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Abstract

Worst-Case Execution Time (WCET) analysis means to compute a safe upper bound
to the execution time of a piece of codearametricWCET analysis yields symbolic
upper bounds: expressions that may contain parameters. These parameters may rep-
resent, for instance, values of input parameters to the program, or maximal iteration
counts for loops. We describe a technique for fully automatic parametric WCET anal-
ysis, which is based on known mathematical methods: an abstract interpretation to
calculate parametric constraints on program flow, a symbolic method to count integer
points in polyhedra, and a symbolic ILP technique to solve the subsequent IPET calcu-
lation of WCET bound. The technique is capable of handling unstructured code, and it
can find upper bounds to loop iteration counts automatically.

1 Introduction

Real-time systems have timing requirements. These requirements imply upper limits on
the execution times of codes in the systems: in order to guarantee that these requirements
are met, it must be verified that the codes execute within their time limits. The purpose
of Worst-Case Execution Tirf@d/CET) analysis is to find upper bounds for the execution
times of codes on given processors.

WCET analysis is usually divided into three parts: a fairly machine-indepefident
analysis(or “high-level analysis”) of the code, where information about the possible pro-
gram flows is derived, lbbw-level analysisvhere the execution time for atomic parts of the
code is decided from a performance model for the target architecture, and edlinab-
tion where the information from these analyses is put together in order to derive the actual
WCET bounds.

Three classes of calculation methods are mainly usedtrébebasedpproach is lim-
ited to well-structured codes, and assumes that the execution time bounds for programs
can be directly derived from time bounds on their parts through simple rules [20]. Tree-
based calculation methods are straightforward, but cannot utilize complex flow constraints
well. Path-basedechniques explicitly explore the execution paths of a program frag-
ment [16, 24]. They can handle complex flow constraints somewhat better.

The Implicit Path Enumeration TechniquéPET), finally, models possible program
flows for (possibly unstructured) control flow graphs with arithmetic constraints [19, 22].
Each entity; in the graph is given an execution timgby the low-level analysis. The
WCET is estimated bynhax(> ", z;t;), wherez; is an execution count for entity subject
to the constraints on program flow given by the flow analysis and the program flow graph.
If these constraints are linear, then the optimization problem can be solved by integer linear
programming (ILP) techniques. IPET is general and can handle complex flow constraints
very well, but may be costly.



The basic IPET model assumes that the total execution time is independent of execution
order. This holds only for simple CPU architectures. IPET has however been generalized
to handle architectural features like pipelines [11] and caches [25]. For simplicity, we will
only consider the basic IPET model here, but our method applies to the same problems as
general IPET.

ParametricWCET analysis methods return a parameterized expression. These may be
unknown parameters to the program, or represent unknown program flow information, like
an unknown upper bound to a loop iteration count. In this paper we propose a systematic,
general approach to parametric WCET analysis. Our proposed analysis can find parametric
flow constraints, including loop bounds, automatically. The analysis works for code with
arbitrary control flow graphs and can thus handle unstructured code. The parametric flow
analysis is made by thgolyhedral abstract interpretatiohy Halbwachs [10, 15], which
represents sets of possible program states by polyhedra. Execution counts for statements
can be restricted by the number of integer points in such polyhedra. Symbolic techniques
for counting these points exist [6, 21]. A symbolic IPET calculation can then be performed,
by parametric integer programminfd.2]. This is a symbolic ILP technique that finds pa-
rameterized optima.

The rest of this paper is organized as follows. The next section reviews related work. In
Section 3 we give an introduction to abstract interpretation. Section 4 describes polyhedral
abstract interpretation, and in Sections 5 and 6 we explain how it can be used to constrain
the program flow. In Sections 7 and 8 we describe parametric integer programming and
how to use it for a symbolic IPET calculation. Finally, in Section 9, we wrap up and give
ideas for further research.

2 Related Work

Chapman [5] gives a method to compute regular expressions for paths yielding WCET
formulae parameterized in unknown loop bounds. The method only works for reducible
control flow graphs. Any non-structural program flow constraints (such as infeasible paths,
constraints on loop bounds) must be entered by manual annotations.

A program representation for parametric WCET analysis has been suggested by Colin
and Bernat [7]. This approach extends the classical program timing schema model [20].
It requires a well-structured high-level program, and constraints on program flow must be
provided by hand. In [4] a similar, path-based approach is outlined. Vivancos et. al. [26]
propose an iterative method for computing WCET for loops parameterized in the number
of loop iterations, where a simple symbolic formula for the WCET of the loop is assumed
and the loop timing behaviour is iterated until possible convergence. This method can take
low-level features such as cache behaviour into account, but it is restricted to local analysis
of loops. It cannot take global flow constraints into account. Parametric analysis of nested
loops also seems to pose some problems.

Non-parametric, automated flow analyses have been considered. Healy et. al. [17] de-
scribe a method to bound the number of iterations in multiple-exit loops. The method
demands a number of restrictions on loops in order to work. The method can also handle
some cases of triangular-like nested loops, but similar restrictions apply.

Altenbernd [2] describes a symbolic execution method that can find infeasible paths
automatically. The method puts restrictions on the program structure and requires that
upper bounds for loop counts are given.

The Bound-T WCET tool [18] is sometimes capable of deriving bounds for loops au-
tomatically. Since this is a commercial tool details about the analysis are hard to get by,
but we know that it uses Presburger Arithmetic. It works on machine code but requires a
reducible loop structure.

Gustafsson [14] has developed a method that finds program flow information automati-
cally by an interval-based abstract interpretation. The method is capable to find both upper
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Figure 1: Flowchart nodes: start, stop, assignment, merge, and test.

bounds to loop counts and infeasible paths. It requires that unknown parameters are con-
strained to some fixed interval. The method works for unstructured code.

3 Abstract Interpretation

Abstract interpretation is a formal framework for program analysis. It guaraotest-

ness in the sense that a predicted program property is surely true, and a generic solution
method calledixed-point iteratiorwill, under some conditions, yield the answer in finite
time. The original framework by Cousot and Cousot [8] is defined for flowcharts (basically
control flow graphs) describing imperative, possibly unstructured programs. A flowchart
has a singleentry- and exit node respectivelyassignment nodesest nodesand merge

nodes see Fig. 1. The framework can be extended to (possibly recursive) procedures and
functions [9], but for simplicity we will stay with the flowcharts in this paper.

Each arc in the flowchart defines a program point. The state of the program, in a given
program point, is an assignment of a value to each program variable. Many program prop-
erties can be expressed as properties of program states in certain program points. Abstract
interpretation useabstract stateswhich represent sets of program states. Each flowchart
node is given ambstract transition functionwhich maps abstract states to abstract states.

The set of abstract statésmust form acomplete latticgS,U,MN,C, T, L). Cis an
ordering relation corresponding to the subset relation on the corresponding sets of states.
LI, 1 correspond to union and intersection, respectively, but may overapproximate the cor-
responding operation. Finally, is theleast elemenfw.r.t. C), representing), and T is
the top elementrepresenting the universal set. 9f C S’, thenS yields more precise
information about the possible states tlf#nThe top element yields no information at all.

Program analysis by abstract interpretation assigns an abstraci’stateach program
pointp, such that any reachable state there belon@®td he abstract transition functions
define a system of equatioSs= F'(S) for the abstract states. If certain axioms are met,
then a solution can always be found by fixed-point iterati§n:= F(S;_). The iteration
starts with the least possible assignmgmt: I, assigning the bottom element to each
program point, and will then produce theast assignment solving the equations. This
gives the best possible precision in the program analysis.

For some abstract interpretations the fixed-point iteration will not always terminate.
Termination can be guaranteed through a bingigening operatory on abstract states,
obeying some axioms [8]. For some program ppirthe recursive equatiosf’ = Fp(gfﬁl)
is changed te6? = S7_ | v FP(§Z?'21). If at least one equation along each cycle in the
flowchart is changed in this way, then termination is ensured. The solution obtained when
iterating the new equations will be correct, but it might not be the least one anymore. If
the flowchart is reducible (contains well-structured loops only), then it suffices to insert
widening after the merge point of each backedge.



4 Halbwachs’ Polyhedral Abstract Interpretation

Halbwachs [10, 15] developed an abstract interpretation, for programs with numerical vari-
ables, where the abstract states represent polyhedra in a space whose coordinates corre-
spond to the values of the different program variables. Polyhedra are equivalent to systems
of linear inequalities: we will use them interchangeably below. Non-numerical variables
can be dealt with by assuming that they are numerical but nothing is known about their
values.

Thus, for a program with variables, . .., x,, an abstract state is a polyhedrBrin
an n-dimensional space or, equivalently, a system of linear inequalities< b where
Z = (x1,...,2,). (T corresponds to an empty system, without inequalities, and a
system without solutions.) The abstract operations are as follows:

M is intersection of polyhedra,

LI is convex hull that is: the smallest polyhedron enclosing the union of the two
operands (see Fig. 2).

proj (P, z;) is the least polyhedron enclosidg where all information about; is
removed (see Fig. 2).

The abstract transition functighfor assignments; := e has three cases:

— e nonlinear: therf (P) = proj (P, z;),

—e=10-Z+b,andl; # 0: thenf(P) = Plz; « (z; — ¥, ljz; — b)/Li],
whereP[z; « t]is the polyhedron resulting from substitutitidor z; in the
linear inequalities defining’. (Especially,T[z; «+ t] = {z; =t} andL[z; +
t]=1)

—e=1[-Z+b, andl; = 0: thenf(P) = proj(P,z;) A z; = e.

e For test nodes with condition there are transition function,... and ff,.. to the
true/false-branch, respectively. We have the following cases:

— cnonlinear:fiye(P) = frase(P) = P,

—c=1-Z=b P C ([-&=b)then fiy.(P) = P and fyue(P) = L,
otherwisef;rye(P) = PN (- & = b) and ffu5.(P) = P,

—c=1-Z<b thenfyue(P) = PN (-2 <b), andfjus(P) = PN (- & >
b+1).

I

e merge node: then the transition functip(P;, P») = P, U P».

See Fig. 2 for an explanation of some of the operations.

To ensure termination, Halbwachs defines a widening operatsuch thatP; 7 P
essentially is the polyhedron obtained frdi by removing all constraints i, violated
by some point inP,. Fig 2 illustrates this. For details, see [10, 15].

Linear inequalities can capture constraints that depend on several variables. Nested
triangular loops can be handled accurately, as well as more irregular constraints given by
linear conditionals within loops.

Let us consider a simple example: the flowchart in Fig. 3. It has nages =
0,2,3,4,5,8, corresponding to basic blocks, and arcs (program points) numbered 10.

We assume eaah; has an execution timg. Each ar@ has an execution count, and the
numbering is such that each basic bleglasi as its preceding program point and thus the
same execution count. We will use this simple program as a running example throughout
the paper. We first analyze it in order to extract upper bounds for the execution counts for
all statements. It suffices to analyze the program w.r.t. the possible values@f., since
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Figure 2: Some operations on polyhedra.

Figure 3: A simple flowchart program.



i | ST S S? S} S} S; S? S;°
0| L 4 1 4 4 1 4 1
1| T 1L 1L 1L 1L 1L 1L 1L
2| T |4=0 1L 1L 1L 1L 1L 1L
3| T |2= 1=0 4 4 1 4 1
4| T |i=0|7=0 =0 4 1 4 1=0
1<n—1 1>n
5| T |¢=0|7=0 =0 =0 1=0 1=11]¢=0
it<n—1]|:<n—-11 | n—-10<2:<n—-1|2<n |it>n
6| T |¢=0|7>0 =0 =0 1=0 1=11]¢=0
it<n—1]|:<n—-11 | n—-10<2:<n—-1|2<n |it>n
71 T |e=0|7>0 1 >0 =0 1=0 1=11]¢>0
it<n—1]|:<n—-11 | n—-10<2:<n—-1|2<n |it>n
8| T |¢=0|7>0 1 >0 1 >0 12> 0 1>1]¢>0
1<n—1]|:<n—-11 | n—-10<:<n—-1|2<n |it>n
9| T |¢=0|7>0 1 >0 1 >0 12> 0 1>1]¢>0
1<n—1]|:<n—-11 | n—-10<:<n—-1|2<n |it>n

Table 1: Fixed-point iteration for example flowchart.

they are the only variables affecting the program flow. We assume that B1 and B2 are basic
blocks that update neithénor n. There is one abstract sta$é for each program poini
howeverS® = S* andS” = S° since B1 and B2 touch neithénorn. We use widening
for S2.

We assume no information about the valueg ahdn on entry: thusS® = T. The
recursive equations then become:

S0 = T St = proj(S? ,i)Ai=0
S7 v (S} usSyy) S? S n@E<n—1)

n
(V)
[l

S4 = 83 n@E<n-10-1) S = S n(i>n-10)
S8 = S, uS?, S? = 8% li+i—1]
Sim = S;'Z_1 M(i>n)

Furthermore, it must hold thaff} = S?. The fixed-point iteration for the simplified
system converges in nine iterations, see Table 1. Especially note the wideniri§ step
S2 <7 (S U S?), which is crucial for convergence.

5 How to Derive Bounds for Execution Counts

How do we derive bounds on execution counts from abstract states? In a given program
point i, S? surely contains all the possible program states in that point. In all program
points in a terminating, deterministic program, a new state must be reached every time the
program point is encountered. Thus, for terminating programs, the number of elements in
St bounds the execution count for The flowchart nodes with nonzero execution times
are test and assignment nodes: these have a single in-arc and will therefore have the same
execution count. It follows that for a terminating program, the abstract interpretation can
derive bounds on the execution time for each node in the flowchart that corresponds to
actual code.

However, in general not all variables affect the number of times a program point will be
revisited. Thus, we really want to count only the number of different value combinations
for the variables that may affect the control, that is: they appear in test nodes in the pro-
gram fragment under analysis, or can affect the values of variables appearing there. This
means to consider only polyhedra in a subspace spanned by such variables. Identifying



which variables might affect control can be donegrggram slicing[27] with respect to

the conditions in the program. Program slicing removes all statements whose execution
can surely not affect some given part of a program. The remaining program can then be
analyzed. In our example, program slicing with respect to the conditions will remove the
basic blocks B1 and B2.

An important kind of program fragment is loops. We identify all variables that appear
in the test nodes in a loop. If the loop has single entry/single exit subgraphs, then the
outcome of tests within the subgraph will not affect the program flow outside it. Thus, we
don’t need to consider the variables in the test nodes of such subgraphs when bounding the
execution count for the outer loop.

Furthermore, some variables affecting the control should be regarded as parameters:
namely, those that do not change while executing the program fragment under analysis.
The number of points in a polyhedron limiting the execution count must be expressed as a
formula that is parametric in these variables. Standard compiler techniques [1] can be used
to find loop-invariant variables.

Finally, we must count the numbers of points in parametric polyhedra. Two techniques
are known: through successive projection using known formulae for sums of powers of
integers [21], and usinBhrhart Polynomialg6].

In the example in Fig. 3, the conditions dependiandn only. n is never updated,
and is thus considered a parameter. For each node, the number of elements in the abstract
state on the preceding edge provides an upper bound on the execution count. The execution
count forny is trivially one. By the method in [21], we obtain:

|5?] = oo

|S?] = [S®| = if n>0 then n else 0

|S4| = if n>11 then n—11 else 0

|S5| = if n>1 then (if n > 10 then 10 else n) else 0

This yields bounds; < |S’| wherez; is execution count for basic bloek.

S? is overapproximated due to the widening. Therefore, there is no upper bound for
This may seem awkward. But the structural flow constraints of the flowchart will ensure
finiteness ofts, see Section 7.

6 Constraints on Paths

Constraints on paths can be used to increase the precision of the calculated WCET bound.
Given a pathP between two program poingsandg, we can calculate an abstract state

for ¢, approximating the set of states reachable alBrfgom the states given bg? in p,

in the following way:

e form a flowchartF' from the subgraph given b, with an entry node immediately
preceding and an exit node immediately following

e assign the abstract stateto all unconnected in-edges to merge nodeEjin

¢ selectS? as the abstract state fprgiven by the analysis of the whole program, and
assign it tgp in F' (abstract starting state);

e solve the equations ovét.

The number of elements ifi bounds the number of times the pdtican be taken, given
that we start from some state §. This information can be used directly in IPET calcula-
tions with pipeline timing effects [11]. The sum of the execution counts of two basic blocks
in a loop can also be bound (infeasible path analysisp.dfidq are in a loop with upper
boundN for the iteration count, then the flow constraingt+ z, < N + |S?| is valid.



Figure 4: Loop body with partly infeasible paths.

The abstract transition functions for the original flowchart can be reusefl.fof F
is cycle-free, ther5 can be quickly computed fror§? without fixed-point iteration. A
typical situation is when analyzing paths in an innermost, time-critical loop body.

In Fig. 4, an example of a loop body is given, with loop indeand parameter, n.
Say we want to compute a bound oh + z¢ given the loop index constraint< i < n.
We then haves? = 1 < i < n A k < i. From this we can calculate

St = (SPUL)Ni<k = (1<i<nAk<i)Vfase)Ni<k
= 1<i<nAi=k

This provides the information that we can execute the path feotm ¢, for the given
loop index range, only wheh= k. We obtain the constraint’ + z7 < |1 <i < n|+
|1 <i < nAi=k|. After counting integer points and simplifying, this yields

2 +2?2<if n>1then (if 1<k <n then n+1 else n) else 0.

7 Parametric Integer Programming

Parametric Integer Programming [12] solves the following symbolic ILP problem: find the
optimum of an objective function over the set

{#|&>0,AZ + BZ+ &> 0, Zintegral}.

Here,? is a vector of parameters, and the set is a function of this vector. The solution is
a nested conditional expression, where the conditions are systems of linear inequalities in
the parameter vectat

Contrary to ordinary ILP, the algorithm finds thexicographicminimum [12], that is:
the least vector ilV™ w.r.t. the lexicographic ordex,, defined by:

x; < xi, or,forn > 1,

! !
(@1, @n) <n (21,05 0) & { 21 =2y A (22,0, 20) <no1 (Th, ..., 2h)

However, it is easy to transform the problem of maximizing a linear objective function into
an instance of this problem [13].

The algorithm is a symbolic extension of the dual simplex algorithm for linear program-
ming augmented with Gomory Cuts [23] to ensure integral solutions. It will systematically
split the parameter space and solve more constrained subproblems until unique solutions
can be found with the given constraints on the parameters.

How can the algorithm be used to perform symbolic IPET calculations? The inequal-
ities derived from the abstract interpretation contain formulae for the number of integer
points in polyhedra. In general, these are nonlinear expressions in the parameters of the
program. However, for each program point new symbolic parametef can be intro-
duced for the expression f41[s”| yielding linear constraints in lieu of the original, nonlin-
ear constraint. In the final result, the formularéﬂ can be substituted back fey. A final
simplification gives the symbolic WCET bound expressed in the input parameters of the
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Figure 6: Maximizing the objective function in the IPET example.

program. An alternative is to derive a WCET bound expressed directly in symbolic execu-
tion count bounds. This can provide information about, for instance, the WCET sensitivity
to certain loop counts.

This could potentially yield one symbolic parameter for each node in the flowchart,
Many parameters give a risk of large resulting formulae and long execution time of the
algorithm. Fortunately, the number of parameters can be reduced by considering the struc-
tural flow constraints of the flowchart. Each flowchart node generates an equality as shown
in Fig. 5: these can be used to eliminate variables in the constraint system, and thus to
reduce the number of needed symbolic parameters as well.

Let us now perform a parametric IPET calculation for the example in Fig. 3. The
WCET estimate isnax(}_,_ » 5 4 5 g Ziti)- The execution count bounds derived from the
abstract interpretation yield constraints < s;, i = 1,...,10, wheres; is a symbolic
parameter fo*S"|. We also have non-negativity constraimts> 0, i =1,...,10.

Finally, the structural flow constraints can be used to reduce the number of variables
down to two. Selectingy, andxs as basis yields the reduced problemx(ty + t> +
x4(ts —ts5) +xs(tz2 + t3 + t5 + tg)) under the constraints < x4 < 54,0 < zg < sg. Let
us assume computation timgs= 10, t, = 10, t3 = 20, t4 = 150, t; = 100, andtg = 10.

We then obtain the WCET estimai®s, + 140sg + 20 for x4 = s4, zg = sg. See Fig. 6.
With s4, sg as the functions o, given by the polyhedral abstract interpretation we obtain
(after simplification):
n>11: 190n — 530
0<n<10: 140n+ 20
otherwise: 20

8 An Observation about Calculation Methods

In the linear constraints considered in this paper (structural flow constraints, constraints on
maximal execution count, path constraints), the unknown execution counts and parameters



all appear with coefficient, 0, or —1. The system matrix for the linear inequalities is
thenunimodular which implies that all the corners in the corresponding polyhedron have
integral coordinates [23]. It then suffices to use an ordinary linear programming algorithm
to solve the ILP problem. The Parametric Integer Programming algorithm benefits directly
from this, since it uses the dual simplex method as the first step. This observation also
applies to conventional, non-parametric IPET.

IPET problems considered in the literature [19, 22] often have linear constraints with
other coefficients. These typically arise from loops, encoding statements like “the loop
body always executes at mastimes the execution count of the basic block preceding the
loop”. This is a way to express an upper loop count bauredative the environment of the
loop. Our method calculates absolute upper bounds for each execution count, also inside
nested loops, through the polyhedral abstract interpretation. This avoids the need for this
kind of relative loop constraint. Constraints relative to, say, counters of enclosing loops are
instead encoded in the polyhedra. They do not affect the calculation phase since the integer
point counts of the polyhedra are replaced by symbolic parameters in the IPET calculation.

9 Conclusions and Further Research

We have demonstrated a fully automatic method for parametric WCET analysis that goes
all the way from flow analysis to final WCET calculation. The method utilizes known
methods, developed in other contexts, for parametric calculations. The resulting paramet-
ric WCET analysis is potentially very powerful. The method can automatically derive and
solve both parametric constraints expressing absolute upper bounds on execution counts,
and parametric path constraints. As far as we know, no other published method can accom-
plish this. A simple example demonstrates how it works.

The flow analysis and the calculation method are replaceable. Halbwachs’ polyhedral
analysis is capable of deriving parametric flow constraints, but other analysis methods are
certainly possible, providing different tradeoffs between precision and computation time.
A parameterized interval-based analysis is perfectly viable: it would give less precision at a
lower cost. Conversely, one could design a flow analysis based on general Presburger Arith-
metic: this would sometimes provide better precision but at a potentially very high cost.
The parametric IPET calculation can handle any linear parametric constraints, regardless
of the source.

The parametric IPET calculation method we propose generalizes conventional IPET
calculation, and it interfaces to low-level analyses in the same way. The method is easily
adaptable to other CFG variants than the flowcharts here. It needs static upper bounds to
execution times for basic blocks. If these bounds are too pessimistic (due to architectural
features), then the usual methods can be used, such as adding corrections for pipeline over-
lap [11] or virtually unfolding the first loop iteration in the CFG to obtain a more precise
account for cache effects [25].

Future work involves a full implementation in order to evaluate the method with re-
spect to accuracy and practical time complexity. We are currently implementing a tool for
WCET analysis of full C [3]. The first version of this tool will use Gustafssons interval-
based abstract interpretation [14] for flow analysis, and a conventional IPET calculation: to
implement the parametric analysis in this context is an interesting future possibility.
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