng Research (RiSE) group, ACM, and Institute of Electrical and Electronics Engineers
omputer Society. His primary interest is software engineering, with an emphasis on

oftware maintenance and reuse.

ilvio Romero de Lemos Meira has a degree in electronic engineering from the Insti-

uto Tecnológico de Aeronáutica (1977), Masters in Computer Science from Universi-
ade Federal de Pernambuco (1981), and PhD in computer science at University of Kent

t Canterbury (1985). He is currently a professor at Universidade Federal de Pernam-
uco. He has experience in computer science, with emphasis on software engineering,

orking on the following topics: software reuse, information systems, open source,

ocial networking, performance, and quality metrics in software engineering.

http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0001
http://doi.acm.org/10.1145/581339.581443
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0004
http://dx.doi.org/10.1002/swf.45
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0017
http://doi.acm.org/10.1145/336512.336586
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0020
http://dl.acm.org/citation.cfm?id=776816.776925
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00209-5/sbref0025

	Twenty-eight years of component-based software engineering
	1 Introduction
	2 Systematic mapping study method
	2.1 Research questions
	2.2 Conduct search
	2.3 Selection criteria
	2.4 Screening of papers
	2.5 Classification scheme
	2.6 Data extraction

	3 Data analysis and synthesis
	3.1 RQ1. What is the intensity of research activity on CBSE?
	3.2 RQ2. Which are the main objectives of applying CBSE?
	3.3 RQ3. Which are the most investigated CBSE research topics and how they have changed over time?
	3.3.1 Interaction: component composition
	3.3.2 Functionality: component models
	3.3.3 Functionality: software architecture
	3.3.4 Functionality: frameworks
	3.3.5 Evolution and tools
	3.3.6 Methodology: search, selection and retrieval
	3.3.7 Quality: testing
	3.3.8 Quality

	3.4 RQ4. In which domains has CBSE been applied?
	3.5 RQ5. What are the most frequently applied research types and methods? How have they changed over time?

	4 Gap analysis and topics for further research
	4.1 Research topics vs. research types
	4.2 Research topics vs. contribution types
	4.3 Incentives for further research

	5 Threats to validity
	5.1 Construct validity
	5.2 Internal validity
	5.3 External validity
	5.4 Reliability

	6 Related work
	7 Concluding remarks
	 Acknowledgment
	Appendix A The most cited primary studies
	 References

