
Extending the Rubus Component Model with
GPU-aware Components

Gabriel Campeanu, Jan Carlson, Séverine Sentilles and Saad Mubeen
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Abstract—To support the complex functionality expected of
modern embedded systems, the trend is to supplement CPUs with
Graphical Processing Units (GPUs), thus creating heterogeneous
embedded systems. However, taking full advantage of GPUs in-
creases the complexity of the development and requires dedicated
support, and no such support exists in the component models
currently available. The only solution today is to completely
encapsulate all GPU-specific information and operations within
the components, which increases the communication overhead
and reduces component reusability, thus significantly limiting the
applicability of component-based development to heterogeneous
embedded systems.

In this paper, we propose to extend Rubus, an industrial
component model for embedded systems, with dedicated support
for GPUs. We introduce new constructs, including GPU ports
and automatically generated adapters to facilitate seamless com-
ponent communication over the heterogeneous processing units,
regardless of whether the components use the CPU, GPU, or
both. A running example is used for the problem description,
the proposed extension, and to evaluate our solution.

I. INTRODUCTION

During the last decades, embedded systems have rapidly
spread in almost all types of areas and domains. Nowadays,
embedded system applications provide a wide range of ser-
vices in industry, healthcare, automotive and military do-
mains. The trend of modern applications such as autonomous
vision-based robots [1] or vehicle vision systems [2] is to
include more complex, resource-demanding functionalities,
also in embedded systems with limited resources in terms
of computational power. A solution to these challenges is
achieved through the use of modern parallel systems with,
for instance, a combination of CPU-GPU computation units.
Compared to the sequential execution model of CPUs’, GPUs
bring the benefit of faster processing of large amount of data
thanks to their ability to parallelize data processing. Being
constructed with a parallel processing architecture that has a
private memory system, specific information and operations
are required to use the GPU hardware. The use of GPUs also
increases the complexity of software development even further,
because dedicated programming models must be used, such as
CUDA [3] and OpenCL [4].

One way to alleviate the complexity of software develop-
ment is through component-based development (CBD), where
applications are constructed by composing already existing
software components [5] [6]. The CBD approach has been

successfully used in academia with component models such as
SOFA [7] or Palladio [8]. Acknowledged component models
such as AUTOSAR [9] or Rubus [10] are also used in industry
for developing embedded system applications. However, when
developing applications for CPU-GPU embedded systems,
there is no explicit support in the existing component models
to help with GPU development. Currently, in order to develop
GPU-based applications, all the GPU specific information
and operations have to be encapsulated within the software
components, which 1) causes unnecessary communication
overhead between components; and 2) reduces the component
reusability as each component requiring the GPU must use
dedicated computation settings (e.g., number of GPU compu-
tation threads). For example, a component internally setting
the number of GPU threads can only be reused on hardware
devices that have enough computation resources to support
this number, and would not be able to take advantage of any
additional resources.

In our previous work [11], we outlined an approach to
address these drawbacks by introducing high-level explicit
GPU modelling support in CBD. The approach relies on
introducing new concepts that mitigate the currently inade-
quate component-based development for GPUs: the concepts
of GPU ports and adapters are suggested to facilitate the
component communication mechanism. We also proposed a
way to improve the component reusability by enabling to
configure, at system-level, the GPU computation settings for
each component using the GPU.

In this paper, we further develop the envisioned approach
and explore how to concretly integrate it into a component
model that is successfully used in industry, namely the Rubus
component model. The idea is to introduce the required
elements with low impact on the component model’s specifica-
tion, in order to reduce the impact on existing timing analysis
techniques and tool chains. This is achieved by extending
Rubus with the concept of GPU-aware component which
is derived from standard Rubus component enhanced with
dedicated GPU elements (e.g. GPU ports and configuration
interface).

The rest of the paper is organized as follows. Background
information about Rubus and GPU-based embedded systems
are provided in Section II. The problem statement is pre-
sented, using a running example, in Section III, while the



approach overview is described, continuing the same example,
in Section IV. The implementation of the Rubus extension is
presented in Section V. Section VI covers our evaluation of the
introduced extension. Related work is described in Section VII,
and the paper is concluded in Section VIII.

II. BACKGROUND: RUBUS AND GPUS

In this section, essential concepts of the Rubus component
model and GPUs are introduced.

A. Rubus

The Rubus component model [10] focuses on development
of embedded systems with real-time properties. It aims to
cover data-flow software architectures for systems with one
or several processing units. The lowest hierarchical level
component in Rubus is called software circuit (SWC), and
is characterized by input and output ports, which define the
interface of the component. The behavior of a component is
specified in one or several entry functions, implemented in C.
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Fig. 1: Rubus software circuits

As mentioned before, a software circuit has input and output
ports. There are two categories of ports: data ports used to
carry out the system data flow, and trigger ports that realize
the control flow in the system. A Rubus component has only
one input and one output trigger port, but can have many input
and output data ports. Fig. 1 presents two components, each
with an input trigger port (IT), and output trigger port (OT).
The components receive the data through the input data port
ID, and provide the result through the output data port OD.
All the data ports are characterized by a type. A data output
port of one SWC can be connected to one or several data
input ports that have the same data type. Similarly, a trigger
output port of one SWC can be connected to one or several
trigger input ports of other SWCs. A trigger input port can
be activated by either a component, a clock (element that
periodically provides triggering signals), a sporadic event or an
interrupt. A Synch element is used to synchronize two trigger
signals as is exemplified in the figure.

The execution semantics of a component are Read, Execute,
Write. Initially, the component is in an inactive mode until its
input trigger port is triggered. When triggered, the component
switches to the Read mode where it starts reading data from
its input data ports. Based on the read data, the component

functionality is performed in the Execute mode. After the
execution is completed, the result is written in the output data
ports during the Write execution mode. Finally, the output
trigger is activated, after which the component returns to the
inactive state.

B. GPUs

A distinct characteristic of a GPU is that it cannot be
independently used without a CPU. The CPU, considered as
the brain of the system, triggers all the GPU activities. Being a
processing unit with a private memory system, the data needs
to be shifted onto the GPU random access memory (RAM)
system and then used in the processing activities. When the
GPU activities finish, the result produced by the GPU needs
to be shifted back onto the main RAM to be used in the rest
of the system functionality. The shifting operations are done
by specific procedures provided by GPU API programming
models, such as the cudaMemcpy function implemented by
the CUDA API [3].

Whenever the CPU initiates an activity onto the GPU, it
also needs to specify how much of the GPU computation
resources (i.e., threads) the activity uses during its execution.
The available resources of the GPU hardware should be able to
execute the specified configuration settings; if not, the activity
cannot be executed.

Unlike CPUs, GPUs are constructed with hundreds of exe-
cution cores that can handle multiple parallel and independent
calculations. Hence, a system can harness the execution power
of a GPU and use it for demanding and heavy data parallel
processing activities. The bottleneck of having a GPU with
a distinct memory system is the overhead of copying data
between the CPU and GPU.

III. PROBLEM DESCRIPTION

In this section we describe the current approach using
existing component models to develop applications which re-
quire GPU computation. Each component needs to encapsulate
all the specific GPU information and operations in order to
address the hardware platform. Whenever a component uses
the GPU hardware to execute its functionality, it needs to shift
its required input data from the main memory system (i.e.,
the CPU RAM system) onto the GPU memory system, (i.e.,
GPU RAM system). After finishing its processing activities,
the result also needs to be shifted back onto the main memory
system. Therefore, specific transfer operations and memory
initialization mechanisms need to be enclosed in the com-
ponent. In addition, when accessing the GPU hardware, the
component needs to specify its computation settings, including
how much of the hardware computation thread resource should
be used for the processing activity. These GPU computation
settings are thus also embedded into the component code.

In its current state of specifications, the Rubus component
model needs to follow the same approach when addressing
GPU-based hardware. Each SWC which requires GPU com-
putation, needs to encapsulate all the GPU-specific information
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Fig. 2: Component-based architecture of the Vision System demonstrator in Rubus

and operations, such as data transfer operations or the GPU
computation settings.

In order to discuss the problem in more details, we consider
the following example that presents a part of a component-
based design of a demonstrator modeled with the Rubus
component model. The demonstrator, developed at Mälardalen
University, Sweden, is an underwater robot that autonomously
navigates under water, executing various missions such as
tracking red buoys [12]. The robot is equipped with two
cameras which provide a continuous stream of image frames
to an embedded electronic board composed of a CPU and a
GPU, where both units have different memory systems.

Fig. 2 illustrates the Rubus design of the robot’s vision
system. Two camera SWCs are connected to the physical
cameras. Each component processes one image each, resulting
two images at the same time. The frames are forwarded to the
ImageMerger SWC which checks the overlapping frame area
and merges the frames into one single frame utilizing the GPU
hardware. The merged frame is delivered to the ColorFilter
SWC which filters the colors of the image on the GPU, and
produces a black-and-white image result. The filtered frame is
analyzed by the VisionManager SWC which takes appropriate
actions based on the shape, size and position of the detected
object. The filtered frame is also sent to a Logger component,
that registers the robot’s navigation data.

Both Camera1 and Camera2 SWCs access the main RAM
system to acquire the raw image frames, process them on
the CPU and finally store them back onto the RAM. Having
GPU computation, the hardware activities of the ImageMerger
SWC are different. In addition to the RAM access to obtain
the cameras’ frames, the component needs to copy them onto
the GPU memory system to merge them. Once the merging
procedure finishes, the component copies the result back onto
the RAM system. Fig. 3 describes the detailed activities of the
vision system.

In the general case, when using the Rubus component model
to develop applications that requires GPU usage, the following
challenges are faced:

• An inefficient inter-SWCs communication. Using the
existing Rubus communication mechanism, the SWCs

with GPU computation are compelled to copy the (input
and output) data from and to the RAM system. This
produces a communication overhead over the CPU-GPU
hardware connection, which degrades the performance of
the system.

• Duplicated software code. As an effect of encapsulating
the same data transfer operations, there is a lot of dupli-
cated code in the system.

• A reduced reusability of the components. When accessing
the GPU, each SWC needs to specify how much of the
GPU computation resources (i.e., threads) are utilized.
This information is hard-coded within the component.
Hence, the reuse of the SWC is limited to specific
hardware platforms that posses enough GPU computation
resources to allow the execution of the component.
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Fig. 3: The hardware activities of the vision system
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Fig. 4: The demonstrator vision system design using the extension

IV. THE RUBUS EXTENSION

One way to tackle the current shortcomings in the Rubus
component model is to introduce new component model
elements, as follows:

• GPU ports. These ports are aware of the GPU environ-
ment. They facilitate a direct communication of GPU-
based components, through the GPU RAM system.

• Connection adapters. Whenever a regular data port is
connected to a GPU port or vice-versa, adapters are
automatically generated to facilitate the copy operation
between the different processing units.

• A configuration interface. Through it, the system de-
veloper distributes suitable GPU computation settings to
GPU-based component. These settings correspond to the
computation resources of the hardware platform in use.

To integrate our solution into the Rubus component model,
we add the following changes to it. We introduce a new type
of component, i.e, the GPU-aware software circuit, that is
characterized by GPU computation. A GPU-aware SWC is
characterized by:

• A new category of Rubus data port called GPU data
port. Being aware only of the GPU memory system,
these ports have a different type than the regular data
ports. The difference is justified by the fact that the GPU
hardware may have a different memory architecture than
the architecture of the main memory system. For example,
an embedded system may have a 64-bit architecture for
the main memory and a 32-bit architecture for the GPU
memory. When the data transfer between the two different
memory systems is done, the data should have appropriate
types, with respect to the corresponding memory archi-
tecture. GPU ports can be connected to both regular data
ports and GPU data ports. They are mandatory elements
when constructing a GPU-aware component.

• A configuration interface to improve the component
reusability. Through it, the system distributes to SWCs
that utilize the GPU, suitable configuration settings with
respect to the available hardware resources. The configu-

ration interface can only be connected to a constant. The
interface is locked and cannot be connected to other data
ports. The interface is a mandatory element when defining
a GPU-aware component.

The connection between two data ports from different cate-
gories, such as an output data port and a GPU input data port,
is done through an adapter which is automatically generated.
The purpose of the adapter is to automatically transfer data
from one memory system to another and to supply the right
data type to the connected software circuits. For example,
when a regular output data port is connected to an input GPU
data port, a CPU-to-GPU adapter is generated to automatically
shift the data from the RAM system to the GPU memory and
to provide the appropriate data type with respect to the GPU
memory architecture. There are two types of adapters: a CPU-
to-GPU adapter which copies data from the RAM system onto
the GPU memory system, and a GPU-to-CPU adapter which
transfer the data onto the RAM system.

Adapting the vision system with our proposed solution,
the new revised design is presented in Fig. 4. The system
design is enriched with new input and output GPU data ports
for the GPU-aware components ImageMerger and ColorFilter.
New adapters automatically assist the data transfer operations
(i.e., CPU-to-GPU and GPU-to-CPU) between the ColorFilter
and VisionManager and Logger. The same applies between
the camera components and ImageMerger. We decide to not
graphically represent the adapters in the architectural view as
the data shifting operations are performed in a transparent way.
ImageMerger and ColorFilter GPU-aware components use the
configuration interface to receive their specific computation
settings.

The altered activities of the modified vision system design
are illustrated in Fig. 5. The automatically introduced adapters
are handling the data transfer between the CPU and GPU: two
adapters are shifting the initial camera frames onto the GPU
RAM, while a third one copies the result of the ColorFilter
SWC back onto the CPU RAM system. Equipped with GPU
ports, ImageMerger communicates directly with ColorFilter
through the GPU RAM environment.
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Fig. 5: The hardware activity of the revised vision system

When using the extended Rubus component model to
develop GPU-based applications for embedded systems, the
following advantages are found:

• The communication between GPU-aware SWCs is kept
locally, onto the GPU RAM system. This decreases the
communication overhead. Therefore, the system perfor-
mance is improved and the stress over the hardware
communication CPU-GPU bridge is reduced.

• As an effect of introducing the adapter communication
elements, the code duplication in the GPU-aware SWCs
is reduced. Another advantage of externalizing the data
transfer operations through the adapters is that the GPU-
aware component becomes lighter from the computational
concern.

• The reusability of the SWCs is enhanced by distributing
the computation settings at the system level. In this way,
suitable computation settings with respect to the GPU
computation resource are assigned to GPU-aware SWCs
at system level.

V. REALIZATION

The extension includes new component model elements:
GPU data ports, configuration interface and adapters. Using
the current Rubus framework, we create the introduced con-
cepts by using existing Rubus constructs. Their realizations
are described in the following paragraphs.

A. Ports

The realization of the GPU data ports and the configuration
interface is done by using regular Rubus data ports.

In the following paragraphs, we present how a GPU-aware
component with GPU data ports and configuration interface
is implemented using the Vision System running example.

In Rubus, a software circuit is specified by a header and a
source C file. The header file declares the structures used for
the component interface and the behavior function, while the
source file defines the behavior through the entry function.
Fig. 6 shows the header C file of the ImageMerger software
circuit.

A Rubus component is characterized by an inter-
face that contains all its input and output data ports.
The interface declaration of the ImageMerger compo-
nent is SWC merger iArgs t. It contains two structs:
the IP SWC iArgs t for the input data ports and the
OP SWC iArgs t for the output data ports. Using the existing
port implementation constructs, we define the port of the
configuration interface as a regular input data port. There-
fore, the struct of the input data ports contains, besides the
input data ports ID 1 and ID 2, the configuration settings
port ID cfg. This configuration port, declared as a struct,
contains all the parameters required to specify how much of
the GPU threads the component consumes at the run time.
ID 1 and ID 2 are GPU data input ports but are realized as
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typedef struct {
GPU_unsigned_char *ptr;
int width;
int height;

}img_format;

//specific GPU settings
typedef struct {

int blockDim_x, blockDim_y,
blockDim_z;

int gridDim_x, gridDim_y,
gridDim_z;

}GPU_settings;

//GPU input ports and the
configuration interface

typedef struct {
img_format *ID_1;
img_format *ID_2;
GPU_settings *ID_cfg;

}IP_SWC_iArgs_t;

//GPU output port
typedef struct {

SWC_img_format OD;
}OP_SWC_iArgs_t;

typedef struct {
IP_SWC_iArgs_t IP;
OP_SWC_iArgs_t *OP;

}SWC_merger_iArgs_t;

extern void SWC_merger_entry (
SWC_merger_iArgs_t *args);

Fig. 6: Implementation details of the ImageMerger component

regular data ports. They are declared as structs that contain
information about the image frame, such as width, height or
the memory location. Similarly, the GPU output port, declared



as a struct that contains information about the merged image
frame, is declared as an element of the output port struct
OP SWC iArgs t. The behavior function SWC merger entry
is defined in the source C file of the component.

B. Adapters

Using the existing Rubus framework, the adapter is realized
as a software circuit with GPU data ports and regular data
ports. The CPU-to-GPU adapter is realized as a software
circuit equipped with an input data port and one GPU data
output port, while the GPU-to-CPU adapter is a software
circuit with one input GPU port and one output data port.

Being realized in Rubus as software circuits, the adapters
follow the ordinary Read-Execute-Write semantics. Whenever
the trigger port of the adapter is activated, the data from the
input data port are read in an atomic operation, followed by
the switch of the internal state to the execution mode during
when the functionality is performed. After the data transfer is
finished, the SWC’s internal state becomes inactive and the
output port is atomically written. Finally, the trigger output
port is activated.
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Fig. 7: The general case of the CPU-to-GPU adapter realiza-
tion

A CPU-to-GPU adapter is generated when an output port
of a software circuit C is connected to at least one GPU-
aware software circuit. Consider a software circuit C with an
output trigger port OT and an output data port OD. Let T
be a set containing all trigger ports that are connected to OT
and P the set composed of all data ports that are connected
to OD. For the general case, the set P is constructed from
two subsets, P1 which contains only GPU data ports and
P2 consisting of data ports, as described in Fig. 7(a). The
connection realizations between the component C, a CPU-to-
GPU adapter and all the components that are connected with
C, are done as illustrated in Fig. 7(b). The OT and the OD
ports are connected to the input trigger port and the input data
port of the adapter, respectively. The output trigger port of the
adapter is connected to all ports from the T set. The GPU
output data port of the adapter is only connected to the ports
from the subset P1. With the generation of the adapter, all the
connections between the OT port and the ports from the T set
and the port OD with the ports from P1 set respectively are
removed. Similar rules apply when a GPU-to-CPU adapter is
automatically generated.

To exemplify the connection realizations of a CPU-to-
GPU adapter, we describe two examples. Fig. 8(a) presents

OT1$

OD1$

IT2$

ID2$

SWC_1$
SWC_2$

(a) Rubus extension

OT1$

OD1$

IT2$

ID2$

SWC_1$
SWC_2$

CPU.to.GPU$
adapter$

(b) Realization of the adapter

Fig. 8: A simple example of adapter realization

the simplest case, where a software circuit SWC 1 is only
connected to a single GPU-aware software circuit SWC 2. A
CPU-to-GPU adapter is generated and placed between SWC 1
and SWC 2, as shown in Fig. 8(b).

A more complex situation is depicted in Fig. 9(a), where a
component SWC 1 is connected to a GPU-aware component
SWC 2 and to a regular component SWC 3. The connection
realizations between the adapter and all three components
are realized similarly as described in the previous example,
where the OT1 and OD1 are connected to the trigger and data
ports of the adapter. Both SWC 2 and SWC 3 components
are triggered by the adapter, by connecting the output adapter
trigger port to IT2 and IT3. Copying the data onto the GPU
RAM system, the adapter output port connects to only ID2

port. The initial connection between the OD1 and ID3 regular
data ports is not replaced by the generation of the adapter, as
described by the Fig. 9(b).
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Fig. 9: A complex example of adapter realization

To depict the utilization of the proposed Rubus adapters, we
present the implementation adapter details from the system
illustrated in Fig. 10. In the Vision System, three adapters
are generated: two CPU-to-GPU adapters copy images onto
the GPU memory for the ImageMerger component, and one
GPU-to-CPU adapter copies the resulted filtered images back
onto the CPU RAM for the VisionManager and Logger com-
ponents.

Each adapter, implemented as a software circuit has a header
and a behavior file. An adapter header is implemented similar
to the one described in Fig. 6. The behavior of a CPU-to-
GPU adapter is presented in Fig. 11. The adapter allocates the
right amount of memory onto the GPU using the cudaMalloc
specific function, where it shifts the data from the main
memory system through the cudaMemcpy operation. The data
from the main memory is represented by a pointer variable
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Fig. 10: The vision system design and the automatically generated adapters

host ptr which points to the memory location of the data that
needs to be shifted. Similarly, the device ptr variable points
to the memory location from the GPU system, where the data
is shifted. After the copy operation is finished, the adapter sets
its GPU output port with the necessary values.

void adapter_entry (adapter_iArgs_t *args)
{

GPU_unsigned_char *device_ptr;
unsigned_char *host_ptr;
int width, height;
width = args->IP.ID_input->width;
height = args->IP.ID_input->height;

cudaMalloc(&device_ptr, 3*sizeof(device_ptr) *
width * height );

cudaMemcpy(device_ptr, host_ptr, 3*sizeof(
host_ptr)* width * height,
cudaMemcpyHostToDevice );

IPA_OP_System__adapter = {{device_ptr, width,
height}};

}

Fig. 11: The behavior of a CPU-to-GPU adapter

VI. EVALUATION

By extending the Rubus component model with our so-
lution, on one hand, we increase the overhead of the sys-
tem due to the execution of additionally introduced software
circuits (i.e., adapters). On the other hand, we decrease the
communication overhead using the same introduced compo-
nent elements. In this section, we present two experiments
to investigate the efficiency of the proposed extension. The
experiments are performed on a system containing an Unix-
based OS (i.e., Ubuntu 15.04LTS), a hardware platform con-
sisting of an NVIDIA Quadro 600 GPU hardware with Fermi
architecture and an Intel Xeon i7 CPU with 32 GB of internal
RAM.

A. Experiment 1

In the first experiment, we compare the end-to-end execu-
tion time of two versions of the vision system. The first version
is built with the proposed extension while the second version
is built with the standard Rubus solution that encapsulates all

GPU information within ordinary SWCs, in both versions.
The end-to-end times are counted from the triggering of
the first component of the system (i.e., Camera1) until the
last triggered component (i.e., VisionManager) finishes its
execution. The experiment investigates the overhead caused
by the extension when varying the size of the system input
data. We use three different input sets that contain two images
respectively of 512 x 512 pixels, 1024 x 1024 pixels and
2048 x 2048 pixels. The same GPU computation settings are
used for both versions of the system. We execute each system
version for 1000 times and for each time, the end-to-end times
are measured. Based on this, an average value of the end-to-
end times is calculated.
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Fig. 12: End-to-end times in the vision system while process-
ing different input sizes

Fig. 12 presents the measurements of the two versions of
the vision system, for inputs of different sizes. Despite having
additionally generated components (i.e., adapters), the perfor-
mance of the extended Rubus is comparable to the standard
solution. This is as expected as the system under study is



relatively small, only containing two GPU-aware components
connected in a sequence. However, when increasing the size
of the input, we can notice an increased efficiency when using
our proposed extension. In each of the six experiment cases,
less than 2% of the measurements deviate more than ±0.1%
from the calculated average value.

Regarding the number of code lines provided by the user for
the two components with GPU capabilities (i.e., ImageMerger
and ColorFilter) there is approximatively 30% less code (25
code lines) when using the extended Rubus solution, due to
the ability to automatically take care of GPU specific copy
operations.

B. Experiment 2

The second experiment investigates the produced overhead
when utilizing the extension, while increasing the number of
components with GPU capabilities. For this experiment, we
construct two versions of a component, both using the GPU to
execute the same functionality, i.e., the mirroring of an image.
One version is a regular Rubus component with data ports,
encapsulating the necessary GPU information and operations,
and the other is build as a GPU-aware component based on our
proposed extension. Based on them, we developed a system for
each version: a system composed of regular software circuits
using a standard Rubus solution and a system with adapters
and components equipped with GPU data ports. To keep
it simple, each system is a chain of sequentially connected
instances of the corresponding mirror component version.

M1# Mn#A# Z#…#

components#with#GPU#capabili8es#

(a) A system based on a standard Rubus
solution

M1# Mn#
Adapter# Adapter#

A# Z#…#

GPU1aware#components#and#adapters#

(b) A system based on a Rubus with extension solution

Fig. 13: The systems used in Experiment 2

Fig. 13 illustrates the two mirroring systems used in this
experiment. A system built with a standard Rubus solution is
presented in Fig. 13(a), where an initial component A examines
the image to be mirrored for e.g., the number of pixels to
be processed, and an ending component Z uses the mirrored
final output. Fig. 13(b) illustrates the second mirrored system
based on a Rubus with extension solution, composed of GPU-
aware components and adapters. We modify the number of
components with GPU capabilities in order to evaluate the
changing overhead of the system with extension. For both
mirror systems we use the same GPU computation settings and

an image of 2048 x 2048 pixels (4.2 MB) to be mirrored. We
execute each system for 1000 times and calculate the average
of the measured end-to-end time.
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Fig. 14: End-to-end times in the system when varying the
number of composed components

Fig. 14 presents the results of both systems when varying
the number of components. When the systems contain a single
mirror component, the system based on a standard Rubus
solution is performing relatively the same as our proposed
extension. Hence, the overhead introduced by the additional
generated components is negligible. When the systems are
composed from three to seven components, the gain of our
proposed extension is gradually increasing from 6% to 10%.
Also in this experiment, less than 2% of the measurements
deviate more than ±0.1% from the calculated average value,
in each of the eight cases. This experiment shows that the
extended Rubus solution performs better than the standard
solution, when the software architecture is composed of more
than one GPU-aware component.

The number of user provided code lines for the mirror
component is decreased with 25% when using the extended
Rubus solution compared to the standard approach.

VII. RELATED WORK

The solution of using heterogeneous hardware to tackle
the highly demanding resources is already embraced by the
industry. For example, multi-core ECU platforms are adopted
in the aeronautics and space industry [13], where the Integrated
Modular Avionics architecture [14] is extended to support the
new hardware platforms. Another example is the AUTOSAR
component model from the automotive industry which has



been extended to support multi-core ECUs [15]. A step for-
ward in the development of heterogeneous embedded systems
is achieved through hybrid system-on-chip that contain both
CPU and field-programmable gate array (FPGA). Andrews
et al. describe a way to use COTS components, referred as
hybrid components, to address the CPU-FPGA hardware [16].
The work started the development of a unified programming
model based on the multi-threading programming paradigm to
synchronize CPU-FPGA computations within the hybrid com-
ponents [17]. Although the GPU-aware components proposed
by our Rubus extension use the CPU to trigger the execution
on the GPU, these GPU-aware components are not similar
to the hybrid components from the computation perspective.
In our solution, the communication between components with
CPU and GPU computations is done through the component
interface, assuring a high degree of reusability for the compo-
nents.

Regarding CPU-GPU systems, the PEPPHER component-
model presents a way to efficiently utilize heterogeneous CPU-
GPU hardware [18]. The component model uses the PEPPHER
component which is an annotated software unit with an inter-
face. The interface is defined by an XML descriptor document
that specifies the name, parameter types and access type of
the component. There may be several implementation variants
of the same functionality (e.g., for CPU and GPU) defined
by the component interface. The parameters passed between
PEPPHER components are wrapped in special portable and
generic data structures. These structures, called smart contain-
ers, ensure the memory transfer of data between processing
units and do the memory management of the copied data.
In our work, we provide a transparent and automatic way of
transferring data between processing units by using adapters.
Similar to the smart containers which are more complex
when dealing with memory management, our adapters can be
considered as high-level memory management elements.

The Elastic computing [19] is a component-based frame-
work that statically determines the optimal software configu-
ration for a given platform using a library that contains pre-
built ”elastic functions”. A limitation of this work is that the
resource allocation and data management is done inside the
elastic function, which we tackle in our proposed extension
through the adapters.

It is worth mentioning that there is a lot of work addressing
development of models for heterogeneous hardware. Several
programming models target systems with multi-core CPUs and
accelerator units (e.g., GPUs). They can be split into two
categories, direct and library-based approaches. Example of
direct approaches include the work of Papakipos [20] that
provides a C and C++ API. The API calls are dynamically
translated into parallel programs which are executed across
multiple processing units. The Merge framework [21], which is
a library-based approach, automatically and dynamically par-
allelizes and load-balances the application computation over
the available hardware processing cores (e.g., CPU, GPU).
The work unit is a task and the application computation is
composed from a number of tasks which are mapped to special

functions that encapsulate the accelerator-specific code.
Numcode

VIII. CONCLUSION

The latest technology progress favored the development of
heterogeneous embedded systems. Becoming more and more
popular, the embedded systems that contain CPUs and GPUs
represent a viable solution for applications that are highly
resource demanding. Despite the latest growing interest in
CPU-GPU embedded systems, the existing component models
do not provide any support for GPU usage. Thus, all the
specific information and operations required to access and use
the GPU are encapsulated in the components. This negatively
affects the component reusability and the communication be-
tween components. In this paper, we have extended the Rubus
component model to provide support for GPU development.
We have introduced new Rubus artifacts and presented their
specifications and semantics using a running example. The
benefits of our Rubus extension include:

• The system performance is increased by reducing the
overhead communication between SWCs.

• The duplicated code of SWCs is reduced by adding
specialized communication elements.

• The reusability of SWCs is improved by deciding the
GPU configuration settings at the system level.

• It is worth nothing that our solution is not limited to
Rubus and is applicable to any component model that
has similar characteristics, in particular the pipe & filter
interaction style (e.g., SaveCCM [22], ProCom [23]).

For future work, we propose to increase the efficiency of
the extended Rubus solution by allowing parallel execution of
GPU-aware components. When a GPU-aware component is
executed on the GPU and is not consuming all the hardware
resources (e.g., GPU memory, computation threads), one or
several GPU-aware components may be executed on the same
GPU hardware, if possible. In this way, the execution time of
the system is improved and the hardware is fully utilized.
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