

SAVEComp - a Dependable Component Technology for

Embedded Systems Software

Mikael Åkerholm*, Anders Möller†,*, Hans Hansson*, Mikael Nolin*
* Mälardalen Real-Time Research Centre, Mälardalen University, Sweden

† CC Systems, www.cc-systems.com
Email: Mikael.Akerholm@mdh.se

Abstract

Component-Based Software Engineering is a technique that has proven effective to in-

crease reusability and efficiency in development of office and web applications. Though be-

ing promising also for development of embedded and dependable systems, the true potential

in this domain has not yet been realized.

In this paper we present a prototype component technology, developed with safety-

critical automotive applications in mind. The technology is illustrated by a case-study, which

is also used as the basis for an evaluation and a discussion of the appropriateness and appli-

cability in the considered domain. Our study provides initial positive evidence of the suitabil-

ity of our technology, but also shows that it needs to be extended to be fully applicable in an

industrial context.

1 Introduction

Software is central to enable functionality in mobile phones, cars, airplanes, medical systems, and

other products. At the same time, software is also a source of quality problems and constitutes a major

part of the development cost. These problems are further accentuated by the increasing complexity and

product integration.

Improving quality and predictability of Embedded Computer Systems (ECS) are prerequisites to in-

crease, or even maintain, profitability. Similarly, there is a call for predictability in the ECS engineering

processes; keeping quality under control, while at the same time meeting stringent cost and time-to-

market constraints. This calls for new systematic engineering approaches to design, develop, and main-

tain ECS software. Component-Based Software Engineering (CBSE) is such a technique, currently used

in office applications, but with a – still unproven – potential for embedded dependable software systems.

In CBSE, software is structured into components and systems are constructed by composing and con-

necting these components. CBSE can be seen as an extension of the object-oriented approach, where

components may have additional interface types than the traditional method invocation of objects. Simi-

larly to objects, simpler components can be aggregated to produce more complex components.

In this paper, we present the ongoing work of devising a component technology for distributed, em-

bedded, safety critical, dependable, resource constrained real-time systems. Systems with these charac-

teristics are common in the automotive, robotics, and automation industries. Hence, we cooperate with

leading product companies (e.g. ABB, Bombardier and Volvo) and some of their suppliers (e.g. CC Sys-

tems and Arcticus Systems) in order to establish this novel component technology.

Support for dependability can be added at many different abstraction levels (e.g. the source code and

the operating system levels). At each level, different methods and techniques can be used to increase the

dependability of the system. Our hypothesis is that dependability, together with other key characteristics,

such as resource efficiency and predictability, should be introduced early in the software development

and supported through all stages of the process. Our view is that dependability, and similar cross-cutting

characteristics, cannot be achieved by addressing only one abstraction level or one phase in the software

life-cycle. Further, we argue that dependability of systems is enhanced by systematic application of code

synthesis, which can be based on models of component behaviour and their resource requirements to-

gether with application requirements and models of the underlying hardware and operating system. The

models and requirements are used by resource and timing analysis algorithms to ensure that a feasible

system is generated.

Outline: Section 3 provides background on CBSE for Embedded Systems. In Section 3 we present the

current implementation of our component technology, and Section 4 provides an example application

that illustrates its use. Based on experiences with the example application, we provide an evaluation of

our technology in Section 5. Finally, in Section 6 we conclude and outline some future work.

2 CBSE for Embedded Systems

Research in the CBSE community is targeting theories, processes, technologies, and tools, supporting

and enhancing a component-based design strategy for software. A component-based approach for soft-

ware development distinguishes “component development” from “system development”. Component de-

velopment is the process of creating components that can be used and reused in many applications. Sys-

tem development with components is concerned with assembling components into applications that meet

the system requirements. The central technical concepts of CBSE in an embedded setting are:

 Software components that have well specified interfaces, and are easy to understand, adapt and

deliver. Especially for embedded systems, the components must have well specified resource re-

quirements, as well as specification of other, for the application relevant properties, e.g., timing,

memory consumptions, reliability, safety, and dependability.

 Component models that define different component types, their possible interaction schemes, and

clarify how different resources are bound to components. For embedded systems the component

models should impose design restrictions so that systems built from components are predictable

with respect to important properties in the intended domain.

 Component frameworks, i.e., run-time systems that supports the components’ execution by han-

dling component interactions and invocation of the different services provided by the compo-

nents. For embedded systems, the component framework typically must be light weighted, and

use predictable mechanisms. To enhance predictability, it is desirable to move as much as possi-

ble of the traditional framework functionality from the run-time system to the pre-run-time com-

pilation stages.

 Component technologies, i.e., concrete implementations of component models and frameworks

that can be used for building component-based applications. Two of the most well known com-

ponent technologies are Microsoft’s Components Object Model (COM)1 for desktop applica-

tions, and Sun’s Enterprise Java Beans (EJB)2 for distributed enterprise applications.

Efficient development of applications is supported by the component-based strategy, which addresses

the whole software life-cycle. CBSE can shorten the development-time by facilitating component reuse,

and by simplifying parallel development of components. Maintenance is also supported since the com-

ponent assembly is a model of the application, which is by definition consistent with the actual system.

During maintenance, adding new, and upgrading existing components are the most common activities.

When using a component-based approach, this is supported by extendable interfaces of the components.

Also testing and debugging is enhanced by CBSE, since components are easily subjected to unit testing

and their interfaces can be monitored to ensure correct behaviour.

CBSE has been successfully applied in development of desktop and enterprise business applications,

but for the domain of embedded systems CBSE has not been widely adopted. One reason is the inability

of the existing commercial technologies to support the requirements of the embedded applications. Com-

ponent technologies supporting different types of embedded systems have recently been developed, e.g.,

from industry [3], [2], and from academia [4], [5]. However, as Crnkovic points out [17], there are much

more issues to solve before a CBSE discipline for embedded systems can be established, e.g., basic is-

sues such as light-weighted component frameworks and identification of which system properties that

can be predicted by component properties.

Based on risks and requirements for applying CBSE for our class of applications, we have collected a

check-list with evaluation points that we have used to evaluate our component technology in an industrial

environment. In Section 5 we provide a summary of the evaluation. For more details we refer to [9].

3 Our Component Technology

Our component technology implements the SaveComp Component Model [1] and provides compile-

time mappings to a set of operating systems, following the technique described in [7]. The component

technology is intended to provide three main benefits for developers of embedded systems: efficient de-

velopment, predictable behaviour, and run-time efficiency.

Efficient development is provided by the SaveComp Component Model’s efficient mechanisms for

developing embedded control systems. This component model is intended to be sufficiently expressive

for the needs of embedded control designers, while at the same time being restricted enough to facilitate

predictability, dependability, and analysis.

1 Microsoft Corporation, The Component Object Model, http://www.microsoft.com
2 Sun Microsystems, Enterprise JavaBeans Specification, http://www.sun.com

Predictable behaviour is essential for dependable systems. In our technology, predictability is achieved

by systematic use of simple, predictable, and analysable run-time mechanisms; combined with a restric-

tive component model with limited flexibility.

Run-time efficiency is important in embedded systems, since these systems usually are produced in

high volumes using inexpensive hardware. We employ compile-time mappings of the component-based

application to the used operating systems, which eliminates the need for a run-time component frame-

work.

As shown in Figure 1, three different phases can be identified, where different pieces of the compo-

nent technology are used:

 Design-time - SaveCCM is used during design-time for describing the application.

 Compile-time – during compile-time the high-level model of the application is transformed into

entities of the run-time model, e.g., tasks, system calls, task attributes, and real-time constrains.

 Run-time – during run-time the application uses the execution model from an underlying operat-

ing system. Currently our component technology supports the RTXC operating system3 and the

Microsoft Win32 environment4. The Win32 environment is intended for functional test and de-

bug activities, but it does not support real-time tests since executions are not timely accurate with

target system executions.

Task
Allocation

Win 32

APPLICATION

SaveCCM

XML - representation

Design-
Time

Compile-
Time

Run-
Time

<<SaveComp>>

PC
<<SaveComp>>

Compose

<<Assembly>>
P

Set Actual
Control

Attribute
Assignment

Code Generation
& Analysis

C-compiler

RTXC

APPLICATION
Simulation Target

Figure 1: An overview of our current component technology

3 Quadros Systems Inc, RTXC Kernel User’s Guide, http://www.quadros.com
4 MSDN, Win32 Application Programmer’s Interface, http://msdn.microsoft.com/

3.1 Design-Time - The Component Model

SaveCCM is a component model intended for development of software for vehicular systems. The

model is restrictive compared to commercial component models, e.g., COM and EJB. SaveCCM pro-

vides three main mechanisms for designing applications:

 Components, which are encapsulated units of behaviour.

 Component interconnections, which may contain data, triggering for invocation of components,

or a combination of both data and triggering.

 Switches, which allow static and dynamic reconfiguration of component interconnections.

These mechanisms have been designed to allow common functionality in embedded control systems to

be implemented. Specific examples of key functionality supported are:

 Support for implementation of feedback control, with a possibility to separate calculation of a

control signal, from the update of the controller state. Something which is common in control

applications to minimise latency between sampling and control.

 Support for system mode changes, something which is common in, e.g., vehicular systems.

 Support for static configuration of components to suit a specific product in a product line.

3.1.1 Architectural Elements

The main architectural elements in SaveCCM are components, switches, and assemblies. The interface

of an architectural element is defined by a set of associated ports, which are points of interaction between

the element and its external environment. We distinguish between input- and output ports, and there are

two complementary aspects of ports: the data that can be transferred via the port, and the triggering of

component executions. SaveCCM distinguish between these two aspects, and allow three types of ports:

 Data ports are one element buffers that can be read and written. Each write operation to the port

will overwrite the previous value stored.

 Triggering ports are used for controlling the activation of elements. An element may have sev-

eral triggering ports. The component is triggered when all input triggering ports are activated.

Several output triggering ports may be connected to a single input triggering port, providing

“OR-semantics”.

 Combined ports (data and triggering), combine data and triggering ports. Semantically the data is

written before the trigger is activated.

An architectural element emits trigger signals and data at its output ports, and receives trigger signals

and data at its input ports. Systems are built from the architectural elements by connecting input ports to

output ports. Ports can only be connected if their types match, i.e. identical data types are transferred and

the triggering coincides.

The basis of the execution model is a control-flow (pipes-and-filters) paradigm [8]. On a high level, an

element is either waiting to be activated (triggered) or executing. In the first phase of its execution an

element read all its inputs, secondly it performs all computations, and finally it generates outputs.

Components

Components are the basic units of encapsulated behaviour. Components are defined by an entry func-

tion, input and output ports, and, optionally, quality attributes. The entry function defines the behaviour

of the component during execution. Quality attributes are used to describe particular characteristics of

components (e.g. worst-case execution-time and reliability). A component is not allowed to have any de-

pendencies to other components, or other external software (e.g. the operating system), except the visible

dependencies through its input- and output-ports.

Switches

A switch provides means for conditional transfer of data and/or triggering between components. A

switch specifies a set of connection patterns, each defining a specific way of connecting the input and

output ports of the switch. Logical expressions (guards; one for each pattern), based on the data available

at some of the input ports, are used to determine which connection pattern that is to be used.

Switches can be used for specifying system modes, each mode corresponding to a specific static con-

figuration. By changing the port values at run-time, a new mode can be activated. By setting a port value

to a fixed value at design time, the compiler can remove unused functionality.

Assemblies

Component assemblies allow composite behaviours to be defined, and make it possible to form aggre-

gate components from groups of components, switches, and assemblies. In SaveCCM, assemblies are en-

capsulation of components and switches, having an external functional interface (just as SaveCCM-

components).

3.1.2 SaveCCM Syntax

The graphical syntax of SaveCCM is shown in table 1, the syntax is derived from symbols in UML

2.05, with additions to distinguish between the different types of ports. The textual syntax is XML6 based,

and the syntax definition is available in [9].

5 Object Management Group, UML 2.0 Superstructure Specification, http://www.omg.com/uml/
6 World Wide Web Consortium (W3C), XML, http://www.w3.org/XML/

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

<<Assembly>>
<name>

<<Switch>>
<name>

<<SaveComp>>
<name>

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

<<Assembly>>
<name>

<<Switch>>
<name>

<<SaveComp>>
<name>

Table 1: Graphical syntax of SaveCCM

3.2 Compile-Time Activities

During compile-time, the XML-description of the application is used as input. The XML description

contains no dependencies to the underlying system software or hardware. All code that is dependent on

the execution platform is automatically generated in the compile-step. In the compiler, the modules (see

Figure 1) that are independent of the underlying execution platform are separated from modules that are

platform dependent. When changing platform, it is possible to replace only the platform dependent mod-

ules of the compiler.

The four modules of the compiler (task allocation, attribute assignment, analysis, and code generation)

represent different activities during compile-time, as explained below.

3.2.1 Task Allocation

During the task-allocation step, components are assigned to operating-system tasks. This part of the

compile-time activities is independent of the execution platform, and the algorithm used for allocation of

components to tasks strives to reduce the number of tasks. This is done by allocating components to the

same task whenever possible, i.e. (i) when the components execute with the same period-time, or are

triggered by the same event, and, (ii) when all precedence relations between interacting components are

preserved. A description of the algorithm is available in [9].

3.2.2 Attribute Assignment

Attribute assignment is dependent on the task-attributes of the underlying platform, and possibly addi-

tional attributes depending on the analysis goals. In the current implementation for the RTXC RTOS and

Win32, the task attributes are:

 Period time (T), used during code generation for specifying the period time for tasks.

 Priority (P), used by the underlying operating system for selecting the task to execute among

pending tasks.

 Worst-case execution-time (WCET), used during analysis.

 Deadline (D), used during analysis.

The period time, deadline, and WCET are directly derived from the components included in each task.

Priority is assigned in deadline monotonic order, i.e., shorter deadline gives higher priority.

3.2.3 Analysis

The analysis step is optional, and is in many cases dependent on the underlying platform, e.g., for

schedulability analysis it is fundamental to have knowledge of the scheduling algorithm of the used OS.

But analysis is also dependent on the assigned attributes (e.g., for schedulability analysis, WCET of the

different tasks are needed).

Examples of analysis include schedulability analysis [10], memory consumption analysis [11], and re-

liability analysis [12].

Attributes that are usage and environment dependent cannot be analysed in this automated step, since

it only relies on information from the component model. There are no usage profiles or physical envi-

ronment descriptions included in the component model. Additional information is needed to allow such

analysis, e.g., safety analysis [13]. Safety is an important attribute of vehicular systems, and we plan to

integrate safety aspects in future extensions.

In the current prototype implementation, schedulability analysis according to FPS theory is performed

[14].

3.2.4 Code Generation

The code generation module of the compile-time activities generates all source code that is dependent

on the underlying operating system. The code generation module is dependent on the Application Pro-

gramming Interface (API) of the component run-time framework. In the prototype implementation for

the RTXC operating system (see Figure 2 right) and the Win32 operating system (see Figure 2 left), the

code generation does not target any of the APIs directly. Instead, the automatic code generation generates

source code for target independent APIs: the SaveOS and SaveIO APIs. The APIs are later translated us-

ing C-style defines to the desired target operating system.

3.3 The Run-Time System

The run-time system consists of the application software and a component run-time framework. The

application software is automatically generated from the XML-description using the SaveCCM Com-

piler. On the top-level, the run-time framework has a transparent API, which always has the same inter-

face towards the application, but does only contain the run-time components needed (e.g. the SaveCCM

API does not include a CAN interface, a CAN protocol stack or a device driver, if the application does

not use CAN).

Pre-compilation settings are used to change the SaveCCM API behaviour depending on the target en-

vironment. If the application is to be simulated in a PC environment, in our case using CCSimTech [15],

the SaveCCM API directs all calls to the SaveOS to the RTOS simulator in the Windows environment. If

the system is to be executed on the target hardware using a RTOS (e.g. RTXC) the SaveCCM API di-

rects all system calls to the RTOS.

The framework also contains a variable set of run-time framework components (e.g. CAN, IO, and

Memory) used to support the application during execution. These components are hardware platform in-

dependent, but might, to some degree, be RTOS dependent. To obtain hardware independency, a hard-

ware abstraction layer (HAL) is used. All communication between the component run-time framework

and the hardware passes through the HAL.

SaveCCM Application Programmer’s Interface

SaveCCM Application

MS Windows

SaveIO

PC

SaveMemory SaveCAN

CCSimTech

S
c

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

S
im

ulation Fram
ew

ork

Target Fram
ew

ork

SaveCCM Application Programmer’s Interface

SaveCCM Application

MS Windows

SaveIO

PC

SaveMemory SaveCAN

CCSimTech

S
c

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

S
im

ulation Fram
ew

ork

Target Fram
ew

ork

Figure 2: System architecture for simulation and target

The layered component run-time framework is designed to enhance portability, which is a strong in-

dustrial requirement [16].This approach also enhances the ability to upgrade or update the hardware and

change or upgrade the operating system. The requirements on product service and the short life-cycles of

today’s CPUs also make portability very important.

4 Application Example

To evaluate SaveCCM and the compile-time and run-time parts of the component technology, a typi-

cal vehicular application was implemented. The application used for evaluation is an Adaptive Cruise

Controller (ACC) for a vehicle. When designing the application, much focus was put on using all differ-

ent possibilities in the component model (components, switches, assemblies, etc.) with the purpose to

verify the usefulness of these constructs, the compile-time activities, and the automatically generated

source code. In the remaining part of this section, the basics of an ACC system is introduced, and the re-

sulting design using SaveCCM is presented.

4.1 Introduction to ACC functionality

An ACC is an extension to a regular Cruise Controller (CC). The purpose of an ACC system is to help

the driver keep a desired speed (traditional CC), and to help the driver to keep a safe distance to a preced-

ing vehicle (ACC extension). The ACC autonomously adapt the distance depending on the speed of the

vehicle in front. The gap between two vehicles has to be large enough to aviod rear-end collisions.

To increase the complexity of a basic ACC system, and thereby exercise the component model more,

our ACC system has two non-standard functional extensions. One extension is the possibility for

autonomous changes of the maximum speed of the vehicle depending on the speed-limit regulations.

This feature would require actual speed-limit regulations to be known to the ACC system by, e.g., by us-

ing transmitters on the road signs or road map information in cooperation with a Global Positioning Sys-

tem (GPS). The second extension is a brake-assist function, helping the driver with the braking procedure

in extreme situations, e.g., when the vehicle in front suddenly brakes or if an obstacle suddenly appears

on the road.

4.2 Implementation using SaveCCM

On the top-level, we distinguish between three different sources of input to the ACC application: (i)

the Human Machine Interface (HMI) (providing e.g. desired speed and on/off status of the ACC system),

(ii) the vehicular internal sensors (e.g. actual speed and throttle level), and, (iii) the vehicular external

sensors (providing e.g. distance to the vehicle in front). The different outputs can be divided in two cate-

gories, the HMI outputs (returning driver information about the system state), and the vehicular actuators

for controlling the speed of the vehicle.

The application has two different trigger frequencies, 10 Hz and 50 Hz. Logging and HMI outputs ac-

tivities execute with the lower rate, and control related functionality at the higher rate.

Furthermore, there is a number of operational system modes identified, in which different components

are active. The different modes are: Off, ACC Enabled and Brake Assist. Off is the initial system mode.

In the Off mode, none of the control related functionality is activated, but system-logging, functionality

related to determining distance to vehicles in front, and speed measuring are active. During the ACC en-

abled mode the control related functionality is active. The controllers control the speed of the vehicle

based on the parameters: desired speed, distance to vehicles in front, and speed-regulations. In the Brake

Assist mode, braking support for extreme situations is enabled.

The ACC system is implemented as an assembly (“ACC Application” in left part of Figure 3) built-up

from four basic components, one switch, and one sub-assembly. The sub-assembly (“ACC Controller”)

is in turn implemented as shown in Figure 3, right.

Figure 3: ACC Application implementation

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

<<Assembly>>
Distance

Controller

<<SaveComp>>
Calc Output

<<SaveComp>>
Update State

<<Assembly>>
Speed

Controller

<<SaveComp>>
Calc Output

<<SaveComp>>
Update State

Distance
Relative
Speed

Max
Speed

Current
Speed

Current
Speed

Control

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

Brake Pedal Used

<<Assembly>>50 Hz

10 Hz

Brake Signal

Throttle

Brake Assist

<<SaveComp>>

Logger
HMI Outputs

<<SaveComp>>

Object
Recognition

<<SaveComp>>

Mode Switch

<<Switch>>

ACC
Controller

<<Assembly>>

Brake Assist

ACC

Max Speed

ACC Application
Speed Limit

<<SaveComp>>

4.2.1 The ACC Application Assembly

The Speed Limit component calculates the maximum speed, based on input from the vehicle sensors

(i.e. current vehicle speed) and the maximum speed of the vehicle depending on the speed-limit regula-

tions. The component runs with 50 Hz and is used to trig the Object Recognition component.

The Object Recognition component is used to decide whether or not there is a car or another obstacle

in front of the vehicle, and, in case there is, it calculates the relative speed to this car or obstacle. The

component is also used to trigger Mode Switch and to provide Mode Switch with information indicating

if there is a need to use the brake assist functionality or not.

Mode Switch is used to trigger the execution of the ACC Controller assembly and the Brake Assist

component, based on the current system mode (ACC Enabled, Brake Pedal Used) and information from

Object Recognition.

The Brake Assist component is used to assist the driver, by slamming on the brakes, if there is an ob-

stacle in front of the vehicle that might cause a collision.

The Logger HMI Outputs component is used to communicate the ACC status to the driver via the

HMI, and to log the internal settings of the ACC. The log-memory can be used for aftermarket purposes

(black-box functionality), e.g., checking the vehicle-speed before a collision.

The ACC Controller assembly is built up of two cascaded controllers (see Figure 3, right), managing

the throttle lever of the vehicle. This assembly has two sub-level assemblies, the Distance Controller as-

sembly and the Speed Controller assembly.

A control feedback solution is used between the two controllers to deliver the response for the time-

critical computation (throttle lever level) as fast as possible. Hence, the controllers firstly calculate their

output values and after these values have been sent to the actuators, the internal state is updated (detailed

presentation can be found in [9]).

4.3 Application Test-Bed Environment

In the evaluation, the RTXC operating system is used together with a Cross FIRE ECU7. (Electronic

Control Unit) RTXC is a pre-emptive multitasking operating system which permits a system to make ef-

ficient use of both time and system resources. RTXC is packaged as a set of C language source code files

that needs to be compiled and linked with the object files of the application program.

The Cross FIRE is a C167-based8 IO-distributing ECU designed for CAN-based real-time systems.

The ECU is developed and produced by CC Systems, and intended for use by mobile applications in

rough environments.

During functional testing and debugging, CC Systems use a simulation environment called CCSim-

Tech [15], which also was incorporated in this work. Developing and testing of distributed embedded

systems is very challenging in their target environments, due to poor observability of application state

and internal behaviour. With CCSimTech, a complete system with several nodes and different types of

7 CC Systems, Cross FIRE Electronic Control Unit, http://www.cc-systems.com
8 Infineon, C-167 processor, http://www.infineon.com

interconnection media, can be developed and tested on a single PC without access to target hardware.

This makes it possible to use standard PC tools, e.g., for debugging, automated testing, fault injection,

etc.

5 Evaluation and Discussion

CBSE addresses the whole life-cycle of software products. Thus, to fully evaluate the suitability of a

component technology requires experiences from using the technology in real projects (or at least in a

pilot/evaluation project) by representatives from the intended organisation, using existing tools, proc-

esses and techniques.

Our experiment was conducted using CC Systems’ tools and techniques. However, we have not used

the company’s development processes. Hence, we can only give partial answers (indications) concerning

the suitability our component technology.

We divide our evaluation in the following three categories:

 Structural properties, concerning the suitability of the imposed application structure and archi-

tecture, and the ease to define and create the desired behaviour using the supported design pat-

terns.

 Behavioural properties, concerning the application performance, in terms of functional and non-

functional behaviour.

 Process properties, concerning the ease and possibility to integrate the technology with existing

processes in the organisation.

The adaptive cruise controller application represents an advanced domain specific function, which

could have been used as a pilot study at the company. The hardware, operating system, compilers, and

the simulation technique, have been selected among the company’s repertoire, and are thus highly realis-

tic.

The implementation of the application has not been done according to the process at the company,

rather as an experiment by the authors. Thus, it is mainly the structural-, and behavioural related evalua-

tion that can be addressed by our experience. However, to evaluate the process related issues, senior

process managers at the company have helped to relate the component technology to the development

processes normally used.

The evaluation is conducted using a check-list assembled from requirements for automotive compo-

nent technologies by Möller et al. [16], risks with using CBSE for embedded systems by Larn and Vick-

ers [6], and from needs identified by Crnkovic [17].

5.1 Structural Properties

Based on the experiment performed we conclude that the component model is sufficiently expressive

for the studied application, and that it allows the software developer to focus on the core functionality

when designing applications. The similarities with UML 2.0 provide important benefits by allowing us to

use a slightly modified UML 2.0 editor for modelling applications. Also, issues related to task mapping,

scheduling, and memory allocation are taken care of by the compilations provided by the component

technology, something which gives developers possibilities to concentrate more on application function-

ality.

Modifications of components are facilitated, since the components have visible source code, and since

all bindings between components are automatically generated. However, there is not yet any specific sup-

port to handle maintenance implemented in the component technology.

It is straightforward to compile the ACC system for both Win32 on a regular PC and RTXC on a

Cross FIRE ECU. This is an indication of the portability of our technology across hardware platforms

and operating systems. As a consequence, components can be reused in different applications regardless

of which RTOS or hardware is used.

Configurability is essential for component reuse, e.g., within a Product Line Architecture (PLA) [18].

In SaveCCM, components can be configured by static binding of values to ports. However, there is cur-

rently no explicit architectural element to specify this. In our experiment, we could however achieve the

same effect by directly editing the textual representation. For instance, a switch condition can be set

statically during design-time, and partially evaluated during compile-time, to represent a configuration in

a PLA. A future extension of SaveCCM is to add a new architectural element that makes it possible to

visualise and directly express static configurations of input ports. This will additionally facilitate version

and variant management.

5.2 Behavioural Properties

With respect to behavioural properties, our component technology is quite efficient. The run-time

framework provides a mapping to the used OS without adding functionality, and the compile-time

mechanisms strive to achieve an efficient application by allocating several components to the same task.

Some data about our case-study:

 The compilation resulted in four tasks: one task including components speed-limit, object recog-

nition, and mode-switch; one task including logger HMI outputs; one task including brake assist;

and one task including the four components in the ACC controller.

 The CPU utilisation in the different application modes are 7%, 12%, 15%, respectively for the

Off, Brake Assist, and ACC modes, respectively.

 The total application size is 114 kb, of which 104 kb belongs to the operating system, and 10 kb

to the application. The application part consists of 2 kb of components code, together with 8 kb

run-time framework and compiler generated operating system dependent data and code.

To allow analysis it is essential to derive task level quality attributes from the corresponding compo-

nent level attributes. In our case-study this was straight-forward, since the only quality attribute consid-

ered is worst-case execution time, which can be straightforwardly composed by addition of the values

associated to the components included in the task.

Furthermore, the CCSimTech simulation technique proved very useful for verification and debugging

of the application functionality.

5.3 Process Related

The process related evaluation concerns the suitability to use the component technology in conjunction

with existing processes and organisation, when developing component-based applications. Though proc-

ess related issues are not directly addressable by our experiment, based on a set of interviews company

engineers have expressed the following:

 The RTOS and platform independence is a major advantage of the approach.

 The integration with the simulation technique, CCSimTech, used in practically all development

projects at CC Systems, will substantially facilitate the integration of SaveCCM in the develop-

ment process.

 The maintainability aspects of CBD are attractive, since changes are simplified by the tight rela-

tion between the applications description and the source code.

 The tools included in the component technology, as well as the user-documentation, have not

reached an acceptable level of quality for use in real industry projects.

6 Conclusions and Future Work

We have described the initial implementation of our component technology for vehicular systems, and

evaluated it in an industrial environment, based on requirements identified in related research.

The evaluation shows that the existing parts of the component technology meet the requirements re-

lated to them. However, to meet overall requirements, extensions to the technology are needed.

Plans for future work include extending the component technology with support for multiple nodes,

integration of legacy-code with the components [21], run-time monitoring support [19], and a real-time

database for structured handling of shared data [20]. Implementation of more types of automated analysis

to determine system attributes from component attributes is also a target for future work, as are methods

to determine component attributes. Furthermore, to make the prototype useful in practice, our technology

needs to be integrated with supporting tools, e.g., automatic generation of XML descriptions from UML

2.0 drawings, and integration with configuration management tools.

A final indication of the potential of our component technology, and CBSE for embedded systems de-

velopment in general, is that the company involved in the case-study finds our technology promising and

has expressed a keen interest to continue the cooperation.

Acknowledgements

We would like to thank CC Systems for inviting and helping us to realise this pilot project. Special

thanks to Jörgen Hansson and Ken Lindfors for invitation and to Johan Strandberg and Fredrik Löwen-

hielm for their support with all kinds of technical issues. We would also like to thank Sasikumar Punne-

kat for valuable feedback on early versions of this article.

References

[1] H. Hansson, M. Åkerholm, I. Cnrkovic, and M. Törngren, SaveCCM – a component model for safety-critical real-time sys-

tems, In Proceedings of the 30th Euromicro Conference, Component-Based Software Engineering Track; Rennes, France,

September 2004

[2] R. van Ommering, F. Van der Linden, K. Kramer, and J. Magee. The Koala Component Model for Consumer Electronics

Software, IEEE Computer, 33(3):78-85, March 2000

[3] K. L. Lundbäck, J. Lundbäck, and M. Lindberg, Component-Based Development of Dependable Real-Time Applications,

Arcticus Systems http://www.arcticus.se

[4] M. de Jonge, J. Muskens, and M. Chaudron; Scenario-Based Prediction of Run-Time Resource Consumption in Component-

Based Software Systems, In Proceedings of the 6th ICSE Workshop on Component-Based Software Engineering, Portland,

Oregon, USA, May 3, 2003

[5] K. Wallnau, Volume III: A Technology for Predictable Assembly for Certifiable Components, Technical Report, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, USA, April 2003

[6] W. Lam, and A. J. Vickers, Managing the Risks of Component-Based Software Engineering, In Proceedings of the 5th Inter-

national Symposium on Assessment of Software Tools, Pittsburgh, USA, June 1997

[7] K. Sandström, J. Fredriksson, and M. Åkerholm, Introducing a Component Technology for Safety Critical Embedded Real-

Time Systems, In Proceedings of the 7th International Symposium on Component-Based Software Engineering, Edinburgh,

Scotland, May 2004

[8] M. Shaw, and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall,, ISBN 0-131-82957-

2, 1996

[9] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin, SaveCCM Proof of Concept, MRTC Report…

[10] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, Kluwer Aca-

demic Publishers, 1997, ISBN: 0-7923-9994-3

[11] A. V. Fioukov, E. M. Eskenazi, D. K. Hammer, and M. Chaudron, Evaluation of static properties for component-based archi-

tectures, In Proceedings for the 28th Euromicro Conference, 2002

[12] H. W. Schmidt, and R. H. Reussner, Parameterized Contracts and Adapter Synthesis, In Proceedings of the 5th ICSE work-

shop on CBSE, 2001

[13] D. H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Execution, ASQ Quality Press, 2nd Edition, ISBN

0873895983, June, 2003

[14] M. G. Harbour, M. H. Klein, and J. P. Lehoczky, Timing analysis for fixed-priority scheduling of hard real-time systems,

IEEE Transaction on Software Engineering, , 20(1), January 1994

[15] A. Möller, A Simulation Technology for CAN-based Systems, CAN Newsletter, nr 4, CAN in Automation, December 2004

[16] A. Möller, J. Fröberg, and M. Nolin, Industrial Requirements on Component Technologies for Embedded Systems, In Pro-

ceedings of the 7th International Symposium on Component-Based Software Engineering, Edinburgh, Scotland, May 2004

[17] I. Crncovic, Component-Based Approach for Embedded Systems, In Proceedings of the 9th International Workshop on Com-

ponent-Oriented Programming, Oslo, Norway, June 2004

[18] P. Clements, and L. Northrop, Software Product Lines, Addison-Wesley, ISBN 0-201-70332-7, 2001

[19] D. Sundmark, A. Möller, and M. Nolin, Monitored Software Components – A Novel Software Engineering Approach, In the

11th Asia-Pasific Software Engineering Conference, Workshop on Software Architectures and Component Technology,

Pusan, Korea, November 2004

[20] D. Nyström, COMET: A Component-Based Real-Time Database for Vehicle Control-Systems, Licentiate Thesis, Dept. of

Computer Science and Engineering, Mälardalen University, Mälardalen University Press, May 2003

[21] M. Åkerholm, K. Sandström, and J. Fredriksson, Interference Control for Integration of Vehicular Software Components,

MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-SE, MRTC, Mälardalen University, May 2004

