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Abstract

Vehicle control-systems have evolved from small isolated controllers to com-
plex distributed computer-systems. These systems include nodes spanning
from simple 8-bit micro-controllers with a minimum of memory to complex
32-bit processors with vast resources. The main motivation for this evolution
is the need for increased functionality in motor vehicles. Examples of such
functionality include momentary fuel consumption measurements, anti-spin
systems, and computerized diagnostics of vehicle-status. The control of the
increased functionality requires the handling and maintenance of larger vol-
umes of data, and has created a need for a uniform and efficient way to access
and maintain this data. A real-time database management system could sat-
isfy this requirement but an extensive survey of commercial and experimental
database management systems has shown that there is currently no database
system suitable for vehicle control systems available. In today’s systems, data
management is performed in an ad-hoc fashion at a low level of abstraction, us-
ing internal data-structures, e.g., shared variables and structures. This approach
requires that the consistency of the data is maintained by the application, by,
for example, resolving data access conflicts through the use of semaphores.

This thesis presents a flexible and configurable database management sys-
tem designated COMET, suitable for embedded systems and in particular, ve-
hicle control-systems. To be able to handle the varying requirements imposed
by different systems, COMET emphasizes configurability and tailorability, by
adopting a component-based architecture.

The result of this research is the implementation of COMET BaseLine,
which is an instance of COMET suited to a particular vehicle control-system.
The required behaviour of this database is based on requirements gathered from
a case study performed at Volvo Construction Equipment Components AB in
Eskilstuna. To fulfill these requirements, a concept called database pointers has
been introduced and implemented. Database pointers provide controlled direct
access to individual data elements in the database, efficiently and temporally
deterministic, providing at the same time a high level of abstraction.
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Chapter 1

Introduction

Most functionality in a modern car is in one way or another controlled by a
computer. For example, the speedometer on the dash board may, instead of
being connected to the engine by a rotating wire, be connected to an onboard
computer feeding it with the current speed of the vehicle.

The advantages of computer control of functionality are many. First of all,
it reduces the amount of electrical wiring in the car. Instead of having an indi-
vidual wire for each subsystem, different subsystems can share a single digital
cable, called a data bus. Secondly, by supplying a central control-system with
all vehicle data, such as speed, engine temperature, fluid levels, etc, this in-
formation is made available to different subsystems. The vehicle speed, for
example, is supplied to the speedometer, but it can also be an important input
to the anti-lock braking system (ABS). A third reason is that new functionality
can be easily implemented in the car, requiring only computer software for its
control. Examples of new functionality are, anti-skid systems to keep the ve-
hicle steerable during emergency braking, air bags, and on-the-fly diagnostics
and statistics about the conditions in different subsystems in the vehicle.

An investigation made by Volvo suggests that the use of computer systems
in vehicle control is increasing, and is expected to continue to increase, by
7-10% annually [1]. Adding functionality to the car increases the volume of
data to be handled by the control-system. This data requires more and more
complex maintenance.

To further complicate matters, vehicular computer-systems are often dis-
tributed to several loosely coupled nodes, called electronic control units (ECUs),
throughout the vehicle. These nodes vary, both in computational power and

1



2 Introduction

the amount of resources available. Some nodes may be 8-bit micro-controllers
with a small on-board memory while other nodes may be powerful processors
with vast resources. These nodes need to be connected in order to share com-
mon information, i.e., the data distributed among the nodes.

In today’s systems, data is handled in an ad hoc fashion, using internal
data structures, i.e., shared variables. This means that the data must be kept
consistent by the application. There are many types of consistency to handle,
such as (i) concurrency consistency, i.e., data accesses must be serialized, and
this is enforced using mechanisms such as semaphores. Further, (ii) data in
real-time systems has a limited temporal validity, both absolute and relative
[2]. Finally, (iii) data must be kept consistent among nodes in the distributed
system. It is essential to consider all these issues while designing, maintaining
and extending the application and to be aware of the increasing risk of software
errors.

The current data management approach is becoming increasingly insuffi-
cient as systems become increasingly complex and a need for data manage-
ment on a higher level of abstraction has emerged. One way of providing such
a data management would be to incorporate a real-time database management
system (DBMS) into the system. DBMSs provide a generic and uniform way
of accessing data. Furthermore, they can automatically enforce consistency
mechanisms, including temporal validity control and distribution control.

1.1 Motivation

A number of database management systems intended for embedded systems
are currently available on the market. These include Polyhedra [3], Perva-
sive.SQL [4], Berkeley DB [5], and TimesTen [6]. Some of these systems
are small enough to fit in an environment such as a vehicular control system.
None, however, incorporates any real-time or deterministic behaviour. This
means that they are not behaviourally analyzable, which is one requirement for
deployment in a vehicular system.

On the other hand, there are a number of database management systems that
do incorporate real-time algorithms, such as DeeDS [7], RODAIN [8], STRIP
[9], and BeeHIVE [10]. Some of these systems, such as the DeeDS system,
are intended for hard real-time systems, and might therefore be predictable
and analyzable enough to be deployed in such a system. However, none is
intended for embedded environments and none could, in its current form, fit
into a vehicle control system.
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Further, the varying requirements of data management in different vehicle
control systems, require different behaviours of the database management sys-
tem used. In other words, a DBMS suitable for use in one vehicle might not
be suitable for use in a different vehicle. In fact, nodes within the same vehicle
might be so heterogeneous that a DBMS for one type of node might not fit
another.

One solution to this would be to develop an “in house” database manager
to suit one particular vehicular system. However implementing, and even more
importantly validating, a database management system for a vehicle control-
system is not a trivial task, and thus this solution is not time-efficient.

Our approach is to develop a tailorable database management system using
a component-based approach. This approach would enable the database to be
configurable to suit a number of different types of vehicular control-systems.

1.2 Contribution

In this thesis we will identify the data management requirements of a specific
industrial vehicle control-system. We show how the control-system can be
redesigned to incorporate a real-time database management system. Further,
we have designed and implemented a real-time database suited to this control-
system. To permit this implementation, we have introduced a new data access
concept for database management systems called database pointers.

The database, named COMET BaseLine, is an instance of the COMET
DBMS, a component-based database management system, suited to embedded
systems, in particular vehicle control-systems.

1.3 The Research Work and Method

One central aspect of this research has been close interaction with industry.
This has enabled us to work on solving research questions relevant to indus-
trial systems in practice. To achieve an understanding of both the academic
problems surrounding real-time data management, and data management re-
quirements from vehicle control-systems, extensive background work has been
performed.

The research began by investigating the current state-of- the-art in real-time
and embedded database management systems [11]. We performed an extensive
survey of commercially available embedded DBMSs, investigating a handful of
systems on the basis of a number of criteria. In addition to this survey, a second
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survey was performed, this time, of experimental real-time DBMSs, developed
in academia. The latter survey also provided us with documentation of basic
database management systems theory, which was simultaneously investigated.

Equipped with this new knowledge, an industrial stay was arranged. Dur-
ing a period of two weeks, we visited Volvo Construction Equipment Com-
ponents AB (Volvo CE), in Eskilstuna, Sweden. Volvo CE has developed a
vehicular control-system used in construction vehicles such as wheel loaders,
articulated haulers, and excavators. In this case study [12], we investigated the
data management currently used in these systems, and discussed the possibili-
ties of redesigning the system to incorporate a real-time DBMS. Furthermore,
we considered how such a DBMS should be designed to fulfil the requirements
of the control system.

Reviewing the earlier survey, we found no existing DBMS suitable for a
system such as this. The commercial DBMS systems were, in some cases,
small enough to fit in the nodes of the control-system but they had no hard
real-time database properties and were therefore insufficiently reliable for in-
tegration with such a system. Some real-time DBMS systems on the other
hand, have mechanisms which support a predictable behaviour but these are
not intended for use in resource-constrained embedded systems.

This realization provided further motivation for the development of a tai-
lorable DBMS that could be configured to suit a particular system. Initial work
on a suitable architecture for COMET was begun. A component-based ap-
proach was used to enable parts of the database to be easily exchanged, to per-
mit the necessary functionality to be plugged in and unnecessary functionality
to be replaced. One problem, however, was that some functionality cross-cut
several components, inhibiting the modularity we aimed at. To solve this prob-
lem, an aspect-oriented approach was used. Aspect-oriented software devel-
opment (AOSD) enables certain functional properties (aspects) to be extracted
and treated as separate artifacts [13]. These aspects could then be woven into
the system at compile-time. An architectural framework for COMET was de-
veloped, this consisting of a set of components and a set of aspects.

The next step was to implement an instance of COMET suitable for the sys-
tem investigated in the case study at Volvo CE. One problem still to be solved
was how to allow the control-tasks to access the database in a predictable way
without too much overhead. A database access method, called database point-
ers, was developed [14]. Database pointers are used to access individual data
elements in the same way as shared variables are accessed but in this case
the data elements reside inside a database controlled by a DBMS. To ensure
database consistency, these accesses must be performed in a controlled way.
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Finally the implementation of the first instance of COMET could begin.
This instance, called COMET BaseLine, implements a main-memory DBMS.
This DBMS can be accessed using the relational interface, which provides a
subset of the database query language SQL. Furthermore, COMET can be ac-
cessed using database pointers. The database, which is suited to the control-
system investigated at Volvo CE, is now fully functional and has a memory
footprint of around 20kb.

1.4 Conclusions and Future Work

In this thesis, we have presented a real-time database management system,
called COMET, suited to embedded real-time systems, in particular vehicular
systems. COMET has a component-based architecture that supports aspects.
This enables functionality to be tailored in many different ways, such as us-
ing parameterization, defining aspects, and replacing components. This is im-
portant because the requirements of different embedded applications vary. A
first instance of COMET, called COMET BaseLine has been presented. This
instance is specifically suited to a vehicular system developed at Volvo Con-
struction Equipment Components AB (Volvo CE) in Eskilstuna, Sweden. The
case study of the data management requirements of this system has been pre-
sented in the thesis. A concept called database pointers has been introduced to
permit the hard real-time controlling system to efficiently access the database
This concept has been successfully implemented in COMET BaseLine. This
thesis leaves certain questions unanswered and therefore much work in this
area remains to be performed. Examples of incomplete or pending research
include:

� Integration, verification and testing of COMET BaseLine together with
the Volvo CE control-system.

� Development of a concurrency control algorithm suited to database point-
ers. Ideally, hard database pointer transactions would be allowed to run
without blocking or, at least, with bounded blocking times.

� Verification of the COMET architecture for other types of control-sys-
tems to determine the flexibility and configurability of COMET.

� Further investigation of the benefit of using aspects to tailor the behavior
of a COMET instance.
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� Development of configuration and analysis tools for COMET, to aid
the developer of a control-system in choosing suitable components for
COMET.

1.5 Thesis Outline

The thesis is outlined as follows: In paper A, we survey commercial embedded
DBMSs as well as experimental research DBMSs, using a number of criteria.
We continue in paper B with a case study of the data management in a vehi-
cle control-system used in practice. In this paper we also elaborate on how
to redesign the system to incorporate a real-time database. The demands on
the real-time database are also presented. In paper C we introduce a new con-
cept called database pointers that is used to access individual data elements in
a real-time database in an efficient and temporally predictable way. Finally,
in paper D we present the concepts of our experimental database manage-
ment system, COMET. The architecture of COMET is described, as well as
the individual components and aspects identified in COMET. Furthermore, the
first implemented instance of COMET, the COMET BaseLine, is presented.
COMET BaseLine implements database pointers and is tailored to fit the vehi-
cle control-system described in paper B.
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Abstract

As complexity and the amount of data are growing in embedded real-time sys-
tems, the need for a uniform and efficient way to store data becomes increas-
ingly important, i.e., database functionality is needed to provide support for
storage and manipulation of data. However, a database that can be used in an
embedded real-time system must fulfill requirements both from an embedded
system and from a real-time system, i.e., at the same time the database needs to
be an embedded and a real-time database. The real-time database must handle
transactions with temporal constraints, as well as maintain consistency as in
a conventional database. The main objectives for an embedded database are
low memory usage, i.e., small memory footprint, portability to different oper-
ating system platforms, efficient resource management, e.g., minimization of
the CPU usage, ability to run for long periods of time without administration,
and ability to be tailored for different applications. In addition, development
costs must be kept as low as possible, with short time-to-market and a reliable
software. In this report we survey embedded and real-time database platforms
developed in industrial and research environments. This survey represents the
state-of-the-art in the area of embedded databases for embedded real-time sys-
tems. The survey enables us to identify a gap between embedded systems,
real-time systems and database systems, i.e., embedded databases suitable for
real-time systems are sparse. Furthermore, it is observed that there is a need for
a more generic embedded database that can be tailored, such that the applica-
tion designer can get an optimized database for a specific type of an application.
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2.1 Introduction

Digital systems can be classified in two categories: general purpose systems
and application-specific systems [1]. General purpose systems can be pro-
grammed to run a variety of different applications, i.e., they are not designed
for any special application. Application-specific systems are designed for a
specific application. Application-specific systems can also be part of a larger
host system and perform specific functions within the host system [2], and such
systems are usually referred to as embedded systems. An embedded system is
implemented partly on software and partly on hardware. When standard micro-
processors, microcontrollers or DSP processors are used, specialization of an
embedded system for a particular application consists primarily on specializa-
tion of software. In this report we focus on such systems. An embedded system
is required to be operational during the lifetime of the host system, which may
range from a few years, e.g., a low end audio component, to decades, e.g., an
avionic system. The nature of embedded systems also requires the computer to
interact with the external world (environment). They need to monitor sensors
and control actuators for a wide variety of real-world devices. These devices
interface to the computer via input and output registers and their operational
requirements are device and computer dependent.

Most embedded systems are also real-time systems, i.e., the correctness
of the system depends both on the logical result of the computation, and the
time when the results are produced [3]. We refer to these systems as embedded
real-time systems1 Real-time systems are typically constructed out of concur-
rent programs, called tasks. The most common type of temporal constraint that
a real-time system must satisfy is the completion of task deadlines. Depend-
ing on the consequence due to a missed deadline, real-time systems can be
classified as hard or soft. In a hard real-time system consequences of missing
a deadline can be catastrophic, e.g., aircraft control, while in a soft-real-time
system, missing a deadline does not cause catastrophic damage to the system,
but affect performance negatively, e.g., multimedia. Below follows a list of
examples where embedded real-time systems can be found.

� Vehicle systems for automobiles, subways, aircrafts, railways, and ships.

� Traffic control for highways, airspace, railway tracks, and shipping lines.

� Process control for power plants and chemical plants.

1We distinguish between embedded and real-time systems, since there are some embedded sys-
tems that do not enforce real-time behavior, and there are real-time systems that are not embedded.
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� Medical systems for radiation therapy and patient monitoring.

� Military uses such as advanced firing weapons, tracking, and command
and control.

� Manufacturing systems with robots.

� Telephone, radio, and satellite communications.

� Multimedia systems that provide text, graphic, audio and video inter-
faces.

� Household systems for monitoring and controlling appliances.

� Building managers that control such entities as heat, lights, doors, and
elevators.

In the last years the deployment of embedded real-time systems has in-
creased dramatically. As can be seen from the examples, these systems are
now virtually embedded in every aspect of our lives. At the same time the
amount of data that needs to be managed is growing, e.g., embedded real-time
systems that are used to control a vehicle, such as a modern car, must keep track
of several hundreds sensor values. As the amount of information managed by
embedded real-time systems increases, it becomes increasingly important that
data is managed and stored efficiently and in a uniform manner by the system.
Current techniques adopted for storing and manipulating data objects in em-
bedded and real-time systems are ad hoc, since they normally manipulate data
objects as internal data structures. That is, in embedded real-time systems data
management is traditionally built as a part of the overall system. This is a costly
development process with respect to design, implementation, and verification
of the system. In addition, such techniques do not provide mechanisms that
support porting of data to other embedded systems or large central databases.

Database functionality is needed to provide support for storage and manip-
ulation of data.

Embedding databases into embedded systems have significant gains: (i)
reduction of development costs due to the reuse of database systems; (ii) im-
provement of quality in the design of embedded systems since the database
provides support for consistent and safe manipulation of data, which makes
the task of the programmer simpler; and (iv) increased maintainability as the
software evolves. Consequently, this improves the overall reliability of the
system. Furthermore, embedded databases provide mechanisms that support
porting of data to other embedded systems or large central databases.
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However, embedded real-time systems put demands on such embedded
database that originate from requirements on embedded and real-time systems.

Most embedded systems need to be able to run without human presence,
which means that a database in such a system must be able to recover from the
failure without external intervention [4]. Also, the resource load the database
imposes on the embedded system should be carefully balanced, in particular,
memory footprint. For example, in embedded systems used to control a vehicle
minimization of the hardware cost is of utmost importance. This usually im-
plies that memory capacity must be kept as low as possible, i.e., databases used
in such systems must have small memory footprint. Embedded systems can be
implemented in different hardware environments supporting different operat-
ing system platforms, which requires the embedded database to be portable to
different operating system platforms.

On the other hand, real-time systems put different set of demands on a
database system. The data in the database used in real-time systems must be
logically consistent, as well as temporally consistent [5]. Temporal consistency
of data is needed in order to maintain consistency between the actual state
of the environment that is being controlled by the real-time system, and the
state reflected by the content of the database. Temporal consistency has two
components:

� Absolute consistency, between the state of the environment and its re-
flection in the database.

� Relative consistency, among the data used to derive other data.

We use the notation introduced by Ramamritham [5] to give a formal definition
of the temporal consistency.

A data element, denoted
�
, which is temporally constrained, is defined by

three attributes:
� value

������� �	�
, i.e., the current state of data

�
in the database,

� time-stamp
��
�

, i.e., the time when the observation relating to
�

was
made, and

� absolute validity interval
�������

, i.e., the length of the time interval follow-
ing

��
�
during which

�
is considered to be absolute consistent.

A set of data items used to derive a new data item forms a relative consistency
set, denoted � , and each such set is associated with a relative validity interval,
��� ��� . Data in the database, such that

��� � , has a correct state if and only if
[5]
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1.
������� �	�

is logically consistent, and

2.
�

is temporally consistent, both

� absolute ����� ��
����� � �����
, and

� relative 	 ��
 � ���� ��
� � ��

� � � ��� ��� .
A transaction, i.e., a sequence of read and write operations on data items, in
conventional databases must satisfy following properties: atomicity, consis-
tency, isolation, and durability, called ACID properties. In addition, transac-
tions that process real-time data must satisfy temporal constraints. Some of
the temporal constraints on transactions in a real-time database come from the
temporal consistency requirement, and some from requirements imposed on
the system reaction time (typically, periodicity requirements) [5]. These con-
straints require time-cognizant transaction processing so that transactions can
be processed to meet their deadlines, both with respect to completion of the
transaction as well as satisfying the temporal correctness of the data.

2.1.1 An example application

We describe one example of a typical embedded real-time system. The exam-
ple is typical for a large class industrial process control system that handles
large volume of data, where data have temporal constraints. In order to keep
the example as illustrative and as simple as possible we limit our example to a
specific application scenario, namely the control of the water level in a water
tank (see figure 2.1). Through this example we illustrate demands put on data
management in such a system. Our example-system contains a real-time oper-
ating system, a database, an I/O management subsystem and a user-interface.

A controller task (PID-regulator) controls the level in the water tank ac-
cording to the desired level set by the user, i.e., the highest allowed water level.
The environment consists of the water level, the alarm state, the setting of the
valve and the value of the user interface. The environment state is reflected
by the content of the database (denoted � 
 ��� 
 ��� 
 ��� 
 in figure 2.1). Further-
more, PID variables that reflect internal status of the system are also stored in
the database. The I/O manager (I/O MGNT) is responsible for data exchange
between the environment and the database. Thus, the database stores the pa-
rameters from the environment and to the environment, and configuration data.
Data in the database needs to be temporally consistent, both absolute and rela-
tive. In this case, absolute validity interval can depend on the water flow. That
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Figure 2.1: An example system. On the left side a water tank is controlled by
the system on the right side. The PID-task controls the flow out by the valve
(y) so that the level in tank (x) is the same as the level set by the user (r). An
alarm task shuts the system down if the level alarm (a) is activated.

is, if the the tank in figure 2.1 is very big and the flow is small, absolute va-
lidity interval can be greater than in the case where the water-flow is big and
the data needs to be sampled more frequently. The relative consistency depicts
the difference between the oldest data sample and the youngest sample of data.
Hence, if the alarm in our system is activated, due to high water level, and x’
indicates a lover level, these two values are not valid even though they have
absolute validity.

For this application scenario, an additional temporal constraint must be sat-
isfied by the database, and that is an end-to-end deadline. This temporal con-
straint is important because the maximum processing time for the alarm event
must be smaller than the end-to-end-deadline. Figure 2.2 shows the whole end-
to-end process for an alarm event. When an alarm is detected, an alarm sensor
sends the signal to the A/D converter. This signal is read by the I/O manager
recording the alarm in the database. The alarm task then analyzes the alarm
data and sends a signal back to indicate an emergency shutdown.

In our example, the database can be accessed by the alarm task, the PID
task, the user interface, and the I/O manager. Thus, an adequate concurrency
control must be ensured in order to serialize transactions coming from these
four different database clients.
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Level Alarm a

Level indicator  x

Valve y

System
Ev ent oc c uring at t ime t1

Shut down o cc ur ing at time t1

Figure 2.2: The end-to-end deadline constraint for the alarm system. The emer-
gency shutdown must be completed within a given time

��� ��� � ��� implying that
��� � ��� � ��� ��� � ��� .

Let us now assume that the water level in the tank is just below the highest
allowed level, i.e., the level when an alarm is triggered. The water flowing into
the tank creates ripples on the surface. These ripples could cause the alarm to
go on and off with every ripple touching the sensor, and consequently sending
bursts of alarms to the system. In this case, one more temporal constraint must
be satisfied, a delayed response. The delayed response is a period of time
within which the water level must be higher than the highest allowed level in
order to activate the alarm.

As we can see, this simple application scenario puts different requirements
on the database. A complete industrial process control system, of which this
example is part of, would put a variety of additional requirements on a database,
e.g., logging.

Note that requirements placed on the database by the embedded real-time
system are to some extent general for all embedded and real-time applications,
but at the same time, there are requirements that are specific to an applica-
tion in question (e.g., delayed response). Thus, an embedded database system
must, in a sense, be tailored (customized) for each different application to give
an optimized solution. That is, given the resource demands of the embedded
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real-time system, a database must be tailored to have minimum functionality,
i.e., only functionality that a specific application needs.

In recent years, a significant amount of research has focused on how to
incorporate database functionality into real-time systems without jeopardizing
timeliness, and how to incorporate real-time behavior into embedded systems.
However, research for embedded databases used in embedded real-time sys-
tems, explicitly addressing the development and design process, and the lim-
ited amount of resources in embedded systems is sparse. Hence, the goal of
our report is to identify the gap between the following three different systems:
real-time systems, embedded systems, and database systems.

There are many embedded databases on the market, but, as we show in
this report, they vary widely form vendor to vendor. Existing commercial em-
bedded database systems, e.g., Polyhedra [6], RDM and Velocis [7], Perva-
sive.SQL [8], Berkeley DB [9], and TimesTen [10], have different characteris-
tics and are designed with specific applications in mind. They support different
data models, e.g., relational vs object-oriented model, and operating system
platforms. Moreover, they have different memory requirements and provide
different types of interfaces for users to access data in the database.

Application developers must carefully choose the embedded database their
application requires, and find the balance between the functionality an appli-
cation requires and the functionality that an embedded database offers. Thus,
finding the right embedded database, in addition of being a quite time con-
suming, costly and difficult process, is a process with lot of compromises. Al-
though a significant amount of research in real-time databases has been done in
the past years, it has mainly focussed on various schemes for concurrency con-
trol, transaction scheduling, and logging and recovery. Research projects that
are building real-time database platforms, such as ART-RTDB [11], BeeHive
[12], DeeDS [13] and RODAIN [14], mainly address real-time performance,
have monolithic structure, and are built for a particular real-time application.
Hence, the issue of how to enable development of an embedded database sys-
tem that can be tailored for different embedded real-time applications arises.
The development costs of such database system must be kept low, and the de-
velopment must ensure good software quality.

The outline of the report is as follows. In section 2.2.2, we investigate a
number of commercially available database management systems. This sur-
vey is followed by a survey on experimental research database management
systems in section 2.2.4. The report is concluded in 2.3.1.
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2.2 Database Systems

2.2.1 Traditional Database Systems

Databases are used to store data items in a structured way. Data items stored in
a database should be persistent, i.e., a data item stored in the database should
remain there until either removed or updated. Transactions are most often used
to read, write, or update data items. Transactions should guarantee serializa-
tion. The so-called database manager is accessed through interfaces, and one
database manager can support multiple interfaces like C/C++, SQL, or ActiveX
interfaces.

According to [15] most database management systems consist of three lev-
els:

� The internal level, or physical level, deals with the physical storage of
the data onto a media. Its interface to the conceptual level abstracts all
such information away.

� The conceptual level handles transactions and structures of the data,
maintaining serialization and persistence.

� The external level contains interfaces to users, uniforming transactions
before they are sent to the conceptual level.

One of the main goals for many traditional database systems are transaction
throughput and low average response time [5], while for real-time databases the
main goal is to achieve predictability with respect to response times, memory
usage and CPU utilization. We can say that when a worst case response time
or maximum memory consumption for a database can be guaranteed, the sys-
tem is predictable. However, there can be different levels of predictability. For
a system that can guarantee a certain response time with some defined confi-
dence, is said to have a certain degree of predictability.

2.2.2 Embedded Database Systems

Definitions

A device embedded database system is a database system that resides into an
embedded system. In contrast, an application-embedded database is hidden
inside an application and is not visible to the application user. Application-
embedded databases are not addressed further in this survey. This survey fo-
cuses only on databases embedded in real-time and embedded systems. The
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main objectives of a traditional enterprise database system often is through-
put, flexibility, scalability, functionality etc., while size, resource usage, and
processor usage are not as important, since hardware is relatively cheap. In
embedded systems these issues are much more important. The main issues for
an embedded database system can be summarized as [16, 4, 17]:

� Minimizing the memory footprint: The memory demand for an embed-
ded system are most often, mainly for economical reasons, kept as low
as possible. A typical footprint for an embedded database is within the
range of some kilobytes to a couple of megabytes.

� Reduction of resource allocations: In an embedded system, the database
management system and the application are most often run on the same
processor, putting a great demand on the database process to allocate
minimum CPU bandwidth to leave as much capacity as possible to the
application.

� Support for multiple operating systems: In an enterprise database sys-
tem, the DBMS is typically run on a dedicated server using a normal
operating system. The clients, that could be desktop computers, other
servers, or even embedded systems, connect to the server using a net-
work connection. Because a database most often run on the same piece
of hardware as the application in an embedded system, and that em-
bedded systems often use specialized operating systems, the database
system must support these operating systems.

� High availability: In contrast to a traditional database system, most em-
bedded database systems do not have a system administrator present dur-
ing run-time. Therefore, an embedded database must be able to run on
its own.

Depending on the kind of system the database should reside in, some ad-
ditional objectives might be more emphasized, while others are less important.
For example, Pervasive, which manufactures Pervasive.SQL DBMS system,
has identified three different types of embedded systems and has therefore de-
veloped different versions of their database to support these systems [18]:

� Pervasive.SQL for smart cards is intended for systems with very limited
memory resources, typically a ten kilobytes. This version has traded off
sophisticated concurrency control and flexible interfaces for size. Typ-
ical applications include banking systems like cash-cards, identification
systems, health-care, and mobile phones.
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� Pervasive.SQL for embedded systems is designed for small control sys-
tems like our example system in figure 2.1. It can also be used as a
data pump, which is a system that reads data from a number of sensors,
stores the data in a local database, and continuously “pumps” data to
a large enterprise database in an unidirectional flow. Important issues
here are predictability, with respect to both timing and system resources,
as we are approaching a real-time environment. The interfaces are kept
rather simple to increase speed and predictability. Since the number of
users and the rate of transactions often can be predicted, the need for a
complex concurrency control system might not be necessary.

� Pervasive.SQL for mobile systems is used in mobile devices like cellular
phones or PDAs, where there is a need for higher degree of concurrency
control. Consider that a user browses through e-mails on a PDA while
walking into his/hers office, then the synchronizer updates the e-mail list
using a wireless communication without interrupting the user. The inter-
faces support more complex ad-hoc queries than the embedded version.
The interfaces are modular and can be included or excluded to minimize
memory footprint.

An Industrial Case Study

In 1999, ABB Robotics who develops and manufactures robots for industrial
use, wanted to exchange the existing in-house developed configuration storage
management system into a more flexible and generic system, preferably some
commercial-of-the- shelf (COTS) embedded database.

An industrial robot is a complex and computer-controlled system, which
consists of many sub-systems. In each robot some configuration information
about its equipment is stored. Today, this amounts to about 600 kilobytes of
data. This data needs to be stored in a structured and organized way, allowing
easy access.

The current system, called CFG, is a custom made application and resem-
bles in many ways to a regular database application. However, it is nowadays
considered to be too non-flexible and the user-interface is not user friendly
enough. Furthermore, the internal structures and the choice of index system
have lead to much longer response times as the data size has increased.

ABB Robotics decided to investigate the market for an existing suitable
database system that would fulfill their demands. The following requirements
were considered to be important[19]:
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� Connectivity. It should be possible to access the database both directly
from the robot controlling application and from an external application
via a network connection. Furthermore the database should support
views so data could be queried from a certain perspective. It would be
preferable if some kind of standard interface, e.g., ODBC, could be used.
If possible, the database should be backward compatible with the query
language used in the CFG system. The database should also be able
to handle simultaneous transactions and queries, and be able to handle
concurrency.

� Scalability. The amount of data items in the system must be allowed to
grow as the system evolves. Transaction times and database behavior
must not change due to increase in data size.

� Security. It should be possible to assign different security levels for dif-
ferent parts of the data in the database. That is, some form of user iden-
tification and some security levels must exist.

� Data persistence. The database should be able to recover safely after
a system failure. Therefore some form of persistent storage must be
supported, and the database should remain internally consistent after re-
covery.

� Memory requirements. To keep the size of the DBMS system low is a
key issue.

2.2.3 Commercial Embedded DBMS: a Survey

In this section we discuss and compare a number of commercial embedded
database systems. We have selected a handful of systems with different char-
acteristics. These databases are compared with each other with respect to a set
of criteria, which represent the most fundamental issues related to embedded
databases.

Criteria Investigated

� DBMS model, which describes the architecture of the database system.
Two DBMS architectures for embedded databases are the client/server
model and the embedded library model.
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� Data model, which specifies how data in the database is organized. Com-
mon models are the relational, the object-oriented and the object rela-
tional.

� Data indexing, which describes how the data indexes are constructed.

� Memory requirements, which describes the memory requirements for
the system, both data overhead and the memory footprint, which is the
size of the database management system.

� Storage media, which specifies the different kinds of storage medias that
the database supports.

� Connectivity, which describes the different interfaces the application can
use to access the database. Network connectivity is also specified, i.e.
the ability to access the database remotely via a network connection.

� Operating system platforms, which specifies the operating systems sup-
ported by the database system.

� Concurrency control, which describes how concurrent transactions are
handled by the system.

� Recovery, which specifies how backup/restoration is managed by a sys-
tem in case of failures.

� Real-time properties, which discusses different real-time aspects of the
system.

Databases Investigated

In this survey we have selected a handful of systems that together represents
a somewhat complete picture of the types of products currently on the market.
This list of systems is not to be considered complete in any way, worth men-
tioning are, for example, the SQL.Anywhere system developed by Sybase [20]
and the c-tree Plus system by FairCom [21].

� Pervasive.SQL by Pervasive Software Inc. This database has three differ-
ent versions for embedded systems: Pervasive.SQL for smart-card, Per-
vasive.SQL for mobile systems, and Pervasive.SQL for embedded sys-
tems. All three versions integrate well with each other and also with their
non embedded versions of Pervasive.SQL. Their system view and the
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fact that they have, compared to most embedded databases, very small
memory requirements was one reason for investigating this database [8].

� Polyhedra by Polyhedra Plc. This database was selected for three rea-
sons, first of all it is claimed to be a real-time database, secondly it is a
main memory database and third, it has active behavior [6].

� Velocis by Mbrane Ltd. This system is primarily intended for e-Comm-
erce and Web applications, but has some support for embedded operating
systems [7].

� RDM by Mbrane Ltd. Like Polyhedra, RDM also claims to be a real-
time database. It is however fundamentally different from the Polyhedra
system, by, for example, being an embedded library and, thus, does not
adopt the client/server model [7].

� Berkeley DB by Sleepycat Software Inc. This database, which also is
implemented as a library, was selected for the survey because it is dis-
tributed as open source and therefore interesting from a research point of
view [9].

� TimesTen by TimesTen Performance Software. This relational database
is, like the Polyhedra system a main memory real-time database system
[10].

DBMS Model

There are basically two different DBMS models supported (see table 2.1). The
first model is the client/server model, where the database server can be con-
sidered to be an application running separately from the real-time application,
even though they run on the same processor. The DBMS is called using a re-
quest/response protocol. The server is accessed either through inter-process
communication or some network. The second model is to compile the DBMS
together with the system application into one executable system. When a task
wants to access the database it only performs function calls to make the request.
Transactions execute on behalf of their tasks’ threads, even though internal
threads in the DBMS might be used. There are advantages and drawbacks with
both models. In a traditional enterprise database, the server most often run on a
dedicated server machine, allowing the DBMS to use almost 100% of the CPU.
However in an embedded client/server system, the application and the server
process often share the same processor. This implies that for every transaction



24 Paper A

DBMS system Client/server Library
Pervasive.SQL x
Polyhedra x
Velocis x
RDM x
Berkeley DB x
TimesTen x

Table 2.1: DBMS models supported by different embedded database systems.

at least two context switches must be performed, see figure 2.3. More com-
plex transactions, like an update transaction might require even more context
switches. Consider for example an real-time task that executes an update trans-
action that first reads the data element � , then derives a new value of � from
the old value and finally writes it back to the database. This transaction would
generate four context switches. Two while fetching the value of � and two
while writing � back to the database.

These context-switches adds to the system overhead, and can furthermore
make worst case execution time estimations of transactions more complex to
predict. The network message passing or inter-process communication be-
tween the server and the client also add to the overhead cost. A drawback
with an embedded library is that they lack standardized interfaces like ODBC.
[4].

The problem with message passing overhead has been reduced in the Ve-
locis system. They allow the process to be compiled together with the applica-
tion, thus reducing the overhead since shared memory can be used instead.

Application task
DBMS server

task
Application task

continued

DBMS
request

DBMS
response

Context
switches

Figure 2.3: In an embedded client/server DBMS at least two context switches
are necessary for each transaction.
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Data Model

The data model concerns how data is logically structured. The most common
model is the relational model where data is organized in tables with columns
and rows. Databases implementing relational data model are referred to as
relational databases (RDBMS). One advantage with a relational model is that
columns in the table can relate to other tables so arbitrary complex logical
structures can be created. From this logical structure queries can be used to
extract a specific selection of data, i.e. a view. However, one disadvantage
with the relational model is added data lookup overhead. This is because that
data elements are organized with indexes in which pointers to the data is stored,
and to perform the index lookup can take significant amount of time, especially
for databases stored on hard drives. This can be a serious problem for databases
that resides in time critical applications like our example application in figure
2.1.

The relational model, which was developed by Codd, only supports a few
basic data types, e.g., integers, floating point numbers, currency, and fixed
length arrays. This is nowadays considered a limitation which has lead to
the introduction of databases which supports more complex data types, e.g.,
Binary Large Objects (BLOBs). BLOB is data, which is treated as a set of bi-
nary digits. The database does not know what a BLOB contains and therefore
cannot index anything inside of the BLOB.

The object-oriented database (ODMBS) is a different kind of data model,
which is highly integrated with object-oriented modeling and programming,
The ODBMS is an extension to the semantics of an object-oriented language.
An object-oriented database stores objects that can be shared by different appli-
cations. For example, a company which deals with e-Commerce has a database
containing all customers. The application is written in an object-oriented lan-
guage and a customer is modeled as an object. This object has methods, like
buy and changeAdress, associated with it. When a new customer arrives,
an instance of the class is created and then stored in the database. The in-
stance can then be retrieved at any time. Controlled access is guaranteed due
to concurrency control.

A third data model, which has evolved from both the relational and the
object-oriented model, incorporates objects in relations, thus is called object-
relational databases (ORDBMS).

As shown in table 2.2, all systems in the survey except Berkeley DB are re-
lational. Furthermore the Polyhedra has some object-relational behavior thro-
ugh its Control language described below. However it is not fully object-
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DBMS system Relational Obj.-oriented Obj.-rel. Other
Pervasive.SQL x
Polyhedra x (x)
Velocis x
RDM x
Berkeley DB x
TimesTen x

Table 2.2: Data models supported by different embedded database systems.

relational since objects itself cannot be stored in the database. To our knowl-
edge, no pure object-oriented embedded databases exists on the market today.
There are however some low requirements databases that are object-oriented,
such as the Objectivity/DB [22] system. Furthermore some object-oriented
client-libraries exists that can be used in an embedded system, such as the Pow-
erTier [23] and the Poet Object system [24]. These client-libraries connects to
an external database server. Since the actual DBMS and the database is located
on a non-embedded system we do not consider them embedded databases in
this survey.

Most systems have ways to “shortcut” access to data, and therefore bypass-
ing the index lookup routine. Pervasive, for example, can access data using
the Btrieve transactional engine that bypasses the relational engine. Mbrane
uses a different approach in the RDM system. In many real-time systems data
items are accessed in a predefined order (think of a controlling system where
some sensor values are read from the database and the result is written back to
the database). By inserting shortcuts between data elements such that they are
directly linked in the order they are accessed, fast accesses can be achieved. As
these shortcuts point directly to physical locations in memory, reorganization
of the database is much more complex since a large number of pointers can
become stale when a single data is dropped or moved.

The Polyhedra DBMS system is fundamentally different compared to the
rest of the relational systems in this survey, because of its active behavior. This
is achieved through two mechanisms, active queries and by the control lan-
guage (CL). An active query looks quite like a normal query where some data
is retrieved and/or written, but instead the query stays in the database until
explicitly aborted. When a change in the data occurs that would alter the re-
sult of the query, the application is notified. The CL, which is a fully object-
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oriented script language that supports encapsulation, information hiding and
inheritance, can determine the behavior of data in the database. This means
that methods, private or public, can be associated with data performing oper-
ations on them without involving the application. In our example application,
the CL could be used to derive the valve setting � 
 from the level indicator � 

and the PID parameters, thus removing the need for the PID task. The CL has
another important usage, since it can be used in the display manager (DM) to
make a graphical interface. The DM, which is implemented as a Polyhedra
Client, together with the control language is able to present a graphical view
on a local or remote user terminal. This is actually exactly the user interface in
our example application, since DM also can take user input and forward that to
the database. Active database management will be further discussed in section
2.2.8.

As mentioned above, Berkeley DB is the only non-relational system in this
survey. Instead it uses a key-data relationship. One data is associated with a
key. There are three ways to search for data, from key, part of key or sequential
search. The data can be arbitrary large and of virtually any structure. Since
the keys are plain ASCII strings the data can contain other keys so complex
relations can be built up. In fact it would be possible to implement a relational
engine on top of the Berkeley DB database. This approach claims for a very
intimate relationship between the database and the programming language used
in the application.

Data Indexing

To be able to efficiently search for specific data, an efficient index system
should exist. To linearly search through every single key from an unsorted
list would not be a good solution since transaction response times would grow
as the number of data elements in the database increases. To solve this prob-
lem two major approaches are used, tree structures and hashed lists. Both
approaches supply similar functionality, but differ somewhat in performance.
Two major tree structures are used, B � -tree indexing, which suits disk based
databases, and T-tree indexing, which is used in main-memory databases.

The main issue for B � -tree indexing is to minimize disk I/O, thus trading
disk I/O for added algorithm complexity. B � -tree indexing sorts the keys in a
tree structure in which every node has a predefined number of children, denoted
� . A large value of � results in a wide but shallow tree, thus the tree has a large
fanout. A small value of � results in the opposite. For ��� � tree is a binary
tree. Since all data indexes reside in the leave nodes of the tree, while only the
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Figure 2.4: The structure of a B � -tree with fanout of 3. The inner nodes are
only used to index down to the leave node containing the pointer to the correct
data. Figure partially from [25].

inner nodes are used to navigate to the right leave, the number of visited nodes
will be fewer for a shallow tree. This results in fewer nodes that have to be
retrieved from disk, thus reducing disk I/O. In figure 2.2.3 we see an example
of a B � -tree . The root directs requests to all keys that are less than six to the
left child and keys from six to its middle child. As the value of � increases,
the longer time it takes to pass the request to the correct child. Thus, when
deciding the fanout degree, the time it takes to fetch a node from disk must be
in proportion to the time it takes to locate which child to redirect to. Proposals
on real-time concurrency control for B � -tree indexing have been made [25].

DBMS system B � -tree T-tree Hashing Other
Pervasive.SQL x
Polyhedra x
Velocis n/a n/a n/a n/a
RDM x
Berkeley DB x x x
TimesTen x x x

Table 2.3: Data indexing strategies used by different embedded database sys-
tems.

For main-memory databases a different type of tree can be used, the T-tree
structure [26]. The T-tree uses a deeper tree structure than the B � -tree since it
is a balanced binary tree, see figure 2.2.3, with a maximum of two children for
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Figure 2.5: The structure of a T-tree. Each node contains a number of entries
that contains the key and a pointer to the corresponding data. All key values
that are less then the boundary of this node is directed to the left child, and key
values that are above the boundary are directed to the right.

every node. To locate data, more nodes are normally visited, compared to the
B � -tree , before the correct node is found. This is not a problem for a main-
memory database since memory I/O is significantly faster than disk I/O. The
primary issue for T-tree indexing is that the algorithms used to traverse a T-tree
have a lower complexity and faster execution time than corresponding algo-
rithms for the B-tree. However, it has been pointed out that a T-tree traversal
combined with concurrency control might perform worse than B-tree indexes
due to the fact that more nodes in the T-tree had to be locked to ensure tree in-
tegrity during traversal [27] . They also proposed an improvement called T-tail,
which reduces the number of costly re-balancing operations needed. Further-
more, they proposed two concurrency algorithms for T-tail and T-tree struc-
tures, one optimistic and one pessimistic (for a more detailed discussion about
pessimistic and optimistic concurrency control, see section 2.2.3).

The second approach, hashing, uses an hash list in which keys are inserted
according to a value derived from the key itself (different keys can be assigned
the same value) [28]. Therefore, each entry in the list is a bucket that can
contain a predefined number of data keys. If a bucket is full a rehash operation
must be performed. The advantage with hashing is that the time to search
for certain data is constant independent of the amount of data entries in the
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database. However, hashing often cause more disk I/O than B-trees. This is
because data is often used with locality of reference, i.e., if data element

���
is

used, it is more probable that data element
���

will be used shortly. In a B-tree
both elements would be sorted close to each other, and when

���
is retrieved

from disk, then it is probable that also
���

will be retrieved. However in a hash
list

���
and

���
are likely to be in different buckets, causing extra disk I/O if

both data are used. Another disadvantage with hashing compared to tree-based
indexing is that non-exact queries is time consuming to perform. For example,
consider a query for all keys greater than � . After that � has been found, all
keys are found to the right of � in a B � -tree . For a hashed index, all buckets
need to be searched to find all matching keys.

We can notice that main-memory databases, namely Polyhedra and Times-
Ten use hashing (see table 2.3). Additionally, TimesTen supports T-trees. Per-
vasive, RDM and Berkeley DB use B-tree indexing.

It is also noteworthy that Berkeley DB uses both B � -tree and hashing. They
claim that hashing is suitable for database schemes that are either so small
that the index fits into main memory or when the database is so large that
B � -tree indexing will cause disk I/O upon most node fetching due to that the
cache can only fit a small fraction of the nodes. Thus making the B � -tree
indexing suitable for database schemes with a size in between these extremes.
Furthermore, Berkeley DB supports a third access method, queue, which is
used for fast inserts in the tail, and fast retrieval of data from the head of the
queue. This approach is suitable for the large class of systems that consume
large volumes of data, e.g., state machines.

Memory Requirements

Memory requirement of the database is an important issue for embedded data-
bases residing in environments with small memory requirements. For mass-
produced embedded computer systems like computer nodes in a car, minimiz-
ing hardware is usually a significant factor for reducing development costs.
There are two interesting properties to consider for embedded databases, first
of all the memory footprint size, which is the size of the database without any
data elements in it. Second, data overhead is of interest, i.e., the number of
bytes required to store a data element apart from the size of the data element
itself. An entry in the index list with a pointer to the physical storage address
is typical data overhead. Typically client/server solutions seems to require

1The values given in the table are the “footprint”-values made available by database vendors.
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DBMS system Memory requirements1

Pervasive.SQL for smart cards 8kb
Pervasive.SQL for embedded systems 50kb
Pervasive.SQL for mobile systems 50 - 400kb
Polyhedra 1.5 - 2Mb
Velocis 4Mb
RDM 400 - 500kb
Berkeley DB 175kb
TimesTen 5Mb

Table 2.4: Different memory needs of investigated embedded database sys-
tems.

significantly more memory than embedded libraries, with Pervasive.SQL be-
ing the exception (see table 2.4). This exception could partially be explained
by Pervasive’s Btrieve native interface being a very low-level interface (see
section 2.2.3), and that much of the functionality is placed in the application
instead. In the case of Berkeley DB, there is a similar explanation to its small
memory footprint. Additional functionality (not provided by the vendor) can
be implemented on top of the database.

Regarding data overhead, Polyhedra has a data overhead of 28 bytes for
every record. Pervasive’s data overhead is not as easily calculated since it uses
paging. Depending on record and page sizes different amount of fragmentation
is introduced in the data files. There are however formulas provided by Perva-
sive for calculating exact record sizes. The other systems investigated in this
survey supplies no information about actual data overhead costs.

For systems where low memory usage is considered more important than
processing speed, there is an option of compressing the data. Data will then
be transparently compressed and decompressed during runtime. This, how-
ever, requires free working memory of 16 times the size of the record being
compressed/decompressed.

Storage Media

Embedded computer systems support different storage medias. Normally, data
used on the computer is stored on a hard-drive. Hand-held computer use Flash
or other non-volatile memory for storage of both programs and data. Since data
in a database needs to be persistent even upon a power loss, some form of stable
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DBMS system Hard-drive Flash Smart card FTP
Pervasive.SQL x x x
Polyhedra x x x
Velocis x
RDM x
Berkeley DB x x
TimesTen x

Table 2.5: Storage medias used by investigated embedded database systems.

storage technique must be used. As can be seen from table 2.5, most systems
support Flash in addition to a hard-drive. The Polyhedra system also supports
storage via a FTP-connection. This implies that the Polyhedra system can run
without persistent storage, since data can be loaded via FTP-connection upon
system startup.

Connectivity

Database interfaces are the users way to access the database. An interface
normally contains functions for connecting to the server, making queries, per-
forming transactions, and making changes to the database schema. However
different interfaces can be specialized on specific types of operations, e.g., SQL
is used mainly for schema modifications and queries, while a C/C++ API nor-
mally are specialized for transactional access. Figure 2.6 shows a typical inter-
face configuration for an embedded database system.

The most basic interface is the native interface. This interface, which is
for a specific programming language, e.g., C or C++, is often used by the
application running on the embedded system. In our example in figure 2.1,
tasks and I/O management would typically use the native interface to perform
their transactions.

Microsoft has developed the Open Database Connectivity (ODBC) inter-
face in the late 80’s. This interface uses the query language SQL, and is to-
day one of the largest standards of database interfaces. The advantage with
ODBC is that any database that supports ODBC can connect with any applica-
tion written for ODBC. ODBC is a low-level interface, that requires more im-
plementation per database access then a high-level interface like ActiveX Data
Object (ADO) interface, explained below in more detail. The ODBC interface
cannot handle non-relational databases very well. Main benefits, beside the
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Figure 2.6: Figure showing the architecture of applications that uses different
types of database interfaces. The shaded boxes are components that normally
are provided by the database vendor.

interchangeability, is that the performance is generally higher than high-level
interfaces, and the interface gives the possibility of detailed tuning.

A newer standard, also developed by Microsoft, is the OLE DB interface
which is based on the Microsoft COM technology. OLE DB is, as ODBC,
a low-level interface. The functionality of OLE DB is similar to ODBC, but
object-oriented. However, one advantage is the possibility to use OLE DB on
non-relational database systems. There are also drivers available to connect the
OLE DB interface on top of an ODBC driver. In this case the ODBC driver
would act as a server for the application but as a client to the DBMS.

On top of OLE DB, the high-level ADO interface could be used. Since
both OLE DB and ADO are based on Microsoft COM, they can be reached
from almost any programming language.

For Java applications, the JDBC interface can be used. It builds on ODBC
but has been developed with the same philosophy as the OLE DB and ADO
interfaces. For databases that do not directly support JDBC, an ODBC driver
can be used as intermediate layer, just like OLE DB.

As can be seen in table 2.6, Pervasive.SQL uses the Btrieve interface for
fast reading and updating transactions. Btrieve is very closely connected to the
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DBMS system C/C++ ODBC OLE DB ADO
Pervasive.SQL x x x
Polyhedra x x x x
Velocis x x
RDM x
Berkeley DB x x
TimesTen

DBMS system JDBC Java Other
Pervasive.SQL x Btrieve

RSI
Polyhedra x
Velocis x Perl
RDM
Berkeley DB x TCL

Perl
TimesTen x

Table 2.6: Interfaces supported by different embedded database systems.

physical storage of data. In Btrieve data is written as records. A record can
be described as a predefined set of data elements, similar to a struct in the C
programming language. Btrieve is not aware of the data elements in the record,
but treats data elements as string of bytes that can be retrieved or stored. An in-
dex key is attached to every record. Records can then be accessed in two ways,
physical or logical. When a record is located logically, an index containing all
keys is used to lookup the location of the data. The indexes are sorted in ei-
ther ascending or descending order in a B-tree. Some methods to access data,
except by keyword, are get first, get last, get greater than,
etc. However for very fast access, the physical method can be used. Then
the data is retrieved using a physical location. This technique is useful when
data is accessed in a predefined order, this can be compared to the pointer net-
work used by RDM discussed previously. Physical access is performed using
four basic methods, step first, step last, step next and step
previous.

One limitation with the Btrieve interface is that it is not relational. Perva-
sive has therefore introduced their RowSet interface (RSI) that combines some
functionality from Btrieve and some from SQL. Every record is a row and the
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data elements in the records can be considered columns in the relation. This
interface is available for the smart card version, embedded version, and mobile
version only, and is not available for non-embedded versions of Pervasive.SQL.

The Btrieve and RSI interfaces are quite different from the native interface
in Polyhedra, which does not require the same understanding of the physical
data structure. The Polyhedra C/C++ interface uses SQL, thus operating on a
higher level. Basically, three different ways to access the database are provided
in the interface: queries, active queries, and transactions. A query performs a
retrieval of data from the database immediately, using the SQL select com-
mand, and the query is thereafter deleted. An active query works the same way
as an ordinary query but will not be deleted after the result has been delivered,
but will be reactivated as soon as any of the involved data is changed. This
will continue until the active query is explicitly deleted. One problem with
active queries is that if data changes very fast, the number of activations of the
query can be substantial, thus risking to overload the system. To prevent this a
minimum inter-arrival time can be set, and thus the query cannot be reactivated
until the time specified has elapsed. From a real-time perspective, the activa-
tion could then be treated as a periodic event, adding to the predictability of the
system.

Using transactions is the only way to make updates to the database, queries
are only for retrieval of data. A transaction can consist of a mixture of active
update queries and direct SQL statements. Note that a query might update the
database if it is placed inside of a transaction. Active update queries insert or
update a single data element and also delete on single row. Transactions are,
as always, treated as atomic operations and are aborted upon data conflict. To
further speed up transaction execution time, SQL procedures can be used, both
in queries and transactions. These procedures are compiled once and cannot
be changed after that, only executed. This eliminates the compilation process
and is very useful for queries that run often. However, procedures do not allow
schema changes.

Noteworthy is that TimesTen only supports ODBC and JDBC, and it has
no native interface like the rest of the systems. To increase the speed of ODBC
connections, an optimized ODBC driver is developed that connects only to
TimesTen. Like the Polyhedra DBMS, TimesTen uses precompiled queries,
but in addition supports parameterized queries. A parameterized query is a
precompiled query that supports arguments passed to it. For example the pa-
rameterized query

query( X )
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SELECT * from X

would return the table specified by X.
The Berkeley DB, as mentioned earlier, is not a client/server solution, but is

implemented as an embedded library. It is, furthermore, not relational but uses,
similar to the Btrieve interface, a key that relates to a record. The similarities
to Btrieve go further than that; data can be accessed in two ways, by key or
by physical location, just as Btrieve. The methods get() and put() access
data by the key, while cursor methods can be used to get data by physical
location in the database. As in Btrieve, the first, last, next, current, and previous
record number can be retrieved. A cursor is simply a pointer that points directly
to a record. The functionality and method names are similar to each other
independent of which of the supported programming language that is used.
There are three different modes that the database can run in:

� Single user DB. This version only allows one user to access the database
at a time, thus, removing the need for concurrency control and transac-
tion support.

� Concurrent DB. This version allows multiple users to access the database
simultaneously, but does not support transactions. This database is suit-
able for systems that has very few updates but multiple read-only trans-
actions.

� Transactional database. This version allows both concurrent users and
transactions.

The RDM database, which is implemented as a library, has a C/C++ inter-
face as its only interface. This library is, in contrast to Berkeley DB, relational.
The interface is a low-level interface that does not comply with any of the inter-
face standards. As mentioned earlier, one problem with databases that does not
use the client/server model is the lack of standard interfaces. However, since
RDM is relational, a separate SQL-like interface dbquery is developed. It is a
superset of the standard library, which makes use of a subset of SQL. Table 2.7
shows which databases that support network connectivity.

Operating System Platforms

Different embedded systems might run on various operating systems due to
differences in the hardware environment. Also the nature of the application
determines which operating systems that might be most useful. Thus, most
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DBMS system Network connectivity
Pervasive.SQL x
Polyhedra x
Velocis x
RDM x
Berkeley DB
TimesTen x

Table 2.7: Network connectivity in investigated embedded database systems.

DBMS system Desktop OS
Windows UNIX Linux OS/2 DOS

P.SQL for smart cards
P.SQL for emb. syst.
P.SQL for mob. syst. x
Polyhedra x x x
Velocis x x x
RDM x x x x x
Berkeley DB x x x
TimesTen x x x

Table 2.8: Desktop operating systems supported by investigated embedded
database systems.

embedded databases must be able to run on different operating system plat-
forms.

Tables 2.8 and 2.9 give an overview of different operating systems sup-
ported by embedded databases we investigated. There are basically four cate-
gories of operating systems that investigated embedded databases support:

� Operating systems traditionally used by desktop computers. In this cat-
egory you will find the most common operating systems like, Microsoft
Windows, different versions of UNIX and Linux.

0Smart card operating system for Windows.
1Pervasive.SQL for smart cards.
2Pervasive.SQL for embedded systems.
3Pervasive.SQL for mobile systems.
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DBMS system Real-Time OS
VxWorks OSE pSOS LynxOS Phar-lap QNX

P.SQL smart c.
P.SQL emb.sys. x x x
P.SQL mob.sys.
Polyhedra x x x x
Velocis
RDM x x
Berkeley DB x
TimesTen x x

Hand-held OS Smart-card OS
PalmOS WinCE Java Card Mult OS WinSC

P.SQL smart c. x x x
P.SQL emb.sys.
P.SQL mob.sys. x x
Polyhedra
Velocis
RDM
Berkeley DB
TimesTen

Table 2.9: Real-time and embedded operating systems supported by investi-
gated embedded database systems.

� Operating systems for hand-held computers. In this category you find
Palm OS and Windows CE/PocketPC. These operating systems demand
small memory requirements but still have most of the functionality of the
ordinary desktop computer operating systems. A good interaction and
interoperability between the operating systems on the hand-held com-
puter and a standard desktop is also important. This is recognized by
all databases, if you consider the complete Pervasive.SQL family as one
database system.

� Real-time operating systems. In this category you find systems like Vx-
Works and QNX.

� Smart card operating systems. These systems, like Java Card and Mul-
tOS, are made for very small environments, typically no more than 32kb.
The Java Card operating system is simply an extended Java virtual ma-
chine.

Most commercial embedded database systems in this survey support a real-
time operating system (see table 2.9). Additionally, Pervasive.SQL supports
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operating systems for hand-held computers and smart card operating systems,
in the Pervasive.SQL for mobile systems version and the Pervasive.SQL for
smart card version, respectively.

Concurrency Control

Concurrency control (CC) serializes transactions, retaining the ACID proper-
ties. All transactions in a database system must fulfill all four ACID properties.
These are:

� Atomic: A transaction is indivisible, either it is run to completion or it is
not run at all.

� Consistent: It must not violate logical constraints enforced by the sys-
tem. For example, a bank transaction must follow the law of conserva-
tion of money. This means that after a money transfer, the sum of the
receiver and the sender must be unchanged.

� Isolated: A transaction must not interfere with any other concurrent
transaction. This is also referred to as serialization of transactions.

� Durable: A transaction is, once committed, written permanently into the
database.

If two transactions that have some data elements in common are active at
the same time, a data conflict might occur. Then it is up to the concurrency con-
trol to detect and resolve this conflict. This is most commonly done with some
form of locking mechanism. It substitutes the semaphore guarding a global
data in a real-time system. There are two fundamentally different approaches
on achieving this serialization, an optimistic and a pessimistic approach.

The most common pessimistic algorithm is two-phase-locking (2PL) algo-
rithm proposed in 1976 by Eswaran et al. [29]. This algorithm consists, as
the name indicates, of two phases. In the first phase all locks are collected, no
reading or writing to data can be performed before a lock has been obtained.
When all locks are collected and the updates have been done, the locks are
released in the second phase.

Optimistic concurrency control (OCC) was first proposed by Kung and
Robinson [30] in 1981. This strategy takes advantage of the fact that con-
flicts in general are rather rare. The basic idea is to read and update data with-
out regarding possible conflicts. All updates are, however, done on temporary
data. At commit-time a conflict detection is performed and the data is written
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DBMS system Pessimistic CC Optimistic CC No CC
Pervasive.SQL x
Polyhedra x
Velocis x
RDM x
Berkeley DB x x
TimesTen x

Table 2.10: Concurrency control strategies used in different embedded
database systems.

permanently to the database if no conflict was detected. However the conflict
detection (verification phase) and the update phase need to be atomic, implying
some form of locking mechanism. Since these two phases take much shorter
time than a whole transaction, locks that involves multiple data, or the whole
database, can be used. Since it is an optimistic approach, performance degrades
when congestion in the system increases.

For real-time databases a number of variants of these algorithms have been
proposed that suit these databases better [31, 32]. These algorithms try to find
a good balance between missed deadlines and temporally inconsistent trans-
actions. Song and Liu showed that OCC algorithms performed poorly with
respect to temporal consistency in real-time systems that consist of periodic ac-
tivities [33], while they performed very well in systems where transactions had
random parameters, e.g., event-driven systems. However, it has been shown
that the strategies and the implementation of the locking and abortion algo-
rithms significantly determine the performance of OCC [34]. All databases
except the Polyhedra DBMS use pessimistic CC (see table 2.10). Since Poly-
hedra is an event-driven system, OCC is a natural choice. Furthermore, Poly-
hedra is a main-memory database with very fast execution of queries, the risk
of a conflict is thus reduced.

Pervasive.SQL has two kind of transactions: exclusive and concurrent. An
exclusive transaction locks a complete database file for the entire duration of
the transaction, allowing only concurrent non-transactional clients to perform
read-only operations on the file. A concurrent transaction, however, uses read
and write locks with much finer granularity, e.g., page or single data locks.

The Berkeley DB has three configurations: (i) The non-concurrent config-
uration allows only one thread at a time to access the database, removing the
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need for concurrency control. (ii) The concurrent version allows concurrent
readers and concurrent writers to access the database simultaneously. (iii) The
concurrent transactional version allows for full transactional functionality with
concurrency control, such as fine grain locking and database atomicity.

Similar to Berkeley DB, TimesTen also has a “no concurrency” option, in
which only a single process can access the database. In addition, TimesTen
supports two lock sizes: data-store level and record level locking.

Recovery

One important issue for databases is persistence, that is data written and com-
mitted to the database should remain until it is overwritten or explicitly re-
moved, even if the system fails and have to be restarted. Furthermore, the state
of all ongoing transactions must be saved to be able to restore the database
to a consistent state upon recovery, since uncommitted data might have been
written to the database. There is basically two different strategies for backup
restoration: roll-back recovery, and roll-forward recovery, normally called “for-
ward error recovery”. During operation continuous backup points occurs where
a consistent state of the database is stored on a non-volatile media, like a hard-
drive. These backup points are called checkpoints.

In roll-back recovery you simply restart the database using the latest check-
point, thus guaranteeing a consistent database state. The advantage with this
approach is that it does not require a lot of overhead, but the disadvantage is
that all changes made to the database after the checkpoint are lost.

When roll-forward recovery is used, checkpoints are stored regularly, but
all intermediate events, like writes, commits and aborts are written to a log.
In roll-forward recovery, the database is restored to the last checkpoint, and
all log entries are performed in the same order as they have been entered into
the log. When the database has been restored to the state it was at the time of
the failure, uncommitted transactions are roll-backed. This approach requires
more calculations at recovery-time, but will restore the database to the state it
was in before the failure. Pervasive.SQL offers three different types of recovery
mechanisms, as well as the option to ignore recovery (see table 2.11). This can
also be selected parts of the database. Ignoring check-pointing for some data
can be useful for systems where some data must be persistent while other data
can be volatile. Going back to our example in section 2.1, the desired level
given by the user interface, and the regulator parameters need to be persistent,
while the current reading from the level indicator must not, since by the time
the database is recovered the data will probably be stale. The second option is
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DBMS system Roll-forw. Roll-back. Journalling None
Pervasive.SQL x x
Polyhedra x x
Velocis x
RDM x
Berkeley DB x
TimesTen x x

Table 2.11: Strategies for recovery used in different embedded database sys-
tems.

shadow-paging, which simply makes a copy of the database file and makes the
changes there, and when the transaction is complete, the data is written back
to the original page. A similar approach is the delta-paging, which creates an
empty page for each transaction, and only writes the changes (delta-values) to
it. At the end of a transaction the data is written back to the original, just as for
shadow-paging. With both of these techniques, the database is consistent at all
times. The last option is to use logging and roll-forward recovery.

The default configuration for Polyhedra is non-Jornalling, which means
that no automatic backup is performed, but the application is responsible for
saving the database to non-volatile memory. This is particularly important
since this system is a main memory database, and if no backups is taken all
data is, of course, lost. When journalling is used, the user can select which
tables that should be persistent and the journaller will write an entry in the log
when a transaction involving persistent data is committed. There are two ap-
proaches when data is persistently written, direct journalling and non-blocking
journalling. The direct journalling approach writes data to persistent storage
when the load on the DBMS is low. However, the database is blocked during
this process and this can cause problems for systems with time-critical data.
The second approach can then be used, and that is to use a separate journalling
process responsible for writing entries persistent.

TimesTen supports three different levels of recovery control. The most
stringent level guarantees transaction atomicity and durability upon recovery,
in which case the transaction is not committed until the transaction is written
onto disk. The second level of control guarantees transaction atomicity but not
durability. Upon commit, the log entry is put into a queue and is later written
to disk. Upon recovery the database will be consistent, but committed trans-
actions that have not yet been written to disk might be lost. The lowest level
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of recovery control is no recovery control. Neither atomicity nor durability is
guaranteed. This option might not be as inappropriate as it might seem at a
first glance, since TimesTen is a main-memory database, often used in systems
with data that would be stale upon recovery, e.g., a process controller.

Real-Time Properties

Even though none of the commercial database systems in this survey can be
classified as a real-time database from a hard real-time systems perspective,
most of the systems are successfully used in time-critical systems (to different
extent). Ericsson uses Polyhedra in their 3G platform for wireless communi-
cation. Delcan Corporation uses Velocis DB in a traffic control system that
handles about 1200 traffic lights simultaneously even though this database pri-
marily is used in web and e-Commerce applications. The database systems
are simply so fast and efficient and have so many options for fine tuning their
performance that the application systems works, even though the DB systems
cannot itself guarantee predictability.

A question one could ask is: How would we use one of these systems in a
hard real-time system? Are there any ways to minimize the unpredictability to
such a degree that a pessimistic estimation would fulfill hard real-time require-
ments? In our opinion it is. For an event triggered real-time system, Polyhedra
would fit well. Let us use our example application again. When new sensor
values arrive the I/O management, the database is updated. If there is a change
in the alarm data the CL code that is connected to that data is generating an
event to trigger the alarm task. Built into the system is also the minimum inter-
arrival interval mentioned in the interfaces section. So by using the Polyhedra
database to activate tasks, that will then be scheduled by a priority based real-
time operating system, a good enough degree of predictability is achieved. To
further increase guarantees that critical data will be updated is to use a so called
watchdog, that activates a task if it has not been activated for a predefined time.
The memory and size predictability would be no problem since they have spec-
ified the exact memory overhead for every type of object. However, temporal
validity is not addressed with this approach.

For statically scheduled real-time systems the RDM “Network access” co-
uld be able to run with predictable response times. This because the order of
the data accesses is known a priori and can therefore be linked together in a
chain, and the record lookup index is bypassed.
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2.2.4 Current State-of-the-art From Research Point of View

There exists a number of databases that could be classified as pure real-time
databases. However these databases are research project and are not yet on the
commercial market. We have selected a number of real-time database systems
and compared them with respect to the following criteria:

� Real-time properties. The criteria enables us to discuss real-time aspects
of the systems and how they are implemented.

� Distribution. The criteria enables us to talk about different aspects with
respect to distributing the database.

� Transactions workload characteristics. The criteria enables us to discuss
how the transaction system is implemented.

� Active behavior. The criteria enables us to talk about the active aspects
for some of the systems.

The systems selected in this survey represent some of the more recent real-
time database platforms developed. These systems are representative of the
ongoing research within the field.

STRIP The STanford Real-time Information Processor (STRIP) [35] is a soft
real-time database system developed at Stanford University, US. STRIP is built
for the UNIX operating system, is distributed and uses streams for data sharing
between nodes. It is an active database that uses SQL3-type rules.

DeeDS The Distributed active, real-time Database System (DeeDS) [13] sup-
ports both hard and soft real-time transactions. It is developed at the University
of Skövde, Sweden. It uses extended ECA rules to achieve an active behavior
with real-time properties. It is built to take advantage of a multiprocessor envi-
ronment.

BeeHive The BeeHive system [12] is a virtual database developed at the Uni-
versity of Virginia, Charlottesville, US, in which the data in the database can
be located in multiple locations and forms. The database supports four dif-
ferent interfaces namely, a real-time interface, a quality of service interface, a
fault-tolerant interface, and a security interface.
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REACH The REACH system [36], developed at the Technical University
of Darmstadt, Germany, is an active object-oriented database implemented on
top of the object-oriented database openOODB. Their goal is to archive active
behavior in an OO database using ECA rules. A benchmarking mode is sup-
ported to measure execution times of critical transactions. The REACH system
is intended for soft real-time systems.

RODAIN The RODAIN system [37] developed at the University of Helsinki,
Finland, is a firm real-time database system that primarily is intended for tele-
communication. It is designed for high degree of availability and fault-toler-
ance. It is tailored to fit the characteristics of telecommunication transactions
identified as short queries and updates, and long massive updates.

ARTS-RTDB The ARTS-RTDB system [38], developed at the University of
Virginia, Charlottesville, US, supports both soft and hard real-time transac-
tions. It uses imprecise computing to ensure timeliness of transactions. It is
built on top of the ARTS real-time operating system [39].

2.2.5 Real-Time Properties

STRIP

The STRIP [35] system is intended for soft real-time systems in which the ul-
timate goal is to make as many transactions as possible commit before their
deadlines. It is developed for the UNIX operating system which might seem
odd, but since STRIP is intended to run in open systems UNIX was selected.
Even though UNIX is not a real-time operating system it has, when used in the
right way, turned out to be a good operating system for soft real-time systems
since a real-time scheduling emulator can be placed on top of the UNIX sched-
uler which sets the priorities according to some real-time scheduling algorithm,
a real-time behavior can be achieved. However, there have been some problems
that needed to be overcome while implementing STRIP that is related to real-
time scheduling in UNIX. For example to force a UNIX schedule not to adjust
the priorities of processes as they are running. Non-real-time operating sys-
tems often have mechanisms to dynamically adjust the priorities of processes
during run time to add to throughput and fairness in the system. By using
Posix UNIX, a new class of processes whose priorities are not adjustable by
the scheduler was provided. In [40] versions of the earliest deadline and least
slack algorithms was emulated on top of a scheduler in a traditional operating
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system, and the results showed that earliest deadline using absolute deadline
and least slack for relative deadline performed equal or better than their real-
time counterparts, while the emulated earliest deadline for relative deadline
missed more deadlines than the original EDF algorithm for low systems load.
However, during high load the emulated algorithm outperformed the original
EDF. In STRIP EDF, highest value first, highest density value first or a cus-
tom scheduling algorithm can be used to schedule transactions. To minimize
unpredictability, the STRIP system is a main-memory database, thus removing
disk I/O.

DeeDS

DeeDS [13] is intended for both hard and soft real-time systems. It is built
for the OSE delta real-time operating system developed by ENEA DATA [41].
This distributed hard real-time operating system is designed for both embedded
uniprocessor and multiprocessor systems. If used in a multiprocessor environ-
ment the CPUs are loosely coupled. A more detailed description of OSE delta
can be found in [42]. The DeeDS system consists of two parts, one part that
handles non critical system services and one that handles the critical. All criti-
cal systems services are executed on a dedicated processor to simplify overhead
cost and increase the concurrency in the system. The DeeDS system is, as the
STRIP system, a main memory database.

BeeHive

BeeHive utilizes the concept of data-deadline, forced-wait and the data dead-
line based scheduling algorithms [43]. These concepts assure that transactions
are kept temporally consistent by assigning a more stringent deadline to a trans-
action based on the maximum allowed age of the data elements that are used
in the transaction, thus the name data deadline. The key concept of forced
wait is to, if a transaction cannot complete before its data deadline, postpone it
until data elements get updated, thus giving the transaction a later data dead-
line. These transactions can then be scheduled using, for example, the earliest
data-deadline first (EDDF) or data deadline based least slack first (DDLSF)
algorithms [43].

For real-time data storage a four level memory hierarchy is assumed: main
memory, non-volatile RAM (e.g., Flash), persistent disk storage, and archival
storage (e.g., tape storage) [12]. The main memory is used to store data that
is currently in use by the system. The non-volatile RAM is used as a disk-
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cache for data or logs that are not yet written to disk. Furthermore, system
data structures like lock tables and rule bases can be stored in non-volatile
RAM. The disk is used to store the database, just like any disk-based database.
Finally, the tape storage is used to make backups of the system. By using
these four levels of memory management a higher degree of predictability can
be achieved than for entirely disk-based databases, since the behavior can be
somewhat like a main-memory database even though it is a disk-based system.

REACH

REACH is built on top of Texas Instruments openOODB system, which is an
open database system. By an open system we refer to a system that can be
controlled, modified, and partly extended by developers and researcher [44].
The OpenOODB system is by itself not a real-time database system, but an
object-oriented database. Some efforts has been done in the REACH project
to aid the user with respect to system predictability [45] such as milestones,
contingency plans, a benchmarking tool and a trace tool.

Milestones are used to monitor the progress of transactions. If a milestone
is missed, the transaction can be aborted and a contingency plan is released
instead. This contingency plan should be implemented to handle a missed
deadline situation by either degrading the system in a safe way, or produce a
good-enough result before the original transactions deadline. One could say
that a contingency plan in cooperation with milestones works as a watch-dog
that is activated when a deadline is about to be missed.

The REACH system has a benchmarking tool that can be used to measure
execution times for method invocations and event triggering. The REACH
trace tool can trace the execution order in the system. If the benchmarking tool
is used together with the trace tool, system behavior and timeliness could be
determined.

RODAIN

The RODAIN system is a real-time database system intended for telecom-
munication applications. The telecommunication environment is a dynamic
and complex environment that deals with both temporal data and non-temporal
data. A database in such a system must, support both soft and firm real-time
transactions [37]. However, the believe is that hard real-time databases will not
be used in telecommunication in the near future since they generally are to too
expensive to develop or use to suit the market [37].
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One of the key issues for RODAIN is availability. Therefore a fault-tolerant
system is necessary. The RODAIN system is designed to have two nodes, thus
giving full database replication. This is especially important since the database
is a main-memory system. It uses a primary and a mirror node. The primary
database sends logs to the mirror database which in turn acknowledges all calls.
The communication between the nodes is assumed to be reliable and have a
bounded message transfer delay. A watchdog monitor keeps track of any fail-
ing subsystem and can instantly swap the primary node and the mirror node
in case of a failure, see figure 2.7. The failed node always recover as a mirror
node and loads the database image from permanent storage. Furthermore, the
User Request Interpreter system (URIS) can keep track of all ongoing transac-
tion and take appropriate actions if a transaction fails. Since both the primary
and the mirror node has a URIS no active transactions will be lost if a failure in
the primary system leads to a node swap between the primary and the mirror.
Figure 2.7 shows the architecture of RODAIN. The subsystem OODBMS han-
dles all traditional database activities, like concurrency control, physical stor-
age, schema management etc. There are three interfaces to the database, the
traditional user interface, referred to as the Applications interface, the DBMS
nodes interface, and the Mirror interface. Noteworthy is the distinction be-
tween mirror nodes and distributed DBMS nodes. The mirror nodes purpose
is to ensure a fault-tolerant running, while the distribution nodes are used for
normal database distribution.

Database Management Node

User request
interpreter
subsystem

Distributed
database

subsystem

Fault-tolerant
and recovery
subsystems

Watchdog
subsystem

OO DBMS

Applications

DBMS nodes

Mirror node

Figure 2.7: RODAIN DBMS node. Figure from [37]
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ARTS-RTDB

The relational database ARTS-RTDB [38] incorporates an interesting feature
called imprecise computing. If a query, when its deadline expires, is not fin-
ished, the result so far can be returned to the client if the result can be consid-
ered meaningful. Take a query that calculates the average value of hundreds
of values in a relation column. If an adequate amount of values has been cal-
culated at the time of deadline, the result could be considered meaningful but
imprecise and it is therefore returned to the client anyway.

ARTS-RTDB is built on top of the distributed real-time operating system
ARTS, developed by Carnegie Mellon University [39]. ARTS schedules tasks
according to a time-varying value function, which specifies both criticality and
semantics importance. It does support both soft and hard real-time tasks.

In ARTS-RTDB the most critical data operations has been identified to be
the INSERT, DELETE, UPDATE and SELECT operations. Efforts has there-
fore been made to optimize the system to increase the efficiency for those four
operations. According to [38] many real-time applications almost only use
these operations at run-time.

2.2.6 Distribution

To increase concurrency in the system, distributed databases can be used. Dis-
tributed in a sense that the database copies reside on different computer nodes
in a network. If the data is fully replicated over all nodes, applications can
access any node to retrieve a data element. Unfortunately, maintaining differ-
ent database nodes consistent with each other is not an easy task, especially
if timeliness is crucial. One might have to trade consistency for timeliness.
A mechanism that continuously tries to keep the database nodes as consis-
tent with each other as possible is needed. Since the system is distributed all
updates to a database node must be propagated via message passing, or sim-
ilar, thus adding significantly to the database overhead because of the added
amount of synchronization transactions in the system. One of the most critical
moments for a transaction deployed in a distributed database is the point of
commit. At this point all the involved nodes must agree upon committing the
transaction or not.

One of the most commonly used commit protocols for distributed databases
is the two-phase commit protocol [46]. As the name of the algorithm suggests
the algorithm consists of two phases, the prepare-phase and the commit-phase.
In the prepare phase, the coordinator for the transaction sends a prepare
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message to all other nodes and then waits for all answers. The nodes then an-
swers with a ready message if they can accept the commit. If the coordinator
receives ready from all nodes a commit message is broadcasted, otherwise
the transaction is aborted. The coordinator then finally waits for a finished
message from all nodes to confirm the commit. Hereby is consistency guaran-
teed between nodes in the database.

DeeDS

The DeeDS [13] system has a less strict criteria for consistency, in order to
enforce timeliness. They guarantee that each node has a local consistency,
while the distributed database might be inconsistent due to different views of
the system on the different nodes. This approach might be suitable for sys-
tems that mostly rely on data that is gathered locally, but sometimes uses data
imported from other subsystems. Consider an engine that has all engine data,
e.g., ignition control, engine speed and fuel injection, stored in a local node of
a distributed database. The timeliness of these local data items are essential
in order to run the engine. To further increase the efficiency of the engine,
remotely gathered data, like data from the transmission box, with less critical
timing requirements can be distributed to the local node.

STRIP

The concept of streams communicating between nodes in a distributed system
has been recognized in STRIP [35]. Nodes can stream views or tables to each
other on a regular basis. The user can select if whole tables/views or delta
tables, which only reflects changes to the tables/views, should be streamed.
Furthermore it is selectable if the data should be streamed, periodically when
some data has reached a predefined age or only after an explicit instruction to
stream. In figure 2.8 we can see the process architecture of STRIP. The mid-
dle part of the figure shows the execution process, the transaction queue, the
result queue and the request process. This part makes the query layer of the
database and can be compared to an ordinary database that processes transac-
tions and queries from the application. Remote application addresses queries
or transactions to the requesting process, which in turn places the transaction in
the transaction queue. However, local applications can access the transaction
queue directly via a client library, thus minimizing overhead. Each execution
processes can execute a transaction from the transaction queue or an update
transaction from one of the update queues. The update queues are fed from the
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incoming update streams. When a table/view needs to be sent to an outgoing
stream, one of the execution processes enqueues it to the update queue read by
the export process. It has been shown that when the update frequency is low,
the import and export processes can run at a high priority without significantly
affecting transaction response times but when the frequency increases the need
for a different update scheduling policy is necessary [35], see section 2.2.7.

Import
process
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process

Export
process

Request
process

Update queues

Update queue

Transaction
queue

Result
queue

Requests

Stream
Updates

Stream
Updates

Figure 2.8: The process architecture of the STRIP system. Figure from [35].

BeeHive

Unlike most databases BeeHive is a virtual database, in a sense that in addition
to its own data storage facility it can use external databases and incorporate
them as one database. These databases can be located either locally or on a
network, e.g., the Internet.

In [47], a virtual database is defined as a database that organizes data scat-
tered through the Internet into a queriable database. Consider a web service
that compares prices of products on the Internet. When you enter the database
you can search for a specific product, and the service will return to you a list of
Internet retailers and to what price they are selling the product. The database
system consists of four parts [47]:

� Wrappers. A wrapper is placed between a web-page or database and
the virtual database. In the web-page case, the wrapper converts the
textual content of the web-page into a relational format understandable
by the virtual database. When using a wrapper in the database case,
the wrapper converts the data received from the database into the virtual
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Figure 2.9: The BeeHive virtual database. Figure from [12]

database format. Such a wrapper can be implemented using a high level
description language, e.g., Java applets.

� Extractors. The relations received from the wrapper most often contains
unstructured textual data in which the interesting data needs to be ex-
tracted.

� Mappers. The mapper maps extracted relations into a common database
schema.

� Publishers. The publisher is used to present the database to the user, it
has similar functionality as a traditional database.

BeeHive can communicate with other virtual databases, web-browsers or
independent databases using wrappers. These wrappers are Java applets and
may use the JDBC standard, see figure 2.9.
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RODAIN

RODAIN system supports data distribution. The nodes can be anything be-
tween fully replicated to completely disjoint. Their belief is that only a few
requests in telecommunications need access to more than one database node
and that the request distributions among the databases in the system can be
arranged to be almost uniform [37].

ARTS-RTDB

ARTS-RTDB has been extended to support distribution. The database nodes
use a shared file which contains information that binds all relations to the server
responsible for a particular relation. Since the file is shared between the nodes,
it is to be treated as a shared resource and must therefore be accessed using
a semaphore. It is believed that if relations are uniformly distributed between
the nodes and if no hot-spot relations exist, an increase in performance will be
seen. A hot-spot relation is a relation that many transactions use, and such a
relation can lead to a performance bottleneck in the system.

2.2.7 Transaction Workload Characteristics

DeeDS

DeeDS supports sporadic (event-triggered) and periodic transactions. There
are two classes of transactions: critical (hard transactions) and non-critical (soft
transactions). To ensure that a deadline is kept for a critical transaction, mile-
stone monitoring and contingency plans are used. A milestone can be seen as
a deadline for a part of the transaction. If a milestone is passed, it is clear that
the transaction will not make its deadline, a contingency plan can be activated
and the transaction is aborted. A contingency plan should, if implemented
correctly, deal with the consequences of a transaction aborting. One way to
compute less accurate result and present it in time, similar to imprecise com-
puting used by ARTS-RTDB (see section 2.2.5). Milestones and contingency
plans are discussed further in [48]. The timing requirements for a transaction is
passed to the system as a parameterized value function, this approach reduces
the computational cost and the storage requirements of the system.

The scheduling of transactions is made online in two steps. First, a suffi-
cient schedule is produced. This schedule meets the minimum requirements,
for example all hard deadlines and 90 percent of the soft deadlines are met.
Secondly, the event monitors worst-case execution time is subtracted from the
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remaining allowed time for the scheduler during this time slot, and this time is
used to refine and optimize the transaction schedule [49].

STRIP

STRIP supports firm deadlines on transactions [50], thus when a transaction
misses its deadline it will be aborted. There are two classes of transactions in
STRIP, low value and high value transactions. When transactions are sched-
uled for execution is determined by transaction class, value density, and choice
of scheduling algorithm. The value density is the ratio between the transactions
value and the remaining processing time. The scheduling of transactions is in
competition with the scheduling of updates, therefore updates also have the
same properties as transactions with respect to classes, values, and value den-
sity. STRIP has four scheduling algorithms, Updates First (UF), Transactions
First (TF), Split Updates (SU), and Apply Updates on Demand (OD).

� Updates First schedules all updates before transactions, regardless of the
value density of the transactions. It is selectable if a running transaction
is preempted by an update of if it should be allowed to commit before
the update is executed. For a system with a high load of updates this pol-
icy can cause long and unpredictable execution times for transactions.
However, for systems where consistency between nodes and where tem-
poral data consistency is more important than transaction throughput,
this can be a suitable algorithm. Further, this algorithm is also suitable
for systems where updates are prioritized over transactions. Consider a
database running stock exchange transactions. A change in price for a
stock must be performed before any pending transactions in order to get
the correct value of the transaction.

� Transactions First is the opposite of update first. Transactions are always
scheduled in favor of updates. However a transactions can not preempt
a running update. This because updates most often have short execution
time compared to transactions. This algorithm suits systems that values
throughput of transactions higher than temporal consistency between the
nodes. Transactions first might be useful in a industrial controlling sys-
tem. If, in an overloaded situation, the most recent version of a data
element is not available, the system might gain in performance from be-
ing able to run its control algorithms using an older value.

� Split Updates make use of the different classes of updates. It schedules
updates and transactions according to the following order: high value
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updates, transactions, and low value updates. This algorithm combines
the two previous algorithms and would suit a system where one part of
the data elements is crucial with respect to temporal consistency, at the
same time as transaction throughput is important.

� Apply Updates on Demand execute transactions before updates, but with
the difference that when a transaction encounters stale data, the update
queue is scanned for an update that is waiting to update the stale data
element. This approach would enable a high throughput of transactions
with a high degree of temporal consistency. However, calculating the ex-
ecution time for a transaction is more difficult since the worst case is that
all data elements used in the transaction has pending updates. Applying
updates on demand resembles about the ideas of triggered updates [51].

Since transaction deadlines are firm, thus transactions are valueless after
their deadline has expired, a mechanism called feasible deadlines can be used
for transactions. The mechanism aborts transactions that has no chance of
committing before their deadline.

BeeHive

The fact that the database is virtual and may consist of many different kinds of
underlying databases is transparent. The user accesses the database through at
least one of the four interfaces provided by BeeHive: FT API, RT API, Secu-
rity API, and QoS API (see figure 2.10). FT API is the fault-tolerant interface.
Transaction created with this interface will have some protection against pro-
cessor failures and transient faults due to power glitches, software bugs, race
conditions, and timing faults. RT API is the real-time interface, which enables
the user to specify time constraints and typical real-time parameters along with
transactions. The security interface can be used by application that for instance
demands authorization for users and applications. Furthermore encryption can
be supported. The Quality of Service (QoS) interface is primarily used for mul-
timedia transactions. The user can specify transactions demands on quality of
service.

When a transaction arrives from any interface, it is sent to the service map-
per, which transforms it to a common transaction format used for all trans-
actions in the system, regardless of its type, e.g., real-time transaction. It is
then passed on to the resource planner, which determines which resources that
will be needed. Furthermore, it is passed to the admission controller, which
in cooperation with the resource planner, decides if the system can provide a
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Figure 2.10: The resource manager in BeeHive. Figure from [12]

satisfactory service for the transaction. If that is the case, it is sent to the re-
source allocation module, which globally optimizes the use of resources in the
system. Finally the transaction is sent to the correct resource, e.g., a network
or the operating system etc.

RODAIN

Five different areas for databases in telecommunication is identified [52]:

1. Retrieval of persistent customer data.

2. Modifications of persistent customer data.

3. Authorization of customers, e.g., PIN codes.

4. Sequential log writing.
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5. Mass calling and Tele voting. This can be performed in large blocks.

From these five areas, three different types of transactions can be derived
[53]: short simple queries, simple updates, and long massive updates. Short
simple queries are used when retrieving customer data and authorizing cus-
tomers.Simple updates are used when modifying customer data and writing
logs. Long massive updates are used when tele voting and mass calling is per-
formed.

The concurrency control in RODAIN supports different kinds of serializa-
tion protocols. One protocol is the � -serialization in which a transaction may
be allowed to read old data as long as the update is not older than a predefined
time [37].

Apart from a transactions deadline, an isolation level can also be assigned
to a transaction. A transaction running on a low isolation level accepts that
transactions running on a higher isolation level are accessing locked objects.
However, it cannot access objects belonging to a transaction with a high degree
of isolation.

ARTS-RTDB

The RTDB uses a pessimistic concurrency control, strict two phase locking
with priority abort [11]. This means that as soon as a higher prioritized trans-
actions wants a lock that is owned by a transaction with a low priority, the low
level transaction is aborted. To avoid the costly process of rolling back the
aborted transaction, all data writing is performed on copies. At the point of
commit, the transaction asks the lock-manager if a commit can be allowed. If
this is the case, the transaction invokes a subsystem that writes all data into the
database.

2.2.8 Active Databases

Active databases can perform actions not explicitly requested from the appli-
cation or environment. Consider a data element � , which is derived from two
other data elements, � and � . The traditional way to keep � updated would be
to periodically poll the database to determine if � or � have been altered. If
that is the case, a new value of � would be calculated and the result written
back to the database. Periodic polling is often performed at a high cost with re-
spect to computational cost and will increase the complexity of the application
task schedule. A different approach would be to introduce a trigger that would
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cause an event as soon as either � or � has been changed. The event would in its
turn start a transaction or similar that would update � . This functionality would
be useful for other purposes than to update derived data elements. It could, for
example, be used to enforce boundaries of data elements. If a data element,
e.g., data that represents a desired water level in our example application in
figure 2.1, has a maximum and minimum allowed value than this restriction
can be applied in the database instead of in the application. An attempt to set
an invalid value could result in some kind of action, e.g., an error exception or
a correction of the value to the closest valid value. By applying this restriction
in the database it is abstracted away from the application, thus reducing the risk
of programming errors or inconsistency between transactions that use this data
element.

One way to handle such active behavior is through the use of ECA rules
[54], where ECA is an abbreviation of Event-Condition-Action-rules, see fig-
ure 2.11. The events in an active database need to be processed by an event

ON <event E>
IF <condition C>

THEN <action A>

Figure 2.11: The structure of an ECA rule.

manager, which sends them to the rule manager. The rule manager in its turn
locates all ECA rules that are affected by the newly arrived event and checks
their conditions. For those ECA rules whose conditions are true, the action is
activated. There are, however, three distinct approaches on when and how to
execute the actions [48]:

� Immediate: When an event arrives, the active transaction is suspended
and condition evaluation and possibly action execution is done immedi-
ately. Upon rule completion, the transaction is resumed. This approach
affects the response time of the transaction.

� Deferred: When an event arrives, the active transaction is run to com-
pletion and then condition evaluation and possibly action execution is
done. This approach does not affect the response time of the triggering
transaction.

� Decoupled: When using this approach, condition evaluation and possi-
bly action execution are performed in one or several separate transac-
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tions. This has the advantage that these updates will be logged even if
the triggering transaction aborts.

One disadvantage with active databases is that the predictability, with re-
spect to response times, is decreased in the system. This is because of the
execution of the rules. For immediate or deferred rules the response time of
the triggering transaction is prolonged because of the execution of rules prior
to its point of commit. To be able to calculate a response time for such a trans-
action, the execution time of all possible rules that the transaction can invoke.
These rules can in their turn activate rules, so called cascading, which can
create arbitrary complex calculations. When decoupled rules are used, transac-
tions can generate new transactions in the system. These transactions and their
priorities, response times, and possible rule invocations must be taken in ac-
count when calculating transaction response time, resulting in very pessimistic
worst-case-execution times.

Some extensions to ECA rules which incorporates time constraints have
been studied in [5]. For a more detailed description about ECA rules, active
databases and active real-time databases see [48, 55]

STRIP

The STRIP rule system checks for events at each transaction,
�

, commit-time
and for all events whose condition is true a new transaction

� 

is created that

executes the execution clause of the rule. Thus, the STRIP system uses a de-
coupled approach.

� 

is activated for execution after the triggering transaction

has committed. By default
� 


is released immediately after commit of the trig-
gering transaction, but it can be delayed using the optional after statement,
see figure 2.12.

WHEN <eventlist>
[IF <condition>]
THEN

EXECUTE <action>
[AFTER <time-value>]

Figure 2.12: A simplified structure of a STRIP-rule. The optional AFTER -
clause enables for batching of several rule-executions in order to decrease com-
putational costs.
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The after statement enables all rule execution clauses, activated during
the time window between rule evaluation and the execution clause specified
by the after statement, to be batched together. If multiple updates on a
single data element exists in the batch, only the ones necessary to derive the
resulting value of that data element is executed, thus saving computational cost
[56]. To have the execution clause in a separate transaction simplifies rule
processing. The triggering transaction can commit regardless of the execution
of the executions clauses, since the condition clause of the rules cannot alter the
database state in anyway. Possible side-effects of the rules are then dealt with
in a separate transaction. One disadvantage with decoupled execution clauses
is that the condition results and transition data are deleted when the triggering
transaction commits, thus, data is not available for the triggered transaction.
This has been solved in STRIP by the bind as statement. This statement
binds a created table to a relation that can be accessed by the execution clause.

DeeDS

Since DeeDS supports hard real-time systems the rule processing must be de-
signed to retain as much predictability with respect to timeliness as possible.
This is achieved by restricting rule processing. Cascading, for example, is lim-
ited so that unbounded rule triggering is avoided when a rule is executed. The
user can define a maximum level of the cascade depth. If the cascading goes
deeper than that an exception is raised. Furthermore, condition evaluation is
restricted to logical expressions on events and object parameters, and method
invocations. DeeDS system an extended ECA rules [49] which also allows for
specifying timing constraints to rules, e.g., deadlines.

Event monitoring has also been designed for predictability. Both syn-
chronous and asynchronous monitoring is available. In synchronous mode the
event monitor is invoked on time-triggered basis and results have shown that
throughput is higher than if the asynchronous (event-triggered) event monitor-
ing is used, but at the cost of longer minimum event delays. When synchronous
mode is used, event bursts will not affect the system in an unpredictable way
[49]. In DeeDS, the immediate and deferred coupling modes are not allowed.
Instead when a rule is triggered and the condition states that the rule should
be executed, a new transaction is created, which is immediately suspended. If
a contingency plan exists for this rule, a contingency transaction is also cre-
ated and suspended. All combinations of decoupled execution is supported in
DeeDS [57], see table 2.12. Depending on which mode that is selected, the
scheduler activates the rule transactions according to the mode. The exclusive
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Sequential Parallel

Independent
� � independent of

� �
Dependent

� � cannot start until
� �

commits, otherwise it is dis-
carded.

� � cannot complete until
� � commits, otherwise it is
aborted.

Exclusive
� � cannot start until

� �
aborts, otherwise it is dis-
carded.

� � cannot complete until
� � aborts, otherwise it is
aborted.

Table 2.12: Table showing all decoupled execution modes supported by the
DeeDS system.

� � is the triggering transaction and
� � is the rule transaction.

Table from [57].

mode is used to schedule contingency plans.

REACH

REACH allows ECA rules to be triggered in all modes, immediate, deferred
and decoupled. Decoupled rules might be dependent or independent, further-
more they can be executed in parallel, sequential, or exclusive mode. The
exclusive mode is intended for contingency plans. The ECA rules used in
REACH have no real-time extensions.

There are however some restrictions on when to use the different coupling
modes. Rules triggered by a single method event can be executed in any
coupling mode, while a rule triggered by a composite event only cannot be
run in immediate mode. This is because if the events that make up compos-
ite event originate in multiple transactions, no identification of the spawning
transactions is possible [36]. Rules that are invoked by temporal events (time-
triggered) can only be run in an independent decoupled mode, since they are
not triggered by a transaction [58].

To simplify the creation of the rule-base a tool, GRANT, has been devel-
oped. This graphical tool, prompts the user for necessary information, provides
certain default choices, creates C++ language structures and maps rules to C
functions stored in a shared library [45].

The event manager in REACH consumes events according to two policies:
chronological or most recent. The chronological approach executes all events
in the order they arrive while the most recent strategy only executes the most
recent instance of every event. What policy to use is dependent of the semantics



62 Paper A

of the application. Consider the example with the stock market database again.
If, in an overloaded situation, the database is not able to immediately execute
all stock price updates, only the most recent update of a stock is interesting,
since this update contains the current price of this stock. For a system like
this, the most recent approach would be sufficient, while in a telephone billing
system it might not. In a system like that, all updates to the database consist
of a value to add to the existing record, therefore most recent is not sufficient
here.

2.2.9 Observations

The databases presented represent a set of systems that basically have the same
purpose, i.e., to efficiently store information in embedded systems or real-time
systems. They mainly consist of the same subsystems, e.g., interfaces, index
system and concurrency control system. But yet the systems behave so dif-
ferently. Some systems that are primarily event driven, and on the other hand
systems that might suit well for static scheduling. Some systems are relational
while other are object-oriented. Some systems are intended for a specific ap-
plication, e.g., telecommunication, process control or multimedia application.

Furthermore, an interesting observation can be made about these systems.
The research platforms focus more on functionality while the commercial sys-
tems are more interested in user friendliness, adaptability, and standards com-
pliance. While the research platforms have detailed specification on new in-
ternal mechanisms that improve performance under certain circumstances, like
new concurrency controls or scheduling policies, the commercial systems sup-
ports multiple interfaces to ease integration with the application and supports
standards like ODBC, OLE/DB and JDBC. Looking back at the criteria men-
tioned by ABB in section 2.2.2, we can see that most of the criteria are fulfilled
by the commercial products. To be able to combine these criteria with the
technology delivered by the research platforms would be a contribution.

One important issue that arises is: Which embedded database system should
one choose for a specific type of application? The task of choosing the best
database system can be a long and costly process and probably not without
compromises. A different approach would be to have a more generic database
that can be customized, possibly with aid of a tool, to fit a specific application.
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2.3 Summary

This final chapter starts with a summary of the main issues we have identified
in the report with respect to current state-of-the-art in the area of embedded
databases for embedded real-time systems (section 2.3.1).

2.3.1 Conclusions

Embedded systems, real-time systems, and database systems are research areas
that have been actively studied. However, research on embedded databases for
embedded real-time systems, explicitly addressing the development and design
process, is sparse. A database that can be used in an embedded real-time system
must handle transactions with temporal constraints, and must, at the same time,
be suitable for embedded systems with limited amount of resources, i.e., the
database should have small footprint, be portable to different operating system
platforms, have efficient resource management, and be able to recover from a
failure without external intervention.

As we have shown in this report, there are a variety of different embedded
databases on the market. However, they vary significantly in their character-
istics. Differences in products are typically the way data are organized in the
database (data model), the architecture of the database (DBMS model), and
memory usage. Commercial embedded databases also provide different inter-
faces for applications to access the database, and support different operating
system platforms. Application developers must choose carefully the embed-
ded database their application requires. This is a difficult, time consuming and
costly process, with a lot of compromises. One solution could be to have a
more generic embedded database platform that can be tailored and optimized
such that it is suitable for different applications. Existing real-time database
research platforms are unsuitable in this respect, since they are mainly mono-
lithic systems, and, as such, they are not easily tailored for new applications
having different or additional requirements.

2.3.2 Future Work

Our research is focused on providing an experimental research platform for
building embedded databases for embedded real-time systems. At a high-level,
the platform consists of two parts. First, we intend to develop a component li-
brary, which holds a set of methods, that can be used when building an embed-
ded database. Initially, we will develop a set of components that deal with con-
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currency control, scheduling, and main-memory techniques. At the next step,
we develop tools that, based on the application requirements, will support the
designer when building an embedded database using these components. More
importantly, we want to develop application tools and techniques that: (i) sup-
port the designer in the composition and tailoring of an embedded database for
a specific system using the developed components, where the application re-
quirements are given as an input; (ii) support the designer when analyzing the
total system resource demand of the composed embedded database system; and
(iii) help the designer by recommending components and methods if multiple
components can be used, based on the application requirements. Further, such
a tool will help the designer to make trade-off analysis between conflicting
requirements early in the design phase.
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Abstract

In this paper we present a case study of a class of embedded hard real-time
control applications in the vehicular industry that, in addition to meeting trans-
action and task deadlines, emphasize data validity requirements. We elaborate
on how a database could be integrated into the studied application and how the
database management system (DBMS) could be designed to suit this particular
class of systems.
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3.1 Introduction

In the last ten years, control systems in vehicles have evolved from simple
single processor systems to complex distributed systems. At the same time,
the amount of information in these systems has increased dramatically and is
predicted to increase further with 7-10% per year [1]. In a modern car there
can be several hundreds of sensor values to keep track of. Ad hoc techniques
that are normally used for storing and manipulating data objects as internal
data structures in the application result in costly development with respect to
design, implementation and verification of the system. Further, the system
becomes hard to maintain and extend. Since the data is handled ad hoc, it is
also difficult to maintain its temporal properties. Thus, the need for a uniform
and efficient way to store and manipulate data is obvious. An embedded real-
time database providing support for storage and manipulation of data would
satisfy this need.

In this paper we study two different hard real-time systems developed at
Volvo Construction Equipment Components AB, Sweden, with respect to data
management. These systems are embedded into two different vehicles, an ar-
ticulated hauler and a wheel loader. These are typical representative systems
for this class of vehicular systems. Both systems consist of a number of nodes
distributed over a control area network (CAN).

The system in the articulated hauler is responsible for I/O management
and controlling of the vehicle. The system in the wheel loader is, in addi-
tion to controlling the vehicle, responsible for updating the driver display. We
study structures of the systems and their data management requirements to find
that today data management is implemented as multiple data storages scattered
throughout the system. The systems are constructed out of a finite number of
tasks. Each task in the system is equipped with a finite amount of input and
output ports, through which inter-task communication is performed. Due to
intense communication in both systems, several hundred ports are used. These
ports are implemented as shared memory locations in main memory, scattering
the data even more.

We study temporal properties of the data in the systems and conclude that
the they could benefit from a real-time database (RTDB). Furthermore, we dis-
cuss how the current architecture could be redesigned to include a RTDB. The
important feature of a RTDB in these systems is to guarantee temporal consis-
tency and validity [2] rather than advanced transaction handling. In a typical
vehicular system, nodes vary both in memory size and computation and, hence,
there is a need for a scalable RTDB that can be tailored to suit different kinds
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Figure 3.1: The overall architecture of the vehicle controlling system.

of systems. In this paper transactions refer to a number of reads and/or updates
of data in a database. Thus, tasks can contain transactions.

The contribution of this paper is a detailed case-study of the two Volvo
applications. Furthermore, we elaborate on how the existing hard real-time
system could be transformed to incorporate a RTDB. This architectural tran-
sition would allow data in the system to be handled in a structured way. In
this architecture, the database is placed between the application and the I/O
management. We elaborate on why concurrency control, for this transformed
system, is not necessarily needed for retaining the integrity of transactions.
Moreover, we argue that a hard real-time database that would suit this system
could be implemented using passive components only, i.e., a transaction is exe-
cuted on the calling task’s thread of execution. This implies that the worst-case
transaction execution time is added to the worst-case execution time of the task,
retaining a bounded execution time for all tasks.

In section 2 we study the existing vehicle systems and their data manage-
ment requirements in detail. In section 3 we discuss: how the systems could be
redesigned to use a RTDB, the implications for the application and the RTDB,
and how existing real-time database platforms would suit the studied applica-
tion. We conclude our work and present future challenges in section 4.

3.2 The Case Study

The vehicle control system consists of several subsystems called electronic
control units (ECU), connected through two serial communication links: the
fast CAN link and the slow diagnostic link, as shown in the figure 3.1. Both the
CAN link and the diagnostic link are used for data exchange between different
ECUs. Additionally, the diagnostic link is used by diagnostic (service) tools.
The number of ECUs can vary depending on the way functionality is divided
between ECUs for a particular type of vehicle. For example, the articulated
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Figure 3.2: The structure of an ECU.

hauler consists of five ECUs: instrumental, cabin, vehicle, transmission and
engine ECU, denoted IECU, CECU, VECU, TECU, and EECU, respectively.
In contrast, the wheel loader control system consists of three ECUs, namely
IECU, VECU, and EECU.

We have studied the architecture and data management of the VECU in
the articulated hauler, and the IECU in the wheel loader. The VECU and the
IECU are implemented on hardware platforms supporting three different stor-
age types: EEPROM, Flash, and RAM. The memory in an ECU is limited,
normally 64Kb RAM, 512Kb Flash, and 32Kb EEPROM. Processors are cho-
sen such that power consumption and cost of the ECU are minimized. Thus,
processors run at 20MHz (VECU) and 16MHz (IECU) depending on the work-
load.

Both VECU and IECU software systems consist of two layers: a run-time
system layer and an application layer (see figure 3.2). The run-time system
layer on the lower level contains all hardware-related functionality. The higher
level of the run-time system layer contains an operating system, a communi-
cation system, and an I/O manager. Every ECU uses the real-time operating
system Rubus. The communication system handles transfer and reception of
messages on different networks, e.g., CAN. The application is implemented
on top of the run-time system layer. The focus of our case study is data ma-
nagement in the application layer. In the following section we briefly discuss
the Rubus operating system. This is followed by sections where functionality
and a structure of the application layer of both VECU and IECU, are discussed
in more detail (in following sections we refer to the application layer of the
VECU and IECU as the VECU (software) system and the IECU (software)
system).
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3.2.1 Rubus

Rubus is a real-time operating system designed to be used in systems with
limited resources [3]. Rubus supports both off-line and on-line scheduling, and
consists of two parts: (i) red part, which deals with hard real-time; and (ii) blue
part, which deals with soft real-time.

The red part of Rubus executes tasks scheduled off-line. The tasks in the
red part, also referred to as red tasks, are periodic and have higher priority than
the tasks in the blue part (referred to as blue tasks). The blue part supports
tasks that can be invoked in an event-driven manner. The blue part of Rubus
supports functionality that can be found in many standard commercial real-
time operating system, e.g., priority-based scheduling, message handling, and
synchronization via semaphores. Each task has a set of input and output ports
that are used for communication with other red tasks. Rubus is used in all
ECUs.

3.2.2 VECU

The vehicle system is used to control and observe the state of the vehicle. The
system can identify anomalies, e.g., an unnormal temperature. Depending on
the criticality of the anomaly, different actions, such as warning the driver,
system shutdown etc., can be taken. Furthermore, some of the vehicle’s func-
tionality is controlled by this system via sensors and actuators. Finally, logging
and maintenance via the diagnostics link can also be performed using a service
tool that can be connected to the vehicle.

All tasks in the system, except the communication task, are non-preemptive
tasks scheduled off-line. The communication task uses its own data structures,
e.g., message queues, thus no resources are shared with other tasks. Since non-
preemptive tasks run until completion and cannot be preempted, mutual exclu-
sion is not necessary. The reason for using non-preemptive off-line scheduled
tasks is to minimize the runtime overhead and to simplify the verification of
the system.

The data in the system can be divided into five different categories: (1) sen-
sor/actuator raw data, (2) sensor/actuator parameter data, (3) sensor/actuator
engineering data, (4) logging data, and (5) parameter data.

The sensor/actuator raw data is a set of data elements that are either read
from sensors or written to actuators. The data is stored in the same format
as they are read/written. This data, together with the sensor/actuator parame-
ter data, is used to derive the sensor/actuator engineering data, which can be
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Figure 3.3: The original architecture of the VECU.

used by the application. The sensor/actuator parameter data contains reference
information about how to convert raw data received from the sensors into en-
gineering data. For example, consider a temperature sensor, which outputs the
measured temperature as a voltage

� ��� � 

. This voltage needs to be converted to

a temperature
�

using a reference value
� � ��� , e.g.,

� � � ��� � 
�� � � ��� .
In the current system, the sensor/actuator (raw and parameter) data are

stored in a vector of data called a hardware database (HW Db), see figure 3.3.
The HW Db is, despite its name, not a database but merely a memory structure.
The engineering data is not stored at all in the system but is derived “on the fly”
by the data derivation tasks. Apart from data collected from local sensors and
the application, sensor and actuator data derived in other ECUs is stored in the
HW Db. The distributed data is sent periodically over the CAN bus. From the
application’s point of view the locality of the data is transparent in the sense
that it does not matter if the data is gathered locally or remotely.

Some of the data derived in the applications is of interest for statistical and
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maintenance purposes and therefore the data is logged (referred to as logging
data) on permanent storage media, e.g., EEPROM. Most of the logging data
is cumulative, e.g., the vehicle’s total running time. These logs are copied
from EEPROM to RAM in the startup phase of the vehicle and are then kept
in RAM during runtime, to finally be written back to EEPROM memory be-
fore shutdown. However, logs that are considered critical are copied to EEP-
ROM memory immediately at an update, e.g., warnings. The parameter data
is stored in a parameter area. There are two different types of parameters, per-
manent and changeable. The permanent parameters can never be changed and
are set to fulfill certain regulations, e.g., pollution and environment regulations.
The changeable parameters can be changed using a service tool.

Most controlling applications in the VECU follow a common structure re-
siding in one precedence-graph. The sensors (Sig In) are periodically polled by
I/O tasks (typically every 10 ms) and the values are stored in their respective
slot in the HW Db. The data derivation task then reads the raw data from the
HW Db, converts it, and sends it to the application task. The application task
then derives a result that is passed to the I/O task that both writes it back to the
HW Db and to the actuator I/O port.

3.2.3 IECU

The IECU is a display electronic control unit that controls and monitors all
instrumental functions, such as displaying warnings, errors, and driver infor-
mation on the driver display. The IECU also controls displaying service infor-
mation on the service display (a unit for servicing the vehicle). It furthermore
controls the I/O in the driver cabin, e.g., accelerator pedal, and communicates
with other ECUs via CAN and the diagnostic link.

The IECU differs from the VECU in several ways. Firstly, the data volume
in the system is significantly higher since the IECU controls displays and, thus,
works with a large amount of images and text information. Moreover, the data
is scattered in the system and depending on its nature, stored in a number of
different data structures as shown in figure 3.4. Similarly to the HW Db, data
structures in the IECU are referred to as databases, e.g., image databases, menu
databases and language databases. Since every text and image information in
the system can be displayed in thirteen different languages, the interrelation-
ships of data in different data storages are significant.

A dominating task in the system is the task updating the driver display.
This is a red task, but it differs from other red tasks in the system since it can
be preempted by other red tasks in the IECU. However, scheduling of all tasks
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is performed such that all possible data conflicts are avoided.

Data from the HW Db in the IECU is periodically pushed on to the CAN
link and copied to the VECU’s HW Db. Warnings or errors (WoE) are peri-
odically sent through the CAN link from/to the VECU and are stored in the
dedicated part of RAM, referred to as the WoE database (WoE Db). Hence,
the WoE Db contains information of active warnings and errors in the overall
wheel loader control system. While WoE Db and HW Db allow both read and
write operations, the image and menu databases are read-only databases.

The driver display is updated as follows (see figure 3.4). The driver dis-
play task periodically scans the databases (HW Db, WoE Db, menu Db) to
determine the information that needs to be displayed on the driver display. If
any active WoE exists in the system, the driver display task reads the corre-
sponding image, in the specified language, from the image database located in
a persistent storage and then writes the retrieved image to the image buffer. The
image is then read by the blue I/O task, which then updates the driver display
with an image as many times as defined in the WoE Db. Similarly, the driver
display task scans the HW Db and menu database. If the hardware database
has been updated and this needs to be visualized on the driver display, or if
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data in the menu organization has been changed, the driver display task reads
the corresponding image and writes it to the driver display as described previ-
ously. In case the service tool is plugged into the system, the service display
task updates the service display in the same way as described for the driver
display, but using its own menu organization and image database, buffer, and
the corresponding blue I/O task.

3.2.4 Data Management Requirements

The table 3.1 gives an overview of data management characteristics in the
VECU and IECU systems. The following symbols are used in the table:
As can be seen from the table 3.1, all the data in both systems are scattered in
groups of different flat data structures referred to as databases, e.g., HW Db,
image Db, WoE Db and language Db. These databases are flat because data
is structured mostly in vectors, and the databases only contain data with no
support for DBMS functionality.

The nature of the systems put special requirements on data management
(see table 3.1): (i) static memory allocation only, since dynamic memory al-
location is not allowed due to the safety-critical aspect of the systems; (ii)
small memory consumption, since production costs should be kept as low as
possible; and (iii) diverse data accesses, since data can be stored in different
storages, e.g., EEPROM, Flash, and RAM.

Most data, from different databases and even within the same database, is
logically related. These relations are not intuitive, which makes the data hard to
maintain for the designer and programmer as the software of the current system
evolves. Raw values of sensor readings and actuator writings in the HW Db are
transformed into engineering values by the data derivation task, as explained
in section 3.2.2. The engineering values are not stored in any of the databases,
rather they are placed in ports (shared memory) and given to application tasks
when needed.

The period times of updating tasks ensure that data in both systems (VECU
and IECU) are correct at all times with respect to absolute consistency. Fur-
thermore, task scheduling, which is done off-line, enforces relative consistency
of data by using an off-line scheduling tool. Thus, data in the system is tempo-
rally consistent (we denote this data property in the table as temporal validity).
Exceptions are permanent data, e.g., images and text, which is not temporally
constrained (see table 3.1).

1The feature is true only for some engineering data in the VECU.
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v — feature is true for the data type in the VECU,
i — feature is true for the data type in the IECU, and
x — feature is true for the data type in both
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HW Db x x i
Data Parameter Db x
source WoE Db i

Image Db i
Language Db i
Menu Db i
Log Db v

Memory RAM x x x x x v
type Flash i

EEPROM x v
Memory Static x x x x x i v
allocation Dynamic
Interrelated with other data x x x x x i v
Temporal validity x x x x v
Logging Startup v

Shutdown v
Immediately v1

Persistence x x v1 x x
Logically consistent x x x x
Indexing i
Transaction Update x x x x x v
type Write-only x x

Read-only x x x i
Complex update x x x v
Complex queries x x x x x i v

Table 3.1: Data management characteristics for the systems.
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One implication of the systems’ demand on reliability, i.e., the requirement
that a vehicle must be movable at all times, is that data must always be tempo-
rally consistent. Violation of temporal consistency is viewed as a system error,
in which case three possible actions can be taken by the system: use a prede-
fined default data value (most often), use an old data value, or shutdown of the
functions involved (system exposes degraded functionality).

Some data is associated with a range of valid values, and is kept logically
consistent by tasks in the application (see table 3.1). The negative effect of
enforcing logical consistency by the tasks is that programmers must ensure
consistency of the task set with respect to logical constraints.

Persistence in the systems is maintained by storing data on stable storage,
but there are some exceptions to the rule, e.g., RPM data is never copied to
stable storage. Also, some of the data is only stored in stable storage, e.g.,
internal system parameters. In contrast, data imperative to systems’ function-
ing is immediately copied to stable storage, e.g., WoE logs are copied to/from
stable storage at startup/shutdown.

Several transactions exist in the VECU and IECU systems: (i) update trans-
actions, which are application tasks reading data from the HW Db; (ii) write-
only transactions, which are sensor value update tasks; (iii) read-only transac-
tions, which are actuator reading tasks; and (iv) complex update transactions,
which originate from other ECUs. In addition, complex queries are performed
periodically to distribute data from the HW Db to other ECUs.

Data in the VECU is organized in two major data storages, RAM and Flash.
Logs are stored in EEPROM and RAM (one vector of records), while 251
items structured in vectors are stored in the HW Db. Data in the IECU is
scattered and interrelated throughout the system even more in comparison to
the VECU (see table 3.1). For example, the menu database is related to the
image database, which in turn is related to the language Db and the HW Db.
Additionally, data structures in the IECU are fairly large. HW Db and WoE
Db resides in RAM. HW Db contains 64 data items in one vector, while WoE
Db consists of 425 data items structured as 106 records with four items each.
The image Db and the language Db reside in Flash. All images can be found
in 13 different languages, each occupying 10Kb of memory. The large volume
of data in the image and language databases requires indexing. Indexing is
today implemented separately in every database, and even every language in
the language Db has separate indexing on data.

The main problems we have identified in existing data management can be
summarized as follows:



3.3 Modeling the System to Support a RTDB 83

� all data is scattered in the system in a variety of databases, each repre-
senting a specialized data store for a specific type of data;

� engineering values are not stored in any of the data stores, but are placed
in ports, which enlarges maintenance complexity and makes adding of
functionality in the system a difficult task;

� application tasks must communicate with different data stores to get the
data they require, i.e., the application does not have a uniform access or
view of the data;

� temporal and logical consistency of data is maintained by the tasks, in-
creasing the level of complexity for programmers when maintaining a
task set; and

� data from different databases exposes different properties and constraints,
which complicates maintenance and modification of the systems.

3.3 Modeling the System to Support a RTDB

To be able to implement a database in the real-time system, the system needs
to be redesigned to support a database. For the studied application, this could
be done by separating I/O management from the application.

As mentioned in section 3.2.2 and shown in figure 3.3, the data flow goes
from the I/O tasks, via the HW Db and application tasks to the I/O tasks to the
right, sending the values to the actuators. The transition of such a system could,
at a high level, be performed in three steps. The first step is to separate all I/O
tasks from the application. This can be viewed as “folding the architecture”.
By doing this an I/O management is formed that is separated from the control
application. The second step is to place the real-time database between the I/O
management and the control application as shown in figure 3.5. In the Volvo
case, the HW Db is replaced by a RTDB which is designed using a passive
library. The desired properties of this RTDB are described more in detail in
section 3.3.1. The I/O tasks are modified to communicate with the database
instead of the data derivation tasks. The application is, analogue to the I/O
tasks, also modified to communicate with the database only. At this stage the
database splits two domains, the I/O domain and the application domain. The
last step is to collect additional data that might be scattered in the system into
the database, e.g., parameter and logging data. The tasks that communicate
with these data stores are, similar to the I/O and application tasks, modified
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to communicate with the database only. With this architecture we have sepa-
rated the application from the I/O management and the I/O ports. The database
could be viewed as a layer between the application and the operating system,
extending the real-time operating system functionality to embrace data mana-
gement, see figure 3.6. All data in the system is furthermore collected in one
database, satisfying the need for a uniform and efficient way to store data. An-
other important issue, shown in figure 3.5, is that both the raw sensor data and
the engineering data, previously derived by the data derivation task, are now
included in the database. The actual process of deriving the engineering val-
ues could be performed in multiple ways. The I/O tasks could be modified to
embrace this functionality, so that they write both the raw value and the engi-
neering value to the database. Another, perhaps more elegant, way of solving
this is to use database rules, where a rule is triggered inside the database as
soon as a data item is updated. This rule would execute the code that derive the
engineering value.
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3.3.1 Data Management Implications

When designing a system running on the described hardware, one of the main
goals is to make it run with as small processor and memory footprint as possi-
ble. Traditionally, for data, this is achieved by using as small data structures as
possible. A common misconception is that a database is a very large and com-
plex application that will not fit into a system such as this [4]. However, there
are, even commercial DBMSs that are as small as 8Kb, e.g., Pervasive.SQL. It
should be added, though, that even if the size of the DBMS is very small, the
total memory used for data storage can increase because of the added overhead
for each data element stored in the database. This is because memory is used
to store the database indexing system, data element locks, etc. Clearly, there
is a trade-off between functionality and memory requirements. The most im-
portant issue in this application is timeliness. The system cannot be allowed to
miss deadlines and behave unpredictable in any way. It is off-line scheduled
with non-preemptable tasks. This fact provides some interesting implications.
No task, except the driver display task (see section 3.2.3), can preempt an-
other task. Thus, database conflicts are automatically avoided since the tasks
themselves are mutually exclusive. This makes database concurrency control
and locking mechanisms unnecessary because only one transaction can be ac-
tive in such a system at any given time, thus serialization of transactions are
handled “manually”. This is similar to why semaphores are not needed for
non-preemptive real-time systems [5].

Implementing a database into the existing system will have benefits. All
data, regardless of on which media it is stored, can be viewed as one consistent
database. The relations between the data elements can be made clearer than
today. For example, currently an image retrieval in the IECU is performed by
first looking in the image Db, then in the language Db, and finally in the HW
Db. A database query asking for an image, using the current language and the
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correct value from the HW Db, can be done in one operation. Furthermore,
constraints on data can be enforced centrally by the database. If a data element
has a maximum and a minimum value, the database can be aware of this and
raise an exception if an erroneous value is inserted. Today, this is performed in
the application, implying a responsibility that constraints are made consistent
between all tasks that use the data.

In this system the transaction dispatching delay is removed since a database
scheduler is not needed. Also, conflict resolution is removed since no conflicts
will occur because only one transaction is running at any given time. Regarding
the data access time, it will increase as the database grows larger. However,
this can be tolerated since the increase can be controlled in two ways. First
of all, as the database is a main-memory database, any access to data will be
significantly shorter than the execution times of the transactions. To decrease
the transaction response times various indexing strategies especially suited for
main-memory databases can be used, e.g., t-tree [6] and hashing algorithms
[7].

The application investigated in this paper consists of, as previously men-
tioned, primarily non-preemptable tasks, hence no concurrency control is nee-
ded. One interesting question is how this approach would fit into a preemptable
off-line scheduled system. This would call for some kind of concurrency con-
trol in the database, thus possibly resulting in unpredictable response times for
transactions due to serialization conflicts. However, this could be avoided by
solving all conflicts off-line. Since all transactions in the system are known a
priori, we know all data elements that each transaction touches. This allows us
to feed the off-line scheduler with information about which transactions might
cause conflicts if preempted by each other. The scheduler can then generate a
schedule where tasks containing possibly conflicting transactions do not pre-
empt each other.

3.3.2 DBMS Design Implications

If we can bound the worst case response time for a specific transaction, we can
add this time to the calling tasks worst-case execution time (WCET) without
violating the hard real-time properties of the system.1 Execution of the trans-
action on its task’s thread instead of having separate database tasks, decreases
the number of tasks in the schedule, making it easier for the off-line scheduling
tool to find a feasible schedule. However a question one should ask is: How do

1The response time is defined as the time from transaction initiation to the completion of the
transaction.
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we find the worst case response time for a transaction? There are basically four
different circumstances that define the response time of a transaction, namely:
(i) the time it takes from the instant a transaction is released until the instant
it is dispatched; (ii) the actual execution time of the code that needs to be ex-
ecuted; (iii) the time it takes to access the data elements through the indexing
system; and (iv) the time it takes to resolve any serialization conflicts between
transactions. For an optimistic concurrency control this would imply the time
it takes to run the transaction again, and for a pessimistic concurrency control
it would be the time waiting for locks.

In this system the transaction dispatching delay is removed since a database
scheduler is not needed in this system. Also, conflict resolution is removed
since no conflicts will occur because only one transaction is running at any
given time. Regarding the data access time, it will increase as the database
grows larger. However this can be tolerated since the increase is bounded if
a suitable indexing structure is used, such as the T-tree [6] or the hashing [7]
algorithms.

In future versions of this application, it is expected that some of the func-
tionality is moved to the blue part, thus requiring concurrency control and
transaction scheduling since we cannot predict the arrival times of blue tasks.
Moving parts of the application to the blue part could imply restructuring the
data model if a database is not used. If new functionality from the database
will be needed in the future, the database schema can be reused. Still, this
would not allow non-periodic transactions. Furthermore, it would not allow
tasks scheduled online, e.g., blue tasks. However, an extension that would al-
low this is shown in figure 3.7. A non-preemptable scheduler task is placed in
the red part of Rubus. Since this task is non-preemptable it is mutually exclu-
sive towards all other tasks and can therefore have access to the entire database.
If this task is scheduled as a periodic task, it acts like a server for transaction
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scheduling. Thus, the server reads all transactions submitted to the transaction
queue, process them and return the results in the result queue (blue tasks are
preemptable and, hence, their execution can be interleaved).

From the blue tasks’ perspective, they can submit queries, and since we
know the periodicity of the scheduler task we can determine the worst-case
execution time for these transactions. From the red tasks’ perspective, noth-
ing has changed, they are still, either as in the current system, non-preemptive
resulting in no conflicts, or they are scheduled so that no conflicts can occur.
It is important to emphasize that this method is feasible only if any transac-
tion processed by the scheduler task can be finished during one instance of
the scheduling task. If this requirement cannot be met an online concurrency
control is needed.

3.3.3 Mapping Data Requirements to Existing Database Plat-
forms

Today there are database platforms, both research and commercial platforms,
which fulfill a subset of the system requirements. The DeeDS [8] platform, for
example, is a hard real-time research database system that support hard peri-
odic transactions. It also has a soft and a hard part. Furthermore, the DeeDS
system uses milestones and contingency plans. These hard periodic transac-
tions would suit the red Rubus tasks and would, if used with milestones and
contingency plans, suit the Volvo application. The milestones would check
that no deadlines are about to be missed, and the contingency plans would ex-
ecute alternate actions if that is the case. DeeDS is, as the STRIP system [9]
a main memory database that would suit this application. The Beehive [10]
system implements the concept of temporal validity, that would ensure that
temporal consistency always exists in the database. These platforms are de-
signed as monolithic databases with the primary intent to meet multiple appli-
cation requirements with respect to real-time properties, and on a lesser extent
the embedded requirements. As such, they are considered to provide more
functionality than needed, and as a consequence, they are not optimal for this
application given the need to minimize resource usage as well as overall system
complexity.

On the commercial side, embedded databases exist that are small enough
to fit into the current system, e.g., the Berkeley DB by Sleepycat Software Inc.
and the Pervasive.SQL database for embedded systems. There are also pure
main-memory databases on the market, e.g., Polyhedra and TimesTen. Poly-
hedra, DeeDS, STRIP, and REACH [11] are active database systems, which
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can enforce consistency between the raw values and the engineering values,
and thereby removing the need for the data derivation task. However, integrat-
ing active behavior in a database makes timing analysis of the system more
difficult. The Berkeley DB system allows the user to select between no con-
currency control and an pessimistic concurrency control [12]. If Volvo should
decide upon moving part of the functionality to the blue part, concurrency in
the database would be necessary. The option of choosing whether or not to
use concurrency control would enable the use of the same DBMS, database
scheme, and database interface regardless of the strategy being used. Unfortu-
nately, none of the commercial systems mentioned have any real-time guaran-
tees and are therefore not suitable for this type of application.

3.4 Conclusions

We have studied two different hard real-time systems from the vehicular indus-
try with respect to data management, and we have found that data is scattered
throughout the system. This implies that getting a full picture of all existing
data and its interrelations in the system is difficult.

Further, we have redesigned the architecture of the system to support a
real-time database. In this new architecture all tasks communicate through the
database instead of using ports, and the database provides a uniform access to
data. This application does not need all the functionality provided by existing
real-time database research platforms, and issues like concurrency and schedul-
ing have been solved in an easy way. Currently the application is designed so
that all tasks are off-line scheduled. All tasks, except the driver display task,
are non-preemptive. However, future versions of the application are expected
to embrace preemption as well as online scheduled tasks.

Finally, we have discussed mapping the data management requirements to
existing databases. Some of the database platforms, both research and com-
mercial, offer functionality that is needed by the system, but at the same time
they introduce a number of unnecessary features.

Our future work will focus on the design and implementation of a tailorable
real-time embedded database [13]. This includes: (i) developing a set of real-
time components and aspects, (ii) defining rules for composing these compo-
nents into a real-time database system, and (iii) developing a set of tools to
support the designer when composing and analyzing the database system. A
continuation of this case study where we will implement our database in the
Volvo system is planned.
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Abstract

Traditionally, control systems use ad hoc techniques such as shared internal
data structures, to store control data. However, due to the increasing data vol-
ume in control systems, these internal data structures become increasingly dif-
ficult to maintain. A real-time database management system can provide an
efficient and uniform way to structure and access data. However the drawback
with database management systems is the overhead added when accessing data.
In this paper we introduce a new concept called database pointers, which pro-
vides fast and deterministic accesses to data in hard real-time database mana-
gement systems compared to traditional database management systems. The
concept is especially beneficial for hard real-time control systems where many
control tasks each use few data elements at high frequencies. Database point-
ers can co-reside with a relational data model, and any updates made from the
database pointer interface are immediately visible from the relational view. We
show the efficiency with our approach by comparing it to tuple identifiers and
relational processing.
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4.1 Introduction

In recent years, the complexity of embedded real-time controlling systems has
increased. This is especially true for the automotive industry [1]. Along with
this increased complexity, the amount of data that needs to be handled has
grown in a similar fashion. Since data in real-time systems traditionally is
handled using ad hoc techniques and internal data structures, this increase of
data is imposing problems when it comes to maintenance and development.

One possible solution to these problems is to integrate an embedded real-
time database management system (RTDBMS) within the real-time system. A
RTDBMS can provide the real-time system with a uniform view and access
of data. This is especially useful for distributed real-time systems where data
is shared between nodes. Because of the uniform access of data, the same
database request is issued regardless if the data is read at the local node or
from a distributed node. Furthermore, RTDBMSs can ensure consistency, both
logical and temporal [2]. Finally, RTDBMSs allow so called ad hoc queries,
i.e., requests for a view of data performed during run-time. This is especially
useful for management and system monitoring. For example, consider a large
control system being monitored from a control room. Suddenly, a temperature
warning is issued. An ad hoc query showing the temperatures and pressures
of multiple sub-systems might help the engineers to determine the cause of the
overheating.

Integrating a RTDBMS into a real-time system also has drawbacks. There
will most certainly be an added overhead for retrieving data elements. This
is partly because of the indexing system used by most database management
systems (DBMS). The indexing system is used to locate where in the mem-
ory a certain data element is stored. Usually, indexing systems use some tree
structure, such as the B-tree [3] and T-tree [4] structures, or a hashing table [5].

An increase of the retrieval times for data has, apart from longer task execu-
tion, one additional drawback. Since shared data in a concurrent system needs
to be protected using semaphores or database locking systems, the blocking
factor for hot data can be significant. Hot data are data elements used fre-
quently by multiple tasks. Hot data is sensitive to congestion and therefore it
is of utmost importance to lock hot data for as short time as possible. Further-
more, it is important to bound blocking times to allow response time analysis
of the system. Examples of hot data are sensor readings for motor control of a
vehicle, e.g., rpm and piston position. These readings are continuously stored
by I/O tasks and continuously read by controlling tasks. A congestion involv-
ing these heavily accessed data elements might result in a malfunction. On the
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other hand, information regarding the level in the fuel tank is not as crucial and
might be accessed less frequent, and can therefore be considered non-hot data.

In this paper we propose the concept of database pointers, which is an
extension to the widely used tuple identifiers [6]. Tuple identifiers contain
information about the location of a tuple, typically a block number and an off-
set. Database pointers have the efficiency of a shared variable combined with
the advantages of using a RTDBMS. They allow a fast and predictable way
of accessing data in a database without the need of consulting the DBMS in-
dexing system. Furthermore database pointers provide an interface that uses a
“pointer-like” syntax. This interface is suitable for control system applications
using numerous small tasks running at high frequencies. Database pointers al-
low fast and predictable accesses of data without violating neither temporal or
logical consistency nor transaction serialization. It can be used together with
the relational data model without risking a violation of the database integrity.

The paper is outlined as follows. In section 4.2 we describe the type of
systems we are focusing on. In addition, we give a short overview of tuple
identifiers and other related work. Database pointers are explained in section
4.3, followed by an evaluation of the concept, which is presented in section
4.4. In section 4.5 we conclude the paper.

4.2 Background and Related Work

This paper focuses on real-time applications that are used to control a process,
e.g., critical control functions in a vehicle such as motor control and brake
control. The flow of execution in such a system is: (i) periodic scanning of
sensors, (ii) execution of control algorithms such as a PID-regulators, and (iii)
propagation of the result to the actuators.

The execution is divided into a number of tasks, e.g., I/O-tasks and control
tasks. The functions of these tasks are fixed and often limited to a specific
activity. For example, an I/O-task’s only responsibility could be to read the
sensor-value on an input-port and write it to a specific location in memory,
e.g., a shared variable [7].

In addition to these, relatively fixed control tasks, a number of management
tasks exists, which are generally more flexible than the control tasks, e.g., ma-
nagement tasks responsible for the user interface.
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4.2.1 Relational Query Processing

Relational query processing is performed using a data manipulation language
(DML), such as SQL. A relational DML provides a flexible way of viewing
and manipulating data. The backside of this flexibility is performance loss.

Figure 4.1 shows a typical architecture of a DBMS. The DBMS provides
access to data through the SQL interface. A query, requesting value � , passed
to this interface will go through the following steps:

1. The query is passed from the application to the SQL interface.

2. The SQL interface requests that the query should be scheduled by the
transaction scheduler.

3. The relational query processor parses the query and creates an execution
plan.

4. The locks needed to process the query are obtained by the concurrency
controller.

5. The tuple containing � is located by the index manager.

6. The tuple is then fetched from the database.

7. All locks are released by the concurrency controller.

8. The result is returned to the application.

Finally, since the result from a query issued to a relational DBMS is a
relation in itself, a retrieval of the data element � from the resulting relation is
necessary. This is done by the application.

In this example we assume a pessimistic concurrency control policy. How-
ever, the flow of execution will be roughly the same if a different policy is
used.

4.2.2 Tuple Identifiers

The concept of tuple identifiers was first proposed back in the 70’s as inter-
nal mechanisms for achieving fast accesses to data while performing relational
operations, such as joins and unions. It was implemented by IBM in an ex-
perimental prototype database called System R [6]. A tuple identifier is a data
type containing a pointer to one tuple stored either on a hard drive or in main
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Figure 4.1: Architecture of a typical Database Management System.

memory. Usually, a tuple is a rather short array of bytes containing some data.
For a relational model, one tuple contains the data for one row of a relation.

A decade later, it was proposed in [8] that tuple identifiers could be used
directly from the application via the DBMS interface. This would enable appli-
cations to create shortcuts to hot data, in order to retrieve them faster. The con-
cept is also implemented in the Adabas relational DBMS [9] under the name
Adabas Direct Access Method. In Adabas, tuple identifiers are stored in a hash
table and can be retrieved by the user for direct data access. A disadvantage of
this concept is the inability to move or delete tuples at run-time. To be able to
perform deletions or movements of tuples in Adabas, a reorganization utility
must be run, during which the entire database is blocked.

Applications using tuple identifiers must be aware of the structure of the
data stored in the tuples, e.g., offsets to specific attributes in the tuple. This
makes it difficult to add or remove attributes from relations, since this changes
the structure of the tuples.

4.2.3 Related Work

Apart from tuple identifiers, the concept of bypassing the index system to
achieve faster data access has been recognized in other database systems. The
RDM database [10] uses a concept called network access, which consist of a
network of pointers. Network pointers shortcut data used in a predefined order.
The implementation is, however, static and cannot be dynamically changed
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during run-time.
In the Berkeley database [11], a concept called queue access is imple-

mented, which allows enqueueing and dequeueing of data elements without
accessing the index manager. The approach is primarily suited for data pro-
duction and consumption, e.g., state machines.

The Pervasive.SQL database [12], uses the interface Btrieve to efficiently
access data. Btrieve supports both physical and logical accesses of tuples. Log-
ical accesses uses a tuple key to search for a tuple using an index, while physi-
cal access retrieves tuples based on their fixed physical locations. One database
file contains tuples of the same length in an array. Btrieve provides a num-
ber of operations that allows stepping between the tuples, e.g., stepNext or
stepLast. The Btrieve access method is efficient for applications in which
the order of accesses is predefined and the tuples are never moved during run-
time. Furthermore, restructuring the data within the tuples is not possible.

Some database management systems use the concept of database cursors
as a part of their embedded SQL interface [13]. Despite the syntactical simi-
larities between database pointers and database cursors they represent funda-
mentally different concepts. While database cursors are used to access data
elements from within query results, i.e., result-sets, database pointers are used
to bypass the index system in order to make data accesses more efficient and
deterministic.

4.3 Database Pointers

The concept of database pointers consists of four different components:

� The DBPointer data type, which is the actual pointer defined in the
application.

� The database pointer table, which contains all information needed by the
pointers.

� The database pointer interface, which provides a number of operations
on the database pointer.

� The database pointer flag, which is used to ensure consistency in the
database.

Using the concept of database pointers, the architecture of the DBMS given
in figure 4.1, is modified to include database pointer components, as shown in
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figure 4.2. To illustrate the way database pointers work, and its benefits, we
use the example presented in section 4.2.1, i.e., the request for retrieving the
data � from the database.

Using the database pointer interface, the request could be made signifi-
cantly faster and more predictable. First, a read operation together with the
database pointer would be submitted to the database pointer interface. The
database pointer, acting as an index to the database pointer table array would
then be used to get the corresponding database pointer table entry. Each database
pointer table entry consists of three fields: the physical address of data element
� , information about the data type of � , and eventual locking information that
shows which lock � belongs to. Next the lock would be obtained and � would
be read. Finally, the lock would be released and the value of � would be re-
turned to the calling application. The four components of the database pointer
and its operations are described in detail in sections 4.3.1 to 4.3.4.

4.3.1 The DBPointer Data Type

The DBPointer data type is a pointer declared in the application task. When
the pointer is initialized, it points to a database pointer table entry, which in
its turn points to the actual data element. Hence the DBPointer could be
viewed as a handle to a database pointer. However, due to the database pointer’s
syntactical similarities with a pointer variable, we have chosen to refer to it as
a pointer.

4.3.2 The Database Pointer Table

The database pointer table contains all information needed for the database
pointer, namely:

1. A pointer to the physical memory location of the data element inside
the tuple. Typically, the information stored is the data block the tuple
resides in, an offset to the tuple, and an offset to the data element within
the tuple.

2. The data type of the data element pointed by the database pointer. This
is necessary in order to ensure that any write to the data element matches
its type, e.g., it is not feasible to write a floating point value to an integer.

3. Lock information describing the lock that corresponds to the tuple, i.e.,
if locking is done on relation granules, the name of the relation should be
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stored in as lock information. Note, if locks are not used in the DBMS,
i.e., if optimistic concurrency control is used, some other serialization
information can be stored in the database pointer table entry instead of
the lock information.

4.3.3 The Database Pointer Interface

The database pointer interface consists of four operations:

1. bind(ptr,q) This operation initializes the database pointer ptr by
binding it to a database pointer table entry, which in turn points to the
physical address of the data. The physical binding is done via the exe-
cution of the query q, which is written using a logical data manipulation
language, e.g., SQL. The query should be formulated in such a way that
it always returns the address of a single data element. By using the bind
operation, the binding of the data element to the database pointer is done
using a logical query, even though the result of the binding is physical,
i.e., the physical address is bound to the database pointer entry. This im-
plies that no knowledge of the internal physical structures of the database
is required by the application programmer.

2. remove(ptr) This operation deletes a database pointer table entry.

3. read(ptr)This operation returns the value of the data element pointed
by ptr. It uses locking if necessary.

4. write(ptr,v) This operation writes the value v to the data element
pointed by ptr. It also uses locking if necessary. Furthermore, the type
information in the database pointer entry is compared with the type of v
so that a correct type is written.

The pseudo codes for the write and read operations are shown in figure
4.3. The write operation first checks that the types of the new value matches
the type of the data element (line 2), and then obtains a write lock for the
corresponding lock (line 4), i.e., locks the relation that the data element resides
in. The data element is then updated (line 5), and finally the lock is released
(line 6). The read operation obtains the corresponding read lock (line 10),
reads the data element (line 11), releases the lock (line 12), and then returns
the value to the application (line 13).
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1 write(DBPointer dbp, Data value){
2 if(DataTypeOf(value) != dbp->type)
3 return DATA_TYPE_MISMATCH;
4 DbGetWriteLock(dbp->lockInfo);
5 *(dbp->ptr) = value;
6 DbReleaseLock(dbp->lockInfo);
7 return TRUE;

}

8 read(DBPointer dbp){
9 Data value;
10 DbGetReadLock(dbp->lockInfo);
11 value = *(dbp->ptr);
12 DbReleaseLock(dbp->lockInfo);
13 return value;

}

Figure 4.3: The pseudo codes for the write and read operations

4.3.4 The Database Pointer Flag

The database pointer flag solves the problem of inconsistencies between the
index structure and the database pointer table, thus enabling tuples to be re-
structured and moved during run time.

For example, if an additional attribute is inserted into a relation, e.g., a
column is added to a table, it would imply that all tuples belonging to the rela-
tion need to be restructured to contain the new data element (the new column).
Hence, the size of the tuples changes, relocation of the tuples to new memory
locations is most probable. Since a schema change is performed via the SQL
interface, it will use and update the index in the index manager. If one of the
affected tuples is also referenced from a database pointer entry, inconsistencies
will occur, i.e., the database pointer entry will point to the old physical location
of the tuple.

Each database pointer flag that is set in the index structure indicates that
the tuple flagged is also referenced by a database pointer. This informs the
index manager that if this tuple is altered, e.g., moved, deleted, or changed, the
corresponding database table entry must be updated accordingly.
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4.3.5 Application Example

To demonstrate how a real-time control system could use a RTDBMS with a
database pointer interface, we provide an application example. Consider the
system shown in figure 4.2 which is divided into two parts:

1. A hard real-time part that is performing time-critical controlling of the
process. The tasks in this part use the database pointer interface.

2. A soft real-time part that handles user interaction and non-critical con-
trolling. It uses the flexible SQL interface.

A hard real-time controlling task that reads a sensor connected to an I/O
port is shown in figure 4.4. The task reads the current sensor value and updates
the corresponding data element in the database. The task consists of two parts,
an initialization part (line 2-4), which is run one time, and an infinite loop that
is periodically polling the sensor and writing the value to the database (line
5-8).

The initialization of the database pointer is done by first declaring the
database pointer (line 3) and then binding it to the data element containing
the oil temperature in the engine (line 4). The actual binding is performed in
the following four steps:

1. A new database pointer table entry is created.

2. The SQL query is executed and the address of the data element in the
tuple is stored in the database pointer table entry.

3. The data type information is set to the appropriate type, e.g., unsigned
int.

4. The locking information is set, e.g., if locking is done at relation gran-
ules, the locking information would be set to engine.

After performing these four steps, the database pointer is initialized and
ready to be used. The control loop is entered after the initialization (line 5).
In the control loop a new sensor value is collected (line 6), the value is then
written to the RTDBMS using the database pointer operation write (line 7).
Finally, the task sleeps until the next period arrives (line 8).
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1 TASK OilTempReader(void){
2 int s;
3 DBPointer *ptr;
4 bind(&ptr, "SELECT temperature

FROM engine WHERE
subsystem=oil;");

5 while(1){
6 s=read_sensor();
7 write(ptr,s);
8 waitForNextPeriod();

}
}

engine
subsystem temperature pressure

hydraulics 42 27
oil 103 10

cooling water 82 3

Figure 4.4: An I/O task that uses a database pointer and its corresponding
relation.

Criteria TiD’s DbP’s Rel
Interface Pointer based x x

Relational x
Data access Physical x x

Logical x x
Characteristics Can handle tuple movements x x

Can handle attribute changes x x

Table 4.1: A comparison between tuple identifiers, database pointers, and rela-
tional processing.
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4.4 Concept Evaluation

In table 4.1 we compare the different access methods: tuple identifiers (TiD’s),
database pointers (DbP’s), and relational processing (Rel). Both tuple identi-
fiers and database pointers use a pointer based interface, which provides fast
and predictable accesses to data inside a DBMS. However, it is not as flexible
as most relational interfaces, e.g., SQL.

Furthermore, database pointer and tuple identifiers both access data based
on direct physical references, in contrast to relational accesses that use logical
indexing to locate data. However, database pointers bind the pointer to the
data element using logical indexing, but access the data element using physical
access.

Tuple identifiers have two drawbacks, firstly they are sensitive to schema
changes, and secondly the physical structure of the database is propagated to
the users. The former results in a system that can only add tuples instead of
moving or deleting them, while the latter requires that the application program-
mer knows of the physical implementation of the database. Database pointers
remove both of these drawbacks. Due to the flag in the index system, the
database pointer table can be updated whenever the schema and/or index struc-
ture is changed, allowing attribute changes, tuple movements and deletions.
Moreover, since the database pointer is bound directly to a data element inside
the tuple instead of to the tuple itself, no internal structures are exposed.

The major advantage with accessing the data via pointers instead of going
through the index system is the reduction of complexity. The complexity for
the T-tree algorithm is � � ����������� �

� ����� �
	� � , where
�

is the number of tuples in
the system and � is the number of tuples per index node [14]. The complexity
for database pointers and tuple identifier is � � � � . As can be seen, there is a con-
stant execution time for accessing a data element using a database pointer or
a tuple identifier, while a logarithmic relationship exists for the tree-based ap-
proach. There is however one additional cost for using the relational approach
which we will illustrate with the following example.

We already showed how the oil temperature of an engine can be accessed
using database pointers. Figure 4.5 shows the pseudo code for the same task,
which now uses an SQL interface instead of the database pointer interface. In
line 5, the Begin of transaction is issued and the actual update is per-
formed in line 6, using a C-like syntax that resembles of the function printf.
The actual commit is performed in line 7. In figure 4.5 all tuples in the relation
engine have to be accessed to find all that fulfill the condition subsystem
= oil. This requires accessing all three tuples.
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1 TASK OilTempReader(void){
2 int s;
3 while(1){
4 s=read_sensor();
5 DB_BOT();
6 DB_Op("UPDATE engineSET temperature=%d

WHERE subsystem = oil;",s);
7 DB_COMMIT();
8 waitForNextPeriod();

}
}

Figure 4.5: An example of a I/O task that uses a Relational approach.

It can, of course, be argued that precompiled transactions would be used
in a case like this. Precompiled transactions are transactions that have been
evaluated and optimized pre-run time. Such transactions can be directly called
upon during run-time, and is normally executed much more efficient than an
ad-hoc query. However, this does not influence the number of tuples accessed,
since no information of the values inside the tuples are stored there. Therefore,
all three tuples have to be fetched anyway.

4.5 Conclusions and Future Work

In this paper we have introduced the concept of database pointers to bypass the
indexing system in a real-time database. The functionality of a database pointer
can be compared to the functionality of an ordinary pointer. Database pointers
can dynamically be set to point at a specific data element in a tuple, which
can then be read and written without violating the database consistency. For
concurrent, pre-emptive applications, the database pointer mechanisms ensure
proper locking on the data element.

We have also showed an example of a real-time control application using
a database that supports both database pointers and a SQL interface. In this
example the hard real-time control system uses database pointers, while the
soft real-time management system utilizes the more flexible SQL interface.

The complexity of a database operation using a database pointer compared
to a SQL query is significantly reduced. Furthermore, the response time of a
database pointer operation is more predictable.

Currently we are implementing database pointers as a part of the COMET
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DBMS, our experimental database management system [15]. This implemen-
tation will be used to measure the performance improvement of database point-
ers for hard real-time controlling systems. Furthermore, different approaches
for handling the interference between the hard real-time database pointer trans-
actions and the soft real-time management transactions are investigated.
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Abstract

As complexity and the amount of data are growing in embedded real-time sys-
tems, the need for a uniform and efficient way to store data becomes increas-
ingly important, i.e., database functionality is needed to provide support for
storage and manipulation of data. However, a database that can be used in an
embedded real-time system must be resource efficient with respect to memory
and CPU resources and predictable in the temporal domain.

This report presents COMET, a component-based embedded real-time data-
base management system, which is developed for embedded real-time systems,
in particular vehicle control-systems. The key issues when designing COMET
was to allow the possibility to tailor it for different types of application require-
ments and make it predictable in the temporal domain. The mean for achieving
tailorability is by a flexible component model called RTCOM which supports
the use of aspects.

We introduce COMET BaseLine, which is the first instance of COMET.
This instance is tailored to suit a particular vehicle control-system developed
at Volvo Construction Equipment Components AB, Eskilstuna, Sweden.
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5.1 Introduction

The COMET DBMS (component-based embedded real-time database manage-
ment system) is an experimental database platform. COMET is intended for
resource-constrained embedded vehicle control-systems.

The complexity of modern vehicle control systems is rapidly increasing [1],
as is the volume of data to be handled and maintained. A need for a structured
way of handling this data has emerged. A real-time database management
system would fulfil this need by providing a higher level of abstraction of the
data management.

Different vehicular control-systems have different requirements, i.e., some
might be static and non-preemptive while others might be much more flexible,
allowing preemption. Many vehicular systems are distributed, but some are
not. This places different requirements on the database. The natural approach
would then be to develop an “in-house” DBMS that fulfil the requirements of
the application. However, implementing a real-time database management sys-
tem, and getting it certified as a component in a vehicular system is not a small
task. A different approach would be to develop a tailorable database manage-
ment system that can be configured to meet different kinds of requirements.

COMET is, too a high degree, tailorable to meet different kinds of re-
quirements, such as different task-models, architectures, temporal constraints,
and resource constraints. To achieve this, COMET is designed using both a
component-based and an aspect-oriented approach.

Component-based software development enables systems to be built by
assembling ready-made components. Each component is responsible for a
well-defined task. A specialized database can be created by selecting a set
of components that meets the requirements of the application, In COMET we
have identified the following components, user-interface component, transac-
tion management component, index management component, memory mana-
gement component, lock management component, check pointing and recovery
management component. The tasks of all of these components are described
individually in section 5.5.

Aspect-oriented software development allows some concerns of the sys-
tem to be separated into an aspect. We have identified a number of aspects in
COMET. Some aspects, such as the concurrency control-aspect determine the
behaviour of the system, while others, such as the temporal aspect, are used
to describe non-functional properties of the system. Aspect-oriented software
development is further described in section 5.2.

The current COMET concept consists of a set of components, a set of as-
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pects, a DBMS architecture and a tool to calculate worst-case execution times.
Future versions of COMET will contain, configuration tools, more components
and aspects, as well as further analysis tools.

In this report we describe the underlying concepts of COMET. The ar-
chitecture of COMET, the individual components and aspects identified in
COMET, as well as our component-model, RTCOM, and our design model
ACCORD are also described. Finally we describe the COMET BaseLine im-
plementation, which is the first instance of COMET intended for a particular
vehicle control-system developed at Volvo Construction Equipment Compo-
nents AB [2].

5.2 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) has emerged as a new prin-
ciple for software development, and is based on the notion of separation of
concerns [3]. Typically, AOSD implementation of a software system has the
following constituents [3]:

� components, written in a language, which has support for aspect-oriented
programming, e.g., C, C++, Java,

� aspects, written in the corresponding aspect language1, e.g., AspectC [4],
AspectC++ [5], AspectJ [6], and

� an aspect weaver, which is a special compiler that combines the compo-
nents and aspects.

Components used for system composition in AOSD are not black box com-
ponents (as they are in CBSE), rather they are white box components as we can
modify their internal behavior by weaving different aspects in the code of a
component.

Aspects are commonly considered to be a property of a system that affects
its performance or semantics, and that crosscuts the system’s functionality [3].
Aspects of software such as persistence and debugging can be described sepa-
rately and exchanged independently of each other without disturbing the mod-
ular structure of the system. Each aspect declaration consists of advices and
pointcuts.

1All existing aspect languages are conceptually very similar to AspectJ, developed for Java.
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A pointcut in an aspect language consists of one or more join points, and is
described by a pointcut expression. Pointcuts define points in the static struc-
ture or a dynamic control flow of the program. A join point refers to a point in
the component code at which aspects should be weaved, e.g., a method, a type
(struct or union).

Figure 5.1 shows the definition of a named pointcutgetLockCall, which
refers to all calls to the function getLock() and exposes a single integer ar-
gument of that call2.

pointcut getLockCall(int lockId) =
call(‘‘void getLock(int)’’) && args(lockId);

Figure 5.1: An example of the pointcut definition

advice getLockCall(lockId):
void after (int lockId)

{
cout << ‘‘Lock requested is’’ << lockId << endl;

}

Figure 5.2: An example of the advice definition

An advice is a declaration used to specify the code that should run when
the join points, specified by a pointcut expression, are reached. Different kinds
of advices can be declared, such as: (i) before advice, which is executed before
the join point, (ii) after advice, which is executed immediately after the join
point, and (iii) around advice, which is executed in place of the join point.
Figure 5.2 shows an example of an after advice. With this advice each call to
getLock() is followed by the execution of the advice code, i.e., printing of
the lock id.

2The examples presented are written in AspectC++.
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5.3 ACCORD: Aspectual Component-Based Real-
Time System Development

The COMET database is developed using ACCORD (aspectual component-
based real-time system development) [7], which is a method of designing as-
pectual component-based real-time systems.

In ACCORD the system is first decomposed into a set of components, and
then further decomposed into a set of aspects. A component performs a specific
task and is accessed using one or more well-defined interfaces. Aspects on
the other hand are semantic functions or properties that crosscut the system,
influencing several components.

ACCORD consider three different categories of aspects, namely, (i) Appli-
cation aspects which change the functional behaviour of the application, (ii)
run-time aspects which describe extra-functional properties of the compiled
application, and (iii) composition aspects which describe which components
and aspects can be combined. For further reading about these categories of
aspects, we refer to [7].

Application aspects are aspects that change the functional behaviour of one
or more components. This is done by writing aspect-code that is weaved into
components using an aspect weaver. An example of a functional aspect is an
earliest deadline first policy that is weaved into a scheduling component, and
debug information that is weaved into a component during systems testing.

In sections 5.5, 5.7.1, and 5.7.2 we will further elaborate on aspects derived
during the development of the COMET DBMS.

5.4 RTCOM: Real-Time Component-Model

The component-model RTCOM [8] (real-time componenent model) is used in
COMET to support the different kinds of aspects used in ACCORD,.

The component consists of three parts, each corresponding to one type of
aspect in ACCORD, the different parts can be seen in figure 5.3. The functional
part, which is the actual code, corresponds to application aspects, the run-time
part corresponds to run-time aspects and the compositional part corresponds to
compositional aspects.

The functional part consists of two sub parts, the policy part and the mech-
anism part. The mechanism part consists of mechanisms that are fixed, while
the policy part consists of operations that can be modified by application as-
pects. A component is accessed through a number of required and provided
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Figure 5.3: The real-time component-model

interfaces. Each interface consists of a subset of the component’s operations.
For example, consider a component that implements a FIFO-list. Inter-

nally the list is implemented using a linked list. In the mechanism part, a num-
ber of mechanisms exist that are used to modify the linked list, i.e., linkIn,
linkOut, getFirst and getNext. The policy part consists, however, of
two operations, namely enqueue and dequeue.

The operations can call all the mechanisms in the component, as well as
operations of other components. It is important to write the operations as struc-
tured and as modular as possible.

Further, consider that the aspect priority is weaved into the component.
The aspect contains aspects code that is weaved into the operations in such a
way that the list is sorted, based on a priority, i.e., the enqueue operation is
modified to link the new element in its appropriate place in the list.

The run-time part contains information about different run-time aspects
of the component, such as memory requirements, platform compatibility and
worst-case execution time etc. Several of these aspects are dependent on the
application aspects, such as the memory requirements and the worst-case ex-
ecution time aspects. If an application aspect is weaved into the operations
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of the components, it will affect the worst-case execution time and memory
requirements of the component. To handle this, a component description lan-
guage that supports adding application aspects to components is used [9]. For
a formal definition of the RTCOM component-model, we refer to [10].

5.5 The Architecture of COMET

When we designed COMET, we used the ACCORD approach, and thus we
started by identifying the different activities in a database management system.
We identified the following activities:

1. User interface management

2. Transaction management

3. Scheduling management

4. Index management

5. Memory management

6. Lock management

7. Concurrency controlling

8. Checkpoint and recovery management

9. Logging management

One could argue that a database management system might consist of more
activities, e.g., authorization management, query-optimizing management, and
distribution management. We drew the conclusion, however, that the above-
mentioned activities were the most central for vehicle control-systems, based
on the case study by Nyström et al. [2]. However COMET could, without too
much effort, be extended to include these additional activities also.

The second step was to extract components from these activities, and we
found that activity 1 to 5 were candidate components, since these activities are
well defined and isolated. Further, the use of these components when assem-
bled would result in a functional database management system. The limitations
to such a database would be that it could not handle concurrent transactions in
addition to recovery.
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In the third step, concurrency controlling and logging/recovery manage-
ment were identified as aspects, because both activities crosscut several com-
ponents.

However, in both the case of concurrency control and in the case of log-
ging/recovery, there are parts of these activities that can be viewed as isolated
activities. In the concurrency control management, a lock-manager is an iso-
lated activity that was considered best implemented as a component. In the
case of the logging and recovery management, making periodic checkpoints
and recover a restarted system are also considered isolated activities, and was
therefore implemented as a component, e.g., the checkpointing and recovery
component. These two components however, are optional, since they are not
needed if the system does not use the corresponding aspect.

The resulting architecture of COMET, is shown in figure 5.4, which shows
all the components and their interrelation in the architecture. The concurrency
control, and logging/recovery aspects, as well as the components affected by
each aspect are also shown. Since it is possible to have multiple transaction-
types in a DBMS simultaneously, it is possible to have multiple types of user
interface components and transaction management components in the architec-
ture.
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This architecture will provide COMET with a high degree of flexibility,
and tailorability. All components in the system are exchangeable, so that dif-
ferent algorithms can be used, e.g., data indexing, transaction management,
user interface management, memory management, etc. It is also possible to
extend the functionality of the DBMS by applying an aspect, such as concur-
rency control, or logging and recovery. This means that an indvidual instance
of COMET need only consist of the functionality needed for the particular ap-
plication, thereby minimizing the DBMS footprint.

5.6 The Components in COMET

5.6.1 User Interface Component

The User Interface Component (UIC) provides an interface towards the user,
or application. All operations to the DBMS are received by the UIC. Examples
of requests are; (i) Begin of transaction, which indicates that a new transaction
is initiated, (ii) Commit/Rollback, which ends a transaction, either by complet-
ing it or aborting it, (iii) A DML/DDL statement, which can be written in the
supported language, e.g., structured query language, SQL.

The main activities of the UIC are to:

� receive and parse incoming requests from users and applications.

� maintain the list of all active transactions, i.e., all initiated transactions
that are not yet committed or roll backed, and

� parse incoming DML/DDL statements, and convert these into execution
plans.

The user interface component will perform syntactical checking (parsing)
of the incoming DML/DDL statements. The UIC knows nothing about the
structure of the database, and therefore cannot perform semantical checks. This
approach has both advantages and disadvantages. One disadvantage is that the
execution plans cannot be optimized. Unoptimized execution of queries might
take significantly longer time than optimized. An advantage is that the UIC
might be executed on an external computer, thus performing the parsing on the
external CPU. Consider the following example:

The COMET DBMS is installed in an electronic control unit (ECU) that
resides in a vehicle. A real-time control application is continuously updating
data elements within the database. Consider a service computer connected to
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the vehicle during run-time. If the UIC, and thus the parser, is located on the
service computer, the ECU will not have to handle the parsing.

The interfaces of the user interface component are presented in table 5.1.

Interface Type Description
IDbOperation Provided Provides all operations reachable for the

user
IParse Provided Provides the Parse Operations.
ISchedule Required Interface for scheduling new transactions.
IExecute Required Interface to execute transactions.

Table 5.1: The interfaces of the user interface component

5.6.2 Scheduling Management Component

The scheduling management Component (SMC) is responsible for schedul-
ing the active transactions for execution, as well as maintaining a ready-queue
containing all active unscheduled transactions. The SMC will schedule trans-
actions based on the scheduling policy chosen. A scheduled transaction will be
assigned to one instance of the transaction management component, e.g., one
transaction manager from the transaction process pool, see section 5.6.3.

The interface of the scheduling management component is presented in
table 5.2.

Interface Type Description
ISchedule Required Interface for scheduling new transactions.

Table 5.2: The interfaces of the scheduling management component

5.6.3 Transaction Management Component

The transaction management component (TMC) executes execution-plans re-
ceived from the UIC. It ensures transaction serialization by using the lock ma-
nagement component; see section 5.6.5. Which concurrency and lock policy to
use is defined by the applied concurrency-control aspect, described in more de-
tail in section 5.7.1. The tuples needed for the transaction are then located and
fetched, using the index management component and the memory management
component, see sections 5.6.4 and 5.6.6.
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The flow of events in the TMC is described most easy by using an example.
Consider a TMC that executes relational transactions using a pessimistic con-
currency control algorithm. For such a configuration, the flow of events could
be as follows:

1. The execution-plan is received from the user interface component.

2. The execution of the transaction is begun.

3. At some point during the execution, a relation must be fetched from the
database. This is done by:

� Issuing a request that the appropriate locks should be obtained.
This request is sent to the lock management component.

� Requiring the address of the tuples by calling the index manage-
ment component.

� Fetching the tuples from the database by calling the memory ma-
nagement component.

4. When all tuples needed by the transaction have been fetched, the data
elements in the tuples can be manipulated according to the specification
in the execution-plan.

5. After the execution of the transaction, the user interface component is
notified.

6. The TMC will now wait until a command to commit (or abort) the trans-
action is received from the user interface.

7. If a commit-request is received, any updated tuples are permanently writ-
ten to the database.

8. The locks obtained for the transaction are released.

9. The user interface component is notified that the transaction is com-
pleted.

In order to process multiple transactions concurrently, several instances of
the transaction manager can exist in the database. Each instance of the TMC is
then assigned to a dedicated task, i.e., a transaction process. These processes
make up the transaction process pool.
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Interface Type Description
IExecute Provided Interface to execute transactions.
IIndex Required Interface to access the tuple index.
ILock Required3 Interface to access database locks.
IMemory Required Interface to access the tuples and dynamic

memory.
ICheckpoint Required4 Interface to perform a checkpoint or re-

covery operation.

Table 5.3: The interfaces of the transaction management component

The interfaces of the transaction management component are presented in
table 5.3.

5.6.4 Index Management Component

The index management component (IMC) is responsible for the indexing of
tuples. It matches an alphanumerical key, i.e., a database key, with its corre-
sponding tuple identifier (TID). A TID contains information about the location
of a tuple in the memory.

The interfaces of the index management component are presented in table
5.4.

Interface Type Description
IIndex Provided Interface to access the tuple index.
IMemory Required Interface to access the database.

Table 5.4: The interfaces of the index management component

5.6.5 Lock Management Component

The lock management component (LMC) administers the database locks. Database
locks are used to prevent data access conflicts, such as read write conflicts in
which a transaction has read a data element and a second transaction assigns a
new value to it immediately after. . At this point in time the two, still active,
transactions have different views of the current value of the data element.

3This interface is required only if concurrency control is used.
4This interface is required only if logging/recovery is used.
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How database locks are used is determined by the concurrency control al-
gorithm applied to the system by the concurrency control aspect, described in
section 5.7.1.

The interface of the lock management component is presented in table 5.5

Interface Type Description
ILock Provided Interface to access database locks

Table 5.5: The interface of the lock management component

5.6.6 Memory Management Component

The memory management component (MMC) administers the database, as
well as the meta-data, such as database indexes and lock information.

The interface of the memory management component is presented in table
5.6.

Interface Type Description
IMemory Provided Interface to access the tuples and dynamic mem-

ory.

Table 5.6: The interface of the memory management component

5.6.7 Checkpointing and Recovery Component

The checkpointing and recovery component (CRC) is responsible for making
checkpoints of the database and its meta-data. This component can be invoked
periodically, or on request. It is responsible for restoring the system after a
system failure.

The interface of the checkpointing and recovery component is presented in
table 5.7.

Interface Type Description
ICheckpoint Provided Interface to perform a checkpoint or recov-

ery operation..

Table 5.7: The interface of the memory management component
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5.7 The Aspects in COMET

5.7.1 Concurrency-Control Aspect

The concurrency control aspect (CCA) ensures that concurrent transactions are
serialized. This is enforced using (i) a serialization policy, such as optimistic
or pessimistic concurrency control, (ii) the lock management component, (iii)
the scheduling management component, and (iv) the transaction management
component.

The CCA consists of the following:

� Aspect-code that is weaved into the transaction management compo-
nent. This code is responsible for obtaining and releasing the appropriate
locks, in accordance with the concurrency control policy used.

� Aspect-code that is weaved into the lock management component. This
code instructs the component what to do if a lock conflict occurs.

� Aspect-code that is weaved into the scheduling management component.
This code decides what scheduling policy to use.

5.7.2 Logging and Recovery Aspect

The logging and recovery aspect (LRA) is responsible for ensuring that volatile
data can be safely stored and recovered in case of a system breakdown. The
LRA uses (i) a logging and recovery policy, such as roll-forward recovery,
(ii) the transaction management component, and (iii) the memory management
component.

The LRA consists of the following:

� Aspect-code that is weaved into the memory management component.
This code instructs the component to issue a log entry in a log, when a
tuple is created, erased or modified.

� Aspect-code that is weaved into the transaction management component.
This code will issue log entries whenever a transaction is started, com-
mitted, or aborted.

� Aspect-code that is weaved into the checkpointing and recovery compo-
nent to perform the correct type of checkpointing and recovery.
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5.8 COMET BaseLine

The COMET BaseLine is the first implementation instance of COMET DBMS.
It implements a database management system suited to the control system de-
scribed in [2].

The COMET BaseLine provides two types of database transactions:

� Soft real-time transactions. Non-critical tasks can use this transac-
tion type, which provides a flexible and generic way to manipulate the
database. The interface supports a subset of the SQL commands, such
as SELECT, INSERT and UPDATE. A set of SQL statements can be
grouped together into a transaction.

� Hard real-time transactions. Time-critical tasks can use this transac-
tion type, which provides a deterministic and efficient way of manipu-
lating individual data elements. The interface implements the concept of
Database Pointers discussed in [11].

Since the Volvo control-system is non-preemptive, there is no need for con-
currency control in COMET BaseLine. Therefore the concurrency control as-
pect is not implemented in COMET BaseLine. The transaction manager com-
ponent is, however, prepared for the implementation of future aspects, e.g., the
concurrency-control aspect, and the logging/recover aspect.

The logging/recovery management aspect has not yet been implemented in
COMET BaseLine.

The current version of COMET BaseLine compiles down to an executable
with the size of under 20kb.

5.8.1 Relational Processing

The relational transaction processing provides a generic and flexible way of
accessing the database. It supports a subset of the commands in SQL; see table
5.8. These commands allow the user to retrieve any view of the data in the
database, as well as add, delete and modify data elements. Finally the structure
of the data can be changed, i.e., relations can be added and removed.

A set of queries can be bundled together to form a transaction. A transac-
tion is considered an indivisible, e.g., atomic, operation, with a well-defined
beginning and end. Table 5.9 shows the four API functions required to use a
relational transaction in COMET BaseLine.
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SQL command Description
SELECT ... FROM Selects a subset of the tuples and attributes

from a number of relations.
CREATE TABLE Creates a new relation.
DROP TABLE Removes a relation.
INSERT ... INTO Inserts a new tuple into a relation.
UPDATE ... WHERE Updates tuples in a relation.
DELETE ... WHERE Deletes tuples from a relation

Table 5.8: The SQL-commands supported in COMET BaseLine

Relational API functions Description
BeginTransaction() Initializes a new transaction returns a

transaction ID.
Query() Takes a SQL query, parses it and pre-

pares it for execution.
CommitTransaction() Executes the SQL queries in the transac-

tion, updates the database and closes the
transaction.

RollbackTransaction() Aborts the transaction.

Table 5.9: The relational API functions supported by COMET BaseLine
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DB pointer API functions Description
bind() Binds the database pointer to the query spec-

ified.
remove() Deletes the database pointer from the

database pointer table.
write() Writes a value to the data element pointed

out by the database pointer.
read() Reads the value from the data element

pointed out by the database pointer.

Table 5.10: The database pointer API functions supported by COMET Base-
Line

5.8.2 Database Pointer Processing

The database pointer processing provides a way to manipulate individual data
elements within the database, in an efficient and predictable way. The database
pointer processing engine is implemented in accordance with the concept pre-
sented in [11].

The database pointer processor supports four interface operations, see table
5.10.

5.8.3 COMET BaseLine Component-Model

The component-model used in COMET BaseLine differs somewhat from the
original RTCOM component-model described in [10]. The component-model
used in COMET BaseLine is slightly relaxed since it allow mechanisms to call
operations in other components. This relaxation affects how certain properties,
such as worst case execution-time, are calculated. However, it would have been
difficult to implement COMET BaseLine with this restriction.

Definition 1. T is the set of component-types, where t is a tuple� ���� ��� ��� � ��� in which

1. O is a set of operations � �	� ��� � � � ��
�
�
�� � 	�
2. S is a set of state variables � ����� � � � � ��
�
�
 � � � �
3. M is a set of mechanisms � �	��� � � � � ��
�
�
�� ��� �
4. P is a set of provided interfaces � �	� � � � � � ��
�
�
�� ��� �
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5. R is a set of required interfaces � �	� � � ��� � ��
�
�
 ��� � �
Definition 2. C is the set of components, where c is a tuple

� � ��� � � � , in
which

1. S is a set of state variables � ����� � � � � ��
�
�
 � � � �
2. P is a set of provided interfaces � �	� � � � � � ��
�
�
�� ��� �
3. R is a set of required interfaces � �	� � � ��� � ��
�
�
 ��� � �

Definition 3. A component � is an instance of a component-type � .
� � inst ��� �

where inst is the instantiation function.

Intuitively, we have defined component-types. A component-type, can be
instantiated into a component, which is a run-time artifact. A component-type
is partially a white-box component, since its operations can be modified by as-
pects, as we will se later. The instantiated component, however, is a black box
artifact which can only be accessed through its interfaces. For the remainder of
this section, we will use � 
 � , � 
 � , etc. to denote the sets � , � , etc. in the tuple
� .
Definition 4. An operation

�
in a component-type t is a tuple� � � � � � ��� � � � � , in which

1. � �
is a set of mechanisms � ��� � 
 � .

2. � �
is a set of operations � ��� � 
 ��� � � � � � � � ��� , where � � � � � � � ��� is a set

of operations provided by other component-types.

3. � � is a set of state variables � ��� � 
 � , that can be manipulated by
�
.

4.
�

is glue code used in the operation.

Definition 5. A mechanism � in a component-type � is a tuple� � � � � � ��� � � � � , in which

1. � � is a set of mechanisms � �
� � 
 � .

2. � � is a set of operations � �
� � � � � � � � ��� , where � � � � � � � ��� is a set of

operations provided by other component-types.
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3. � � is a set of state variables � � � � 
 � , that can be manipulated by � .

4.
�

is glue code used in the operation.

Definition 6. A provided interface � in a component-type � is defined as
� � � 
 � .

Definition 7. A required interface � in a component-type � is defined as a
provided interface of a component-type � 
��� � , where � 
 is a component-type
other than t,

Intuitively, we have defined the constituents of a component-type, and its
instantiation. The implementation of a component is divided into two parts, a
mechanism part, which contains the basic building-blocks of the component,
and an operation part, which contains operations that makes the top level func-
tions of the component. These operations can be exported to a provided inter-
face.

As we will see below, aspects can only be weaved into the operations of
the component, and not into the mechanisms. Therefore, the mechanisms can
be viewed as the fixed part of the component.

Definition 8. An application aspect � is a tuple
� � ��� � ��� ��� ��� � , in which

1.
� � ��� � is a set of component-types

� ��� � � � � � ��� � ��
�
�
 ��� � � which �
crosscuts.

2. � is a set of join points � �	�	� � � � � ��
�
�
 � � 
 � , where each ��
 is a location
in a specific operation

�
in a component-type � � � ��� � .

3. � is a set of advices � ��� � � � ��� ��
�
�
 � ��� � , where each
� 
 is a piece of

code that can be inserted before, after or instead of the location pointed
out by a join point � .

4. � is a set of code weavings � �� ������� � 5
Definition 9. A set of component-types � weaved with a set of aspects � will
result in a new set of component-types � 
 , i.e., there is a function weave, such
that

weave ����������� 


Intuitively, we have defined application aspects which can be weaved into
the operations of components. As we can see, weaving an aspect into a compo-
nent-type, result in a new component-type is created.

5The symbol � represents the powerset. The powerset of a set � is the set of all subsets of � .
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5.9 COMET BaseLine Architecture

5.9.1 Relational User Interface Component

The relational user interface component (RUIC) is responsible for administer-
ing the transactions as well as converting the SQL queries into execution-plans.
The RUIC creates a tree that represents the execution-plan. An example of an
execution-plan is shown in figure 5.6.

The execution-tree is stored until the commitTransaction operation is
issued. At this stage, all execution-plans belonging to the committing transac-
tion are sent to the relational transaction management component (RTMC) to
be executed.

The nodes in the execution-tree can be of 5 different classes, namely:

1. Relational Operations. Originally C.F. Codd formulated 8 different
relational operations, select, project, join, product, union,
intersect, difference, and divide. In the subset of SQL sup-
ported in COMET BaseLine, only the select, project, join, and
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RESTRICT

UPDATE

engine ==

subsystem oil

=

tempe-
rature

78.5

UPDATE engine SET
temperature=78.5 WHERE
engine.subsystem=oil;

Figure 5.6: Example of execution-plan

product operations are necessary. The relational operations create
new relations by modifying existing, and are used to create new views of
the data.

2. Data Manipulating Operations. These operations, namely delete,
insert, and update, modify tuples in a relation.

3. Data Definition Operations. These operations are used to modify the
structure of the database, i.e., create table and drop table, in
which the former creates a new relation, while the latter deletes a rela-
tion.

4. Operators. Typical operators are conditions and assignments.

5. Operands. Operand can be values, tuples, or relations.

5.9.2 Relational Transaction Management Component

The relational transaction management component (RTMC) executes the execution-
plans created by the RUIC.

A central part of the RTMC is the buffer manager. The buffer manager is
used to store intermediate, i.e., non-materialized, relations used during the ex-
ecution of a query. The buffer manager, which handles the relational structure,
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the relational meta-data and the actual data, is of such a considerable complex-
ity that it is implemented as an internal component inside the RTMC.

An example, using the query and execution plan in figure 5.6, is given
below to illustrate how the execution of a query is performed in COMET Base-
Line.

1. The execution begins using a bottom-up approach.

2. The actual relation engine is loaded. This is performed in the follow-
ing steps:

a) The meta-data for the relation is fetched from the index management
component (IMC).

b) From the meta-data, the size of the relation, i.e., the length of the
tuples and the number of tuples, is determined.

c) Using this information, a buffer is allocated.

d) The location of the first tuple is fetched using the search() opera-
tion in the IMC.

e) The tuple is loaded from the database using the memory management
component (MMC), and is stored in the buffer.

f) The location of the next tuple is fetched using the searchGT() op-
eration in the IMC

g) The steps e) and f) are repeated until the whole relation is loaded.

3. The relation is now restricted, i.e., all tuples not fulfilling the WHERE
subsystem=oil are removed from the buffer.

4. The remaining tuples in the buffer are now updated according to the
assignment SET temperature=78.5.

5. The last step is to write the updated tuples back to the database.

5.9.3 Database Pointer User Interface Component

The database pointer user interface component (DPUIC) provides the database
pointer interface. The DPUIC uses the RUIC to create the execution-plan
needed for the bind operation.
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Figure 5.7: The architecture of the interface management component

5.9.4 Database Pointer Transaction Management Component

The database pointer transaction management component (DPTMC) executes
the incoming database pointer operations. It administers the database pointer
table, in which information about all the database pointers is stored.

The DPTMC uses the RTMC to execute the execution-plans received from
the DPUIC. The difference, compared with relational query processing, is that
the query does not return the value of the data element, but the address of the
tuple in which the data element resides, and an offset.

Since the COMET BaseLine is a non-preemptive DBMS, the database
pointer table does not include locking information. However it is implemented
in such a way that this can easily be extended, or aspectualized.

The DPTMC can also receive requests from the RTMC to update the data-
base pointer table. This is typically done, when tuples are moved or deleted
from the relational query processor.

5.9.5 Index Management Component

The index management component (IMC) in COMET BaseLine implements
the t-tree indexing algorithm. The information in the nodes in the tree has been
extended to contain the database pointer flag.

The architecture of the IMC is shown in figure 5.7. The IMC consists
of two layers of indexes, an upper layer, that indexes the different database
files, and the lower layer that indexes the tuples in each database file. This
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approach was suggested in [12]. The architecture allows the index manager to
be configurable to a high degree.

For systems where the number of relations is fixed, or bounded, the upper
layer index can be implemented as an array of files, while for a more flexible
system a dynamic tree index might be more suitable. The lower layer index
can implement any index structure, e.g., tree or hash index. Different index
structures can be used simultaneously for different relations.

For the upper layer index, COMET BaseLine uses a static array with a
pre-defined length. For the lower layer, the t-tree algorithm is used.

COMET BaseLine uses one file for each relation. Therefore a search for
a tuple in a relation begins with the location of the relation in the upper layer
index. When the relation is located, the lower layer index is used to locate the
tuple.

5.9.6 Memory Management Component

The memory manager component (MMC) manages the stored tuples, and acts
as a dynamic memory manager. It delivers a hardware independent memory
management interface to the database, even for systems that do not support
dynamic memory allocations.

The MMC provides two different types of dynamic memory:

� Tuple ID’s, data structures that contain address information about one
tuple in the database. The MMC provides four operations on tuple IDs,
namely allocate, delete, write, and read.

� Dynamic memory used for buffering and temporary data structures used
during the execution of a transaction. The MMC provides two operations
for dynamic memory, malloc and free.

5.10 Conclusions and Future Work

In this report, we have described the architecture of the COMET database ma-
nagement system, which is configurable to suit different kinds of embedded
control-systems. Furthermore, we have described the first instance of COMET,
designated COMET BaseLine, a version of COMET suited to a vehicle control
system developed at Volvo Construction Equipment Components in Eskilstuna,
Sweden.
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COMET has been developed using a design method called ACCORD [7],
which combines component-based software development and aspect-oriented
software development. COMET BaseLine is implemented using a component-
model called RTCOM [8], which also is a part of ACCORD.

Since the application for which COMET BaseLine is developed is non-
preemptive, there is no need for transaction synchronization and conflict reso-
lution. This means that there is no need for the transaction scheduling compo-
nent, the locking management, or the concurrency control aspect.

The next step is to evaluate the performance of COMET BaseLine, by inte-
grating it into the Volvo Construction Equipment Component control-system.
Implementation of the scheduling management component, the locking mana-
gement component, the concurrency control aspect and backup/recovery aspect
is also planned.
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