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Damir Isović, Gerhard Fohler Liesbeth Steffens
Department of Computer Engineering Information Processing Architectures
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Abstract

Decoding MPEG-2 video streams imposes hard real-
time constraints for consumer devices such as TV sets. The
freedom of encoding choices provided by the MPEG-2 stan-
dard results in high variability inside streams, in particular
with respect to frame structures and their sizes.

In this paper, we identify realistic timing constraints de-
manded by MPEG-2 video decoding. We present results
from a study of realistic MPEG-2 video streams to analyze
the validity of common assumptions for software decoding
and identify a number of misconceptions. Furthermore, we
identify constraints imposed by frame buffer handling and
discuss their implications on decoding architecture and tim-
ing constraints.

1 Introduction

The Moving Picture Experts Group (MPEG) standard for
coded representation of digital audio and video [1], is used
in a wide range of applications. In particular MPEG-2 has
become the coding standard for digital video streams in con-
sumer content and devices, such as DVD movies and digi-
tal television set top boxes for Digital Video Broadcasting
(DVB). MPEG encoding has to meet diverse demands, de-
pending, e.g., on the medium of distribution, such as overall
size in the case of DVD, maximum bitrate for DVB, or en-
coding speed for live broadcasts. In the case of DVD and
DVB, sophisticated provisions to apply spatial and temporal
compression are applied, while a very simple, but quickly
coded stream will be used for the live broadcast. Conse-
quently, video streams, and in particular their decoding de-
mands will vary greatly between different media.

The encoded content has to be decoded and played out.
Decoding can be performed in hardware or in software, or,
as in most practical systems, in a mix of both. Both dedi-
cated and programmable decoders can be based on average-
case requirements if they provide means to gracefully han-

dle overload situations. If not, both must support worst-case
requirements. However, in a software implementation, it is
possible to use the slack on the processor for other applica-
tions in average case. With dedicated hardware, there are no
such possibilities. As a consequence, the behavior of a soft-
ware decoder will be less regular than that of a dedicated
hardware decoder. Coping with these irregularities is one
of the objectives dealt with in this article.

While in the simplest case of sufficient resources, MPEG
decoding is straight forward, i.e., simply a matter of trans-
mitting and decoding to display frames with the required
frequency, the considerable variations in the streams render
such approaches too costly for many cases. If the proces-
sor cannot work fast enough to decode all the frames, the
decoder has to speed up. There are two ways to do this:
quality reduction, and frame skipping. With the quality
reduction strategy, the decoder reduces the load by using
a downgraded decoding algorithm, while frame skipping
means that not all frames are decoded and displayed, i.e.,
some of the frames are skipped. In this paper, we focus on
the frame skipping approach. Frame skipping can be used
sparingly to compensate for sporadic high loads, or it can
be used frequently if the load is structurally too high.

Many algorithms for software decoding of MPEG video
streams use buffering and rate adjustment based on average-
case assumptions. These provide acceptable quality for
applications such as video transmissions over the Internet,
when drops in quality, delays, uneven motion or changes in
speed are tolerable. However, in high quality consumer ter-
minals, such as home TVs, quality losses of such methods
are not acceptable. In fact, producers of such devices have
argued to mandate the use of hard real-time methods instead
[4]. A server based algorithm for integrating multimedia
and hard real-time tasks has been presented in [2]. It is
based on average values for execution times and interarrival
intervals. A method for real-time scheduling and admission
control of MPEG-2 streams that fits the need for adaptive
CPU scheduling has been presented in [7]. The method is



not computationally overloaded, qualifies for continuous re-
processing and guarantees QoS. However, no consideration
on making priorities on the� frame level has been done.

It is difficult to predict WCET for decoding parts.
MPEG-2 can use different bitrates which can result in large
differences in decoding times for different streams. This
could lead to big overestimations of the WCETs. Work
on predicting MPEG execution times has been presented in
[3, 5]. Most standard real-time schedulers fail to satisfy the
demands of MPEG-2 as they do not consider the specifics
of this compression standard.

In this paper, we derive realistic timing constraints for
MPEG-2 video decoding. We analyze realistic MPEG
streams and match the results with common assumptions
about MPEG, identifying a number of misconceptions. The
correct assumptions are needed to identify realistic timing
constraints for MPEG processing. Even frame skipping
needs appropriate assumptions to be effective. Dropping
the wrong frame at the wrong time can result in a notice-
able disturbance in the played video stream. We discuss
frame buffer handling and its impact on decoding design
and temporal requirements. Based on correct assumptions,
we provide guidelines for real-time MPEG processing, such
as choosing buffer sizes and latency to derive the appro-
priate timing constraints. These constraints call for novel
scheduling algorithms to appropriately meet the exact con-
straints without quality loss due to misconceptions about the
stream characteristics.

2 Playing MPEG streams

In this section we present the main characteristics of
MPEG-2 video stream and give an overview how the stream
is processed, i.e., buffering, decoding and displaying.

2.1 MPEG-2 video stream characteristics

A complete description of the MPEG compression
scheme is beyond the scope of this paper. For details on
MPEG see e.g., [1, 14, 13]. The text presented in this sub-
section is summarized in figure 1.

Frame types - The MPEG-2 standard defines three types
of frames,� , � and�. The� frames orintra frames are
simply frames coded as still images. They contain abso-
lute picture data and are self-contained, meaning that they
require no additional information for decoding.� frames
have only spatial redundancy providing the least compres-
sion among all frame types. Therefore they are not trans-
mitted more frequently than necessary.

The second kind of frames are� or predicted frames.
They are forward predicted from the most recently recon-
structed� or � frame, i.e., they contain a set of instruc-
tions to convert the previous picture into the current one.�
frames are not self-contained, meaning that if the previous
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Figure 1. MPEG-2 video stream

reference frame is lost, decoding is impossible. On aver-
age,� frames require roughly half the data of an� frame,
but our analysis also showed that this is not the case for a
significant number of cases.

The third type is� or bi-directionally predicted frames.
They use both forward and backward prediction, i.e., a�
frame can be decoded from a previous� or � frame, and
from a later � or � frame. They contain vectors describing
where in an earlier or later pictures data should be taken
from. They also contain transformation coefficients that
provide the correction.� frames are never predicted from
each other, only from� or � frames. As a consequence,
no other frames depend on� frames. � frames require
resource-intensive compression techniques such as Motion
Estimation but they also exhibit the highest compression ra-
tio, on average typically requiring one quarter of the data of
an � picture. Our analysis showed that this does not hold
for a significant number of cases.

Group of Pictures - Predictive coding, i.e., the current
frame is predicted from the previous one, cannot be used in-
definitely, as it is prone to error propagation. A further prob-
lem is that it becomes impossible to decode the transmission
if reception begins part-way through. In real video signals,
cuts or edits can be present across which there is little re-
dundancy. In the absence of redundancy over a cut, there is
nothing to be done but to send from time to time a new refer-
ence picture information in absolute form, i.e., an� frame.



As � decoding needs no previous frame, decoding can begin
at� coded information, for example, allowing the viewer to
switch channels. An� frame, together with all of the frames
before the next� frame, form aGroup of Pictures (GOP).
The GOP length is flexible, but 12 or 15 frames is a com-
mon value. Furthermore, it is common industrial practice
to have a fixed pattern (e.g.,� �� � �� � �� � ��).
However, more advanced encoders will attempt to optimize
the placement of the three frame types according to local
sequence characteristics in the context of more global char-
acteristics. Note that the last� frame in a GOP requires
the� frame in the next GOP for decoding and so the GOPs
are not truly independent. Independence can be obtained
by creating aclosed GOP which may contain� frames but
ends with a� frame.
Transmission order - As mentioned above,� frames are
predicted from two� or � frames, one in the past and one
in the future. Clearly, information in the future has yet to
be transmitted and so is not normally available to the de-
coder. MPEG gets around the problem by sending frames
in the “wrong” order. The frames are sent out of sequence
and temporarily stored. Figure 1-c shows that although the
original frame sequence is� �� � ���, this is transmitted
as � � �� ���, so that the future frame is already in the
decoder before bi-directional decoding begins. Picture re-
ordering requires additional memory at the encoder and de-
coder and delay in both of them to put the order right again.
The number of bi-directionally coded frames between� and
� frames must be restricted to reduce cost and minimize de-
lay, if delay is an issue.

2.2 MPEG-2 video processing

In its simplest form, playing out an MPEG video stream
requires three activities: input, decoding, and display.
These activities are performed by separate tasks, which are
separated by input buffer and a set of frame buffers.

The input task directly responds to the incoming stream.
It places en encoded video stream in the input buffer. In
the simple case, this input activity is very regular, and only
determined by the fixed bit rate. In a more general case, the
input may be of a more bursty character due to an irregular
source (e.g. the Internet), or it may have a varying input
rate due to a varying multiplex in the transport stream. We
assume that the video data is placed in the input buffer with
a constant bitrate.

The decoding task decodes the input data and puts the
decoded frames in the frame buffers. If sufficient buffer
space is available, it may work asynchronously, spreading
the load more evenly over time. Its deadline is determined
by the requirements of the display task.

The display task is IO bound, and often performed by a
dedicated co-processor. It is driven by the refresh rate of the

screen. The display task, once started, must always find a
frame to be displayed. In the simple case, the display rate
equals the frame rate, but we will also consider situations
where the display rate is higher than the frame rate.

3 Analysis of realistic MPEG streams

In this section we present an analysis of MPEG-2 video
streams taken from original DVDs.

3.1 The analysis

We have analyzed 12 realistic MPEG streams and
matched our results with the common MPEG assumptions
Since some video contents are more sensitive for quality re-
duction than others [11], we have analyzed different types
of movies; action movies, dramas, and cartoons. Due to
space limitations we report only representative results for
selected DVD movies. The complete results for all analyzed
movies can be found in [9].

3.2 Simulation environment

The MPEG video streams have been extracted from orig-
inal DVD movies. To extract the data out of an MPEG video
stream, we have implemented a C-program. The decod-
ing execution time measurements were performed on sev-
eral PC computers, with different CPU speed (in the range
0.5-2.0 GHz). The time for measuring decoding execution
times was equivalent to the length of the movies.

3.3 Analysis results

GOP and frame size statistics of the selected movies are
presented in table 1. We have also analyzed the relations
between frame sizes on the individual GOP basis, see table
2. Furthermore, we have measured the decoding times for
different frame types, see figure 2.

3.4 Common assumptions about MPEG

Here we present some common assumptions about
MPEG and match them with our analysis results. We have
looked into stream assumptions (1-4), frame size assump-
tions (5-8), and a decoding time assumption (9).

Assumption 1: - The sequence structure of all GOPs in the
same video stream is fixed to a specific � ,� ,� frame
pattern. This is not true. For example, in 18% of the
GOPs in the action movie the GOP length was not 12
frames. Not all GOPs consist of the same fixed number
of � and� frames following the� frame in a fixed
pattern. That is because more advanced encoders will
attempt to optimize the placement of the three picture
types according to local sequence characteristics in the
context of more global characteristics.



Genre Avg I:P:B Nr of � frames � frames � frames
size ratio frames min max average min max average min max average

action 4:2:1 179412 11 247073 63263 2 152000 29352 4 96131 18525
drama 6:3:2 173054 17 183721 58985 4 126229 28893 4 79552 19054
cartoon 6:2:1 121406 7178 140152 84318 159 137167 31943 159 111405 14398

Table 1. Frame size statistics for selected analyzed MPEG streams (in bytes)

Genre Open Closed Standard Number of GOPs where
GOPs GOPs GOP length � largest � largest � largest � � � � � � � � �

action 83% 17% 82% 90% 9% 1% 9% 5% 39%
drama 98% 2% 92% 94% 5% 1% 6% 3% 37%
cartoon 99% 1% 98% 92% 7% 1% 8% 1% 12%

Table 2. GOP statistics

Assumption 2: - MPEG streams always contain� frames.
Not true. We have been able to identify MPEG streams
that contain only� and � frames (��� ), or even
only the � frames in some rare cases.� frame only
is an older MPEG-2 technology that does not take
advantage of MPEG-2 compression techniques. The
��� technology provides high quality digital video
and storage, making it suitable for professional video
editing.� frames provide the highest compression ra-
tio, making the MPEG file smaller and hence more
suitable for video streaming, but if the file size is not
an issue, they can be excluded from the stream.

Assumption 3: - All B frames are coded as bi-directional.
This is not true. There are� frames that do have bi-
directional references, but in which the majority of the
macroblocks are� blocks. If the encoder cannot find
a sufficiently similar block in the reference frames, it
simply creates an� block.

Assumption 4: - All P frames contribute equally to the
GOP reconstruction. Not true. The closer the� frame
is to the start of the GOP, the more other frames de-
pend on it. For example, without the first� frame in
the GOP,��, it would be impossible to decode the next
� frame,��, as well as all the� frames that depends
on both�� and��. In other words,�� depends on��,
while the opposite is not the case.

Assumption 5: - I frames are the largest and B frames are
the smallest. This assumption holds on average. In all
the movies that we analyzed, the average sizes of the
� frames were larger than the average sizes of the�
frames, and� frames were larger than� frames on
average. However, our analysis showed that this as-
sumption is not valid for a significant number of cases.
For example, in the action movie we have a case with
9% GOPs in which� have the largest size, and 1%
of GOPs where a� frame is the largest one (see table

2), which corresponds roughly to 8 and 1 minutes re-
spectively in a 90 minute film. Such deviations from
average cannot be ignored.

Assumption 6: - An I frame is always the largest one in a
GOP. This is not true. For example in the action movie
the� frame was not the largest in 12% of the cases (in
9% of the cases some� frame was larger than the�
frame, and in 3% of the GOPs, a� frame was larger
than the� frame).

Assumption 7: - B frames are always the smallest ones in
a GOP. Not true. For example, in the drama movie,
a � frame was larger than the� frame in 3% of the
cases, and larger than a� frame in 37% of the cases.
As a consequence, even the assumption that� frames
are always larger than� frames is also not valid.

Assumption 8: - I,P and B frame sizes vary with minor de-
viations from the average value of I,P and B. Not true.
In the action movie,� frame sizes vary greatly around
an average of 18525 bytes. The interval between 0.5
and 1.5 of average holds only some 60% of frames.

Assumption 9: - Decoding time depends on the frame size
and it is linear. While some results on execution times
for special kinds of frames have been presented, e.g.,
[5], a (linear) relationship between frame size and de-
coding time cannot be assumed in general. Our analy-
sis shows, that the relation between frame size and de-
coding follows roughly a linear trend. The variations
in decoding times for similar frame sizes, however, are
significant for the majority of cases, e.g., in the order of
50-100% of the minimum value for� frames. As ex-
pected, the frame types exhibit varying decoding time
behavior (see figure 2):� frames vary least, since the
whole frame is decoded with few options only. On the
other hand,� frames, utilizing most compression op-
tions, vary most.



Figure 2. Decoding execution times as a function of frame bitsize

4 Latency and buffer requirements

The input, decoding and display tasks are separated by
buffers: one input buffer used for storing the input video
bit-stream data, and a frame buffer space that contains at
least two frame buffers. In this section we describe system
latency and buffer requirements.

4.1 Latency

Once we start to play out an MPEG stream, theend-to-
end latency is fixed and it is measured from the arrival of the
first bit at the input task to the display of the first pixel or line
on the screen. If this latency is not fixed, the system cannot
work correctly over time. The end-to-end latency is the sum
of thedecoding latency, and thedisplay latency, which are
not necessarily fixed. The initial decoding latency is mea-
sured from the arrival of the first bit at the input task to the
reading of the first bit of the first frame, after the header, by
the decoder. The initial display latency is measured from
the reading of the first bit of the first frame, after the header,
by the decoder, to the display of the first pixel or line on
the screen. If the decoding task is strictly periodic, the de-
coding and display latencies are constant. If the decoder is
asynchronous, i.e. if its activity is determined by the buffer
fillings, the decoding and display latencies can vary.

4.2 Input buffer requirements

The input buffer serves several purposes. First, it has to
compensate for the irregular data size. This irregularity is
bounded, and the bounding is encoded in the stream, in the
form of a parameter calledVBVbuffer size, see MPEG video
standard [1]. VBV stands for Video Buffering Verifier, a hy-
pothetical decoder that starts when the first frame has com-
pletely arrived in its input buffer, and retrieves a complete
encoded frame out of the input buffer at the start of a new
frame period. The contents of the VBV input buffer never
exceeds VBV buffer size. Figure 3 depicts the time lines

and the buffer occupancy for a reference decoder that cor-
responds to the VBV. It shows minimum decoding latency,
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Figure 3. Minimum decoding latency

������, and minimum buffer size,������ at the start
of a new stream. The time lines represent the input and
decoding tasks, respectively. Because of the fixed bit rate,
��, the duration of inputting one picture is directly pro-
portional to the number of bits this picture takes up in the
encoded stream. The buffer occupancy rises linearly during
the decoding of each frame, and drops vertically at the start
of a new frame, when the picture data are removed from the
input buffer. The buffer occupancy is zero when the first
picture has just been removed from the input buffer.

Second, the input buffer has to compensate for vary-
ing decoding times, which are not foreseen by the encoder.
Therefore, this compensation cannot be bounded a priori.

Third, a realistic decoder retrieves the data from the input
buffer according to its processing. The resulting non-zero
retrieval time relaxes the buffer requirement, but can also
not be bounded a priori. Therefore, the input buffer size is
essentially a design choice, closely related to the initial de-
coding latency and the desired end-to-end latency. Once the
size of the input buffer is chosen, the maximum decoding
latency (������) is fixed:������ � ������, where



��� stands for the input buffer size.

4.3 Frame buffers requirements
The frame buffers serve a dual purpose. They serve as

reference buffers for the decoder and as input buffers for
the display task, or output buffer for the decoding task. It is
possible that a certain frame buffer is used in both capaci-
ties at the same time. This makes frame buffer management
somewhat more complicated than input buffer management.
The display task cannot start until the first frame has been
placed in the output buffer, and does not release the current
output buffer until a second output buffer is available (dou-
ble buffering scheme). In this way, the display task always
has a frame to display. If the stream contains two or more�
frames in sequence, the minimum number of frame buffers
needed is 4: two for the reference frames, one for the�
frame being displayed, one for the� frame being decoded.

The use of four frame buffers allows a certain irregularity
in the delivery of output frames by the decoder. Figures 4
and 5 depict the behavior of a regular reference decoder,
which takes exactly one frame period to decode a frame. In
the first period in figure 4, a new� frame is being decoded in
frame buffer	��. This� frame is needed to decode the�
frames�� and�� (that belong to the previos GOP but are
being transmitted after the� frame which is their backward
reference frame). In the next period,�� can be decoded,
and in the third period,�� can be displayed, while�� is
being decoded. If�� is the
-th frame to be displayed, it is
the�
���-th frame to be decoded. Therefore, the minimum
display latency equalstwo frame periods. If there are no
� frames, there is no frame reordering, and the minimum
display latency will be one frame period instead of two. In
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figure 4, the decoding cannot be done with less than four
frame buffers, but these four frame buffers do allow a larger
display latency. Figure 5 depicts a situation in which the
display latency is maximised. The� frames are displayed

not when they are completely decoded, but when the buffer
is needed to decode the next frame. Now the
-th frame is
being displayed while the�
���-th frame is being decoded,
i.e. the display latency equals three frame periods. Thus the
display latency is bounded between the minimum of two
frame periods and a maximum of three frame periods.
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4.4 Buffer overflow and underflow

Since the decoder is asynchronous, there is a risk of
buffer overflow and buffer underflow. Input underflow, and
frame buffer overflow occur when the decoder is too fast,
i.e when the decoding latency is too small and/or the dis-
play latency too large. They can easily be prevented by syn-
chronization. The decoder is blocked until the input and/or
output task catches up. Input overflow and output underflow
occur when the decoder is too slow, i.e. when the decoding
latency is too large and/or the display latency is too small.
In case of output underflow, the display does not have a new
frame to display, but this has been foreseen by retaining the
previous frame for display until a new one arrives. Input
overflow can be much more serious. In some cases, the in-
put can be delayed, e.g. in case of a DVD player. In other
cases, the input task cannot be blocked, especially in case of
a broadcast input, where the input buffer must be made large
enough to accommodate at least the variation that is allowed
by the frame buffers. This will be discussed in more detail
in the next section.

5 End-to-End flow control

The latency variation allowed is a design decision, based
on the maximum allowed end-to-end latency, and the avail-
able buffer space. If the processor cannot work fast enough
to meet the time constraints, the decoder has to speed up.
There are two ways to do this: quality reduction, and frame
skipping. Whichever strategy is chosen, we assume that the



system organisation is such that the display task is never
without data to display. This is not difficult to achieve. If
a decoded frame does not arrive on time, and the display
task has to redisplay the previous frame, this is a deadline
miss for the decoder. With the given arrangement deadline
misses have a penalty, in the form of a perceived quality
reduction. Moreover, since the frame count has to remain
consistent, the decoder must skip one frame.

5.1 Quality reduction

With the quality reduction strategy, the decoder reduces
the load by using a downgraded decoding algorithm. Qual-
ity reduction for MPEG decoding and other video algo-
rithms is discussed in [12], [17], [8], and [10]. This ap-
proach has two advantages over frame skipping. In general
the decoding load is higher when there is more motion, but
in that case, skipping frames may be more visible than re-
ducing the quality of individual pictures. Moreover, qual-
ity reduction can be more subtle, whereas skipping frames
is rather coarse grained. Control strategies for fine-grained
control based on scalable algorithms are proposed in [15]
and [16]. These control strategies use a mixture of pre-
ventive quality reduction and reactive frame skipping. The
main disadvantage of the quality reduction approach is that
it requires algorithms that can be downgraded, with suffi-
cient quality levels to allow smooth degradation. Such al-
gorithms are not yet widely available.

5.2 Frame skipping

Frame skips speed up the decoder, and increase the dis-
play latency, like a throttle. Unfortunately, the corrective
step is rather coarse grained: the display latency is increased
by a complete frame period. If the range of allowable dis-
play latencies is not large enough, this may lead to oscil-
lation, in which frame skips and bounces on frame buffer
overflow both are very frequent.

Frame skipping does not come for free. At the very least,
the start of the new frame has to be found and the interme-
diate data have to be thrown away. There are two forms of
frame skips, reactive and preventive.

A reactive frame skip is a frame skip at or after a dead-
line miss to restore the frame count consistency. In case
of a deadline miss, there are two options, aborting the late
frame, which is probably almost completely decoded, or
completing the late frame, and skipping the decoding of a
later frame. The effects of an abortion and of a reactive
frame skip on the display latency are shown in figures 6
and 7. In the former case, the display latency stays low,
and a next deadline miss is to be expected soon. In the lat-
ter case, the display latency is drastically reduced, because
the decoder will be blocked due to output buffer overflow.
An additional frame buffer would give more freedom, and a
more stable system, at the cost of using additional memory.

In both cases, we have to make sure that the input buffer is
large enough to allow the minimal display latency.
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A preventive frame skip preventively increases the dis-
play latency. The effect of a preventive frame skip on the
display latency is depicted in figure 8. The decision to skip
preventively is taken at the start of a new frame, and is based
on an measurement of the lateness of the decoder.

5.3 Criteria for preventive frame skipping

Not all the frames are equally important for the overall
video quality. Dropping some of them will result in more
degradation than others. Here we identify some criteria to
decide the relative importance of frames.

Criterion 1: - Frame type. According to this criterion, the
� frame is the most important one in a GOP since all
other frames depend on it. If we lose an� frame, then
the decoding of all consecutive frames in the GOP will
not be possible.� frames are the least important ones
because they are not reference frames. If we would
apply this criterion only, then we would pull out all�
frames first, then� frames and finally the� frame.

Criterion 2: - Frame position in the GOP. This is applied
to � frames. Not all� frames are equally important.
Skipping a� frame will cause the loss ofall its subse-
quent frames, and the two preceding� frames within
the GOP. For instance, skipping the first� frame (��)
would make it impossible to reconstruct the next�
frame (��), as well as all� frames that depends on
both�� and��. And if we skip�� then we cannot
decode�� and so on.

Criterion 3: - Frame size. Applies to� frames. Accord-
ing to the previously presented analysis results, there is
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Figure 7. Deadline missed - subsequent frame
skipped

a relation between frame size and decoding time, and
thus between size and gain in display latency. The pur-
pose of skipping is to increase display latency. So, the
bigger the size of the frame we skip, the larger display
latency obtained.

Criterion 4: - Skipping distribution. With the same num-
ber of skipped� frames, a GOP withevenly skipped
� frames will be smoother than a GOP with uneven
skipped� frames, since the picture information loss
will be more spread [11].

Criterion 5: - Buffer size. There is no point in having
a nice skipping algorithm without having sufficient
space to store input data and decoded frames.

Criterion 6: - Latency. An algorithm that takes entire GOP
into account requires a large end-to-end latency, and
corresponding buffer size.

When deciding the relative importance of frames for the en-
tire GOP, we could assign values to them according to all
criteria collectively applied, rather than applying a single
criterion. Since the criterion 1 is the strongest one, the�
frame will always get the highest priority, as well as the ref-
erence frames in the beginning of the GOP, while in some
cases we would prefer to skip a� frame towards the end of
the GOP than a big� frame close to the GOP start.

6 Timing Constraints

Timing constraints for an MPEG video decoder stem
from roughly three sources:
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Figure 8. Preventive frame skipping

First, the MPEG stream, in particular frame ordering and
their dependencies, poses mostlyrelative constraints.

Second,the display rate, related to the refresh rate of
the screen, defines mostlyabsolute constraints. It depends
on hardware characteristics, which in turn define when a
picture should be ready to be displayed. Consumer TV sets
typically have refresh rates of 50, 60, or 100Hz, computer
screens may have more diverse values.

Third, the frame buffers incurresource and synchroniza-
tion constraints. The number and handling of frame buffers
depends on hardware and architecture design, i.e., the con-
straints will be implementation dependent. Therefore we do
not include specific constraints, which would change with
design decisions.

6.1 Start time constraints

The earliest time at which decoding a frame can begin is
the earliest point in time at which all of the following start
time conditions,STC, hold.

STC1: Frame header parsed and analyzed.

STC2: For � and � frames: the decoding completion
time of the forward / backward reference frame.

STC3: Frame data available in input buffer. The cumula-
tive input time of frame� is calculated as:

��
 ��� �

��
���

�����

�����



with ����� the frame size of frame�, and����� the bitrate
of frame �. BR(j) and fs(j) are available from the frame
header

STC4: Free frame buffer available. This is always nat-
urally true for reference frames: they require at least two
buffers, see section 4. When a new reference frame is being
decoded, at most one of them is needed for reference. As a
consequence, for reference frames, STC4 becomes true one
frame period earlier than it would for� frames.

The last two constraints are necessary for unblocked
video stream processing.

6.2 Completion time constraints

The latest time at which decoding a frame has to be com-
pleted is the earliest point in time at which any of the fol-
lowing latest time conditions,LTC, holds:

LTC1: Display time of the frame. If we have a TV set
displaying a broadcast stream (DTV), the input frame rate
is equal to the display frame rate: 50 - 60 Hz, depending on
the region. Other input streams may have different frame
rates, and other displays may have different display rates.

If the display rate is an integer multiple of the input rate,
the solution is simple, re-display the frame several times.

If this is not the case, things are more complicated. Here
is an example: assume that we have an input frame rate of
24 Hz (original film material), and a display rate of 80 Hz
(computer display). In this case, the frame period,
 � , is
1/24 = 41.666 ms, whereas the display period,
�, is 1/80 =
12.5 ms.

Let IDL denoteinitial display latency, i.e., the display
time of the first frame, as described in section 4.1. The
first frame starts latest at time IDL, the second one at
IDL+41.666, and so on, as illustrated bellow:

IDL 41.666 83.333 124.999

��

IDL 12.5 25 37.5 50 62.5 75 87.5 100 112.5 125

��

Since the decoder task is not in phase with the display task,
the decoding deadline for each frame will occur between
two display deadlines, e.g., the decoding deadline for the
second frame, IDL+41.666, will be in between the display
deadline IDL+37.5 and the display deadline IDL+50 (se fig-
ure above).

Let � denote the closest display instance from left (in
this example, the one with the deadline IDL+37.5), and�
the closes one from right (IDL+50 in the example). There
are two ways to display frames.

Approach 1 - Always postpone, i.e., use the display in-
stance� to display the decoded frame. In this case, the
required display time,��
 , of a frame� �

� , where� is the
decoding number, and� the display number of the frame is
given by:
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 �� �� � � ����
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For the example above, this approach would lead to the fol-
lowing display times, frame intervals, and repetition rates:

� � � ��
 ����� �
� ���� ����

I 1 1 IDL + 0 50 4
B 3 2 IDL + 50 37.5 3
B 4 3 IDL + 87.5 37.5 3
P 2 4 IDL + 125 50 4
... ... ... ... ... ...

Note that, as outlined in section 2.1, the decoding order will
differ from the display order, i.e.,� �� �, if the stream con-
tains� frames. For� frames� � ���, for � and� frames,
the display number depends on the MPEG stream and has
to be determined via look-ahead.

Approach 2 - Use the closest instance of the display task
to show the frame, i.e., either� or �, whichever is closest.
For example, the instance of the display task that is closest
to the decoding deadline of the second frame (IDL+41.666)
is the one with deadline IDL+37.5, not the one that occurs
later with the deadline IDL+50. We have shown above how
to calculate the required display time for�, and the same is
valid even for�, except that we use the floor function to get
the instance index:
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For the example above, this approach gives:

� � � ��
 ����� �
� ���� ����

I 1 1 IDL + 0 37.5 3
B 3 2 IDL + 37.5 50 4
B 4 3 IDL + 87.5 37.5 3
P 2 4 IDL + 125 37.5 3
... ... ... ... ... ...

Approach 1 is a little more relaxed in terms of precise la-
tencies, and thus deadlines. Apparently, the choice between
approach 1 and 2 does not really matter with respect to rela-
tive frame jitter. In both cases, we get a cycle of three frame
intervals: 50, 37.5, 37.5. However, the relative frame jitter
is important for perception. In high quality video where the
jitter is not accepted, this problem has been solved by us-
ing interpolation, i.e., making new frames. This feature is
callednatural motion [6].



In case the completion time constraint is missed, consis-
tency between content and display and between display and
audio can be disturbed. Either the display rate is compro-
mised by waiting for the completion of the frame, which
will display it after a too long time interval after the pre-
vious, and the next one at a too short one. Or the frame
sequence is compromised by discarding the late frame and
redisplaying the current one. In the first case, it may be
necessary to skip the next frame, so as not to propagate the
late display and slow down the video. Frame skipping is a
delicate issue involving many design and engineering deci-
sions, including stream semantic and decoder capabilities.
The treatment of the temporal implications of frame skip-
ping is beyond the scope of this paper.

LTC2: Imminent overflow of input buffer. By a judicious
choice of input buffer size, as outlined in section 4, LTC2
will always be met. Should the completion constraint be
missed, though, data loss at the input buffer will occur, with
the risk of having to recapture the stream, which will take at
least the complete GOP or until the next sequence header.

7 Conclusion

In this paper, we presented a study of realistic MPEG-
2 video streams and showed a number of misconceptions
for software decoding, in particular about relation of frame
structures and sizes. Furthermore, we identified constraints
imposed by frame buffer handling and discussed their im-
plications on timing constraints.

Using the analysis, we determined realistic flexible tim-
ing constraints for MPEG decoding that call for novel
scheduling algorithms, as standard ones that assume aver-
age values and limited variations, will fail to provide for
good video quality.

Our current work includes extending the study to the sub
frame level, e.g., relationship between framesize and execu-
tion time, motion vectors, and sub frame decoding. Further-
more, we are formulating a quality based frame selection
algorithm to be used in a real-time scheduling framework.
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