Software Development in the Post-PC Era:
Towards Software Development as a Service

Sami Alajrami ™!, Alexander Romanovsky!, and Barbara Gallina?

! Newcastle University, Newcastle upon Tyne, UK
{s.h.alajrami,alexendar.romanovsky }@newcastle.ac.uk
2 Mailardalen University, Visteras, Sweden barbara.gallina@mdh.se

Abstract. Over the years, software development has evolved to meet
the needs of new types of applications and to embrace new technological
disruptions. Today, we witness the rise of mobility where the role of the
conventional high-end PC is declining. Some refer to this era as the Post-
PC era. This technological shift, powered by a key enabling technology,
cloud computing, has opened new opportunities for human advancement.
Consequently, the evolving landscape of software systems drives the need
for new methods for conceiving them. Such methods need to: a) address
the challenges and requirements of this era and b) embrace the benefits
of new technological breakthroughs. In this paper, we list the character-
istics of the Post-PC era from the software development perspective and
describe two motivating trends of software development processes. Then,
we derive a list of requirements for the future software development from
the characteristics of the Post-PC era and from the motivating trends.
Finally, we propose a reference architecture for cloud-based software pro-
cess enactment as an enabler for Software Development as a Service. The
architecture is the first step addressing the needs that we have identified.

Keywords: Software Development, Post-PC Era, Process Enactment, Clouds

1 Introduction

Software systems are playing a critical role in modern society. Many aspects of
our lives (e.g transport and health care) are dependent on software. In a way,
software is smartifying our lives through the smart X trend (phones, watches,
glasses, cars, grids and cities). The list goes on leading to a smart society where
every aspect of the society is connected to, influenced by, and dependent on
software. Although, this helps addressing several societal challenges, it comes
with the cost of increased software complexity. This complexity is then reflected
on the way software is conceived where the expectations of quality, reliability,
security, safety and fast delivery are higher than ever.

Driven by challenges and opportunities, software development will continue
to evolve to address the smart society needs and beyond. For example, the
Internet has made Global Software Engineering (GSE) possible while economical
factors and market needs have motivated the rise of new development paradigms.



As Maximilien and Campos point out [10], we are entering the Post-PC' era.
This era is characterized by the increasing mobility and connectivity of people
and devices, and the use of the Internet as a computing delivery medium. The
role of the traditional personal computers (high-specification desktops) is grad-
ually declining. Personal computers are becoming mobile and low-specification
devices. Users can use any Internet-connected low-specification device to per-
form their tasks on powerful computing resources delivered over the Internet
(using tools which are delivered as services). With this mobility, the relevance of
OSs/platforms becomes less [7] as many software applications are offered in an
OS/platform neutral fashion (e.g. services or HTML5). Cloud computing pro-
vides the enabling computing infrastructure on demand for such applications.

Accordingly, the way software is conceived needs to adapt to the rising Post-
PC era. Software development is a complex socio-technical process which in-
volves multiple stakeholders. Development teams use a wide range of tools/platfo-
rms for development, testing, deployment and operation of software. Some of
these tools are already offered through the Internet (e.g. Eclipse Orion?). This
paradigm is often referred to as Tools as a Service (TaaS). TaaS, however, over-
looks the organizational aspects of the process. Therefore, there is a need for
Software Development as a Service (SDaaS) which uses the cloud to support
modelling, managing and enacting software processes in a model-driven fashion.
SDaaS can utilize cloud as an execution and distribution medium where tools
are offered as services and orchestrated in workflows. Development environments
will be created on the fly and scaled as needed. Engineers will be able to do their
work on-the-go from anywhere. Furthermore, modelling and monitoring the pro-
cess itself will integrate the organizational and management aspects into the
development environment.

In this paper, we propose a reference architecture for cloud-based software
process enactment as an enabler for Software Development as a Service (SDaaS).
This architecture brings the benefits of clouds and modelling to support develop-
ment processes. We describe two industry-inspired development trends from the
two themes: Continuous Delivery and Global Software Engineering. We high-
light the impact of the Post-PC' era on software development and identify the
requirements of software development in that era. Based on these requirements,
we design the proposed SDaaS architecture.

2 DMotivating Trends

In this section, we list and discuss two industry-inspired motivating trends which
describe different development/business needs a modern software vendor is fac-
ing. For each trend, we discuss its impact on software development.

2.1 Continuous Delivery

Continuous Delivery [9] has become a trendy software development paradigm
along with DevOps. Together, they aim at bridging the gaps between devel-

3 https://orionhub.org/



HI deploy

“Latest” (internal) =

test’ atekeeper

i | itch 8
Code Review by Check-in and / (internal use) } e switch on

development peer engineer d | o leploy (‘Ll.lll ord

and testing using regression } (1% users) selecte

by engineer Phabricator testing Release | subset

and Perflab  —>] of users)

\/ v testing }
1

Requested Bug Sunday afternoon  bo———————————
changes fixes Monday Tuesday afternoon
and fixes (contributing

engineers on call)

Fig. 1. Facebook’s deployment pipeline [6].

opment and operations teams and automate the build-test-deploy-release cycle.
The motivation is to achieve frequent releases, reduce conflicts and therefore,
reduce cost. To achieve such automation, teams should follow certain practices
and use supporting tools/platforms. Humble and Farley [9] set the principles
and technical practices for successful implementation of Continuous Delivery.
We use Facebook’s deployment pipeline [6] as an example of a Continuous De-
livery process for large projects. Facebook is an example of a complex software
that requires rapid innovation and release of new features. As shown in Fig. 1,
the release cycle for each new feature starts by engineers coding a new feature or
a bug fix. The code is then reviewed by a different engineer using the Phabricator
code review tool. Tools such as distributed source control and automated testing
packages are used. The code is released on stages: first it is released to internal
employees to test it and is also tested for performance issues using Preflab. Then
(after fixing any discovered issues), it is released to a small portion of users using
the Gatekeeper tool. Only after these stages have passed successfully, the new
feature would be released to all users.

Discussion Facebook is delivered through the Internet and changes and new
features are continuously pushed to users transparently. This means that devel-
opers will be committing and integrating code very often (sometimes on daily
basis). The benefits of such frequency includes maintaining a bug-free code base
and easier bug fixing (since searching for bugs is limited to last pushed code).
Automation and repeatability of the software build-test-deployment-release are
a key enabling factor to Continuous Delivery. To pick up the fruits of Continuous
Delivery, the social/organizational aspect must be considered. For example, if
developers do not commit their code regularly, the Continuous Delivery chain
is broken. Therefore, there is a need for convergence and monitoring support to
ensure certain processes and practices are followed.

2.2 Software Outsourcing

The Post-PC era is also a globalized era. Software development outsourcing
was driven by business and economic factors (e.g. exploiting low-cost developers
and reducing the time-to-market). In addition, companies tend to outsource the



tasks that they lack the skills or expertise to perform. Outsourcing can take place
either within the same organization (intra-organization) or across organizations
(inter-organization).

This example is inspired by the railway system development. In this sce-
nario, there are two companies cooperating on system development. Company
A is a contractor that runs large industrial projects for designing/redesigning
railway networks. Among various tools the company uses a number of simula-
tion tools to visualise and analyse the systems it is building, to debug them,
to check their characteristics (such as throughput, energy consumption, perfor-
mance and capacity). During such projects company A develops a wide range
of models, diagrams, documents and blueprints that will be used for building
the network. As part of this work, company A needs to develop a safe signalling
software to operate the network by following a stringent software process. To
ensure the system safety, company A would like to use industry-strength for-
mal technologies. Company A does not have expertise in conducting large-scale
formal verification of complex systems so it decides to outsource this work to
small independent company B that has the right skill set. Conducting this type
of verification is the main business of company B. The artefacts to be used by
company B include layouts, infrastructure data, service patterns, timetables and
control tables. Due to the confidential nature of these artefacts, company B signs
a non disclosure agreement and a Service Level Agreement (SLA) with company
A and as a precaution, it undertakes all its processes on a private infrastructure.
Both companies (A and B) only exchange relevant artefacts and do not know
each other’s internal processes.

Discussion In reality, large scale projects may include intra and inter-organizat-
ion outsourcing with other teams/partners. Management of such projects can
be tedious and consumes enormous resources (time and effort) to monitor and
synchronize the different outsourced sub-projects. Several issues may arise. Small
issues such as using different tool versions by different teams may easily go
unnoticed till a late stage of the project at which it will become very costly to
fix. Other concerns include how to ensure the quality of the outsourced tasks
and how to monitor that they have been performed according to SLAs. Process-
state-awareness and communication is vital for the success of such distributed
development projects [7]. Therefore, there is a need for efficient management and
monitoring of such projects.

3 Characteristics of the Post-PC Era

The term Post-PC' era was used to describe the fall of PC sales due to the rise
of mobile devices. When David Clark used the term for the first time in a talk
called “The Post-PC Internet” in 1999, he predicted that the future will be “in-
evitably heterogeneous” and “a network full of services” . Today, we can see this

4 http://www.nytimes.com/1999/04/18 /business/economic-view-is-mr-gates-
pouring-fuel-on-his-rivals-fire.html



prophecy taking place in the form of heterogeneous mobile devices and services
while PCs are becoming more portable and low-specification. The technology
shift in this era is enabled by cloud computing technology and the Internet.
This shift has changed the way users access and interact with technology. We
categorize the characteristics of the Post-PC' era into two categories: a) technical
and b) organizational:

3.1 Technical Characteristics

The Rise of Mobility. Over the past few years, mobile devices have been shak-
ing the dominance of PCs. Users use mobile devices for many daily activities.
This has enabled new business models and new software distribution platforms
(e.g. app stores) [7]. Consequently, users have become more mobile and have
adopted new interaction patterns for interacting with technology (e.g. touch
and voice). This increasing mobility impacts software development in two ways:
one impacts the produced mobile software (e.g. to have less power consump-
tion) and the other impacts the development process itself. The new interaction
paradigms that came with mobile devices have driven new works on uncon-
ventional development methods. Microsoft TouchDevelop [4] platform enables
programming on the go using only mobile phone touch screens. Another trend is
using voice recognition to input code . The Cloud as the Development and
Operation Platform. Mobile devices have limited computing power. To over-
come this challenge, mobile applications delegate the processing and storage to
cloud platforms over the Internet. Cloud computing allows acquiring computing
resources on the fly and on a pay-as-you-go pricing model. This paradigm has
enabled Software, Platform (hardware, OS, etc.) and Infrastructure to be offered
as services over the Internet. Consequently, software development is increasingly
relying on Internet services which enable collaboration and integration between
development teams (e.g. Github ). Open source software and crowdsourcing
are examples of how the Internet (powered by the cloud) enables collaborative
development. In addition, many software systems are now built by aggregating
other services from the Internet. Cloud is becoming the development and the
operation environment for software. This trend raises the need for alternative
methods and technologies to conceive, design, implement, test, deploy and evolve
software [7].

3.2 Organizational (Business) Characteristics

On Demand Infrastructure and Tools Acquisition. With cloud and ser-
vices, traditional software distribution models have changed. Desktop clients are
being changed to cloud-based tools and mobile applications. Computing infras-
tructure is now only acquired and scaled up/down as needed. Along with this
shift, pricing models have also changed from the desktop client licence model
to in-app purchases and pay-as-you-go models. Globalized Development. As

® https://www.youtube.com/watch?v=8SkdfdX WYal
5 https://github.com/



mentioned earlier, the Post-PC' era is driving the development and operation
to take place in the cloud. This has facilitated undertaking global software de-
velopment projects. Software development outsourcing helps reducing costs and
development time, but also introduces management challenges to overcome spa-
tial, cultural and geographical distances in order to ensure the quality of the
product and effective communication between development teams. Dissolving
Boundaries. The Internet has made geographical boundaries within or between
companies disappear. In addition, team boundaries are also fading [7]. Design,
development, testing and operations are no longer isolated tasks. Trendy devel-
opment paradigms such as DevOps calls for tight collaboration and integration
across these tasks.

4 Software Development in the Post-PC Era

The characteristics listed in the previous section affect how software develop-
ment is going to be conducted in the near future and raises the need for new
methods and tools for software development. Here, we list a non-exhaustive list
of requirements (derived from Sections 2 and 3) for the next software devel-
opment environments: Process Monitoring & Management. Regardless of
which process model you use, the need for process visualization, monitoring the
process status and detecting/predicting problems and deviations becomes vital.
Considering the outsourcing scenario in Section 2, visual models of the process
would ease communication and understanding between distributed teams. Pro-
cess monitoring and status checking would help project managers to identify
bottlenecks in the process; Tools as a Service. The process models contain
the tools needed to support the process. To achieve executability of models, the
required tools should be available as a service over the Internet. While some
tools can be automated, others can be interactive. Interactive tools should pro-
vide interaction patterns over the Internet. Consistency of tool versions used
by distributed teams for development and production is vital. As Humble and
Farley [9] demonstrate (using their experience from real-world projects), using
different versions of the same package by collaborating teams could create very
costly problems; Provenance, Governance & SLA monitoring. Software
development is a human-centric process and when the involved humans are dis-
tributed within the same or across different companies, effective management
becomes essential. As mentioned earlier, process monitoring and consistency
checks are important, but they are not enough. Data about the process, its en-
actment environment, the tools used, the stakeholders involved and the artefacts
produced/consumed should be logged. Such data can be useful for process im-
provement and accountability. Moreover, when multiple companies are involved
in a project, the processes followed by both parties should comply with the agreed
SLA. Therefore, there is a need for SLA monitoring to assist the management
of such collaborative projects and ensure all parties are compliant; Artefacts
Management. Artefacts are tightly related to the previous needs and process
models are artefacts themselves. Therefore, artefacts should be managed and



stored effectively. They should be accessible from anywhere and available at
any time. Changes made to them should be tracked and different versions of
an evolving artefact should be kept; Automation. The question about how
much automation one can have in a software process is important. The answer
is indeed, a limited portion. However, automation when possible is beneficial.
Repetitive tasks such as the build-test-deploy-release cycle are error-prone and
their automation can prevent errors and save time. Non-interactive tasks (e.g.
testing or model checking) can be automated. Furthermore, automated back-
ground service can be run to check consistency and compliance and monitor
SLAs.

5 Reference Architecture for Enabling SDaaS

Aggregating the previous needs leads to Software Development as a Service
(SDaaS). SDaaS provides tools for modelling, enacting and managing software
processes. It enables orchestrating tools on the fly as services and manage and
store artefacts in the cloud. In addition, it enables utilizing the scalable cloud
resources to run automated processes and meet the needs of computing-intensive
tasks (e.g. code analysis and testing). In this section, we propose a reference
architecture for SDaaS. The architecture is model-driven where processes are
modelled and enacted as workflows.

The architecture complies with the Workflow Management Coalition (WfMC)
reference model [8] and is designed as a service. It consists of three main com-
ponents: a) The modelling and management interface is offered as Software
as a Service (SaaS) and allows distributed teams to access, model, enact and
manage processes. b) The enactment service is offered as a Platform as a
Service (PaaS) and handles the instantiation, enactment and monitoring of pro-
cess models. And ¢) Workflow Engines are deployed in a set of hybrid clouds
and enact the individual workflow tasks/activities.

5.1 Process Modelling (Build Time)

Software processes consist of a set of different types of (e.g. interactive or auto-
mated) activities, which are to be enacted by different stakeholders with differ-
ent enactment requirements (e.g. privacy, computing power). These process de-
tails need to be captured. Software & Systems Process Engineering Meta-model
(SPEM2.0) [11] is the Object Management Group (OMG) standard for modelling
software processes. SPEM2.0 lacks explicit support for expressing cloud-based
process enactment and control flow semantics. Consequently, we proposed EXE-
SPEM [2] which is an extension of SPEM2.0 for cloud-based enactment. Software
process models modelled in EXE-SPEM can be mapped to an executable XML
notation.

Fig. 2 shows the software process build time components which are packed
as a SaaS solution. The Model Authoring module allows constructing pro-
cess models using EXE-SPEM constructs. The Access & Sync. Service ap-
plies access management policies and ensures the consistency of models that



—_— [s—
- i- Repositories

.
b
Model / Artefacts Manager
(O Authorin [
= ¢ @
= 1 Consistency & External © ‘
Access & Sync. f T Compliance Workflow 8 3
0.0 Service H <|| 2 Checker Collaboration -
© - @
LA - =g ] ’
- 0l c A
w3 i 5 &
Model el 2 Execution SLA (7]
-]
Storage Service Manager Monitor x ’
. | Uy
[~ ] i &
= Model '
Transformations 1 \ l Workflow Engines Registry ‘ // Tools

Workflow Engines

Build Time (Saas) Runtime (Paas$)

Fig. 2. Detailed architecture for the Software Development as a Service (SDaaS) plat-
form.

are being authored by distributed teams simultaneously. This module also no-
tifies collaborators when a model is changed/updated. Once the model is au-
thored, the Model Storage Service allows saving/retrieving the model into
the cloud-based repository through the enactment service API. Finally, models
can be transformed into the executable XML notation from EXE-SPEM using
the Model Transformations module.

5.2 The Enactment Service (Runtime)

The enactment service has an API to interact with the process modelling service.
This way, modelling can be done from SaaS or a plug-in for a legacy desktop
client. Behind the API, the service is responsible for the runtime instantiation
and execution of process models. To do this, the service consists of several mod-
ules as illustrated in Fig. 2. These modules are: The REST API provides
endpoints for process enactment and monitoring and artefacts storage and re-
trieval; The Artefacts Manager stores the artefacts and meta-data about
them into the artefacts repository. Software processes involve producing large
number of artefacts such as: code, models and documentation. These artefacts
capture invaluable information about both the software process and product
evolution. The artefact meta-data includes: actors involved, version, tools used
and the date and time the artefact was created/modified; The External Tools
are service blocks performing the process activities. These blocks are either: in-
teractive, control points (providing control flow during the process execution) or
automated fire-and-forget activities. This module provides the necessary infor-
mation on these activities when needed for process execution; The Execution
Manager orchestrates the enactment of process models. First, an instance of
the model is created and the ready-to-execute activities are passed to the sched-
uler. The scheduled activities are then executed on workflow engines. During



the execution of the process, the execution manager tracks of the status of the
process instance being executed. This module also logs all the provenance data
about each process instance execution; The Workflow Engines Registry is
responsible for starting, stopping and monitoring workflow engines based on
the activities scheduling policies used by the scheduler. Workflow engines are
independent applications running on different cloud providers. Activities get ex-
ecuted in a workflow engine that is deployed on a public or private cloud. The
workflow engine has to meet the execution requirements expressed in the pro-
cess model. The execution of activities is a black-box execution which means that
the workflow engine would not know any information about the process being
executed. This reduces the risks of privacy and confidentiality breaches. In or-
der to decouple the enactment service from the workflow engines, asynchronous
communication between them is achieved through message oriented middleware;
The Scheduler handles the planning of process execution. This involves check-
ing the needed resources (from the process model). The scheduler should operate
using a policy to meet the the enactment requirements (e.g. enacting an activ-
ity on a private cloud) while minimizing the cost. Several cloud-based workflow
scheduling algorithms exist and can be used (e.g. [1]). The schedules generated
by the scheduler determine the expected load of execution and is used by the
workflow engines registry to dynamically scale the number of workflow engines;
The Consistency Checker automatically checks the process consistency dur-
ing its execution which can alleviate problems early and save time and cost (as
explained in Section 4). Discussion of consistency checking techniques is beyond
the scope of this paper; The SLA monitor transparently ensures that all par-
ties collaborating on a project are not breaching the agreed SLA (as explained in
the software outsourcing scenario in Section 2). While each organization can have
its own SDaaS environment, these environments can exchange data about the
process state and execution using the External Workflow Collaboration module;
Finally, The External Workflow Collaboration allows process execution to
incorporate invoking processes managed by another workflow system (e.g. from
a different company).

6 Conclusion

The Post-PC era is here and software is embedded in almost every aspect of our
daily life. Software systems have evolved but the way they are conceived still
needs to be rethought to adapt to the new era’s challenges and to embrace its
technological breakthroughs.

In this paper, we have described the characteristics of the new era and its
impact on software development. We also proposed the SDaaS reference archi-
tecture for supporting software processes enactment. To become a reality, this
proposal requires tools to be offered as services. We have developed a prototype
of the proposed architecture consisting of an enactment engine that executes
software processes, a number of off-the-shelf tools deployed as services in our
tool repository and an artefact store. The prototype was used to enact a safety-
related process [3] and a number of verification/modelling processes. Our ongoing



work focuses on implementing larger and more complex processes and evaluat-
ing the architecture proposed. In a longer run we aim at creating a community
of developers extending the architecture and applying it for the development of
complex software systems.

Additionally, Empirical studies are needed to study the effects of this proposal
on the organizational, technical and economical aspects of software development
processes. Furthermore, the effect on different development process models (e.g.
Agile) also needs to be analysed and benchmarked. Usability studies can deter-
mine the effects this approach may have on individual developers, managers and
other stakeholders. Indeed, as Fred Brooks put it, “There is no silver bullet” and
we can only eliminate accidental difficulties in software development. Inherent
difficulties will continue to exist as software and its development evolve [5].

References

1. Abramson, D., Lees, M., Krzhizhanovskaya, V., Dongarra, J., Sloot, P.M., Wang,
J., Korambath, P., Altintas, 1., Davis, J., Crawl, D.: Workflow as a service in the
cloud: Architecture and scheduling algorithms. Procedia Computer Science 29, 546
— 556 (2014)

2. Alajrami, S., Gallina, B., Romanovsky, A.: Exe-spem: Towards cloud-based ex-
ecutable software process models. In: Proceedings of the 4th International Con-
ference on Model-Driven Engineering and Software Development, MODELWARD
’16. pp. 517-526 (2016)

3. Alajrami, S., Gallina, B., Sljivo, I., Romanovsky, A., Isberg, P.: Towards cloud-
based enactment of safety-related processes. In: Proceedings of the 35th Interna-
tional Conference on Computer Safety, Reliability and Security, SafeComp ’16. vol.
LNCS 9922 (2016), to appear

4. Ball, T., Burckhardt, S., de Halleux, J., Moskal, M., Tillmann, N.: Beyond open
source: The touchdevelop cloud-based integrated development environment. Tech.
Rep. MSR-TR-2014-127, Microsoft Research (September 2014)

5. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20, 10-19 (1987)

6. Feitelson, D., Frachtenberg, E., Beck, K.: Development and deployment at face-
book. IEEE Internet Computing 17(4), 8-17 (2013)

7. Fuggetta, A., Di Nitto, E.: Software process. In: Proceedings of the on Future of
Software Engineering. pp. 1-12. FOSE, ACM (2014)

8. Hollingsworth, D.: Workflow Reference Model. No. TC00-1003, Workflow Manage-
ment Coalition (WfMC) (January 1995)

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edn.
(2010)

10. Maximilien, E.M., Campos, P.: Facts, trends and challenges in modern software
development. Int. J. Agil. Extrem. Softw. Dev. 1(1), 1-5 (Jul 2012)

11. OMG: Software and Systems Process Engineering Meta-Model Specification, V2.0
(April 2008)



