
Fully Automatic, Parametric Worst-Case Execution
Time Analysis

Björn Lisper
Dept. of Computer Science and Engineering, Mälardalen University

P.O. Box 883, SE-721 23 Västerås, SWEDEN
bjorn.lisper@mdh.se

Abstract

Worst-Case Execution Time (WCET) analysis means to compute a safe upper bound
to the execution time of a piece of code.ParametricWCET analysis yields symbolic
upper bounds: expressions that may contain parameters. These parameters may rep-
resent, for instance, values of input parameters to the program, or maximal iteration
counts for loops. We describe a technique for fully automatic parametric WCET anal-
ysis, which is based on known mathematical methods: an abstract interpretation to
calculate parametric constraints on program flow, a symbolic method to count integer
points in polyhedra, and a symbolic ILP technique to solve the subsequent IPET calcu-
lation of WCET bound. The technique is capable of handling unstructured code, and it
can find upper bounds to loop iteration counts automatically.

1 Introduction

Real-time systems have timing requirements. These requirements imply upper limits on
the execution times of codes in the systems: in order to guarantee that these requirements
are met, it must be verified that the codes execute within their time limits. The purpose
of Worst-Case Execution Time(WCET) analysis is to find upper bounds for the execution
times of codes on given processors.

WCET analysis is usually divided into three parts: a fairly machine-independentflow
analysis(or “high-level analysis”) of the code, where information about the possible pro-
gram flows is derived, alow-level analysiswhere the execution time for atomic parts of the
code is decided from a performance model for the target architecture, and a finalcalcula-
tion where the information from these analyses is put together in order to derive the actual
WCET bounds.

Three classes of calculation methods are mainly used. Thetree-basedapproach is lim-
ited to well-structured codes, and assumes that the execution time bounds for programs
can be directly derived from time bounds on their parts through simple rules [20]. Tree-
based calculation methods are straightforward, but cannot utilize complex flow constraints
well. Path-basedtechniques explicitly explore the execution paths of a program frag-
ment [16, 24]. They can handle complex flow constraints somewhat better.

The Implicit Path Enumeration Technique(IPET), finally, models possible program
flows for (possibly unstructured) control flow graphs with arithmetic constraints [19, 22].
Each entityi in the graph is given an execution timeti by the low-level analysis. The
WCET is estimated bymax(

P
i xiti), wherexi is an execution count for entityi, subject

to the constraints on program flow given by the flow analysis and the program flow graph.
If these constraints are linear, then the optimization problem can be solved by integer linear
programming (ILP) techniques. IPET is general and can handle complex flow constraints
very well, but may be costly.

1

The basic IPET model assumes that the total execution time is independent of execution
order. This holds only for simple CPU architectures. IPET has however been generalized
to handle architectural features like pipelines [11] and caches [25]. For simplicity, we will
only consider the basic IPET model here, but our method applies to the same problems as
general IPET.

ParametricWCET analysis methods return a parameterized expression. These may be
unknown parameters to the program, or represent unknown program flow information, like
an unknown upper bound to a loop iteration count. In this paper we propose a systematic,
general approach to parametric WCET analysis. Our proposed analysis can find parametric
flow constraints, including loop bounds, automatically. The analysis works for code with
arbitrary control flow graphs and can thus handle unstructured code. The parametric flow
analysis is made by thepolyhedral abstract interpretationby Halbwachs [10, 15], which
represents sets of possible program states by polyhedra. Execution counts for statements
can be restricted by the number of integer points in such polyhedra. Symbolic techniques
for counting these points exist [6, 21]. A symbolic IPET calculation can then be performed,
by parametric integer programming[12]. This is a symbolic ILP technique that finds pa-
rameterized optima.

The rest of this paper is organized as follows. The next section reviews related work. In
Section 3 we give an introduction to abstract interpretation. Section 4 describes polyhedral
abstract interpretation, and in Sections 5 and 6 we explain how it can be used to constrain
the program flow. In Sections 7 and 8 we describe parametric integer programming and
how to use it for a symbolic IPET calculation. Finally, in Section 9, we wrap up and give
ideas for further research.

2 Related Work

Chapman [5] gives a method to compute regular expressions for paths yielding WCET
formulae parameterized in unknown loop bounds. The method only works for reducible
control flow graphs. Any non-structural program flow constraints (such as infeasible paths,
constraints on loop bounds) must be entered by manual annotations.

A program representation for parametric WCET analysis has been suggested by Colin
and Bernat [7]. This approach extends the classical program timing schema model [20].
It requires a well-structured high-level program, and constraints on program flow must be
provided by hand. In [4] a similar, path-based approach is outlined. Vivancos et. al. [26]
propose an iterative method for computing WCET for loops parameterized in the number
of loop iterations, where a simple symbolic formula for the WCET of the loop is assumed
and the loop timing behaviour is iterated until possible convergence. This method can take
low-level features such as cache behaviour into account, but it is restricted to local analysis
of loops. It cannot take global flow constraints into account. Parametric analysis of nested
loops also seems to pose some problems.

Non-parametric, automated flow analyses have been considered. Healy et. al. [17] de-
scribe a method to bound the number of iterations in multiple-exit loops. The method
demands a number of restrictions on loops in order to work. The method can also handle
some cases of triangular-like nested loops, but similar restrictions apply.

Altenbernd [2] describes a symbolic execution method that can find infeasible paths
automatically. The method puts restrictions on the program structure and requires that
upper bounds for loop counts are given.

The Bound-T WCET tool [18] is sometimes capable of deriving bounds for loops au-
tomatically. Since this is a commercial tool details about the analysis are hard to get by,
but we know that it uses Presburger Arithmetic. It works on machine code but requires a
reducible loop structure.

Gustafsson [14] has developed a method that finds program flow information automati-
cally by an interval-based abstract interpretation. The method is capable to find both upper

2

stopstart x := e ctrue false

Figure 1: Flowchart nodes: start, stop, assignment, merge, and test.

bounds to loop counts and infeasible paths. It requires that unknown parameters are con-
strained to some fixed interval. The method works for unstructured code.

3 Abstract Interpretation

Abstract interpretation is a formal framework for program analysis. It guaranteescorrect-
ness, in the sense that a predicted program property is surely true, and a generic solution
method calledfixed-point iterationwill, under some conditions, yield the answer in finite
time. The original framework by Cousot and Cousot [8] is defined for flowcharts (basically
control flow graphs) describing imperative, possibly unstructured programs. A flowchart
has a singleentry- andexit node, respectively,assignment nodes, test nodes, andmerge
nodes, see Fig. 1. The framework can be extended to (possibly recursive) procedures and
functions [9], but for simplicity we will stay with the flowcharts in this paper.

Each arc in the flowchart defines a program point. The state of the program, in a given
program point, is an assignment of a value to each program variable. Many program prop-
erties can be expressed as properties of program states in certain program points. Abstract
interpretation usesabstract states, which represent sets of program states. Each flowchart
node is given anabstract transition function, which maps abstract states to abstract states.

The set of abstract statesS must form acomplete latticehS;t;u;v;>;?i. v is an
ordering relation corresponding to the subset relation on the corresponding sets of states.
t, u correspond to union and intersection, respectively, but may overapproximate the cor-
responding operation. Finally,? is the least element(w.r.t.v), representing;, and> is
the top element, representing the universal set. IfS v S0, thenS yields more precise
information about the possible states thanS0. The top element yields no information at all.

Program analysis by abstract interpretation assigns an abstract stateSp to each program
pointp, such that any reachable state there belongs toSp. The abstract transition functions
define a system of equations~S = ~F (~S) for the abstract states. If certain axioms are met,
then a solution can always be found by fixed-point iteration:~Si = ~F (~Si�1). The iteration
starts with the least possible assignment~S0 = ~?, assigning the bottom element to each
program point, and will then produce theleast assignment solving the equations. This
gives the best possible precision in the program analysis.

For some abstract interpretations the fixed-point iteration will not always terminate.
Termination can be guaranteed through a binarywidening operator5 on abstract states,
obeying some axioms [8]. For some program pointp, the recursive equationSp

i = F p(~Sin
i�1)

is changed toSp
i = Sp

i�1 5 F p(~Sin
i�1). If at least one equation along each cycle in the

flowchart is changed in this way, then termination is ensured. The solution obtained when
iterating the new equations will be correct, but it might not be the least one anymore. If
the flowchart is reducible (contains well-structured loops only), then it suffices to insert
widening after the merge point of each backedge.

3

4 Halbwachs’ Polyhedral Abstract Interpretation

Halbwachs [10, 15] developed an abstract interpretation, for programs with numerical vari-
ables, where the abstract states represent polyhedra in a space whose coordinates corre-
spond to the values of the different program variables. Polyhedra are equivalent to systems
of linear inequalities: we will use them interchangeably below. Non-numerical variables
can be dealt with by assuming that they are numerical but nothing is known about their
values.

Thus, for a program with variablesx1; : : : ; xn, an abstract state is a polyhedronP in
an n-dimensional space or, equivalently, a system of linear inequalitiesL~x � ~b where
~x = (x1; : : : ; xn). (> corresponds to an empty system, without inequalities, and? to a
system without solutions.) The abstract operations are as follows:

� u is intersection of polyhedra,

� t is convex hull, that is: the smallest polyhedron enclosing the union of the two
operands (see Fig. 2).

� proj (P; xi) is the least polyhedron enclosingP where all information aboutxi is
removed (see Fig. 2).

� The abstract transition functionf for assignmentsxi := e has three cases:

– e nonlinear: thenf(P) = proj (P; xi),

– e = ~l � ~x + b, andli 6= 0: thenf(P) = P [xi (xi �
P

j 6=i ljxj � b)=li],
whereP [xi t] is the polyhedron resulting from substitutingt for xi in the
linear inequalities definingP . (Especially,>[xi t] = fxi = tg and?[xi
t] = ?.)

– e = ~l � ~x+ b, andli = 0: thenf(P) = proj (P; xi) ^ xi = e.

� For test nodes with conditionc, there are transition functionsftrue andffalse to the
true/false-branch, respectively. We have the following cases:

– c nonlinear:ftrue(P) = ffalse(P) = P ,

– c � ~l � ~x = b. If P � (~l � ~x = b) thenftrue(P) = P andffalse(P) = ?,
otherwiseftrue(P) = P u (~l � ~x = b) andffalse(P) = P ,

– c � ~l � ~x � b: thenftrue(P) = P u (~l � ~x � b), andffalse(P) = P u (~l � ~x �
b+ 1).

� merge node: then the transition functionf(P1; P2) = P1 t P2.

See Fig. 2 for an explanation of some of the operations.
To ensure termination, Halbwachs defines a widening operator5 such thatP1 5 P2

essentially is the polyhedron obtained fromP1 by removing all constraints inP1 violated
by some point inP2. Fig 2 illustrates this. For details, see [10, 15].

Linear inequalities can capture constraints that depend on several variables. Nested
triangular loops can be handled accurately, as well as more irregular constraints given by
linear conditionals within loops.

Let us consider a simple example: the flowchart in Fig. 3. It has nodesni, i =
0; 2; 3; 4; 5; 8, corresponding to basic blocks, and arcs (program points) numbered0; : : : ; 10.
We assume eachni has an execution timeti. Each arci has an execution countxi, and the
numbering is such that each basic blockni hasi as its preceding program point and thus the
same execution count. We will use this simple program as a running example throughout
the paper. We first analyze it in order to extract upper bounds for the execution counts for
all statements. It suffices to analyze the program w.r.t. the possible values ofi andn, since

4

Convex hull

x1

x2

Projection w.r.t. x2

P1

P2

Widening of P1 w.r.t. P2

Figure 2: Some operations on polyhedra.

i := 0 start

i < n

i < n−10

stop
false

B1 B2

falsetrue

i := i+1

true

S2
S10

S3

S5

S6 S7

S8

S9

S4

S0S1
n0

n2

n3

n4 n5

n8

Figure 3: A simple flowchart program.

5

i S
0

i S
1

i S
2

i S
3

i S
4

i S
5

i S
9

i S
10

i

0 ? ? ? ? ? ? ? ?

1 > ? ? ? ? ? ? ?

2 > i = 0 ? ? ? ? ? ?

3 > i = 0 i = 0 ? ? ? ? ?

4 > i = 0 i = 0 i = 0 ? ? ? i = 0

i � n� 1 i � n

5 > i = 0 i = 0 i = 0 i = 0 i = 0 i = 1 i = 0

i � n� 1 i � n� 11 n� 10 � i � n� 1 i � n i � n

6 > i = 0 i � 0 i = 0 i = 0 i = 0 i = 1 i = 0

i � n� 1 i � n� 11 n� 10 � i � n� 1 i � n i � n

7 > i = 0 i � 0 i � 0 i = 0 i = 0 i = 1 i � 0

i � n� 1 i � n� 11 n� 10 � i � n� 1 i � n i � n

8 > i = 0 i � 0 i � 0 i � 0 i � 0 i � 1 i � 0

i � n� 1 i � n� 11 n� 10 � i � n� 1 i � n i � n

9 > i = 0 i � 0 i � 0 i � 0 i � 0 i � 1 i � 0

i � n� 1 i � n� 11 n� 10 � i � n� 1 i � n i � n

Table 1: Fixed-point iteration for example flowchart.

they are the only variables affecting the program flow. We assume that B1 and B2 are basic
blocks that update neitheri norn. There is one abstract stateSi for each program pointi,
howeverS6 = S4 andS7 = S5 since B1 and B2 touch neitheri norn. We use widening
for S2.

We assume no information about the values ofi andn on entry: thus,S0 = >. The
recursive equations then become:

S0

i = > S1

i = proj (S0

i�1; i) ^ i = 0
S2

i = S2

i�1 5 (S1

i�1 t S
9

i�1) S3

i = S2

i�1 u (i � n� 1)
S4

i = S3

i�1 u (i � n� 10� 1) S5

i = S3

i�1 u (i � n� 10)
S8

i = S4

i�1 t S
5

i�1 S9

i = S8

i�1[i i� 1]
S10

i = S2

i�1 u (i � n)

Furthermore, it must hold thatS8

i = S3

i . The fixed-point iteration for the simplified
system converges in nine iterations, see Table 1. Especially note the widening stepS2

6 =
S2

5
5 (S1

5
t S9

5
), which is crucial for convergence.

5 How to Derive Bounds for Execution Counts

How do we derive bounds on execution counts from abstract states? In a given program
point i, Si surely contains all the possible program states in that point. In all program
points in a terminating, deterministic program, a new state must be reached every time the
program point is encountered. Thus, for terminating programs, the number of elements in
Si bounds the execution count fori. The flowchart nodes with nonzero execution times
are test and assignment nodes: these have a single in-arc and will therefore have the same
execution count. It follows that for a terminating program, the abstract interpretation can
derive bounds on the execution time for each node in the flowchart that corresponds to
actual code.

However, in general not all variables affect the number of times a program point will be
revisited. Thus, we really want to count only the number of different value combinations
for the variables that may affect the control, that is: they appear in test nodes in the pro-
gram fragment under analysis, or can affect the values of variables appearing there. This
means to consider only polyhedra in a subspace spanned by such variables. Identifying

6

which variables might affect control can be done byprogram slicing[27] with respect to
the conditions in the program. Program slicing removes all statements whose execution
can surely not affect some given part of a program. The remaining program can then be
analyzed. In our example, program slicing with respect to the conditions will remove the
basic blocks B1 and B2.

An important kind of program fragment is loops. We identify all variables that appear
in the test nodes in a loop. If the loop has single entry/single exit subgraphs, then the
outcome of tests within the subgraph will not affect the program flow outside it. Thus, we
don’t need to consider the variables in the test nodes of such subgraphs when bounding the
execution count for the outer loop.

Furthermore, some variables affecting the control should be regarded as parameters:
namely, those that do not change while executing the program fragment under analysis.
The number of points in a polyhedron limiting the execution count must be expressed as a
formula that is parametric in these variables. Standard compiler techniques [1] can be used
to find loop-invariant variables.

Finally, we must count the numbers of points in parametric polyhedra. Two techniques
are known: through successive projection using known formulae for sums of powers of
integers [21], and usingEhrhart Polynomials[6].

In the example in Fig. 3, the conditions depend oni andn only. n is never updated,
and is thus considered a parameter. For each node, the number of elements in the abstract
state on the preceding edge provides an upper bound on the execution count. The execution
count forn0 is trivially one. By the method in [21], we obtain:��S2

�� = 1��S3
�� =

��S8
�� = if n > 0 then n else 0��S4

�� = if n � 11 then n� 11 else 0��S5
�� = if n � 1 then (if n � 10 then 10 else n) else 0

This yields boundsxi �
��Si
��, wherexi is execution count for basic blockni.

S2 is overapproximated due to the widening. Therefore, there is no upper bound forx2.
This may seem awkward. But the structural flow constraints of the flowchart will ensure
finiteness ofx2, see Section 7.

6 Constraints on Paths

Constraints on paths can be used to increase the precision of the calculated WCET bound.
Given a pathP between two program pointsp andq, we can calculate an abstract stateSq

for q, approximating the set of states reachable alongP from the states given bySp in p,
in the following way:

� form a flowchartF from the subgraph given byP , with an entry node immediately
precedingp and an exit node immediately followingq;

� assign the abstract state? to all unconnected in-edges to merge nodes inF ;

� selectSp as the abstract state forp given by the analysis of the whole program, and
assign it top in F (abstract starting state);

� solve the equations overF .

The number of elements inSq bounds the number of times the pathP can be taken, given
that we start from some state inSp. This information can be used directly in IPET calcula-
tions with pipeline timing effects [11]. The sum of the execution counts of two basic blocks
in a loop can also be bound (infeasible path analysis). Ifp andq are in a loop with upper
boundN for the iteration count, then the flow constraintxp + xq � N + jSqj is valid.

7

i >= k i >= k+1

p

q
nono

yes yes

Figure 4: Loop body with partly infeasible paths.

The abstract transition functions for the original flowchart can be reused forF . If F
is cycle-free, thenSq can be quickly computed fromSp without fixed-point iteration. A
typical situation is when analyzing paths in an innermost, time-critical loop body.

In Fig. 4, an example of a loop body is given, with loop indexi and parametersk, n.
Say we want to compute a bound onxp + xq given the loop index constraint1 � i � n.
We then haveSp = 1 � i � n ^ k � i. From this we can calculate

Sq = (Sp t ?) u i � k = ((1 � i � n ^ k � i) _ false) ^ i � k
= 1 � i � n ^ i = k

This provides the information that we can execute the path fromp to q, for the given
loop index range, only wheni = k. We obtain the constraintxp + xq � j1 � i � nj +
j1 � i � n ^ i = kj. After counting integer points and simplifying, this yields

xp + xq � if n � 1 then (if 1 � k � n then n+ 1 else n) else 0:

7 Parametric Integer Programming

Parametric Integer Programming [12] solves the following symbolic ILP problem: find the
optimum of an objective function over the set

f ~x j ~x � ~0; A~x +B~z + ~c � ~0; ~x integralg:

Here,~z is a vector of parameters, and the set is a function of this vector. The solution is
a nested conditional expression, where the conditions are systems of linear inequalities in
the parameter vector~z.

Contrary to ordinary ILP, the algorithm finds thelexicographicminimum [12], that is:
the least vector inNn w.r.t. the lexicographic order�n defined by:

(x1; : : : ; xn) �n (x01; : : : ; x
0
n) ()

�
x1 < x0

1
; or, forn > 1,

x1 = x01 ^ (x2; : : : ; xn) �n�1 (x
0
2; : : : ; x

0
n)

However, it is easy to transform the problem of maximizing a linear objective function into
an instance of this problem [13].

The algorithm is a symbolic extension of the dual simplex algorithm for linear program-
ming augmented with Gomory Cuts [23] to ensure integral solutions. It will systematically
split the parameter space and solve more constrained subproblems until unique solutions
can be found with the given constraints on the parameters.

How can the algorithm be used to perform symbolic IPET calculations? The inequal-
ities derived from the abstract interpretation contain formulae for the number of integer
points in polyhedra. In general, these are nonlinear expressions in the parameters of the
program. However, for each program pointi, a new symbolic parametersi can be intro-
duced for the expression for

��Si
��, yielding linear constraints in lieu of the original, nonlin-

ear constraint. In the final result, the formula for
��Si
�� can be substituted back forsi. A final

simplification gives the symbolic WCET bound expressed in the input parameters of the

8

stopstart x := e ctrue false

x

x

y

x

y

z

x

y z

x = 1

x

x = y x + y = z x = y + zx = 1

Figure 5: Structural flow constraints.

x4

x8

s4

s8

20 + 50x4 + 140x8 = k Increasing k

Figure 6: Maximizing the objective function in the IPET example.

program. An alternative is to derive a WCET bound expressed directly in symbolic execu-
tion count bounds. This can provide information about, for instance, the WCET sensitivity
to certain loop counts.

This could potentially yield one symbolic parameter for each node in the flowchart,
Many parameters give a risk of large resulting formulae and long execution time of the
algorithm. Fortunately, the number of parameters can be reduced by considering the struc-
tural flow constraints of the flowchart. Each flowchart node generates an equality as shown
in Fig. 5: these can be used to eliminate variables in the constraint system, and thus to
reduce the number of needed symbolic parameters as well.

Let us now perform a parametric IPET calculation for the example in Fig. 3. The
WCET estimate ismax(

P
i=0;2;3;4;5;8 xiti). The execution count bounds derived from the

abstract interpretation yield constraintsxi � si; i = 1; : : : ; 10, wheresi is a symbolic
parameter for

��Si
��. We also have non-negativity constraintsxi � 0; i = 1; : : : ; 10.

Finally, the structural flow constraints can be used to reduce the number of variables
down to two. Selectingx4 andx8 as basis yields the reduced problemmax(t0 + t2 +
x4(t4 � t5) + x8(t2 + t3 + t5 + t8)) under the constraints0 � x4 � s4, 0 � x8 � s8. Let
us assume computation timest0 = 10, t2 = 10, t3 = 20, t4 = 150, t5 = 100, andt8 = 10.
We then obtain the WCET estimate50s4 + 140s8 + 20 for x4 = s4, x8 = s8. See Fig. 6.
With s4, s8 as the functions ofn given by the polyhedral abstract interpretation we obtain
(after simplification):

n � 11 : 190n� 530
0 < n � 10 : 140n+ 20

otherwise: 20

8 An Observation about Calculation Methods

In the linear constraints considered in this paper (structural flow constraints, constraints on
maximal execution count, path constraints), the unknown execution counts and parameters

9

all appear with coefficient1, 0, or �1. The system matrix for the linear inequalities is
thenunimodular, which implies that all the corners in the corresponding polyhedron have
integral coordinates [23]. It then suffices to use an ordinary linear programming algorithm
to solve the ILP problem. The Parametric Integer Programming algorithm benefits directly
from this, since it uses the dual simplex method as the first step. This observation also
applies to conventional, non-parametric IPET.

IPET problems considered in the literature [19, 22] often have linear constraints with
other coefficients. These typically arise from loops, encoding statements like “the loop
body always executes at mostc times the execution count of the basic block preceding the
loop”. This is a way to express an upper loop count boundc relative the environment of the
loop. Our method calculates absolute upper bounds for each execution count, also inside
nested loops, through the polyhedral abstract interpretation. This avoids the need for this
kind of relative loop constraint. Constraints relative to, say, counters of enclosing loops are
instead encoded in the polyhedra. They do not affect the calculation phase since the integer
point counts of the polyhedra are replaced by symbolic parameters in the IPET calculation.

9 Conclusions and Further Research

We have demonstrated a fully automatic method for parametric WCET analysis that goes
all the way from flow analysis to final WCET calculation. The method utilizes known
methods, developed in other contexts, for parametric calculations. The resulting paramet-
ric WCET analysis is potentially very powerful. The method can automatically derive and
solve both parametric constraints expressing absolute upper bounds on execution counts,
and parametric path constraints. As far as we know, no other published method can accom-
plish this. A simple example demonstrates how it works.

The flow analysis and the calculation method are replaceable. Halbwachs’ polyhedral
analysis is capable of deriving parametric flow constraints, but other analysis methods are
certainly possible, providing different tradeoffs between precision and computation time.
A parameterized interval-based analysis is perfectly viable: it would give less precision at a
lower cost. Conversely, one could design a flow analysis based on general Presburger Arith-
metic: this would sometimes provide better precision but at a potentially very high cost.
The parametric IPET calculation can handle any linear parametric constraints, regardless
of the source.

The parametric IPET calculation method we propose generalizes conventional IPET
calculation, and it interfaces to low-level analyses in the same way. The method is easily
adaptable to other CFG variants than the flowcharts here. It needs static upper bounds to
execution times for basic blocks. If these bounds are too pessimistic (due to architectural
features), then the usual methods can be used, such as adding corrections for pipeline over-
lap [11] or virtually unfolding the first loop iteration in the CFG to obtain a more precise
account for cache effects [25].

Future work involves a full implementation in order to evaluate the method with re-
spect to accuracy and practical time complexity. We are currently implementing a tool for
WCET analysis of full C [3]. The first version of this tool will use Gustafssons interval-
based abstract interpretation [14] for flow analysis, and a conventional IPET calculation: to
implement the parametric analysis in this context is an interesting future possibility.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

10

[2] P. Altenbernd.Timing Analysis, Scheduling, and Allocation of Periodic Hard Real-
Time Tasks. PhD thesis, Department of Mathematics and Computer Science, Univer-
sity of Paderborn, Germany, October 1996.

[3] N. Bermudo, J. Gustafsson, B. Lisper, C. Sandberg, and L. Sjöberg. A prototype tool
for flow analysis of C programs. In G. Bernat, editor,Proc. WCET 2002 Workshop,
Vienna, June 2002.

[4] G. Bernat and A. Burns. An approach to symbolic worst-case execution time analysis.
In Proc. 25th Workshop on Real-Time Programming, Palma, Spain, May 2000.

[5] R. Chapman. Worst-case timing analysis via finding longest paths in SPARK Ada
basic-path graphs. Technical Report YCS246, The British Aerospace Dependable
Computing System Centre, Dept. of Computer Science, Univ. York, Oct. 1994.

[6] P. Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: Applications to analyze and transform scientific programs. InProc. In-
ternational Conference on Supercomputing, pages 278–285, Philadelphia, PA, 1996.
ACM.

[7] A. Colin and G. Bernat. Scope-tree: a program representation for symbolic worst-case
execution time analysis. InProc. 14th Euromicro Conference on Real-Time Systems,
Vienna, June 2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified model for static analysis
of programs by construction or approximation of fixpoints. InProceedings of the 4th
ACM Symposium on Principles of Programming Languages, pages 238–252, 1977.

[9] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. In E. J. Neuhold, editor,Formal Descriptions of Programming Concepts,
pages 237–277. North-Holland, 1978.

[10] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. InProceedings of the 5th ACM Symposium on Principles of
Programming Languages, pages 84–97, 1978.

[11] J. Engblom and A. Ermedahl. Pipeline Timing Analysis Using a Trace-Driven Sim-
ulator. InProc. 6th International Conference on Real-Time Computing Systems and
Applications (RTCSA’99). IEEE Computer Society Press, Dec. 1999.

[12] P. Feautrier. Parametric integer programming.RAIRO Recherche Opérationnelle,
22:243–268, Sept. 1988.

[13] P. Feautrier and N. Tawbi. Résolution de systèmes d’inequations linéaires; mode
d’emploi du logiciel PIP. Internal report, Laboratoire MASI, Université P. et M.
Curie, Paris, Dec. 1989.

[14] J. Gustafsson.Analyzing Execution-Time of Object-Oriented Programs Using Ab-
stract Interpretation. PhD thesis, Dept. of Information Technology, Uppsala Univer-
sity, May 2000.

[15] N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. Thèse de 3eme cycle, Univ. de Grenoble, Mar. 1979.

[16] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding pipeline and
instruction cache performance.IEEE Transactions on Computers, 48(1), Jan. 1999.

[17] C. Healy, M. Sjödin, V. Rustagi, and D. Whalley. Bounding loop iterations for timing
analysis. InProc. IEEE Real-Time Applications Symposium (RTAS’98), June 1998.

11

[18] N. Holsti, T. Långbacka, and S. Saarinen. Worst-Case Execution-Time Analysis for
Digital Signal Processors. InProceedings of the EUSIPCO 2000 Conference (X Eu-
ropean Signal Processing Conference), Sept. 2000.

[19] W. Li. Compiler cache optimizations for banded matrix problems.Proc. 1995 Int.
Conf. on Supercomputing, July 1995.

[20] C. Park and A. Shaw. Experiments with a program timing tool based on a source-level
timing schema.IEEE Computer, 24(5):48–57, 1991.

[21] W. Pugh. Counting solutions to Presburger Formulas: How and why. InProc. ACM
SIGPLAN’94 Conference on Programming Language Design and Implementation,
pages 121–134, Orlando, FL, June 1994. ACM.

[22] P. Puschner and A. Schedl. Computing maximum task execution times – a graph-
based approach.Journal of Real-Time Systems, 13(1):67–91, Jul. 1997.

[23] A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1986.

[24] F. Stappert, A. Ermedahl, and J. Engblom. Efficient Longest Executable Path Search
for Programs with Complex Flows and Pipeline Effects. InProc. 4th International
Workshop on Compiler and Architecture Support for Embedded Systems (CASES
2001). ACM Press, Nov. 2001.

[25] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analyses.International Journal of Time-Critical Computing
Systems, 18:157–179, 2000.

[26] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric Timing Analysis. In
J. Fenwick and C. Norris, editors,Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems (LCTES’2001), pages 88–93, Snowbird,
Utah, June 2001.

[27] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352–357, July 1984.

12

