
Synthesizing Job-Level Dependencies for
Automotive Multi-Rate Effect Chains

Matthias Becker∗, Dakshina Dasari†, Saad Mubeen∗, Moris Behnam∗, Thomas Nolte∗
∗MRTC / Mälardalen University, Sweden

{matthias.becker, saad.mubeen, moris.behnam, thomas.nolte}@mdh.se
† Research and Technology Centre, Robert Bosch, India

dakshina.dasari@in.bosch.com

Abstract—Today’s automotive embedded systems comprise
a multitude of functionalities, many with complex timing re-
quirements. Besides task specific timing requirements, such ap-
plications often have timing requirements for the propagation
of data through a chain of tasks. An important metric for
control applications is the data age, which is addressed in this
paper. The analysis of such systems is non-trivial because tasks
involved in the data propagation may execute at different periods,
which leads to over and undersampling within one chain. This
paper presents a novel method to compute worst- and best-
case end-to-end latencies for such systems. A second contribution
synthesizes job-level dependencies for such task sets in a way that
data paths which exceed the age constraint are eliminated. An
extensive evaluation is performed on synthetic task sets and the
applicability to industrial applications is demonstrated in a case
study.

I. INTRODUCTION

Today’s automotive embedded systems are highly dis-
tributed in nature, and they are realized via multiple Electronic
Control Units (ECU), sensors, actuators and communication
buses. Physical parameters are sensed by the sensor nodes,
passed on to computational nodes which process these param-
eters and finally sent to the actuator nodes (which may be part
of a closed loop). An example is the cruise control application
which senses engine speed, vehicle speed and the brake switch,
sets and maintains vehicle speed through changing conditions
(control) by adjusting the throttle position (actuation). Similar
examples can be found in other industries such as avionics, and
automation control. To be deemed correct, these systems have
to not only execute the functions in a logically correct order
to arrive at a desired reaction to the stimulus, but also must
do so within predefined time bounds. Effect chains or event
chains are a commonly used term to describe this sequence
of steps performed along the control path to fulfill a certain
functionality. Every effect chain has a timing requirement to
satisfy either the fundamental physics of the underlying system
or a user’s performance demand. This timing requirement
mandates that the end-to-end latency right from sampling to
the actuation is within a designated range.

One of the challenges in designing such systems in order
to meet timing constraints arises due to the presence of effect
chains with multi-rate tasks in which the constituent tasks
along the chain are activated with different periodicities (or
rates). This can lead to consequences of either oversampling
(the producer task generates data faster than the consumer
task can consume it) and undersampling (the producer task
generates data slower than the consumer task can consume it).

As a result, data generated by the producer may be overwritten
before a successor task has the chance to read them or the same
value can be read by multiple instances of a successor task [1].
The complexity of analysis is further enhanced by the fact that
certain segments of tasks may be part of multiple chains. As a
consequence, the process of system integration, ensuring that
all local timing requirements (i.e. the tasks deadlines) and all
end-to-end latency requirements are met, becomes a non trivial
problem. In this work, we target such applications consisting
of multi-rate effect chains with advanced timing requirements.

It is important to note that while effect chains define a
logical order of precedence among tasks, they do not enforce
constraints on task instances (or jobs), implying that in the
presence of multi-rate tasks, a given task instance, say a
consumer task may legally read data from any instance of its
predecessor in the effect chain. Such unconstrained dependen-
cies can result in missing the end-to-end latency requirements
of the effect chain. We solve this problem by analyzing such
errant effect chains and enforce dependencies between selected
task instances in such a way that all end-to-end latencies
are met while the additionally introduced constraints for the
system are minimized. This is done during the early design
phase of the system where no concrete knowledge about the
platform or the scheduler is available. Hence the approach is
independent of the concrete scheduling algorithm.

For an effect chain described by tasks with aforemen-
tioned job-level dependencies, [2] showed that fixed priority
scheduling mechanisms can be applied without synchroniza-
tion mechanisms and [3] showed how to schedule such systems
using dynamic scheduling algorithms. Similarly [4], [5] define
a time-triggered schedule for many-core platforms. However,
to the best of our knowledge, no formal method for the
analysis of effect chains to identify job-level dependencies has
been defined and currently it is left to the discretion of the
system designer. But manually identifying these dependencies
is extremely challenging for systems with a large number
of tasks and interconnected cause-effect chains, as found in
today’s automotive systems [6], and therefore research to
address this problem is warranted.

Towards addressing this problem, the main contributions
of this work are:

• A novel method is presented to calculate the possible
data propagation paths within a system with possible job-
level dependencies, independent of the concrete scheduling
algorithm. These paths are then used to compute minimum

and maximum end-to-end latencies of the effect chains.

• A heuristic solution is presented to augment an application
model with job-level dependencies in order to meet the
specified end-to-end timing requirements of all effect chains
specified for the system.

• The approach is evaluated based on synthetic experiments
as well as an industrial case study where the solution is
compared to a state-of-practice tool.

The rest of this paper is organized as follows. Section II
discusses the relevant related work, followed by the discussion
of background and the system model in Section III. Section IV
presents concepts to decide reachability among jobs. Section V
introduces an algorithm to compute minimum and maximum
latencies in the system. The synthesis of job-level dependen-
cies is introduced in Section VI. Section VII experimentally
evaluates the approach and Section VIII concludes the paper.

II. RELATED WORK

In [7] Forget et al. describe PRELUDE, an architecture lan-
guage intended for the design of multi-rate dependent control
systems. PRELUDE is built on the principles of synchronous
languages such as LUSTRE [8] but extends them with rate-
transition operations to cater for the needs of multi-rate real-
time systems. Several works address systems described by
PRELUDE. In [2] Forget et al. show how such systems can
be scheduled by fixed priority scheduling policies without the
need for additional synchronization mechanisms. Similarly, in
[3] Pagetti et al. show how such a system can be scheduled
by dynamic priority scheduling schemes such as Deadline
Monotonic (DM) or Earliest Deadline First (EDF). Puffitsch
et al. [5] describe an end-to-end framework targeting a many-
core platform. A heuristic partitions tasks on the individual
cores, taking communication between tasks into account. Later
in [4], Puffitsch et al. propose a time-triggered framework built
on a general many-core model, where constraint programming
is used to generate the time-triggered schedule. These works
show how to successfully execute complex multi-rate depen-
dent task sets on various hardware architectures using different
scheduling policies. However, these works assume that a
system designer is responsible to define the rate-transition
operations and hence the job-level dependencies. While this
is viable in many use-cases, large systems with interleaved
dependencies might impose challenges for the system designer
exacerbating the selection of rate-transition operations in such
a way that all timing requirements are fulfilled.

One of the most complex ECU in an automotive system
is the Engine Management System (EMS) where the func-
tionality is spread over up to 2000 modules (atomic SW
components) [6]. Several end-to-end requirements are defined
in standards such as EAST-ADL [9] and AUTOSAR [10] to
guarantee correct behavior of such systems. In [1], Feiertag et
al. propose a framework to calculate end-to-end latencies in
automotive systems, where the implicit communication model
of AUTOSAR is considered. In [11], Mubeen et al. integrate
the end-to-end path delay analysis with the Rubus-ICE which
is a commercial tool suite for model- and component-based
software development of vehicular embedded systems. To the
best of our knowledge no existing method or tool directly

supports the end-to-end latency calculations for the chains
with specified job-level dependencies.

Several works focus on the synthesis of tasks, where atomic
SW components are mapped to tasks of the operating system.
Panic et al. [12] describe an algorithm to parallelize legacy
systems on a multi-core architecture. Similarly, Faragardi [13]
maps the atomic SW components of an automotive application
to tasks of a multi-core system using evolutionary algorithms.
Both works consider only end-to-end latencies between tasks
of same period. Davare et al. [14] allow for multi-rate end-to-
end latencies in their applications but task periods are subject
to optimization in order to meet the system requirements.

Schliecker and Ernst [15] apply a recursive approach to
determine end-to-end path latencies in heterogeneous mul-
tiprocessor systems. Their approach considers pipelined and
transient effects, leading to tight end-to-end path latencies. In
contrast to our work they calculate maximum and minimum
latencies for event chains whereas we are interested in maxi-
mum and minimum latencies for a concrete sequence of jobs
which in turn is used to synthesize the job-level dependencies.

III. BACKGROUND AND MOTIVATION

This section provides the required background information
of the system model and introduces the end-to-end timing
requirements found in industrial applications.

A. System Model

We base our application model on standard automotive
applications which typically comprise a set of periodic pre-
emptive tasks. A task can be either time-triggered or event-
triggered and in this work we focus on applications that
are comprised of time-triggered tasks, which are periodically
triggered by a system clock. We describe a task τi by the
tuple {Ti, Ci}, where Ti describes the fixed activation interval
(called the period or rate of the task), and Ci the Worst-
Case Execution Time (WCET). Without loss of generality,
all tasks are released simultaneously, hence there is no offset.
We further assume implicit deadlines, i.e. Di = Ti, and the
jth job of τi is denoted by τi,j . All tasks of the application
are part of the set Γ and the hyperperiod HP of the task
set is the least common multiple of all task periods ∈ Γ.
Communication among tasks is realized via shared registers;
a sending task writes a value to the communication register
and a receiving task reads the current register value. Such
a scenario is shown in Fig 1. We further assume that each
task operates according to the read-execute-write semantic,
wherein the task reads in all the required inputs into local
copies before execution, executes by operating on these local
inputs and finally writes the output after execution. One
industrial example for this execution model is the implicit
communication model of AUTOSAR [16].

!" !# !$R1 R2 R3 R4

Period	=	10ms Period	=	30ms Period	=	10ms Task	activation

Data	propagation
Task

Com.	Register

Fig. 1: Register communication among communicating tasks.

The hardware platform is assumed to be either a single-
or multi-core processor with shared memory to allow for the
introduced communication model.

B. End-to-End Timing Requirements

As discussed earlier, in control systems, often it is not only
important that a task finishes execution before a given deadline
but also that input data is propagated through a chain of tasks
within a given time interval. In AUTOSAR, this chain is called
a Cause-Effect Chain [10] and hereafter this phrase is used to
denote a chain of directed dependent tasks.

We model a cause-effect chain using a Directed Acyclic
Graph (DAG) ζ = {V, E}, where V is the set of nodes,
representing tasks, and E is the set of edges, representing the
data propagation across the nodes. We define next(τi, ζ), a
function that returns the successor of the task τi in the cause-
effect chain ζ. Note, such a chain can have junctions and
joints but the source node and sink node must be the same
for all possible data paths of the chain [10]. However, this
does not imply that the latency for a certain input value of
the first segment in the chain until the last segment is the
same for all possible paths (i.e., the latencies must only fulfill
the requirements of being within the specified minimum and
maximum latency). If a cause-effect chain contains junctions
we linearize it by constructing a chain for both possible paths.
Hence all chains considered in the remainder of the paper are
linear, acyclic and do not consists of junctions. Note that a
single task can further be part of several cause-effect chains.
We define Π as the set of all cause-effect chains.

Timing constraints for these chains are specified by two
delay semantics, data age and data reaction constraints. A
detailed definition of both can be found in [1]. While the same
principles can be used to target the other latency types specified
for chains, in this work we focus on maximum data age which
is described in the following.

Data age constraints are commonly found in control sys-
tems, where the data age can directly influence the quality of
the control. With a data age constraint, it is important to know
for how long input data affects an output, i.e., the time is seen
from the occurrence of a response. Therefore, a (max) age
constraint of ”k” time units for a cause-effect chain mandates
that for an occurrence of a response event, the corresponding
input data is not older than ”k” time units.

This is shown in Fig. 2, where data is propagated through
a chain of tasks. Note that the maximum data age can be
measured starting from the first instance of τ1, which reads
the input value at t = 0. The data then propagates to the first
instance of τ2 and further to τ3. Note that τ3 is released more
frequently than τ2 and thus the first three instances of τ3 read
the same input data. Consequently the data age is measured
until the end of the instance of τ3 which consumes the data last
(i.e. at t = 6). One can also observe that, due to the different
execution rates, the values produced by the second and third
instance of τ1 are overwritten before an instance of τ2 has the
chance to read them.

1) Sampling: Since tasks of a chain may possibly have
different periods there can exist three different activation
patterns between two consecutive tasks of a chain, given τi

Task arrival
Data	propagation

Task	execution
Overwritten	data

2 4 8 10

!"

!#

!$

Maximum	Data	Age
t6

Fig. 2: Data propagation paths and maximum data age in a real-time system.

precedes τj . Oversampling, where Ti < Tj , undersampling,
where Ti > Tj , and same rate, where Ti = Tj .

The least complex scenario, when it comes to the analysis
of end-to-end latencies in such systems, is achieved when all
tasks of a chain operate at the same rate. In industrial appli-
cations such single- or homogeneous-rate chains constitute a
majority of the cause-effect chains which are augmented with
timing constraints. E.g. in [6] it is reported that 70% of the
cause-effect chains specified in a modern Engine Management
System (EMS) fall into this category, while the remaining 30%
are comprised of tasks of either 2 or 3 different periods in one
cause-effect chain.

C. Computation of Possible Data Propagation Paths

Consider a cause-effect chain ζ of tasks
{τi, τi+1 . . . τlength(ζ)} with corresponding periods
{Ti, Ti+1 . . . Tlength(ζ)}. A certain data value can be
propagated through multiple data paths until it reaches the
end of a cause-effect chain. For a given job of the chain with
parameters Ci and Ti, its output data can be available to its
successor in the chain for at most (2 · Ti) − Ci time units.
This is the case when the two consecutive jobs of τi execute
as early and as late as possible in their respective execution
windows. A successor task with period Ti+1 in the chain can
then read the value of this job and propagate its output to its
successors. This principle is then repeated for all segments
(a producer and a consumer task) of the cause-effect chain.
Then the total number of data propagation paths is given by:

paths =
∏

i∈[1,length(ζ)−1]

(⌈ (2 · Ti)− Ci
Ti+1

⌉
+ 1
)

The calculation for each segment needs to be appended with
1 to cover the case where an interval is partially overlapping
at input and output of the chain. This value then needs to be
multiplied with the number of starting instances of the chain
LCM(ζ)
Troot

.

D. Introducing Job Level Dependencies

In this work, we synthesize job-level dependencies for a
cause-effect chain in a periodic task set. This is done to ensure
the end-to-end timing requirements of the system are met while
the job-level dependencies are enforced.

A job-level dependency is specified across successive tasks
in a chain and specifies which job of a task needs to finish its
execution before a job of the successor task can start. Such job-
level dependencies are similar to the rate transition operator in
PRELUDE [7].

Ci

t

RIi,k+1

DIi,k

DIi,k+1DIi,k�1

RIi,k+2

Ci

RIi,k

Ci

Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Fig. 3: Read and data intervals of consecutive jobs of τi.

Definition 1. We define a job level dependency τi
(k,l)−−−→ τj ,

meaning there is a dependency between the kth job of τi and
the lth job of τj . This also implies that the dependency between
the two jobs applies for the duration of the hyperperiod of
the two jobs only, e.g. LCM(τi, τj). For single-rate systems,
the job indexes k and l are the same for both tasks which is
equivalent to task level dependencies.

IV. DECIDING REACHABILITY BETWEEN JOBS

In this section, we introduce basic concepts to decide if
two jobs may propagate data between them. This is required
to compute the data paths and latencies within a cause-effect
chain. A general concept of read and data interval is introduced
and gradually extended to capture the characteristics of multi-
segment chains and the presence of job-level dependencies.

A. Read- and Data-Interval

As described before, a task may execute at any time within
its execution window and this exact time of execution is not
known a priori at design time when scheduling decisions are
not yet taken. Hence all possible cases must be considered.
Fig. 3 depicts the time interval during which a task may read
its input data (depicted by the solid blue line) as well as
the interval for which the output data might be available to
its successor task (the dashed green line). The read interval
is defined as the interval in which a task can possibly read
its input data in order to complete its execution before the
deadline. The data interval is defined as the interval for which
the output data of a task can be available to the successor
task in the chain. It stretches up-to the latest time at which
the output data of a given task instance is possibly available
before the next instance overwrites it.

In order to simplify the explanation we define a set of
notations for a job τi,j of a task τi, where j ≥ 1 :

Rmin(τi,j) = (j − 1) · Ti
Rmax(τi,j) = Rmin(τi,j+1)− Ci
Dmin(τi,j) = Rmin(τi,j) + Ci
Dmax(τi,j) = Rmax(τi,j+1) + Ci

Where Rmin(τi,j) and Rmax(τi,j) describe the earliest and
latest point in time a job τi,j can read data (i.e. the job starts
at release time or the job finishes with its deadline). Similarly
Dmin(τi,j) and Dmax(τi,j) describe the earliest and latest
point in time the output data of a job τi,j can be available
to a successor. The earliest point in time output data can be
available is Ci time units after the release of the job. This
output data can be available as late as the latest finishing time
of the next job (within its deadline). Note that Dmin(τi,j+1)
is smaller than Dmax(τi,j). Hence, if a successor reads the
data in the overlapping window the data can be from either
instance of τi, depending on the specific schedule.

Ck
t

Ri,1 Ri,2

Di,1

Di,2

Rk,1

Dk,1

⌧i

⌧k

..
.

Ci

Figure 1: ⌧i,1 a↵ects the windows Rk,1 and Dk,1 if the data of ⌧i,1 is consumed
by ⌧k,1.

Fig. 4: τi,1 affects the window Rk,1 and Dk,1 if the data of τi,1 is consumed
by τk,1.

The read interval RIi,j of τi,j is defined by
[Rmin(τi,j), Rmax(τi,j)] and the data interval DIi,j by
[Dmin(τi,j), Dmax(τi,j)).

B. Data Propagation in the Cause-Effect Chain

In order to compute the minimum and maximum end-to-
end latencies within the system, it is important to know for
each pair of consecutive tasks of a cause-effect chain (such a
pair can be referred to as a segment of the cause-effect chain),
which job of a successor task might read data produced by a
specific job of its predecessor task. This section introduces
relevant concepts to define when data can be propagated
between two instances of a chain segment.

Consider the cause-effect chain segment τi → τk with a
producer job τi,j and a consumer job τk,l. For τk,l to be a
possible consumer of the data produced by τi,j , the following
needs to be true:

Rmax(τk,l) ≥ Dmin(τi,j) ∧Rmin(τk,l) < Dmax(τi,j) (1)

We define a function Follows(τi,j , τk,l), that returns true if, as
per the above condition (1), the read interval of τk,l intersects
with the data interval of τi,j , making τk,l a possible successor
of τi,j .

1) Dependency between Two Tasks: Let’s assume that the
segment τi → τk is part of a cause-effect chain. As shown
before, all possible successors of a job τi,j can be described
by the set:

Pτi,j→τk = {τk,l|Follows(τi,j , τk,l) = true} τk ∈ Γ, l ∈ N,

The first instance l of τk which might be a successor of τi,j
can be computed via the following equation:

l =
⌈Dmin(τi,j)

Tk

⌉
(2)

Starting from this instance, we iterate through all successors of
τi,j until Follows(τi,j , τk,l+m) returns false (where m ∈ N).

2) Dependency between Multiple Tasks: The previous com-
putation is applicable only to a chain containing two tasks. We
now describe the method to compute the dependency between
a chain of multiple tasks.

Let’s assume the task τi precedes τk in a cause-effect chain.
As the example in Fig. 4 depicts, the output window of τk,1
may start before the output window of τi,1 does. Hence, if τi,1
precedes τk,1, the output window Dk,1 cannot directly be used
to determine possible predecessors of τk,1.

Ci

t

Ri,1 Ri,2

Di,1

Di,2

Rk,1

Dk,1

⌧i

⌧k

..
.

Rk,2 Rk,3

Dk,2

Dk,3

Ci + Ck

Figure 1:

Fig. 5: Required modifications to the read interval of job τi,1 and job τk,i, if

they are dependent through a precedence constraint τi
(1,1)−−−→ τk .

We can overcome this limitation by introducing
D′min(τk,l, τi,j), which describes the first possible data
output of τk,l in the case that τi,j is its predecessor. This
can be computed as the maximum of Dmin(τk,l) and the
first appearance of the predecessor data augmented with the
computation time of the successor Dmin(τi,j) + Ck:

D′min(τk,l, τi,j) = max(Dmin(τi,j) + Ck, Dmin(τk,l))

Note, that for jobs without any predecessor (for example, the
job of the first task of a cause-effect chain), this function
returns Dmin(τk,l).

If a chain contains several tasks, we now need to substitute
Dmin(τi,j) in Equations 1 and 2 with D′min(τi,j , τa,b), where
τa,b is selected as predecessor of τi,j . This constitutes the
forward reachability criterion described in [1], i.e. a reading
task can not start its execution before a writing task finishes.

Note, the adjustment to the data interval must be local to
each branch in the data propagation tree since this modification
reflects the property of forward reachability of a specific task
instance selected for the current branch.

C. Including Job-level Dependencies

While cause-effect chains do impose a logical ordering of
tasks, they do not enforce any explicit dependencies between
task instances. Since the intention of this paper is to augment
the task constraints by job-level dependencies in order to meet
the end-to-end latency requirements, such job-level dependen-
cies must be considered in the calculations.

If a job-level dependency is defined between tasks of a
cause-effect chain, the possible data propagation gets affected.
1) The read intervals of the affected jobs need to be adjusted
to incorporate these constraints. 2) Job-level dependencies
additionally introduce logical boundaries for the possible data
propagation. Both cases are addressed separately, as described
below.

1) Adjusting Read Intervals: Intuitively, for two jobs con-
strained by τi

(j,l)−−→ τk, τk,l must start at least Ci time units
after the release of τi,j and similarly τi,j must finish at least
Ck time units before the latest execution of τk,l. This is shown
in Fig. 5, where job τi,1 must precede job τk,1 (i.e. Rmin of
τk,1 is delayed and Rmax of τi,1 is earlier).

If a task set Γ has a number of job-level dependencies in the
set Ψ, the calculations for the modified read-intervals of jobs
constraint by τi

(j,l)−−→ τk must consider all other dependencies

t

Ri,1

Di,1

Di,2

Rk,1

Dk,1

⌧i

⌧k

Ri,2 Ri,3

Figure 1:

Fig. 6: Read and data interval of τi and τk , if they are dependent through a

precedence constraint τi
(2,1)−−−→ τk .

which share the same job. Hence, for a job-level dependency
τi

(j,l)−−→ τk ∈ Ψ, we define a set P and a set S:

S = {τf,a|∃τi
(j,a)−−−→ τf ∈ Ψ,∀τf ∈ Γ, a ∈ [1,

HP

Ti
]}

P = {τf,a|∃τf
(a,l)−−−→ τk ∈ Ψ,∀τf ∈ Γ, a ∈ [1,

HP

Tk
]}

The set S contains all jobs part of a job-level dependency ∈ Ψ,
which have the job τi,j as predecessor (i.e. on the left side of
the job-level dependency). Similarly, the set P contains all
jobs of a job-level dependency ∈ Ψ which have the job τk,l as
successor (i.e. on the right side of the job-level dependency).

In the following, we show with an example, how to adapt
the read interval, modifying Rmin for τk,l and Rmax for τi,j ,
considering the first occurrence of the affected jobs:

R′min(k, l) = max(max
∀τf,a∈P

(Rmin(f, a) + Cf), Rmin(k, l))

R′max(i, j) = min(min
∀τf,a∈S

(Rmax(f, a)− Ci), Rmax(i, j))

Note that changing R′max(i, j) will impact Dmax(i, j − 1) as
well. Not all jobs of τi and τk are impacted by the job-level
dependencies. A job-level dependency defines dependencies
in the duration restricted to the hyperperiod of the two tasks.
Hence, only every LCM(τi,τk)

Ti
job of τi, starting from job τi,j ,

and every LCM(τi,τk)
Tk

of τk, starting from job τk,l, is affected.

The modifications described here are global for a task set
and therefore modifications can be done in a preprocessing step
before the individual data propagation paths are computed.

2) Incorporating Logical Boundaries: The presence of
job-level dependencies introduces additional constraints for
the selection of possible successor jobs. Assume a job-level
dependency which enforces that a job τi,j must execute before
τk,l. Then this dependency introduces a logical boundary for
the data propagation by which an earlier instance of τi, lets say
τi,j−1, cannot propagate its output data to τk,l, even though
the function Follows(τi,j−1, τk,l) may indicate otherwise. If
the data propagation would occur, the job-level dependency
constraint is violated. Fig. 6 shows a scenario where τk,1 may
receive data from two jobs of τi, visualized by the shaded
background during the read interval of τk,1. However, since

a job-level dependency is specified as τi
(2,1)−−−→ τk, the data

propagation from τi,1 to τk,1 is infeasible or not allowed.
Hence, Follows(τi,j−1, τk,l) must be extended to incorporate
these logical boundaries.

In order to check if an edge from a job τi,j to a job
τk,l is feasable and does not violate a job-level dependency,

it is important to verify that there is no job τi,a, (a > j),
which must execute before τk,l in order to satisfy a job-level
dependency.

For each job-level dependency τi
(x,y)−−−→ τk ∈ Ψ it must be

checked if such a case exists. The steps to verify and act on
instance τk,l are listed here.

1) Compute δk, the number of jobs that τk may execute
in the hyperperiod of the job level dependency, i.e.
LCM(τi, τk).

2) Compute the offset of the instance l. The modulo opera-
tion l mod δk then yields the offset (in jobs) of the job
instance from the start of a hyperperiod of the job-level
dependency. A special case exists if the modulo function
returns 0, then the offset of the job is δk.

3) If the computed offset equals the offset y of the con-
sidered job level dependency, then the instance τk,l is
affected by the job level dependency.

4) Then the instance number of the job of τi which must
precede τk,l can be computed by (

⌈
j
δi

⌉
· δi) + x. If this

is larger than j, τk,l must succeed a later instance of τi,j
and hence τi,j can have no edge in the data propagation
tree to τk,l.

V. CONSTRUCTING THE DATA PROPAGATION TREE

In this section, we present the algorithm to construct the
data propagation tree. A data propagation tree consists of a
hierarchy of levels, wherein each level corresponds to a task
in the cause-effect chain. In this tree, the job of the first task in
a cause-effect chain is designated as the root. At any level in
the tree, each job then has an edge to all its possible successor
jobs belonging to the next task in the chain. All data paths
from the root node to the different leaf nodes represent the
possible paths through which the data can be propagated in
the cause-effect chain. This takes the individual execution of
jobs, as well as specified job-level dependencies into account,
since the concepts described in Section IV are applied.

A prerequisite to the algorithm is the job-set J which
includes jobs of all tasks involved in the cause-effect chain.
We can bound the number of jobs in J by including only
those which are released within the worst-case end-to-end
latency of the chain, starting from the root job of the data
propagation tree. The worst-case end-to-end latency of a cause-
effect chain, consisting of a set of tasks, can be computed
by cumulatively summing up each tasks’ period and response
times [14]. This scenario results if every task in the chain
executes as early as possible but the input data is written
just after the task started, implying this instance misses the
input data. Additionally, the next job of the task is scheduled
as late as possible in its execution window, i.e., it executes
upto its Worst-Case Response Time (WCRT). After execution,
the output data is written, leading to the worst case data
propagation time. Hence the effective latency between the
input and the availability of the corresponding output is one
entire period for the first instance plus the WCRT of the second
instance. Since it is not known how tasks are scheduled, the
WCRT for the task instance can be safely assumed to be equal
to its period. Hence, a pessimistic value for the worst-case end-
to-end latency (WCL) can be computed for a given cause-effect
chain ζ: WCL =

∑
τi∈ζ 2 · Ti.

We construct a data propagation tree by a recursive ap-
proach described in Algorithm 1. The algorithm takes several
input parameters: the cause-effect chain ζ, the current node P
of the data propagation tree, the job τi,j associated with the
node P , and the job set J .

The algorithm starts by finding τk, the successor of τi in
the chain (line 2). If τk is the last task in the chain, the next()
function returns ∅. In this case, a leaf node is reached and the
algorithm returns (line 3). In all other cases, the algorithm
examines all jobs in J belonging to τk. If these jobs are
consumers of the data produced by τi,j , (line 6) D′max is
updated, a new tree node is created corresponding to each
consumer job, and appended to the current branch of the data
propagation tree (line 7-9). The tree is further populated with
a recursive invocation using the task τk,l as input parameter
(line 10) and converges when all possible paths have been
explored and added to the tree.

Algorithm 1: buildPropTree(ζ, P, τi,j ,J)
1 begin
2 τk ← next(τi, ζ);
3 if τk = ∅ then

// Found a leaf node
4 return
5 for ∀τk,l ∈ J do
6 if Follows(τi,j , τk,l) then

// Add a new node to the branch
7 update D′

max locally;
8 n← createChild(τk,l);
9 appendNode(P, n);

10 buildPropTree(ζ, n, τk,l,J);

1) Pruning Unnecessary Branches: The main objective of
the data propagation tree is often to obtain only minimum
and maximum latencies of a cause-effect chain. Therefore,
pruning branches which cannot lead to minimum or maximum
latencies can significantly speed up the computation. At any
level, among all possible jobs (i.e. the sibling nodes in the tree),
only two jobs need to be considered for further computation.

Let us define a set G that contains all jobs of task τk that
are possible successors of a job τi,j (which can be found by
the recursive algorithm described earlier). If the set G contains
multiple successor jobs, only two jobs need to be considered
for the calculation of minimum and maximum latency. For the
minimum latency, the job τk,l needs to be considered, where
l = min∀τk,w∈G(w) or simply put, l has the minimum job
index in the set G. Likewise, for the maximum latency the job
τk,m needs to be considered, where m = max∀τk,w∈G(w) or
simply put, m has the maximum job index in the set G.

Lemma 1. If all jobs ∈ G are possible successors of τi,j , then
the (minimum and maximum) latency between τi,j and a job
τk,l ∈ G monotonically increases with l.

Proof: The proof is based on the premise that the refer-
ence job τi,j is fixed and the release time of two consecutive
successor jobs in G is separated by the interval Tk. Specifically,
a job τk,l is released a time Tk · (l − 1) and two jobs of the
same task can never co-exist at the same time (as per the task

model). This also implies that the execution window of every
next successor job in G also monotonically increases by Tk
time units, effectively leading to an increase in the latency.

A. Generating all Possible Data Propagation Trees

The algorithm presented earlier to construct the data prop-
agation tree only explores one job of the first task found in
the cause-effect chain. In this paragraph, we describe how
to compute all possible data propagation trees of one cause-
effect chain which is needed to determine the minimum and
maximum latencies of the chain.

Algorithm 2 describes how to construct the set of possible
data propagation trees T . The algorithm requires the cause-
effect chain under analysis ζ, the task set Γ, and the set
of job-level dependencies Ψ as input parameters. During the
initialization phase (line 2-3), the hyperperiod of the task set
and all jobs of tasks in Γ are generated for the required interval.
Further, the first task in the chain ζ is defined on line 4 and the
set of all data dependency trees is generated on line 5. Note
that this set is initially empty.

The algorithm selects all jobs of τi which are scheduled
within HP and generates the respective data propagation tree
dpt (line 8). This data propagation tree is then added to T
(line 9). Once all data propagation trees are constructed the
algorithm returns T on line 10.

Algorithm 2: generateTrees(ζ,Γ,Ψ)
1 begin
2 HP ← LCM(Γ);
3 J ← generateJobs(Γ,Ψ);
4 τi ← next(∅, ζ); // Get first task in chain
5 T ← ∅; // empty set of data prop. trees
6 for ∀τi,j ∈ J , j < HP

Ti
do

7 dpt← createRootNode(τi,j);
8 buildPropTree(ζ, dpt, τi,j ,J);
9 T .add(dpt);

10 return T ;

B. Data Age Latencies in the Data Propagation Tree

Once all data propagation trees are computed, it is possible
to calculate minimum and maximum possible path latencies
in the system. In the given context, they correspond to the
data age latencies, since they compute the delay between the
instant a input value is sampled first until the output value
becomes available. Note that we assume that for each path
in the tree, tasks are executed in a way such that the data
propagates between the instances within the path from the root
node to the respective leaf. All such combinations therefore
represent possible data paths in the system but they can not
all be observed in the system simultaneously.

Let’s define the function maxLatency(τroot, τleaf , dpt) to
return the maximum latency of the path from τroot to τleaf ,
where both root and leaf job are part of the data propagation
tree dpt. Then maxLatency(τroot, τleaf , dpt) is computed as:

(Rmax(τleaf) + Cleaf)−Rmin(τroot)

As presented in the equation above, the maximum latency from
τroot to τleaf is achieved if both jobs are scheduled at the

⌧1

⌧2

⌧3

Hyperperiod

lmin

lmax

4 4 4 4 4
8 10 12 14 16

lmin

lmax

4 4 4 4 4 4 4 4 4
4 6 8 10 12 14 16 18 20

lmin

lmax

4 4 4 4 4 4 4
4 6 8 10 12 14 16

4
4

4
6⌧

1
,1

⌧
1

,2
⌧
1

,3

1 2 21

1 1 1

21

1 2 3 4 1 2 3 4 1 2 3 4

Figure 1: Cause-e↵ect chain C and the data propagation trees for the first three
instances of ⌧1. Minimum and maximum latencies lmin and lmax for each data
propagation tree is shown in the table.

Fig. 7: Cause-effect chain C and the data propagation trees for the first three
instances of τ1. Minimum and maximum latencies lmin and lmax for each
data propagation tree is shown in the table.

extremes of their intervals, i.e. the root job starts as early as
possible and the leaf job finished as late as possible.

Similarly, we define minLatency(τroot, τleaf , dpt) a func-
tion which returns the minimum latency of the same path.
For the minimum latency, both jobs must be scheduled as
close together as possible. This means, the root job must
be scheduled as late as possible, Croot time units before the
read job of the second job in the branch succ(τroot) can be
scheduled, and the leaf job is scheduled as early as possible.
Then minLatency(τroot, τleaf , dpt) is computed as:

Dmin(τleaf)−max(Rmin(τroot), Rmin(succ(τroot))−Croot)

Both formulations reflect the age of one data path of the data
propagation tree. In order to compute the global minimum and
maximum latencies of a cause-effect chain denoted by lmin
and lmax respectively, all root/leaf combinations of all data
propagation trees in T must be considered.

lmin = min
∀τroot,τleaf∈dpt,∀dpt∈T

(minLatency(τroot, τleaf , dpt))

lmax = max
∀τroot,τleaf∈dpt,∀dpt∈T

(maxLatency(τroot, τleaf , dpt))

Note that lmax is a tighter estimate for the longest possible
end-to-end latency than the previously introduced WCL, since
it takes into account the actual possible data propagation
between tasks of a chain.

C. Example

We now illustrate a data propagation tree for a small
example task set of three tasks τ1 to τ3, where τ1 = {4, 2},
τ2 = {8, 1}, and τ3 = {2, 1}. These tasks are part of the
cause-effect chain ζ = τ1 → τ2 → τ3. The resulting data
propagation tree of the first three instances of τ1 is shown in
Fig. 7. The tree is essentially a graph, where the edges reflect
reachability and thus convey the notion of time through the
way nodes are connected from top to bottom. The placement
of nodes within one hyperperiod, however, does not reflect any
time information. It can be seen that the number of paths in
the resulting data propagation tree is already large for a cause-
effect chain of three tasks. The instances τ1,1 and τ1,2 result in
7 and 12 data propagation paths respectively. Note that these
paths consider the reachability requirements introduced in this

section, and hence the number of data propagation paths is
much smaller than the worst case of 18 paths which can result
from one instance of τi, as computed by the formula presented
in Section III-C. It is also visible that an instance of the last
task in the chain can possibly be connected to several instances
of the first task in the chain. This in turn produces a multiplicity
of possible minimum and maximum latencies of the chain. It
is also worth pointing out that the hyperperiod of the system is
8. This means that the job τ1,1 and τ1,3 are actually identical
jobs in consecutive hyperperiods. Similarly this is the case for
the jobs of the other two tasks. As expected, lmin = 4 for
all data paths, while lmax varies between 4 and 20 for the
different paths. This variation is huge and may cause that end
to end latencies are violated although precedence constraints
are met. This necessitates that job level dependencies must be
enforced as described in the next section.

VI. SYNTHESIZING JOB-LEVEL DEPENDENCIES

In this section, we describe an approach that analyzes
tasks in a cause-effect chain and identifies jobs across which
precedence constraints must be enforced to ensure that latency
constraints of all cause-effect chains can be satisfied, regardless
of the scheduling decisions. Specifically, the periodic task set
Γ is augmented with job-level dependencies in such a way
that the end-to-end latency requirements, specified for the
cause-effect chains Π, are met. Hence, all invalid paths of
the data propagation tree which do not yield an end-to-end
latency within the timing requirements must be pruned by
inserting job-level dependencies. The problem of adding job-
level dependencies is exponential with the number of jobs in
one hyerperiod, which justifies the use of a heuristic to arrive
at a solution in reasonable time.

A. Pruning Branches of the Data Propagation Tree

As discussed in the previous section, a specific data value
can propagate through the cause-effect chain via several pos-
sible paths. Furthermore, a node in the tree may propagate its
data through valid or invalid timing paths, depending on the
concrete scheduling decisions. In this section we discuss how
to prune branches of a data propagation tree in such a way that
all remaining data paths yield valid end-to-end latencies. The
premise is that adding a job level dependency constrains the
freedom of scheduling while also avoiding the possibility that
the data is propagated to successor jobs which lead to invalid
end-to-end latencies.

It is important to remember that a data propagation tree
exists for each first instance of a task. Each node of the tree
may have an edge to several nodes of the successor task but
can only have one edge to its predecessor task. A heuristic can
be defined to prune invalid branches of the data propagation
tree (i.e. branches leading to data paths with a latency larger
than the chains timing constraint).

1) Find the first leaf node τj,l with the smallest release
time which violates the timing requirements, implying it
belongs to an invalid path.

2) Find the first parent, say τi,k of the identified leaf node
τj,l that has sibling nodes that lead to paths with valid
and invalid end-to-end latencies respectively.

3) Enforce a job level dependency between the job τi,k+1

and τj,l.

τi,k

τ j
,l

τ j
,l
+
1

τ j
,l
+
2

τ j
,l
+
3

τ j
,l
+
4

τ j
,l
+
5

τi,k+1

Fig. 8: Adding a job-level dependency to prune invalid data paths.

It is more efficient to prune branches higher up in the
tree since entire infeasible subtrees can be eliminated when
compared to pruning branches at the lower levels (i.e. at only
those nodes which yield only invalid paths).

Lemma 2. A job-level dependency can be used to prune
branches of the data propagation tree.

Proof: Assume an edge of the data propagation tree goes
from τi,k to τj,l. In order to prune this branch, τj,l must be
prevented from reading data of τi,k. Specifying a job-level

dependency τi
(k+1,l)−−−−→ τj forces job τi,k+1 to execute before

job τj,l which in turn overwrites the output data of job τi,k,
and thus successfully prunes the branch in the data propagation
tree.

The indexes of the involved jobs in the job level de-
pendency must be selected based on the hyperperiod of the
involved jobs and the relative offset of the jobs to the start of
the respective hyperperiod.

This principle is depicted in Fig. 8. Instance τj,l+4 is the
first leaf instance with invalid timing requirements (depicted
by the dotted line). From here, the algorithm traces back to
job τi,k. Since τi,k has both valid and invalid sibling paths
the next instance τi,k+1 is selected for a job-level dependency
with the initial job τj,l+4. Such a job-level dependency will
effectively prune the branches affected by timing violations.

B. Adding Job-level Dependencies for one Cause-Effect Chain

The algorithm to augment the system with job-level depen-
dencies in order to satisfy the constraints of a single cause-
effect chain is described in Algorithm 3. The central idea
of the algorithm is that job-level dependencies are added to
prune the invalid paths as long as they exist in the specific
data propagation tree (line 6-9).

The algorithm takes the task set Γ, the cause-effect chain
ζ, and the set of already specified job-level dependencies Ψ
as input values. The algorithm begins by assigning the root
task of ζ to τroot, in line 2. The main body of the function is
then executed for each of the initial jobs of the chain, where
an initial job is a job of τroot which is released in the first
hyperperiod (line 3).

As a first step, a set of jobs J of the corresponding
task set Γ is generated which also factors in the specified
job-level dependencies Ψ (line 7) (i.e the read- and data-
intervals of the jobs are adjusted as described in Section IV).
In order to account for all possible cases, this job set contains
jobs up to the worst case latency of the chain, starting from

the last possible root job of the hyperperiod. Then among
all the paths generated, the first (minimum) invalid path
of the data propagation tree is identified by the function
getMinimumInvalidPath(τroot,a, ζ)(line 7). where a mini-
mum invalid path, is defined as the first path which invalidates
the timing requirements.

If such a path exists, a job-level dependency is added by
the function addDependency(path,Ψ) in order to prune the
invalid branch (line 9). A job level dependency is added as
per the steps described in Section VI-A. It is important to note
that function addDependency() adds a job-level dependency
between two tasks only if no other job-level dependency
between them is already specified in Ψ. In case there is already
a dependency between tasks of the two levels, the function
adds a dependency one level higher (and closer) to the root
of the data propagation tree. If there is already a job-level
dependency specified between all tasks of the cause-effect
chain the function returns with false, indicating that no de-
pendency was added. If this was the case the algorithm returns
”unsuccessful”1 (line 12). In all other cases addDependency()
returns ”true”, and the algorithm updates lmax (line 10) before
continuing in the while loop until all branches of this data
dependency tree lead to valid end-to-end latencies, and returns
”success”. Note that for each iteration the job-set J must be
regenerated or updated to reflect the newly added job-level
dependency.

It is important to note that the algorithm does not construct
the full data propagation tree in order to find minimum
invalid paths and the principles described in Section V-1 can
be applied to find the total maximum path. Traversing and
constructing the data propagation tree backwards from the
maximal path until a valid path is found reveals the least invalid
path (this is done in a depth-first manner).

Algorithm 3: synthesizeDependencies(Γ, ζ,Ψ)
1 begin
2 τroot = getRootTask(ζ);
3 for ∀τroot,a , a ∈ LCM(ζ)

Troot
do

4 lmax = WCL;
5 dep = true;
6 while lmax > deadline ∧ dep == true do
7 J = generateJobs(Γ,Ψ)

path = getMinimumInvalidPath(τroot,a, ζ);
8 if path exists then
9 dep = addDependency(path,Ψ);

10 lmax = getMaxLatency(ζ,Γ,Ψ);

11 if lmax > deadline then
12 return unsuccessful;

13 return success;

C. Generating Dependencies for the Complete System

As described earlier, a system typically consists of multiple
linear cause-effect chains which may share common tasks. In
this section the approach presented above, is extended to find

1Note that the result ”unsuccessful” does not imply that no valid placement
of job-level dependencies exists. A system designer can manually improve the
generated dependencies and still achieve the desired age constraint.

job-level dependencies at a system level, allowing all cause-
effect chains to become schedulable within their end-to-end
latency constraints. The task-set Γ, the set of cause-effect
chains Π, and the job-level dependencies Ψ are provided as
input to the algorithm. Note that at this point there are no
job-level dependencies specified.

For deciding the order of analyzing cause-effect chains, the
algorithm exploits the observation that longer chains (consist-
ing of higher number of tasks) are prone to latency violations
and are better candidates to be selected first for pruning. This
is because longer chains lead to a widespread number of data
paths within the data propagation tree, including many paths
which potentially can be pruned to meet the end-to-end latency
requirements. Consequently the algorithm first sorts all cause-
effect chains in Π by their chain-length.

The heuristic then utilizes the previously explained Al-
gorithm 3 to generate the job-level dependencies for the
individual cause-effect chains specified for the system. If not
all invalid branches of a cause-effect chain can be pruned, the
algorithm is unsuccessful. However in the case when job-level
dependencies could be added such that all cause-effect chains
have worst-case latencies less than their timing constraints, the
algorithm is deemed successful.

VII. EVALUATION

This section presents an evaluation of our proposed heuris-
tic. A set of synthetic data sets is first used to evaluate the
general characteristics of the heuristic. This is followed by
considering an industrial use case to demonstrate the impact
of the proposed approach in the overall design process.

A. Heuristic Characterization with Synthetic Data Sets

1) Experimental Setup: For these experiments, cause-
effect chains are randomly generated while conform-
ing with the detailed automotive benchmarks characteriza-
tion [6]. Task periods are selected with uniform distribu-
tion, out of the periods found in automotive applications
[1, 2, 5, 10, 20, 50, 100, 200, 1000]ms. As per [6], cause-effect
chains are generated to include tasks of either 1, 2, or 3
different period wherein tasks of the same period can appear
2 to 5 times, where no cyclic transitions between periods in
one chain are allowed. The communication matrix, presented
in [6] is referenced to allow communication across tasks with
specified periods in a cause-effect chain. The individual task
utilizations are generated based on UUniFast [17]. Note that for
each data point in the graph 500 random cause-effect chains
are examined.

2) Impact on End-to-End Latency: This experiment inves-
tigates the capability of our proposed approach to limit the
worst-case end-to-end latency using job-level dependencies.
For a cause-effect chain, the maximum latency is computed
and an age constraint equal to this maximum latency is then
imposed on the system. The latency is then gradually reduced,
further constraining the system, until the heuristic cannot
find a valid placement for job-level dependencies such that
the constraint is met. This is done for cause-effect chains
with 2 different and 3 different periods as reported in the
two sets of experiments in Fig. 9. Note that all presented
values are normalized in respect to the chains hyperperiod

(HP) in order to allow for comparison of chains with various
hyperperiods. For both experiments, different chains of lengths
varying between 4 to 10 tasks and 6 to 15 tasks are generated
respectively for the experiments with 2 and 3 involved periods.

0

2

4

6

8

10

12

4 5 6 7 8 9 10

En
d-
to
-E
nd

	La
te
nc
y	i
n	
HP

Number	of	Tasks

Basic	Latency
Constrained	Latency

(a) Chains with 2 involved periods.

0

2

4

6

8

10

12

6 7 8 9 10 11 12 13 14 15

En
d-
to
-E
nd

	La
te
nc
y	i
n	
HP

Number	of	Tasks

Basic	Latency
Constrained	Latency

(b) Chains with 3 involved periods.

Fig. 9: Comparison of the worst case end-to-end latency in unconstrained
systems (Basic Latency) to the minimum latency achieved by the proposed
heuristic (Constrained Latency) for chains of different length.

For unconstrained systems, i.e. systems without job-level
dependencies, the experiment shows that worst case end-to-end
latencies increase linearly with the number of tasks in a cause-
effect chain. On the other hand, the end-to-end latencies for
systems with smallest age constraint (i.e. before the proposed
heuristic cannot find a solution anymore) are constant. These
observations hold for both experiments. It can also be observed
that the standard deviation increases with the number of tasks
for unconstrained systems while it stays constant for the curve
showing the systems with imposed job-level dependencies. For
each age constraint between the two curves a valid placement
of job-level dependencies could be found by the proposed
approach, while not over-restricting the system. Thus, the end-
to-end latencies in the gray shaded area become available for
system designer without a need for further knowledge of the
underlying scheduling policies.

B. Case Study: Air Intake System (AIS)

We demonstrate the applicability of our proposed heuristic
on an AIS which is a part of the Engine Management System
(EMS) and this case study is adapted from the results presented
in [18]. For a car to run smoothly, it needs the proper mixture
of air and fuel and this amount of air in the engine is controlled
by the AIS. Specifically, a throttle body that is a part of the
AIS, controls the amount of air that gets into the engine.

The AIS depicted in Fig.10, calculates the desired throttle
position (TO1) depending on the accelerator pedal position
(PI1, PI2) and the current throttle position (TI1, TI2). Since
this subsystem is part of a x-by-wire technology, both sensors
need to be duplicated to reach the required system safety. The
system contains 6 individual tasks where 4 different end-to-end
latency paths can be identified from each of the input values,
PI1, PI2, TI1, TI2 to the output value TO1. Since the age
constraint depends on the point in time when the sensors are
sampled and not on the point in time when the sensor value
changes, the chain PI1→ TO1 and PI2→ TO1 are equivalent.
The same reasoning applies for the two paths starting from the
throttle sensors. Hence, it is only required to examine the path
from PI1 to TO1, representing cause-effect chain ζ1, and the
path from TI1 to TO1, representing cause-effect chain ζ2.

ActPed_S ActPed_V PedalFeel Throttle_C Throttle_A

5	ms 20	ms 20	ms 10	ms 10	ms

Throttle_S

5	ms Air	Intake	System

PI1
PI2

TI1
TI2

TO1

Cause-Effect	Chain	!",	Age	Constraint	=	25ms

Cause-Effect	Chain	!#,	Age	Constraint	=	10ms

Fig. 10: Component view of the AIS of an Engine Management System.

Table I describes the timing properties of the individual
tasks included in the AIS. All tasks have implicit deadlines,
i.e. the deadline is equal to the task period. The age constraint
for the chain ζ1 is set to 25 ms and the age constraint for the
chain ζ2 is set to 10 ms.

1) Analysis of Latencies using the Data Propagation Tree:
In this section, we examine the possible end-to-end latencies
without any knowledge of the applied scheduling decisions.
Hence we apply the methods to generate and analyze the
data propagation trees for all initial jobs of the chain. The
hyperperiod of the cause-effect chain ζ1 is 20 ms, hence the
first four jobs of the task ActPed S must be examined. This
leads to a total of 76 possible data propagation paths with a
minimum latency of 694 µs and a maximum latency of 75 ms,
as calculated by the method in Section V. The complete data
propagation tree is shown in Fig. 11a. The second cause-
effect chain ζ2 has a hyperperiod of 10 ms which reduces the
number of initial jobs of Throttle S to 2, leading to only 6
data propagation paths as shown in Fig 11c. The calculated
minimum latency of this chain is 405 µs, while the maximum
latency is at 25 ms. The worst-case latency for both chains
exceeds the specified age constraints.

2) The State-of-Practice Solution: In this section we ex-
amine the schedule generated by Rubus-ICE [19], a state-
of-practice tool commonly found in the automotive industry.
The tool may apply several optimization techniques beyond
the basic scheduling algorithms and therefore the placement
of jobs in the schedule might vary depending on the applied
optimization.

For this case-study, the complete schedule of the EMS
software presented in [18] was generated with a total of 16
tasks and a system utilization of 41%. As per the tool, the
end-to-end latencies for ζ1 results to 30.273 ms and for ζ2 to
11.279 ms. The computation is based on the analysis presented
in [11]. The end-to-end latencies for both chains exceed the
specified age constraint.

3) Generating Job-level Dependencies: In order to fulfill
the specified age constraints, the system model is augmented
with job-level dependencies. This is done for both chains, using
the methods described in this paper. The proposed heuristic

TABLE I: Timing properties of the tasks in the Air Intake System.

A
ct

Pe
d

S

T
hr

ot
tle

S

A
ct

Pe
d

V

Pe
da

lF
ee

l

T
hr

ot
tle

C

T
hr

ot
tle

A

Period 5 ms 5 ms 20 ms 20 ms 10 ms 10 ms

WCET 96 µs 131 µs 186 µs 138 µs 97 µs 177 µs

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

1 1 1 1

1 1 1 1

1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1

ActPed S

ActPed V

PedalFeel

Throttle C

Throttle A

Figure 1:(a)

1 2 3 4 1 2 3 4

1 1

1 1

1 2 1 2

1 2 1 2

ActPed S

ActPed V

PedalFeel

Throttle C

Throttle A

Figure 1:(b)

1 2 1 2 1 2

1 1 1

1 1 1

Throttle S

Throttle C

Throttle A

Figure 1:(c)

1 2

1

1

Throttle S

Throttle C

Throttle A

Figure 1:(d)
Fig. 11: Data propagation trees for the two cause-effect chains with and without generated job-level dependencies. The cause-effect chain ζ1 is shown in (a).
Data paths leading to latencies larger than the age constraint are shown in dashed lines. (b) shows the same data propagation tree with generated job-level
dependencies. Similarly the cause-effect chain ζ2 is shown in (c) and (d). Generated job-level dependencies are shown with gray arrows.

successfully finds a placement of job-level dependencies to
fulfill the requirements. Both data propagation trees with
generated job-level dependencies are shown in Fig. 11b and
11d. On applying the dependencies, the worst case end-to-end
latency results to 25 ms and 10 ms for the cause-effect chains
ζ1 and ζ2 respectively. Thus the specified age constraints are
met while schedulable data paths are not removed when not
necessary.

VIII. CONCLUSION

This paper addresses multi-rate cause-effect chains with
specified age-constraints. For such systems, it is not only
important that the individual tasks execute within their dead-
lines but also that the end-to-end latency requirements of
cause-effect chains are met. The contribution of this paper is
twofold. A novel method of analysis is proposed to identify
and calculate the minimum and maximum latencies of cause-
effect chains for systems with specified job-level dependencies.
As a second contribution, a heuristic method is presented to
augment a task set with job-level dependencies such that all
specified age constraints are satisfied. Using job-level depen-
dencies, it is possible to restrict the data propagation between
consecutive tasks of a cause-effect chain [2], [3], [4], [5]
which can lead to smaller maximal end-to-end latencies, when
placed correctly. The problem complexity however makes this
a challenging task for the system engineer. Synthesizing the
job-level dependencies for a given system such that all cause-
effect chains meet their timing requirements can thus improve
the development process. The proposed methods are evaluated
based on synthetic experiments as well as an industrial case
study where we compare against a state-of-practice solution.
The experiments show that the proposed methods in this paper
can greatly improve the development process already during
earlier stages of the system design.

In the future we plan to extend our work to incorporate
other end-to-end latency constraints defined in the AUTOSAR
standard [10].

ACKNOWLEDGMENT

The work presented in this paper is supported by the
Swedish Knowledge Foundation (KKS) through the projects
PREMISE and DPAC; and the Swedish Foundation for Strate-
gic Research (SSF) through the projects PRESS.

REFERENCES

[1] N. Feiertag, K. Richter, J. Norlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in Int. Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, 2008.

[2] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in 16th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, 2010, pp. 301–310.

[3] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task implementation of multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307–338, 2011.

[4] W. Puffitsch, E. Noulard, and C. Pagetti, “Mapping a multi-rate syn-
chronous language to a many-core processor,” in 19th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2013,
pp. 293–302.

[5] ——, “Off-line mapping of multi-rate dependent task sets to many-core
platforms,” Real-Time Systems, vol. 51, no. 5, pp. 526–565, 2015.

[6] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, 2015.

[7] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A real-time architecture
design language for multi-rate embedded control systems,” in ACM
Symposium on Applied Computing, 2010, pp. 527–534.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[9] EAST-ADL - Domain Model Specification, EAST-ADL Association Std.
V2.1.12, 2014.

[10] AUTOSAR - Spec. of Timing Extensions, AUTOSAR Std. 4.2.2, 2014.
[11] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end

response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[12] M. Panić, S. Kehr, E. Quiñones, B. Boddecker, J. Abella, and F. J.
Cazorla, “Runpar: An allocation algorithm for automotive applications
exploiting runnable parallelism in multicores,” in International Confer-
ence on Hardware/Software Codesign and System Synthesis, 2014, pp.
29:1–29:10.

[13] H. R. Faragardi, B. Lisper, K. Sandstrom, and T. Nolte, “A
communication-aware solution framework for mapping autosar
runnables on multi-core systems,” in IEEE International Conference
on Emerging Technology and Factory Automation, 2014, pp. 1–9.

[14] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in 44th ACM/IEEE Design Automation
Conference, 2007, pp. 278–283.

[15] S. Schliecker and R. Ernst, “A recursive approach to end-to-end path
latency computation in heterogeneous multiprocessor systems,” in 7th
International Conference on Hardware/Software Codesign and System
Synthesis, 2009, pp. 433–442.

[16] AUTOSAR - Specification of RTE, AUTOSAR Std. 4.2.2, 2014.
[17] E. Bini and G. Buttazzo, “Measuring the performance of schedulability

tests,” Real-Time Systems Journal, vol. 30, no. 1-2, pp. 129–154, 2005.
[18] P. Frey, “Ulmer Informatik Berichte Nr 2010-03 - Case Study: Engine

Control Application,” University Ulm, Tech. Rep., 2010.
[19] Arcticus Systems, “Rubus ICE,” [Online] https://www.arcticus-

systems.com/products/, last visited 16.05.2016.

