
Mälardalen University Licentiate Thesis
No.12

Handling Aperiodic Tasks and
Overload in Distributed

Off-line Scheduled
Real-Time Systems

Tomas Lennvall
May 2003

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c
�

Tomas Lennvall, 2003 1

ISBN 91-88834-03-4
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

1Paper A, B, and C c
�

IEEE

Abstract

System designers face many choices when designing a real-time system. They
have to decide how to deal with the original requirements imposed on the sys-
tem, which operating system (OS), OS functionality, and scheduling algorithm.
Ideally designers have a lot of freedom when choosing the most suitable con-
figuration for the system. Unfortunately this is not the case in most present day
situations.
Real-time applications impose complex constraints, such as precedence, end-
to-end deadlines, jitter, and distribution, in addition to non-complex constraints,
such as periods and deadlines. There might also be a need to handle on-line
activities, such as aperiodic or sporadic tasks, or even to anticipate overload
during run-time.
On-line scheduling provide flexibility and supports overload handling, but han-
dling complex constraints can be costly or even intractable.
On the other hand, off-line scheduling resolves complex constraints and pro-
vides determinism at the cost of flexibility.
This disparity between scheduling paradigms forces designers to choose either
flexibility or determinism.
OS kernels are usually monolithic, meaning that kernel functionality, dispatcher,
and scheduling algorithms are usually intertwined to achieve higher perfor-
mance, at the cost of limiting the designers choice.
In this thesis we provide designers with some methods to alleviate these prob-
lems. We increase the flexibility in off-line scheduled systems by using the
total bandwidth server (TBS) for aperiodic task handling.
Furthermore we provide overload handling in off-line scheduled systems, which
is handled in such a way that the original constraints are still met. Tasks can
also be migrated from overloaded nodes to provide load balancing.
We also propose a plug-in scheduling architecture where we disentangle the
scheduling algorithm from the kernel routines providing for easy replacement
of algorithm, as opposed to the monolithic kernels. This gives designers more
flexibility in choosing the appropriate scheduling algorithm independently from
the OS.

Acknowledgements

There are many people I wish to thank for supporting me during the years I
have spent working for this licentiate thesis.
First I wish to thank my supervisor Gerhard Fohler for guiding me through my
graduate education and for many interesting technical discussions, most related
to this work but also some about common spare time interests.
Furthermore I wish to thank my colleagues here at the Department of Computer
Science and Engineering, especially the “salsart” group: Damir Isović, Radu
Dobrin, and Larisa Rizvanović for all the help they have provided during this
time.
Many thanks also to all my other colleagues here at the department, for making
this place fun to work in.
During my studies I have also met colleagues from other countries, especially
from Italy. I want to thank all the people in the Retis Lab, Scuola Superiore
S.A., Pisa, who took care of me during my visit, thanks Giorgio, Gerardo,
Peppe, Luigi, Luca, and Marco, and of course my good friend Paolo Gai.
Finally I want to thank my parents (and my brother) for their support during
my studies.

Västerås, March 2003
Tomas Lennvall

Contents

1 Introduction 1
1.1 Real-Time Systems . 1

1.1.1 On-Line and Off-line Scheduling 2

1.1.2 Event and Time Triggered Systems 2

1.2 Problem Formulation . 3

1.2.1 Constraints . 3

1.2.2 Constraint and Task Handling 4

1.2.3 Overload . 5

1.2.4 Operating Systems 5

1.3 Contribution . 6

1.4 Related Work . 7

1.4.1 Combining On-Line and Off-Line Scheduling 7

1.4.2 Overload Handling 8

1.5 Overview of Papers . 9

1.5.1 Paper A: Improved Handling of Soft Aperiodic Tasks
in Off-Line Scheduled Real-Time Systems using Total
Bandwidth Server . 9

1.5.2 Paper B: Handling Aperiodic Tasks in Diverse Real-
Time Systems using Plug-Ins 10

1.5.3 Paper C: Enhancing Time Triggered Scheduling with
Value Based Overload Handling and Task Migration . 10

1.5.4 Paper D: Simulation Results and Algorithm Details for
Value Based Overload Handling 11

1.6 Summary . 11

vi CONTENTS

2 Paper A: Improved Handling of Soft Aperiodic Tasks in Offline
Scheduled Real-Time Systems using Total Bandwidth Server 17
2.1 Introduction . 19
2.2 Terminology and assumptions 21
2.3 Integration . 23

2.3.1 Rationale . 23
2.3.2 Offline schedule construction and bandwidth reserva-

tion strategies . 24
2.3.3 Transformation technique 24
2.3.4 Online scheduling 25

2.4 Example . 27
2.4.1 Transformation into simple

constraints . 28
2.4.2 Online Scheduling 28

2.5 Simulations . 29
2.6 Conclusion . 31

3 Paper B: Handling Aperiodic Tasks in Diverse Real-Time Systems
via Plug-Ins 35
3.1 Introduction . 37
3.2 System and Plug-In Architecture 38

3.2.1 Target System Architecture and Interface 38
3.2.2 Plug-In Interface . 39
3.2.3 System and Plug-In Interaction 40

3.3 Target System Diversity and Plug-In Applicability 41
3.3.1 Earliest deadline scheduled system 41
3.3.2 Off-line scheduled system 42

3.4 Plug-Ins for Aperiodic Task Handling 43
3.4.1 Off-line Preparations - Slot Shifting 44
3.4.2 Online Activities . 45
3.4.3 Guarantee Plug-Ins 47

3.5 Example . 48
3.6 Conclusion . 53

4 Paper C: Enhancing Time Triggered Scheduling with Value Based
Overload Handling and Task Migration 57
4.1 Introduction . 59
4.2 System assumptions and basic idea 61

4.2.1 Task model . 61

CONTENTS vii

4.2.2 Handling the mixed task set 62
4.2.3 Basic idea . 62

4.3 Remote task stealing . 63
4.3.1 Node communication 65

4.4 Overload handling . 65
4.4.1 Problem formulation 66
4.4.2 Rejection algorithm 69

4.5 Simulations . 72
4.6 Conclusions . 73

5 Paper D: Simulation Results and Algorithm Details for Value Based
Overload Handling 61
5.1 Algorithm for computing overload amount 63
5.2 Simulations . 64

List of Figures

2.1 Total Bandwidth Server example 26
2.2 Precedence graph for the tasks of the example. 27
2.3 Derived simple constraints. 28
2.4 Schedule produced by EDF on the offline transformed task set. 29
2.5 Schedule produce by EDF using the integrated approach. . . . 30
2.6 Response times for the soft aperiodic tasks. 31

3.1 Plug-in and system architecture 39
3.2 Example plug-ins . 42
3.3 Plug-in A and Plug-in B . 47

4.1 Node communication (�����). 66
4.2 Node communication (�����). 66
4.3 Even load distribution. 73
4.4 Uneven load distribution. 73

5.1 Accumulated value for even load distribution. 66
5.2 Accumulated value for uneven load distribution. 66
5.3 Accumulated value for different cutoff values. 67
5.4 Average number of operations for different cutoff values. . . . 68
5.5 Maximum number of operations for different cutoff values. . . 68

List of Publications

The following articles are included in this licentiate2 thesis:

A Improved Handling of Soft Aperiodic Tasks in Off-Line Scheduled Real-
Time Systems using Total Bandwidth Server, Tomas Lennvall, Giorgio
Buttazzo and Gerhard Fohler, In Proceedings of 8th International Con-
ference on Emerging Technologies and Factory Automation, Nice, France,
October 2001.

B Handling Aperiodic Tasks in Diverse Real-Time Systems using Plug-Ins,
Tomas Lennvall, Björn Lindberg, and Gerhard Fohler, In Proceedings
of the 5th International Symposium on Object-Oriented Real-Time Dis-
tributed Computing, Washington D.C., USA, April-May 2002.

C Enhancing Time Triggered Scheduling with Value Based Overload Handling
and Task Migration, Jan Carlson, Tomas Lennvall, and Gerhard Fohler,
In Proceedings of 6th International Symposium on Object-Oriented Real-
Time Distributed Computing, Hakodate, Japan, May 2003.

D Simulation Results and Algorithm Details for Value Based Overload Han-
dling, Jan Carlson, Tomas Lennvall, and Gerhard Fohler, Technical Re-
port, Mälardalen University, 2002.

2A licentiate degree is a Swedish graduate degree halfway between MSc and PhD.

Chapter 1

Introduction

1.1 Real-Time Systems

Real-time systems are becoming more and more commonplace, and are used
in applications ranging from cars, airplanes, and factory automation, to mobile
phones, and multimedia systems. Real-time systems are defined as systems
where: “not only the functional but also the timely correctness is important”,
i.e., not only the logical correctness of the computations performed are impor-
tant, but also at which time these computations are complete [1].
Each computation has an associated deadline. If the computation does not
complete before the deadline the system is considered to fail, and depending
on the category of the system, this can lead to serious consequences.
Real-time systems are usually divided into two categories: hard and soft.
Hard real-time systems have stringent requirements on both the functional and
timely behavior, if either of these fail the consequences can be catastrophic,
such as damage to people or property.
Soft real-time systems, on the other hand, are systems that can tolerate an oc-
casional failure of the timing requirements without any severe consequences,
e.g., only a possible degradation of performance or quality.
Real-time systems consist of applications and resources, where resources usu-
ally consist of one or several CPUs. Applications consist of tasks that cooperate
to achieve the global goal of the application. To avoid contention and conflict
between these tasks over the resources that exist in the system, i.e., the CPU(s),
a scheduling algorithm need to determine when to execute the tasks (in which
order). There are two main scheduling algorithms paradigms, off-line, or on-

2 CHAPTER 1. INTRODUCTION

line scheduling. Off-line scheduling takes place before run-time and provides
predictability and support for general constraints at the cost of flexibility. On-
line scheduling, on the other hand, provides flexibility and dynamic run-time
activities, but at the expense of less support for handling multiple constraints.

1.1.1 On-Line and Off-line Scheduling

On-line scheduling provides flexibility for partially, or non specified, activities,
i.e., for run-time aperiodic and sporadic activities. Feasibility tests determine
whether a given task set can be feasibly scheduled according to the rules of the
particular algorithm applied. On-line scheduling allows to efficiently reclaim
any spare time coming from early completions and allows to handle overload
situations according to actual workload conditions. On-line schedulers are di-
vided in two categories, dynamic priority schedulers, i.e., earliest deadline first
(EDF), and fixed priority schedulers (FPS) as defined in [2]. In our work we
focus on EDF scheduling.
Off-line scheduling, also called table driven scheduling, is capable of con-
structing schedules for distributed applications with complex constraints, e.g.,
precedence, jitter, and end-to-end deadlines. The inclusion of additional con-
straints into an offline scheduler is typically straightforward, e.g., by including
the constraints in a feasibility test applied during schedule construction. As a
result, the off-line scheduler produces a table containing task execution posi-
tions. During run-time only a table lookup is necessary to execute the schedule,
resulting in very simple run-time dispatching.
This approach has been shown to be suitable for critical hard real-time sys-
tems in [3, 4]. By applying strict temporal control, critical activities can be
performed in a deterministic way.

1.1.2 Event and Time Triggered Systems

Real-time systems are usually further classified as event or time-triggered, with
respect to how the real-time activities are controlled.
In event-triggered systems, the activities happen in response to external events.
The typical example of this is the sensor-actuator example: a sensor detects an
external event and activates a task that reacts to this event (performs a compu-
tation), after which the task sends it’s output to an actuator. This is an example
of a system reacting and adjusting to an external event.
One of the main problems with event-triggered systems is that external events
can cause many tasks to be activated, thus, causing overload in the system,

1.2. PROBLEM FORMULATION 3

potentially leading to system failure. On-line scheduling is suitable for event
triggered systems as it provides the ability to handle dynamic on-line events.
SPRING [5] is an example of an event-triggered real-time operating system.
Time-triggered systems, on the other hand, require an a priori knowledge about
all activities. In distributed time-triggered systems, each node must have the
same notion of time, implying that clock synchronisation is needed. The main
advantage of time-triggered systems is the predictable behavior they provide at
the cost of low run-time flexibility. Time triggered systems are scheduled us-
ing off-line scheduling, which provides a time table containing task activation
times, corresponding to the external events. An example of a time-triggered
real-time operating system is MARS [6].
In this thesis we combine time and event triggered activities. In particular,
we provide overload and efficient aperiodic task handling in time-triggered
systems.

1.2 Problem Formulation

In this section we discuss some of the choices real-time system designers face.
The choice of which scheduling algorithm to use partly depends on the re-
quirements imposed on the system. One part of the system might require hard
real-time guarantees and have complex constraints while another part have less
stringent demands. This requires the designer to choose either an off-line or
on-line scheduling algorithm, or, as in the situation above, maybe a combina-
tion of both.
Another influence on the choice of scheduling algorithm is the potential need
to anticipate dynamic run-time activities, such as aperiodic or sporadic tasks
and overload.
A related problem is that most OS’s only provide a fixed scheduling algorithm
that is tightly integrated with the kernel. This setup does not provide designers
with any choice of which scheduling algorithm to use, even if the provided
algorithm is not the most appropriate one.

1.2.1 Constraints

We have mentioned general constraints and that off-line scheduling provides
more capability of handling them than on-line scheduling, but this actually
depends on what class of constraint it is. Constraints originate from the de-
mands of the application and impose requirements on the system. We define

4 CHAPTER 1. INTRODUCTION

two classes of constraints as:
Simple can easily be handled by on-line scheduling algorithms. Examples of
such constraints are periods, start times, and deadlines.
Complex constraints, on the other hand, cause problems for on-line schedulers.
However, some of them can be solved at the cost of a higher overhead. Here
we give some examples of complex constraints:

Jitter causes the start or end of tasks to vary, which means that the interval
between task instance invocations will vary. Some applications require
the jitter between task instances to be constant or to have a small varia-
tion. In the extreme, periodic tasks can have invocations back-to-back or
at the start of the first period and end of the second period.

Distribution cooperating tasks can execute on different nodes in a system,
which can require synchronisation. Many real-time systems are dis-
tributed by nature, requiring synchronisation and communication be-
tween the parts. In order to provide determinism in such systems, the
scheduler requires a global view of the whole distributed system.

Precedence means that a series of tasks must execute in a predefined order
(also called a transaction). The basic example is the already mentioned
sensor-actuator example, where the sensor measures some data, then
computation take place, and finally data is sent to the actuator.

End-to-end deadline are deadlines for whole transactions of tasks, i.e., when
the first task starts, a deadline is determined for the whole transaction of
tasks. In the sensor-actuator example an end-to-end deadline exists for
the whole transaction, from the sampling to the actuation.

1.2.2 Constraint and Task Handling

As mentioned, on-line scheduling methods provide high flexibility. However
adding constraints, increases scheduling overhead [7] or requires new, specific
schedulability tests which may have to be developed yet. Handling complex
constraints can be very costly in terms of overhead.
Off-line systems require a priori knowledge about all system activities and
events which will occur during runt-time. This information may be hard or
even impossible to obtain. The lack of flexibility prevents effective handling of
dynamic run-time activities, such as aperiodic or sporadic tasks and overload.

1.2. PROBLEM FORMULATION 5

This disparity of capabilities of the on-line and off-line scheduling paradigms
imposes the choice of choosing the benefits of either algorithm at the expense
of the other’s, between general constraints or run-time flexibility.

1.2.3 Overload

Overload is defined as a situation when there is not enough CPU time available
to schedule all tasks to completion, i.e., some tasks will miss their deadlines.
Overload situations are usually sudden and transient, i.e., if a system reacts to
a sudden event by activating many tasks. When overload situations will occur,
is very hard, if not impossible to predict.
Traditional on-line scheduling algorithms such as EDF or FPS behave poorly
in overload situations, as shown in [8]. In the worst case they might even cause
all tasks to miss their deadlines.
Off-line schedulers also handles overload poorly because of the lack of flexi-
bility they provide. If eventual overload situations have to be included as a con-
sideration when creating an off-line schedule, the result will in many cases lead
to in an over-constrained system. At the same time, because of the low flexibil-
ity, the number of allowed overload activities would usually be restricted over
the system lifetime.
Since real-time system can also be distributed, it is possible that overload situa-
tions occur on a set of processing nodes although the system is globally under-
loaded. Such situations could be resolved by migrating tasks from overloaded
nodes to nodes with underload.

1.2.4 Operating Systems

As mentioned earlier, operating system functionality, e.g., scheduling algo-
rithms, are usually fixed and integrated into the kernel (monolithic operating
system kernels).
These monolithic kernel approaches involve a very close coupling between
the scheduler and operating system. Implementation of the actual real-time
scheduling algorithm is integrated with other kernel routines such as task switch-
ing, dispatching, and bookkeeping to form scheduling/dispatching module.
Usually, changing scheduler in such a system results in redesign of both the
system and application, which is often considered to costly.
This contrasts actual industrial demands: designers want to select various types
of functionality without consideration of which package they come from or
which operating system functionality to use. They are reluctant to abandon

6 CHAPTER 1. INTRODUCTION

trusted methods and to switch packages for the sake of an additional functional
module only. Instead, there is a need to seamlessly integrate new functional-
ity with a developed system, enabling designers to choose the best of various
packages and to focus on the application and its demands.

1.3 Contribution

In this section we identify the scientific contributions of the work in this thesis.

� Reservation of bandwidth in an off-line schedule so that it later can be
used by on-line server algorithms, such as the total bandwidth server
(TBS) [9, 10]. The bandwidth is available in any interval over the length
of the off-line schedule, which usually is equal to the least common mul-
tiple (LCM) of the periods of the tasks.

� Precise formulation of overload detection and value based rejection in
the presence of off-line scheduled tasks. Overload situations are detected
immediately when the offending tasks arrive, and resolved by rejection
of low value tasks.

The problem of overload detection and removal can be reduced to the
well known binary knapsack problem, an we use this similarity to model
the problem.

� Heuristic based overload handling algorithm, we guarantee timely exe-
cution of the off-line scheduled tasks. We need to use a heuristic solution
since the binary knapsack problem is NP-hard, indicating that an optimal
solution is not feasible.

� The proposed overload handling we propose includes possible task mi-
gration to benefit from the distributed system (all nodes are not neces-
sarily overloaded). Overloaded nodes store rejected tasks in a temporary
queue and under-loaded nodes can request tasks from this queue if they
can schedule them.

� To disentangle the real-time scheduling from the operating system (OS)
kernel routines and the actual dispatching, we propose a plug-in based
scheduler architecture. Each scheduling algorithm is fitted into a plug-in
module, with a common interface, and can thus be interchanged without
any changes to the application or to the OS.

1.4. RELATED WORK 7

Designers get greater freedom of choice in deciding which algorithm to
use, i.e., the one that is most appropriate to the situation. This counters
the current fashion of forcing the designer to use the algorithms supplied
by the real-time OS, which may not suit.

� The interface provided for the plug-in module architecture is small and
intuitive. Adding new scheduling algorithms is straightforward and only
requires that the design conforms to the intended behavior of the inter-
face.

1.4 Related Work

Off-line scheduling has been extensively investigated in [11, 12] by Kopetz
et al. The MARS operating system, in [4], is an off-line scheduled real-time
operating system, suitable for critical hard real-time applications.
On-line scheduling has also received lot of attention in research, both EDF and
FPS has been extended to handle various types of tasks and situations. EDF
has also been extended to handle aperiodic tasks by using server algorithms,
in [9, 10, 13] various server algorithms are presented, including the total and
constant bandwidth servers. The advantage of the server approach is that the
server can be treated as a “normal” task in the temporal analysis. In [2], Liu and
Leyland provide analysis for a least upper bound for the processor utilisation
of both EDF and FPS.

1.4.1 Combining On-Line and Off-Line Scheduling

How to introduce flexibility into off-line schedules has been studied in [14], in
which a method, called slot-shifting is presented. Slot-shifting transforms an
off-line schedule where tasks originally have complex constraints into a set of
independent on-line tasks. As a result, each of these independent on-line tasks
has an execution window in which they have to run. To keep track of available
resources in a schedule slot-shifting uses intervals and spare-capacity. Slot-
shifting also includes handling of hard and soft aperiodic tasks.
In [15] the slot-shifting algorithm is extended to handle sporadic tasks as well,
and a new more efficient on-line guarantee test is provided.
From the on-line side, the integration of different scheduling paradigms in the
same system requires a resource reservation mechanism to isolate the tempo-
ral behavior of each schedule. In [16], Mercer, Savage, and Tokuda propose
a scheme based on processor capacity reserves, where a fraction of the CPU

8 CHAPTER 1. INTRODUCTION

bandwidth is reserved to each task. This approach removes the need of know-
ing the worst-case computation time (WCET) of each task because it fixes the
maximum time that each task can execute in each period. Since the periodic
scheduler is based on the Rate Monotonic algorithm, the classical schedulabil-
ity analysis can be applied to guarantee hard tasks, if any present.
In [17], Liu and Deng describe a two-level scheduling hierarchy which allows
hard real-time, soft real-time, and non real-time applications to coexist in the
same system. According to this approach, each application is handled by a ded-
icated server, which can be a Constant Utilization Server [18] for tasks that do
not use non-preemptable sections or global resources, and a Total Bandwidth
Server [10, 9] for the other tasks. At the lowest level, all jobs coming from the
different applications are handled by the EDF scheduling algorithm. Although
this solution can isolate the effects of overloads at the application level, the
method requires the knowledge of the WCET even for soft and non real-time
tasks.
The use of information about amount and distribution of unused resources for
non periodic activities is similar to the basic idea of slack stealing [19], [20]
which applies to fixed priority scheduling. Our method applies this basic idea
in the context of off-line and EDF scheduling. Chetto and Chetto [21] pre-
sented a method to analyze idle times of periodic tasks based on EDF. Our
scheme analyzes off-line schedules, which can be more general than strictly
periodic tasks, e.g., for control applications.

1.4.2 Overload Handling

Value based overload handling has been thoroughly investigated. In [22], a
number of methods that use values and deadlines to handle overload are com-
pared. For a wide range of overload conditions, the best performance was
achieved by EDF scheduling extended with a value based overload recovery
mechanism and resource reclaiming. An example of such an algorithm is RED
[23].
For very high overloads, scheduling based on value density outperforms EDF
based methods. In [24] task priorities are calculated dynamically from val-
ues and remaining execution times. They consider tasks with soft deadlines,
i.e., values that decrease if the deadline is missed, rather than become zero or
negative.
In [25], an overload algorithm is presented for the special case when a mini-
mum slack factor for every task is known. In this work they assume that all
tasks are equally important. In our solution we have two different types of

1.5. OVERVIEW OF PAPERS 9

tasks, and off-line scheduled tasks are more important than on-line aperiodic
tasks.
These methods do not consider distributed scheduling, or overload handling in
the presence of off-line scheduled critical tasks.
Distributed overload handling is addressed in, e.g., [26], where an acceptance
test is performed upon arrival of aperiodic tasks. If it fails, the node initiates
an intricate bidding procedure, in which nodes cooperate to decide where to
migrate the task.
The problem considered in this thesis requires an overload handling where val-
ues are taken into account. Another difference is that in our method migration
is initiated by the receiving node rather than the current owner of the task.
Thus, task migration is integrated with resource reclaiming and the acceptance
test of new aperiodic tasks.

1.5 Overview of Papers

1.5.1 Paper A: Improved Handling of Soft Aperiodic Tasks
in Off-Line Scheduled Real-Time Systems using Total
Bandwidth Server

Summary In this paper we propose a method to efficiently handle soft real-
time tasks in off-line scheduled real-time systems using total bandwidth server.
It uses off-line scheduling to handle complex constraints and reduce their com-
plexity by transforming a constructed feasible schedule into independent tasks
on single nodes with start times and deadline constraints only. These are suited
for flexible earliest deadline first scheduling methods at run-time. The con-
crete off-line scheduler used for this work [27] allows for preemptive tasks with
precedence constraints, end-to-end deadlines, distribution, network scheduling
and jitter control. Furthermore, the off-line scheduler guarantees that the re-
sulting task set guarantees the availability of a minimum bandwidth for use
at run-time, extending the range of applicable methods and constraints. Via
the transformed task set and bandwidth, our method provides an interface to
combine off-line and on-line scheduling algorithms.
On-line scheduling is used to efficiently handle those activities that cannot be
completely characterized off-line in terms of worst-case behavior, and hence
cannot receive a priori guarantee. Examples of these activities include soft
aperiodic tasks (e.g., multimedia tasks) whose computation time or inter-arrival
times can have significant variation from instance to instance. Moreover, on-

10 CHAPTER 1. INTRODUCTION

line scheduling is used to reclaim any spare time coming from early comple-
tion. A bandwidth reservation technique [13] is used to isolate the temporal
behavior of the two schedules and prevent the event-driven tasks to corrupt the
off-line scheduled tasks. This reservation technique uses the available band-
width guaranteed by the off-line scheduler.

1.5.2 Paper B: Handling Aperiodic Tasks in Diverse Real-Time
Systems using Plug-Ins

Summary In this paper we propose the use of a plug-in approach to add
functionality to existing scheduling schemes and provide for easy replacement
at the operating system level. In particular, we present an architecture to disen-
tangle actual real-time scheduling from dispatching and other kernel routines
with a small API, suited for a variety of scheduling schemes as plug-ins. We
detail two plug-ins for aperiodic task handling and how they can extend two
target systems, table-driven and EDF scheduling using the presented approach.
The plug-in module architecture makes it possible to hide the differences be-
tween scheduling algorithms behind a common interface.
A number of aperiodic task handling methods have been presented [28, 19, 10],
but within their respective packages only. Instead of extending an existing
scheduling package, we concentrate the functionality into a module, define the
interface and discuss its application to off-line and on-line scheduling methods
as examples.

1.5.3 Paper C: Enhancing Time Triggered Scheduling with
Value Based Overload Handling and Task Migration

Summary In this paper we consider distributed systems where a subset of
critical activities are handled in a time triggered fashion, via an off-line sched-
ule. At run-time, the arrival of aperiodic tasks may cause overload that de-
mands to be handled in such a way that i) time triggered activities still meet all
their original constraints, ii) execution of high-valued tasks are prioritised over
tasks with lower value, iii) tasks can be quickly migrated to balance the overall
system load.
We give a precise formulation of overload detection and value based task rejec-
tion in the presence of offline scheduled tasks, and present a heuristic algorithm
to handle overload. Overload situations are detected immediately when the of-
fending tasks arrive, and resolved by rejection of low value tasks.

1.6. SUMMARY 11

We describe how the off-line scheduling approach can be enhanced to suit dis-
tributed real-time systems where overload situations must be anticipated. The
overload handling includes a task migration algorithm to benefit from the dis-
tributed setting, that integrates migration of rejected tasks with resource re-
claiming and the acceptance test of newly arrived tasks.
We assume that the critical tasks are scheduled off-line, but the schedule is
handled in a flexible way at run-time to facilitate the inclusion of aperiodic
tasks. This is achieved by including mechanisms from the slot shifting algo-
rithm [29] that allow the planned execution of off-line scheduled tasks to be
shifted in time, while still ensuring that no critical constraints are violated.
This allows the designer to choose, for each activity individually, the trade-
off between guaranteed timely execution, and less resource demanding non-
guaranteed handling based on values.
Simulation results underline the effectiveness of the presented approach.

1.5.4 Paper D: Simulation Results and Algorithm Details for
Value Based Overload Handling

Summary This paper contains the simulation results for a proposed algo-
rithm, in paper B, for value based task rejection in the presence of offline sched-
uled tasks for which a timely execution have to be guaranteed. We also give a
detailed description of the algorithm for computing the overload amounts.

1.6 Summary

In this thesis we present methods to aid real-time system designers with choices
related to scheduling. We specifically extend the capabilities of off-line schedul-
ing, by including aperiodic task and overload handling.
We present a method to efficiently handle aperiodic tasks in off-line scheduled
real-time system by using total bandwidth server (TBS). The off-line sched-
uler reserves bandwidth in the off-line schedule for later use by TBS during
run-time. All tasks in the off-line schedule are transformed into independent
on-line tasks with start-time and deadline pairs without violating any of the
original constraints. At run-time, these independent tasks are scheduled us-
ing EDF, while TBS handles the aperiodic activities using the off-line reserved
bandwidth.
Furthermore, we include overload handling in time triggered real-time systems
with mixed task sets consisting of both off-line and on-line tasks. Overload is

12 CHAPTER 1. INTRODUCTION

handled in such a way that the off-line scheduled tasks are still guaranteed to
meet all the original timing constraints.
We give a precise formulation of overload detection and value based task re-
jection in the presence of the off-line scheduled tasks, and present a heuristic
algorithm to handle overload.
The method includes the possibility to quickly migrate tasks from overloaded
to under loaded nodes to balance the load.
We also present a plug-in approach to add functionality to existing scheduling
schemes and provide for easy replacement of scheduling algorithms on the
operating system level, as opposed to monolithic kernels. In particular, we
present an architecture to disentangle actual real-time scheduling from other
kernel routines with a small API, suited for a variety of scheduling schemes as
plug-ins.

Bibliography

[1] J. A. Stankovic and K. Ramamritham. IEEE Tutorial: Hard Real-Time
Systems. IEEE Computer Society Press, Washington, D.C., USA, 1988.

[2] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogram-
ming in Hard Real-Time Environment. Journal of the ACM, 20, 1, Jan-
uary 1973.

[3] H. Kopetz. Time-Triggered Model of Computation. In In Proceeedings
19th Real-Time Systems Symposium, Madrid, Spain, December 1998.

[4] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft,
and R. Zainlinger. Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach. IEEE Micro, February 1989.

[5] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New
Paradigm for Real-Time Operating Systems. IEEE Software, May 1991.

[6] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G. Pospischil, P. Puschner,
J. Reisinger, R. Schlatterbeck, W. Schütz, A. Vrchoticky, and R. Zain-
linger. The Distributed, Fault-Tolerant Real-Time Operating System
MARS. IEEE Operating Systems Newsletter, 6(1), 1992.

[7] V. Yodaiken. Rough notes on Priority Inheritance. Technical report, New
Mexico Institute of Mining, 1998.

[8] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling,
1986.

[9] M. Spuri and G. Buttazzo. Efficient Aperiodic Service under Earliest
Deadline Scheduling. In In Proceedings of the 15th IEEE Real-Time Sys-
tems Symposium, San Juan, Puerto Rico, December 1994.

14 BIBLIOGRAPHY

[10] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in Dynamic Pri-
ority Systems. In In Proceedings of the IEEE Real-Time Systems Sympo-
sium, Washington D.C., USA, December 1996.

[11] H. Kopetz and G. Grunsteidl. TTP - a Protocol for Fault-Tolerant Real-
Time Systems. Computer, 27, 1994.

[12] H. Kopetz. Why Time-Triggered Architectures will Succeed in Large
Hard Real-Time Systems. In Proceedings of the 5th IEEE Computer
Society Workshop on Future Trends of Distributed Computing Systems,
Chengju, Korea, August 1995.

[13] L. Davis and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In In Proceedings of the 19th Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[14] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technishe Universität, Wienna, Austria, 1994.

[15] D. Isovic. Handling Sporadic Tasks in Real-Time Systems - Combined
Offline and Online Approach. Technical report, Mälardalens Högskola,
Västerås, Sweden, 2001.

[16] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves
for Multimedia Operating Systems. In In Proceedings of the IEEE In-
ternational Conference on Multimedia Computing and Systems, Boston,
USA, May 1994.

[17] Z. Den and J. W. S. Liu. A Scheme for Scheduling Hard Real-Time
Applications in Open System Environment. In Proceedings of the 9th
Euromicro Workshop on Real-Time Systems, Toledo, Spain, June 1997.

[18] Z. Den, J. W. S. Liu, and J. Sun. A Scheme for Scheduling Hard Real-
Time Applications in Open System Environment. In Proceedings of
the 9th Euromicro Workshop on Real-Time Systems, Toledo, Spain, June
1997.

[19] S. R. Thuel and J.P. Lehoczky. Algorithms for Scheduling Hard Aperi-
odic Tasks in Fixed-Priority Systems using Slack Stealing. In In Proceed-
ings of the 15th Real-Time Systems Symposium, San Juan, Puerto Rico,
December 1994.

BIBLIOGRAPHY 15

[20] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time in Fixed
Priority Pre-emptive Systems. In In Proceedings of the 14th Real-Time
Systems Symposium, Raleigh-Durham, USA, December 1993.

[21] H. Chetto and M. Chetto. Some Results on the Earliest Deadline Schedul-
ing Algorithm. Transactions on Software Engineering, 15, October 1989.

[22] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. Deadline Scheduling in
Overload Conditions. In In Proceedings of the 16th Real-Time Systems
Symposium, Pisa, Italy, December 1995.

[23] G. Buttazzo and J. Stankovic. RED: A Robust Earliest Deadline Schedul-
ing Algorithm. In In Proceedings of the 3rd International Workshop on
Responsive Computing Systems, September 1993.

[24] S. A. Aldarmi and A. Burns. Dynamic Value-Density for Scheduling
Real-Time Systems. In In Proceedings of the 11th Euromicro Conference
on Real-Time Systems, York, England, June 1999.

[25] S. Baruah and J. Haritsa. Scheduling for Overload in Real-Time Systems.
IEEE Transactions on Computers, September 1997.

[26] K. Ramamritham, J.A. Stankovic, and W. Zhao. Distributed Scheduling
of Tasks with Deadlines and Resource Requirements. IEEE Transactions
on Computers, August 1989.

[27] G. Fohler. Analyzing a Pre Run-Time Scheduling Algorithm and Prece-
dence Graphs. Technical report, Technishe Universität, 1992.

[28] S. R. Thuel and J.P. Lehoczky. On-Line Scheduling of Hard Deadline
APeriodic Tasks in Fixed-Priority Systems. In In Proceedings of the 14th
Real-Time Systems Symposium, Raleigh-Durham, USA, December 1993.

[29] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems. In In Proceedings of
the 16th Real-Time Systems Symposium, Pisa, Italy, December 1995.

Chapter 2

Paper A: Improved Handling
of Soft Aperiodic Tasks in
Offline Scheduled Real-Time
Systems using Total
Bandwidth Server

Tomas Lennvall, Gerhard Fohler, and Giorgio Buttazzo
In Proceedings of 8th International Conference on Emerging Technologies and
Factory Automation, Nice, France, October 2001

Abstract

Real-world industrial applications impose complex constraints, such as dis-
tribution, end-to-end deadlines, and jitter control on real-time systems. Most
scheduling algorithms concentrate on single or limited combinations of con-
straints and requirements only. Offline scheduling resolves complex constraints,
but provides only very limited flexibility. Online scheduling on the other hand,
supports flexibility, resource reclaiming, and overload handling, but handling
constraints such as distribution or end-to-end deadline can be costly, if not in-
tractable.
In this paper, we propose a method to efficiently handle soft real-time tasks in
offline scheduled real-time systems using total bandwidth server. In a first step,
the offline scheduler resolves complex constraints, reduces their complexity,
and provides for guaranteed available bandwidth. The constructed schedule is
translated into independent tasks on single nodes with starttimes and deadline
constraints only. These are then executed using earliest deadline first, total
bandwidth server scheduling at runtime.

2.1. INTRODUCTION 19

2.1 Introduction

Real-world industrial applications impose complex constraints on real-time
systems and their scheduling algorithms: Even simple control problems for in-
dustrial plants or automotive scenarios demand distribution, end-to-end dead-
lines, jitter control, periodic and non periodic tasks, as well as efficiency, cost
effectiveness and more. In addition to these basic temporal constraints, a sys-
tem has to fulfill complex application demands which cannot be expressed as
generally. Control applications may require constraints on individual instance,
rather than periods. Reliability demands can enforce allocation and separation
patterns, or engineering practice may require relations between system activi-
ties, all of which cannot be expressed directly with basic constraints.
Furthermore, the type and number of constraints rarely remains fixed during
the development of a system or product line. Rather, new constraints, often be-
yond periods and deadlines, are added during system construction or its main-
tenance.
Most scheduling algorithms presented concentrate on single or limited combi-
nations of constraints and requirements only. Two main lines of algorithms,
following the paradigms of performing scheduling offline, i.e., before the sys-
tem runtime, or online, excel at general constraints or flexibility, resp. Off-
line scheduling is capable of constructing schedules for distributed applications
with complex constraints, such as precedence, jitter, and end-to-end deadlines.
As only a table lookup is necessary to execute the schedule, runtime dispatch-
ing is very simple. The prerequisite knowledge about all system activities and
events may be hard or impossible to obtain. The lack of flexibility prevents
handling not completely specified events.
Online scheduling overcomes this shortcoming and provides flexibility for par-
tially or non specified activities. Feasibility tests determine whether a given
task set can be feasibly scheduled according to the rules of the particular algo-
rithm applied. Online scheduling allows to efficiently reclaim any spare time
coming from early completions and allows to handle overload situations ac-
cording to actual workload conditions.
These feasibility tests typically apply to a fixed set of constraints; changes in
the set of constraints often require development of theory for tests. Handling
constraints such as distribution or end-to-end deadline can be costly, if not
intractable in the general case.
This disparity of capabilities of scheduling paradigms imposes the choice of
choosing the benefits of either algorithm at the expense of the other’s, between
general constraints or runtime flexibility. Rather, the application under consid-

20 Paper A

eration should dictate constraints and properties, with the choice of algorithm
being only a secondary one.
In this paper, we propose a method to efficiently handle soft real-time tasks in
offline scheduled real-time systems using total bandwidth server. It uses offline
scheduling to handle complex constraints and reduce their complexity by trans-
forming a constructed feasible schedule into independent tasks on single nodes
with start times and deadline constraints only. These are suited for flexible
earliest deadline first scheduling methods at runtime. Furthermore, the offline
scheduler guarantees that the resulting task set guarantees the availability of
a minimum bandwidth for use at runtime, extending the range of applicable
methods and constraints. Via transformed task set and bandwidth, our method
provides an interface to combine offline and online scheduling algorithms.
The concrete offline scheduler used for this work [1] allows for preemptive
tasks with precedence constraints, end-to-end deadlines, distribution, network
scheduling and jitter control. The transformation technique we present can be
applied to a variety of other offline scheduling algorithms with similar con-
straints, e.g., [2]. The inclusion of additional constraints into an offline sched-
uler is typically straightforward, e.g., by including the constraint in a feasibility
test applied during schedule construction.
Online scheduling is used to efficiently handle those activities that cannot be
completely characterized offline in terms of worst-case behavior, and hence
cannot receive a priori guarantee. Examples of these activities include soft
aperiodic tasks (e.g., multimedia tasks) whose computation time or interarrival
times can have significant variation from instance to instance. Moreover, online
scheduling is used to reclaim any spare time coming from early completion. A
bandwidth reservation technique [3] is used to isolate the temporal behavior
of the two schedules and prevent the event-driven tasks to corrupt the off-line
plan.
The MARS system [4] is an example of a system with entire offline planning of
all activities. On the other side of the spectrum, SPRING [5] is using planning
and global task migration [6] for handling a variety of constraints online. Its
planning efforts are expensive; a dedicated scheduling chip is suggested. In
our approach, the online scheduling is very simple as we only compute new
deadlines.
The use of free resources in offline constructed schedules for aperiodic tasks
has been discussed in [7]. The resulting flexibility is limited since aperiodic
tasks are inserted into the idle times of the schedule only. Slot shifting [8]
analysis offline schedules for unused resources and leeway, which is repre-
sented as execution intervals and spare capacities. This information is used at

2.2. TERMINOLOGY AND ASSUMPTIONS 21

runtime to shift task executions, accommodate dynamic tasks, and to perform
online guarantee tests. It provides increased flexibility, but focuses on hard and
firm tasks only.
From the online side, the integration of different scheduling paradigms in the
same system requires a resource reservation mechanism to isolate the tempo-
ral behavior of each schedule. In [9], Mercer, Savage, and Tokuda propose
a scheme based on processor capacity reserves, where a fraction of the CPU
bandwidth is reserved to each task. This approach removes the need of know-
ing the worst-case computation time (WCET) of each task because it fixes the
maximum time that each task can execute in each period. Since the periodic
scheduler is based on the Rate Monotonic algorithm, the classical schedulabil-
ity analysis can be applied to guarantee hard tasks, if any present.
In [10], Liu and Deng describe a two-level scheduling hierarchy which allows
hard real-time, soft real-time, and non real-time applications to coexist in the
same system. According to this approach, each application is handled by a
dedicated server, which can be a Constant Utilization Server [11] for tasks that
do not use nonpreemptable sections or global resources, and a Total Bandwidth
Server [12, 13] for the other tasks. At the lowest level, all jobs coming from the
different applications are handled by the EDF scheduling algorithm. Although
this solution can isolate the effects of overloads at the application level, the
method requires the knowledge of the WCET even for soft and non real-time
tasks.
The use of information about amount and distribution of unused resources for
non periodic activities is similar to the basic idea of slack stealing [14], [15]
which applies to fixed priority scheduling. Our method applies this basic idea
in the context of offline and EDF scheduling. Chetto and Chetto [16] presented
a method to analyze idle times of periodic tasks based on EDF. Our scheme
analyzes offline schedules, which can be more general than strictly periodic
tasks, e.g., for control applications.
The rest of this paper is organized as follows: First, we define terminology in
section 2.2. The techniques for integration of offline and online are presented
in section 2.3. An example in section 2.4 illustrates the methods. We conclude
the paper with section 2.6.

2.2 Terminology and assumptions

We consider a system consisting of three types of tasks: hard, soft, and non
real-time tasks. Any task ��� consists of a sequence of jobs

�
��� � , where ����� �

22 Paper A

denotes the arrival time (or request time) of the ����� job of task � � .

A hard real-time task is characterized by two additional parameters, ��� �	�	
 ��� ,
where � � is the WCET of each job and
 � is the minimum interarrival time
between successive jobs, so that � ��� ������ ����� ����
 � . The system must provide
an a priori guarantee that all jobs of a hard task must complete before a given
deadline � ��� � . In our model, the absolute deadline of each hard job

�
��� � is

implicitly set at the value � ��� � � ����� ����
 � .

A soft real-time task is also characterized by the parameters ��� �	�	
 ��� , how-
ever the timing constraints are more relaxed. In particular, for a soft task, � �
represents the mean execution time of each job, whereas
 � represents the de-
sired activation period between successive jobs. For each soft job

�
��� � , a soft

deadline is set at time � ��� � � ����� ����
 � . Since mean values are used for the com-
putation time and minimum interarrival times are not known, soft tasks cannot
be guaranteed a priori. In multimedia applications, soft deadline misses may
decrease the QoS, but do not cause critical system faults.

Tasks can be synchronized via precedence constraints, forming execution chains
with end-to-end constraints. Precedence constraints and tasks, can be viewed
as a directed acyclic graph. Tasks are represented as nodes, precedence con-
straints as edges. Tasks that have no predecessors are called entry tasks, tasks
without successors exit tasks. The period of a precedence graph ��� is the time
interval separating two successive instances of ��� in the schedule. Deadline
intervals are defined for the maximum execution of each individual precedence
graph. Entry tasks of instance � of a precedence graph ��� become ready for
scheduling at time ��� �"!��#�%$&�"�����'� . Exit tasks of instance � of a precedence
graph ��� have to be completed by time �(�)�"!��#�%$&�"�����'�����*!#+��*,-�/.0!������'� .

We consider a distributed system, i.e., one that consists of several processing
nodes and communication nodes An offline schedule is a sequence of slots,
i.e., some time granules, 12,�$ � �3� �546�8787879� N- � , : stands for the number of
slots in the schedule. For online schedules, : is typically equal to the least
common multiple (,�;=<) of all involved periods. Communication nodes, i.e.,
the communication medium, are slotted and pre scheduled as well. Protocols
with bounded transmission times, e.g., TDMA or token ring are applicable.

2.3. INTEGRATION 23

2.3 Integration

2.3.1 Rationale

The rationale of our method to provide for complex application constraints and
efficient runtime flexibility is to concentrate all mechanisms to handle com-
plex constraints in the offline phase, where they are transformed into simple
constraints suitable for earliest deadline first scheduling, which is then used
for online execution. The offline determined simple constraints serve as “inter-
face” between offline preparations and online scheduling. Specifically, we use
the offline scheduler presented in [1]1, starttime, deadline pairs as simple con-
straints, and EDF based Total Bandwidth server [12] and constant bandwidth
server [3] as runtime algorithms. The amount of desired flexibility can be set
in this step as well.
Our transformation technique can extract maximum flexibility. By tightening
start time and deadlines of certain tasks, it is possible to constrain the execution
of some tasks, e.g., for reasons of testing or reliability.
Our method works by reducing complexity (NP hard in the case of distributed,
precedence constrained executions with end-to-end deadlines) offline by in-
stantiating a set of independent tasks with starttimes, deadlines constraints on
single processors which fulfill application constraints and guaranteed band-
width requirements. The issues of allocation to nodes, subtask deadline assign-
ment, fulfilling jitter requirements are resolved by the offline scheduler. This
allows the use of time intensive algorithms to resolve the constraints, since they
are performed offline, i.e., before the system is deployed, and flexible schedul-
ing at runtime.
Once tasks with starttime, deadline constraints have been derived and analyzed,
earliest deadline first scheduling is performed on single nodes individually at
runtime; the original set of complex constraints, distribution, etc., remains hid-
den from online scheduling.
The resulting instance of simple constraints will not generally be optimum.
Since it is performed offline, however, additional analysis can be performed,
possibly resulting in another instantiation with different simple constraints.
Consider a subtask deadline assignment which induces tight constraint on one
node. Performance analysis may show a different, more relaxed setting to be
more appropriated.

1This serves as example; a number of other offline scheduling algorithm can be applied, e.g.,
the one presented in [2].

24 Paper A

2.3.2 Offline schedule construction and bandwidth reserva-
tion strategies

As an additional requirement, the offline scheduler has to create a schedule
such that a desired fraction ��� of the processor utilization (i.e., a desired band-
width) is reserved for online aperiodic service. This means that, if a bandwidth
��� is reserved on a node, then for any interval [�=� , ���], there must be at least
(����� ��9����� time available for aperiodic processing.
A trivial approach is to replace the worst case execution time of each task with	
��
��� . No modifications to the scheduler are required to guarantee a bandwidth
of ��� . This method, however, does not consider spare capacities in the sched-
ule for bandwidth reservation. Response times in the resulting scheduling can
thus be prohibitively long.
Our bandwidth reservation method during offline schedule construction ana-
lyzes the schedule for idle resources and their distribution. It maximizes flex-
ibility by considering the leeway in the schedule, as per the specification con-
straints. In particular, the offline scheduler contains a function with tests the
feasibility of the schedule constructed so far; it is extended by testing the avail-
ability of the specified bandwidth as well.

2.3.3 Transformation technique

The feasible schedule with guaranteed bandwidth is transformed into indepen-
dent tasks with starttimes, deadline pairs. Our method is based on the prepara-
tions for online scheduling in slot shifting [8].
The offline scheduler allocates tasks to nodes and resolves the precedence con-
straints. The scheduling tables list fixed start- and end times of task executions,
that are less flexible than possible. The only assignments fixed by specification
are starts of first and completion of last tasks in chains with end-to-end con-
strains, and tasks sending or receiving inter-node messages. The points in time
of execution of all other tasks may vary within the precedence order. We cal-
culate earliest start-times and latest finish-times for all tasks per node based
on this knowledge. As we want to determine the maximum leeway of task
executions, we calculate the deadlines to be as late as possible.
Let !2.0�"�����'� denote the end and 1 � + � �9�����'� the start of a precedence graph
��� according to the schedule. The start of an inter-node message transmission�

is denoted 1 � + � �9� � � , the time it is available at all receiving nodes !2.0�"� � � .
These are the only fixed start times and deadlines, all others are calculated
recursively with respect to precedence successors.

2.3. INTEGRATION 25

These fixed constraints are derived first: The deadline of task
 , ��� , of prece-
dence graph ��� in a schedule is:
If
 is exit task in ��� : ��� � �*,	�����'� ,
if
 sends an inter-node message

�
: ��� � 1 � + � �9� � � .

The earliest start time of task
 , ��� , of precedence graph ��� in a schedule is
calculated in a similar way:
If
 is entry task: ��� � 1 � + � �9�����'� ,
if
 receives an inter-node message

�
: ��� � !2.0�"� � � .

Next, constraints of predecessors and successors of tasks with fixed constraints
are derived:
A predecessor � of a task
 with fixed deadline is assigned a deadline so as to
be executed before
 with EDF, i.e.,
��� � ��� ����� .
A successor

�
of a task
 with fixed starttime is assigned the same starttime as

 . An appropriate deadline and EDF with ensure � preceding
 .
��� � ��� .
This step is applied recursively.

2.3.4 Online scheduling

Once the transformation is performed off line and a bandwidth � � is reserved
on each processing node, on line scheduling of aperiodic tasks can be handle
by a Total Bandwidth Server (TBS). This service mechanism was proposed
by Spuri and Buttazzo [13, 12] to improve the response time of soft aperi-
odic requests in a dynamic real-time environment, where tasks are scheduled
according to EDF.
The server works as follows: whenever an aperiodic request enters the system,
the total bandwidth (in terms of cpu execution time) of the server, is immedi-
ately assigned to it. This is done by simply assigning a suitable deadline to the
request, which is scheduled according to the EDF algorithm together with the
periodic tasks in the system. The assignment of the deadline is done in such a
way to preserve the schedulability of the other tasks in the system.
In particular, when the 	 -th aperiodic request arrives at time � � ��
 , it receives
a deadline

��
 ������ ����
 ���

0�8� � ���
��� �

where ���
 is the execution time of the request and � � is the server utilization
factor (i.e., its bandwidth). By definition ��� � 4 . The request is then inserted
into the ready queue of the system and scheduled by EDF, as any periodic or

26 Paper A

22

τ 1

τ 2

Us = 1/4

r 1 d 1 r 2 r 3 d 3d 2

0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 23 24 2521 2610

1 2 1

Figure 2.1: Total Bandwidth Server example

sporadic instance. Note that the maximum between ��
 and ��

0� is needed to
keep track of the bandwidth already assigned to previous requests.
Figure 2.1 shows an example of schedule produced with a TBS. The first ape-
riodic request, arrived at time � ��� , is assigned a deadline � � � �&���

	��
��� �

�'� �
��� �	� � �24 , and since �6� is the earliest deadline in the system, the aperi-

odic activity is executed immediately. Similarly, the second request receives
the deadline � � � � ���

	�

��� �� � , but it is not serviced immediately, since at

time � � � � there is an active periodic task with a shorter deadline (18). Fi-
nally, the third aperiodic request, arrived at time � � ��� , receives the deadline
��� ������0����� �� �2� �

	��
��� ��� � � �

��� �	� ����� and is serviced at time � ����� .
Intuitively, the assignment of the deadlines is such that in each interval of time,
the fraction of processor time allocated by EDF to aperiodic requests never ex-
ceeds the server utilization ��� . Since the processor utilization due to aperiodic
tasks is at most ��� , the schedulability of a periodic task set in the presence of
a TBS can simply be tested by verifying the following condition:

��� � ����� � �
where ��� is the utilization factor of the periodic task set. This results is proved
by the following theorem.

Theorem 1 (Spuri and Buttazzo, 96). Given a set of . periodic tasks with
processor utilization ��� and a TBS with processor utilization ��� , the whole set
is schedulable if and only if

��� � ����� � 7
The implementation of the TBS is straightforward, since to correctly assign the
deadline to a new request, we only need to keep track of the deadline assigned

2.4. EXAMPLE 27

to the last aperiodic request (��

0�). Then, the request can be inserted into the
ready queue and treated by EDF as any other periodic instance. Hence, the
overhead is practically negligible.

2.4 Example

In this section, we will illustrate our methods with an example. The system
consists of two processing nodes; for the simplicity of the example, we assume
that the sending of a message takes one time unit. There are 7 tasks to be
offline scheduled: �'��� � � ��� �������(��� , � ��� form a precedence constrained
execution chain, with the following precedence constraints: �
	�� ����	
� ���	���� ��	�� � ��	�� . The global precedence graph is shown in
Figure 2.2.

A B C

D

E

Y

Z

Figure 2.2: Precedence graph for the tasks of the example.

Tasks �'��� ��� are allocated to node 0 and � ��� to 1. Task � has a jitter require-
ment: the variation in execution has to be less than or equal 1 for two succeed-
ing instances. The starttime of the execution chain is 0, the end-to-end dead-
line, i.e., the maximum time interval between 1 � + � �9��� � and < +�����!2.0�"��� �=�!2.0�"�����
11. � , allocated to node 0, has starttime of 4 and deadline 9, and � on node
1 of 0 and 6, resp. Worst case execution times: � �� ��� � � � � � � ��� �
� ��� � � ��� ��� ��� ��� . The required bandwidth ����� �� .

28 Paper A

2.4.1 Transformation into simple
constraints

The task schedule together with the original constraints is transformed into
independent tasks on single nodes with start time, deadline pairs (denoted as
���	�� �). First, it identifies constraints due to end-to-end, internode communica-
tion, and jitter:
End-to-end constraints:
��� � 46���� � ��� � ��� .
Internode communication: ��� ��� � � 	 � �6�� 	 � �6� ��� � �

.
Jitter: ��� � ��� �	� ;9! �9��� � � � � � � !�� � � .
Next, constraints for successors and predecessors of these tasks are derived:
��� � ��� � 4 , ��� � � 	 ��� .
�'��� cannot start before the starttime of the execution chain, thus they are
assigned the same deadline. Since we use EDF for online scheduling, �
��� ���
ensures the precedence order.
�(��� are constrained by their original constraints:
�� ��� ��� � �
�

��� � 46���� � � .
Table 2.3 summarizes the derived constraints.

task ��� � �
A 0 3
B 0 5
C 6 8
D 6 11
E 9 11
Y 4 9
Z 0 6

Figure 2.3: Derived simple constraints.

These simple constraints comprise the original constraints as per the offline
constructed schedule and guarantee a bandwidth � � � �� .
The resulting EDF schedule on the transformed task set is depicted in Fig-
ure 2.4.

2.4.2 Online Scheduling

The available bandwidth ��� � ��� � reserved by the offline algorithm, can be
exploited by a Total Bandwidth Server (TBS) to efficiently handle online ape-

2.5. SIMULATIONS 29

rB

d A d B d E

rErYrA

rZ rC rD

d Z d Dd C

d Y

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Z C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A EB Y

Figure 2.4: Schedule produced by EDF on the offline transformed task set.

riodic requests. In the example, a request
� � with computation time ��� � �

arrives on Node 0 at time � � � . Hence, the TBS assigns it a deadline
� � � � � � � � ��� � � . As a consequence,

� � is executed before task � ,
since � � � ��� .
At time � � � , another request

� � with computation time ����� � arrives on
Node 0. This time, the request is assigned a deadline ��� � � � � ��� ��� � ��� ,
which is the same as the deadline of task � . However, since deadline ties are
broken in favor of the server,

� � executes before � .
On Node 1, a request

� � with computation time � � � � arrives at time � � � .
Hence, according to the TBS rule, it is assigned a deadline � � � �� � ��� ��� � �

.
At time � � � , another request

���
arrives before deadline ��� . In this case, the

TBS rule states that the deadline has to be computed as � � � < +���� �=����2�(�
� ��� ��� � �24 , since the bandwidth ��� was already assigned to

� � up to time
��� . As a result, since � � � ��� , the execution of

���
precedes that of task � .

The integrated schedule is shown in Figure 2.5

2.5 Simulations

We implemented and simulated the described algorithm. All the offline and
soft aperiodic tasks were randomly generated, and the load of the offline tasks
is varied between 4 and 467 � , and the soft aperiodic task load is varied between
three different levels over the lcm.

30 Paper A

rZ rC rD

r3 r4

d 3 d 4

d Dd Cd Z

TBS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C DZ

3 4

rB

d A d E

rErYrA

d Yd B

r1 r2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
d 2d 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A EYB

TBS

1 2

Node 0

Node 1

Figure 2.5: Schedule produce by EDF using the integrated approach.

The simulation length for each run was �24 4 4 4 slots, and the soft aperiodic tasks
arrived during that length.

We have studied the average response times of the soft aperiodic tasks, and
compared our algorithm against background scheduling. We also check what
happens with the soft tasks when the offline load is increased. When the offline
load is equal to 4 only TBS is running.

Figure 2.6 shows the result of the simulation. The same task sets were run
with both background scheduling and our method, and the response times are
measured in slots.

Due to high offline load, many soft aperiodic tasks did not finish before the sim-
ulation ended and therefore the response times became higher with increased

2.6. CONCLUSION 31

0

10

20

30

40

50

60

0 0,3 0,5 0,7 0,9

offline utilization

a
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 i

n
 s

lo
ts

off+tbs

background

Figure 2.6: Response times for the soft aperiodic tasks.

load. Even when the offline load was 4 some soft aperiodic tasks were not able
to finish because the ready queue was overloaded.

2.6 Conclusion

In this paper, we presented a method to efficiently handle soft aperiodic tasks in
offline scheduled systems, to handle real-world constraints such as distribution,
end-to-end deadlines, jitter control, periodic and non periodic tasks, as well as
efficiency, cost effectiveness and more.
We propose using an offline scheduler to handle complex constraints, reduce
their complexity, and provide for guaranteed available bandwidth. In order to
apply standard earliest deadline first scheduling during system operation, we
presented a technique, which transforms the schedule and original constraints
into independent tasks with starttime, deadline constraints on single nodes only.
Consequently, the runtime mechanisms are very simple, flexible, and efficient.
We have shown how these resulting simple constraints can be used by the stan-
dard total bandwidth server algorithm for flexible and efficient execution, re-
source reclaiming, and overload handling.
Instead of different feasibility tests for different types of constraints, our method
caters for a variety of constraints with only minor modifications in the offline
scheduler. Since changes and additions to the set of constraints can be incor-
porated into an offline scheduler relatively easy, our method also provides for

32 Paper A

variations and modifications in task constraints, as, e.g., induced by industrial
design processes and system life cycles.

Bibliography

[1] G. Fohler. Analyzing a Pre Run-Time Scheduling Algorithm and Prece-
dence Graphs. Technical report, Technishe Universität, 1992.

[2] K. Ramamritham. Allocation and scheduling of complex periodic tasks.
In In the 10th International Conference on Distributed Computing Sys-
tems, Paris, France, May 1990.

[3] L. Davis and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In In Proceedings of the 19th Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[4] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G. Pospischil, P. Puschner,
J. Reisinger, R. Schlatterbeck, W. Schütz, A. Vrchoticky, and R. Zain-
linger. The Distributed, Fault-Tolerant Real-Time Operating System
MARS. IEEE Operating Systems Newsletter, 6(1), 1992.

[5] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New
Paradigm for Real-Time Operating Systems. IEEE Software, May 1991.

[6] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive Scheduling
Under Time and Resource Constraints. IEEE Transactions on Computers,
August 1987.

[7] K. Ramamritham, G. Fohler, and J.-M. Adan. Issues in the Static Allo-
cation and Scheduling of Complex Periodic Tasks. In In Proceedings of
the 10th IEEE Workshop on Real-Time Operating Systems and Software,
New York, USA, May 1993.

[8] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems. In In Proceedings of
the 16th Real-Time Systems Symposium, Pisa, Italy, December 1995.

34 BIBLIOGRAPHY

[9] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves
for Multimedia Operating Systems. In In Proceedings of the IEEE In-
ternational Conference on Multimedia Computing and Systems, Boston,
USA, May 1994.

[10] Z. Den and J. W. S. Liu. A Scheme for Scheduling Hard Real-Time
Applications in Open System Environment. In Proceedings of the 9th
Euromicro Workshop on Real-Time Systems, Toledo, Spain, June 1997.

[11] Z. Den, J. W. S. Liu, and J. Sun. A Scheme for Scheduling Hard Real-
Time Applications in Open System Environment. In Proceedings of
the 9th Euromicro Workshop on Real-Time Systems, Toledo, Spain, June
1997.

[12] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in Dynamic Pri-
ority Systems. In In Proceedings of the IEEE Real-Time Systems Sympo-
sium, Washington D.C., USA, December 1996.

[13] M. Spuri and G. Buttazzo. Efficient Aperiodic Service under Earliest
Deadline Scheduling. In In Proceedings of the 15th IEEE Real-Time Sys-
tems Symposium, San Juan, Puerto Rico, December 1994.

[14] S. R. Thuel and J.P. Lehoczky. Algorithms for Scheduling Hard Aperi-
odic Tasks in Fixed-Priority Systems using Slack Stealing. In In Proceed-
ings of the 15th Real-Time Systems Symposium, San Juan, Puerto Rico,
December 1994.

[15] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time in Fixed
Priority Pre-emptive Systems. In In Proceedings of the 14th Real-Time
Systems Symposium, Raleigh-Durham, USA, December 1993.

[16] H. Chetto and M. Chetto. Some Results on the Earliest Deadline Schedul-
ing Algorithm. Transactions on Software Engineering, 15, October 1989.

Chapter 3

Paper B: Handling Aperiodic
Tasks in Diverse Real-Time
Systems via Plug-Ins

Tomas Lennvall, Björn Lindberg, and Gerhard Fohler
In the 5th International Symposium on Object-Oriented Real-Time Distributed
Computing, Washington D.C., USA, April–May 2002

Abstract

Functionality for various services of scheduling algorithms is typically pro-
vided as extensions to a basic algorithm. Aperiodic task handling, guaran-
tees, etc., are integrated with a specific basic scheme, such as earliest deadline
first, rate monotonic, or off-line scheduling. Thus, scheduling services come in
packages of scheduling schemes, fixed to a certain methodology.
A similar approach dominates operating system functionality: implementation
of the actual real-time scheduling algorithm, i.e., take the decisions which task
to execute at which times to ensure deadlines are met, are intertwined with
kernel routines such as task switching, dispatching, and bookkeeping to form a
scheduling/dispatching module.
Consequently, designers have to choose a single scheduling package, although
the desired functionality may be spread over several ones. Instead, there is a
need to seamlessly integrate new functionality with a developed system, en-
abling designers to choose the best of various packages.
In this paper, we propose the use of a plug-in approach to add functionality to
existing scheduling schemes and provide for easy replacement on the operating
system level. In particular, we present an architecture to disentangle actual real-
time scheduling from dispatching and other kernel routines with a small API,
suited for a variety of scheduling schemes as plug-ins. We detail two plug-ins
for aperiodic task handling and how they can extend two target systems, table-
driven and earliest deadline first scheduling using the presented approach.

3.1. INTRODUCTION 37

3.1 Introduction

Scheduling algorithms have been typically developed around central paradigms,
such as earliest deadline first (EDF) [1], rate monotonic (RM)[1], or off-line
scheduling. Additional functionality, such as aperiodic task handling, guaran-
tees, etc., is typically provided as extensions to a basic algorithm. Over time,
scheduling packages evolved, providing a sets of functionality centered around
a certain scheduling methodology.
EDF or fixed priority scheduling (FPS), for example, are chosen for simple
dispatching and flexibility. Adding constraints, however, increases scheduling
overhead [2] or requires new, specific schedulability tests which may have to be
developed yet. Off-line scheduling methods can accommodate many specific
constraints and include new ones by adding functions, but at the expense of
runtime flexibility, in particular inability to handle aperiodic and sporadic tasks.
A similar approach dominates operating system functionality: implementation
of the actual real-time scheduling algorithm, i.e., take the decisions which task
to execute at which times to ensure deadlines are met, are intertwined with
kernel routines such as task switching, dispatching, and bookkeeping to form a
scheduling/dispatching module. Additional real-time scheduling functionality
is added by including or “patching” this module. Replacement or addition of
only parts is a tedious, error prone process.
Consequently, a designer given an application composed of mixed tasks and
constraints has to choose which constraints to focus on in the selection of
scheduling algorithm; others have to be accommodated as good as possible.
Along with the choice of algorithm, operating system modules are chosen early
on in the design process.
This contrasts actual industrial demands: designers want to select various types
of functionality without consideration of which package they come from. They
are reluctant to abandon trusted methods and to switch packages for the sake
of an additional functional module only. Instead, there is a need to seam-
lessly integrate new functionality with a developed system, enabling designers
to choose the best of various packages.
In this paper, we propose the use of a plug-in approach to add functionality to
existing scheduling schemes and provide for easy replacement at the operating
system level. In particular, we present an architecture to disentangle actual real-
time scheduling from dispatching and other kernel routines with a small API,
suited for a variety of scheduling schemes as plug-ins. We detail two plug-
ins for aperiodic task handling and how they can extend two target systems,
table-driven and EDF scheduling using the presented approach.

38 Paper B

A number of aperiodic task handling methods have been presented [3, 4, 5],
but within their respective packages only. Instead of extending an existing
scheduling package, we concentrate the functionality into a module, define the
interface and discuss its application to off-line and on-line scheduling methods
as examples. S.Ha.R.K [6] is an operating system where scheduling algorithms
including aperiodic servers are created in a modular fashion. The interface
between the system and the scheduler in S.Ha.R.K is more complex than the
interface we propose in this paper.
The rest of the paper is organized as follows: in section 3.2, we describe our
notion of plug-in and target system, its diversity is described in section 3.3,
followed by a description of the aperiodic task handling functionality in section
3.4. In section 2.4 we show an example and section 3.6 concludes the paper.

3.2 System and Plug-In Architecture

A plug-in can be thought of as a hardware or software module that adds a
specific feature or service to an existing system. The purpose of a plug-in is
to add functionality without calling for redesign or extensive modifications.
To accomplish this it must be clear what services the plug-in provides and an
interface between the plug-in and the target system must be defined.

3.2.1 Target System Architecture and Interface

Before we go into the details of the plug-in, we define the target system model
that the plug-in will interact with. The model is presented in figure 3.1 and it
consists of three separate modules as parts of the system:

Execution Sequence Table This is the table where the tasks are kept sorted
in a certain order, depending on the plug-in module’s scheduling algo-
rithm. The plug-in module has exclusive modification rights on this ta-
ble. To manipulate the table, the plug-in module uses the two methods
insert(task, pos) and remove(task).

Dispatcher It is responsible for taking the first task in the execution sequence
table and execute it. The dispatcher has access to view the contents of
the whole execution sequence table, but it cannot modify it. The plug-in
module also has exclusive control over the dispatcher and it is activated
by the dispatch() call. When the dispatcher is activated, it will check if

3.2. SYSTEM AND PLUG-IN ARCHITECTURE 39

Plug-in
module

Wake-up
Calendar

Execution
sequence

table

Dispatcher

insert(task, pos)remove(task)

event(taskEnd)

dispatch()

event(wakeUp, id)

setWakeUpPoint(time, id)

deleteWakeUpPoint(time, id) event(taskArrival)

SYSTEM

Figure 3.1: Plug-in and system architecture

there is an executing task and either preempt the task, if it exists in the
execution sequence table, or else abort it.

Wake-up Calendar This calendar controls a set of watch-dog timers, all tasks
will get entries set in the calendar corresponding to their deadlines (to
catch deadline misses). The calendar will also hold other time critical
points, such as the critical slots from [7]. To set or remove these wake-
up points the plug-in module uses the setWakeUpPoint(time, id) and the
deleteWakeUpPoint(time) methods. All the wake-up points are associ-
ated with an id. The id’s represents deadlines, critical slots, and so on.

3.2.2 Plug-In Interface

The plug-in module encapsulates a scheduling algorithm for scheduling of user
level tasks (not system level tasks), such that the rest of the system becomes
completely decoupled from the scheduling. This means that the plug-in module
is the only part of the system that knows about scheduling, and it is also the only
part that needs to be changed, if the scheduling algorithm is being changed.
Therefore the interface to the plug-in module is kept small and simple such
that it is clear how to write a new plug-in. This makes it easier for designers
to create the scheduling package they want. The plug-in interface is used by
the system, specifically the wake-up calendar and dispatcher, to activate the
plug-in module at certain events or times. Thus each plug-in module that is
implemented, is responsible for reacting correctly to the events that activates
it.

40 Paper B

The details of the plug-in module interface and the events it must react to follow
below:

event(taskArrival) This event activates the plug-in when a new user level task
has been activated. The plug-in is responsible for executing the appro-
priate acceptance test to either accept or reject the new task. If the task is
accepted, the plug-in must insert it at the correct position in the execution
sequence table and activate the dispatcher.

event(wakeUp, id) This event is sent by the wake-up calendar and it activates
the plug-in at a certain point of time earlier set by the plug-in itself. Here,
the plug-in must check what the wake-up activation corresponds to, by
looking at the id, and take the appropriate actions.

event(taskEnd) The dispatcher sends this event to the plug-in when a task has
finished its execution. The dispatcher does not care if the task is peri-
odic (and should be reactivated later) or aperiodic, it’s the job of plug-in
module to make the correct decision based on this. Here, the plug-in
should remove the task from the execution sequence table and activate
the dispatcher.

3.2.3 System and Plug-In Interaction

In figure 3.1, we can see the interface the system and the plug-in uses to inter-
act with with each other. In this section we will describe in more detail how
this interaction works for some of the events that can happen during system
execution.

Task arrival when a new user task is activated, event(taskArrival) is called to
activate the plug-in module. The module executes its acceptance test to
either accept or reject the task. If the task is accepted, the plug-in calls
setWakeUpPoint(dl, id) to set a watchdog on the deadline of the task.
Then, the task is inserted into the execution sequence table, using in-
sert(task, pos) to set it at the correct position according to the scheduling
algorithm. Finally the plug-in activates the dispatcher, by calling dis-
patch(), and then it suspends itself. The dispatcher is activated, looks at
the front of the execution sequence table, picks that task for execution
and then it suspends.

Task finishing execution when a task has finished its execution in a timely
manner, the dispatcher gets activated and activates the plug-in module

3.3. TARGET SYSTEM DIVERSITY AND PLUG-IN
APPLICABILITY 41

by calling event(taskEnd), then the dispatcher suspends. The plug-in
removes the wake-up time for the task deadline with removeWakeUp-
Point(dl, id), then it removes the task from the execution sequence table
by remove(task). The plug-in also calls dispatch() again to activate the
dispatcher. The dispatcher looks at the front of the execution sequence
table and picks that task for execution, then it suspends.

Task deadline miss if a task has not finished execution before its deadline, the
wake-up calendar will be activated by a timer interrupt. It will then use
event(wake-up, id) to activate the plug-in module. The plug-in module
sees that the id indicates a deadline miss and removes the task from the
execution sequence table, and, if necessary takes other actions to handle
a deadline miss. Then the plug-in calls the dispatcher, using dispatch(),
to activate it. The dispatcher checks if the executing task exist in the
execution sequence table. When it discovers that the task has been re-
moved by the plug-in it will abort the task. The dispatcher also checks
for the first task in the execution sequence table, picks it for execution,
and suspends itself.

3.3 Target System Diversity and Plug-In Applica-
bility

The plug-in module design makes it possible to hide the differences between
scheduling algorithms behind a common interface. We will discuss how this
architecture would be applied to the different scheduling paradigms that exist,
and detail what the functions in the interface would do. Figure 3.2 shows the
plug-ins.

3.3.1 Earliest deadline scheduled system

In an event-triggered system using the EDF scheduling algorithm, the tasks are
characterized by start times, worst case execution time (WCET), and deadlines.
The tasks can also be either periodic, and have the period as an additional
attribute, or aperiodic. Before the start of the system, the plug-in sorts any
existing tasks in the execution sequence table in EDF order. It also sets the
wake-up events for the deadlines of the tasks in the wake-up calendar.
When the system is started, the plug-in activates the dispatcher and suspends
itself. The dispatcher does it’s job and suspends. If no new task arrives, the ex-

42 Paper B

Plug-in
(EDF)

dl_rules

SYSTEM

Plug-in
(Offline)

task_table

SYSTEM

Figure 3.2: Example plug-ins

ecuting task will continue until it finishes its execution and then the dispatcher
will activate the plug-in module again. The plug-in will see that it has been ac-
tivated by a task-end event and remove that task from the execution sequence
table. Then it activates the dispatcher again. This is how the plug-in and the
system would interact if no new tasks would arrive or no deadline misses would
occur.
If a new task arrives, the plug-in is activated and executes the acceptance test.
If the task is accepted, it will be inserted into the execution sequence table at
the correct position. The plug-in then activates the dispatcher and suspends,
and the interaction continues as normal.
If a deadline miss occurs and activates the plug-in, the task will be removed
from the execution sequence table. The plug-in then activates the dispatcher
and the execution continues.

3.3.2 Off-line scheduled system

A target system using an off-line generated [8] schedule usually has more strin-
gent task requirements, such as precedence constraints, than an on-line sched-
uled, event-triggered counterpart. In an off-line generated schedule, tasks have
fixed starting and finishing times. In off-line scheduled systems there are only
off-line scheduled task and no new task will dynamically arrive during the run-
time of the system.
Before the execution of the system, the plug-in prepares the execution sequence
table to correspond to the task table internally stored in the plug-in. The on-line
execution of this plug-in will therefore be simpler with an EDF plug-in module.
As with the EDF plug-in, wake-up points will also be set for the deadline of the
tasks in the off-line schedule. The plug-in also sets wake-up points for every

3.4. PLUG-INS FOR APERIODIC TASK HANDLING 43

time slot, like the MARS system described in [9].
When the system is activated, the plug-in immediately sets a wake-up point
at the next time-slot. If no task has a start time equal to the current time, it
suspends. The plug-in will be activated at the start of the next time-slot and
repeat what it did in the previous time-slot.
If there is a task with the start time equal to the current time, the plug-in acti-
vates the dispatcher, then it suspend. The dispatcher activates the execution of
the next task and suspends.
The plug-in will be activated every slot, and it will also get events when tasks
end or if tasks miss their deadline. If a task finishes execution in a timely
manner, the dispatcher activates the plug-in, which removes the task from the
execution sequence table and then checks if there is a task ready.

3.4 Plug-Ins for Aperiodic Task Handling

Below we present two plug-ins that handles aperiodic tasks. These plug-ins
are meant to be “plugged into” a scheduling module that makes scheduling
decisions based on earliest start times and deadlines. The plug-ins work in-
dependently of the scheduling module and can be seen as a layer on top of
it.
At all times, the scheduling module schedules task that are ready to execute,
that is, tasks that are present in the ready-queue. The plug-in deals with the
aperiodic tasks and places them in the ready-queue of the scheduling module,
which then processes the aperiodic tasks as it would any other tasks in the
system.
The mechanism for the two plug-ins for aperiodic task handling is based on the
slot shifting [10], taking advantage of resources not needed by non-aperiodic
tasks and using them to schedule aperiodic tasks.
We have named the different plug-ins, plug-in A and plug-in B to distinguish
between the two different algorithms. Plug-in A focuses on guarantees and
handling of single aperiodic tasks with fixed demands, e.g., execution time,
while plug-in B is geared towards large number of aperiodic tasks with chang-
ing requirements.
Aperiodic tasks have unknown arrival times. The earliest start time of an ape-
riodic task is equal to its arrival time. Aperiodic tasks are considered indepen-
dent. We assume that task dependencies are resolved in the off-line phase.

Known WCET Aperiodic tasks with known worst case times and deadlines

44 Paper B

are termed firm aperiodic. If accepted, which is determined by a guaran-
tee test, these tasks must be completed before their deadlines.

Unknown WCET Aperiodic tasks without deadlines and possibly without known
maximum execution times are termed soft aperiodic. These are executed
in a best effort fashion at lower priority than guaranteed tasks such that
the timely execution of guaranteed tasks is not impaired.

3.4.1 Off-line Preparations - Slot Shifting

We propose to use the off-line transformation and on-line management of the
slot shifting method [10]. Due to space limitations, we cannot give a full de-
scription here, but confine to salient features relevant to our new algorithms.
More detailed descriptions can be found in [11], [10], [7]. It uses standard off-
line schedulers, e.g., [8], [11] to create schedules which are then analyzed to
define start-times and deadlines of tasks.
After off-line scheduling, and calculation of start-times and deadlines, the dead-
lines of tasks are sorted for each node. The schedule is divided into a set of
disjoint execution intervals for each node. Spare capacities (sc) to represent
the amount of available resources are defined for these intervals.
Each deadline calculated for a task defines the end of an interval � � , !2.0�"��� �/� .
Several tasks with the same deadline constitute one interval. Note that these in-
tervals differ from execution windows, i.e. start times and deadline: execution
windows can overlap, intervals with sc are disjoint. The deadline of an interval
is identical to that of the task. The start, however, is defined as the maximum
of the end of the previous interval or the earliest start time of the task. The
end of the previous interval may be later than the earliest start time. Thus it is
possible that a task executes outside its interval, i.e., earlier than the interval
start, but not before its earliest start-time.
The sc of an interval � � are calculated as given in formula 3.1:

12; ��� �/� ��� � ��� ���
���
	�� � ;9! �9�-
 �0��< �/.3��12; ��� � ���8�=�4*� (3.1)

The length of � � , minus the sum of the activities assigned to it, is the amount of
idle time in that interval. These have to be decreased by the amount “lent” to
subsequent intervals: Tasks may execute in intervals prior to the one they are
assigned to. Then they “borrow” spare capacity from the “earlier” interval.
Obviously, the amount of unused resources in an interval cannot be less than
zero, and for most computational purposes, e.g., summing available resources

3.4. PLUG-INS FOR APERIODIC TASK HANDLING 45

up to a deadline are they considered zero, as detailed in later sections. We use
negative values in the spare capacity variables to increase runtime efficiency
and flexibility. In order to reclaim resources of a task which executes less
than planned, or not at all, we only need to update the affected intervals with
increments and decrements, instead of a full recalculation. Which intervals to
update is derived from the negative spare capacities. The reader is referred to
[11] for details.
Thus, we can represent the information about amount and distribution of free
resources in the system, plus online constraints of the off-line tasks with an
array of four numbers per task. The runtime mechanisms of the first version of
slot shifting added tasks by modifying this data structure, creating new inter-
vals, which is not suitable for frequent changes as required by sporadic tasks.
The method described in this paper only modifies spare capacity.

3.4.2 Online Activities

Runtime scheduling is performed locally for each node. If the spare capacities
of the current interval 12; �����=� � 4 , EDF is applied on the set of ready tasks.
12; ����� � � 4 indicates that a guaranteed task has to be executed or else a deadline
violation in the task set will occur. It will execute immediately. Since the
amount of time spent is known and represented in sc, guarantee algorithms
include this information.
After each scheduling decision, the spare capacities of the affected intervals
are updated. If, in the current interval ��� , an aperiodic task executes, or the
CPU remains idle for one slot, current spare capacity in ��� is decreased. If
an off-line task assigned to ��� executes, spare capacity does not change. If an
off-line task
 assigned to a later interval � �*�/� � ; executes, the spare capacity
of � � is increased -
 was supposed to execute there but does not, and that of
��� decreased. If � � “borrowed” spare capacity, the “lending” interval(s) will
be updated. This mechanism ensure that negative spare capacity turns zero or
positive at runtime. Current spare capacity is reduced either by aperiodic tasks
or idle execution and will eventually become 0, indicating a guaranteed task
has to be executed. See [10] for more details.

Guarantee Algorithm A

Assume that an aperiodic task
 � is tested for guarantee. We identify three
parts of the total spare capacities available:

� 12; �����=� � , the remaining sc of the current interval

46 Paper B

��� 12; ��� �/�=��; � � � , �"!2.0�"������� � �*,	�-
 � ��� !2.0�"����� ���8� � �*,	�-
 � �=� 12; ��� �/� �
4 , the positive spare capacities of all full intervals between � and �*,	�-
 � �

� < �/.3��12; ����� ���8�=��*,	�-
 � ��� 1 � + � �9����� ���2�	� , the spare capacity of the last in-
terval, or the execution need of
 � before its deadline in this interval,
whichever is smaller

If the sum of all three is larger than � ;9! �9�-
 � � ,
 � can be accommodated,
and therefore guaranteed. Upon guarantee of a task, the spare capacities are
updated to reflect the decrease in available resources. Taking into account that
the resources for
 � are not available for other tasks. This guarantee algorithm
is � ��: � , N being the number of intervals.

Guarantee Algorithm B

This plug-in uses a newer version of slot shifting as guarantee test and the
basic idea behind it is based on the standard EDF guarantee. EDF is based on
having full availability of the CPU, so we have to consider interference from
the non-aperiodic tasks in

�
and pertain their feasibility.

Assume that at time � � we have a set of guaranteed aperiodic tasks � � � and
a set of non-aperiodic tasks

�
. At time � � where �� � ��� , a new aperiodic �

arrives to the plug-in module. Meanwhile, a number of tasks of � � � may have
executed; the remaining task set at � � is denoted � �
 . We test if ��� � �
 can
be accepted, considering tasks in

�
. If so, we add � to the set of guaranteed

aperiodic tasks, � .
The finishing time of a firm aperiodic task � � , with an execution demand of
; ��� �/� , is calculated with respect to the finishing time of the previous task,
� �
0� . Without any off-line tasks, it is calculated the same way as in the EDF
algorithm: 	

�9��� �/� �
	
�9��� � � � �2� ��; ��� �/� (3.2)

Since we guarantee firm aperiodic tasks together with tasks in
�

, we extend the
formula above with a new term that reflects the amount of resources reserved
for these tasks:

	
�9��� ����� ; ��� �%� �

�0� R[�=�

	
�9��� �8�] , � � �	

�9��� �
0�8�2� R[
	
�9��� �
0�9�=�

	
�9��� �/�] , � � � (3.3)

where �� � � � � ��� stands for the amount of resources (in slots) reserved for the ex-
ecution of the tasks in

�
between time � � and time ��� . We can access �� � � � � ���

3.4. PLUG-INS FOR APERIODIC TASK HANDLING 47

Plug-in
(EDF)

SYSTEM

Plug-in A

interval_table

Plug-in
(EDF)

SYSTEM

Plug-in B
accepted_tasks
interval_table

Figure 3.3: Plug-in A and Plug-in B

via spare capacities and intervals at runtime:

�� ��#� ����� � � ��� � �� � � �	 � � � � � � �
��
< +�����12; �����=�=�4*� (3.4)

As
	
�9��� ��� appears on both sides of the equation, a simple solution is not pos-

sible. But in [12] an algorithm, with a complexity of � ��: � , for computing the
finishing times of hard aperiodic tasks is presented.
In this plug-in module no explicit reservation of resources is done, which would
require changes in the intervals and spare capacities, as done in the plug-in A
module. Rather, resources are guaranteed by accepting the task only if it can be
accepted together with the previous tasks in � and

�
. This enables the efficient

use of rejection strategies, and simplifies the handling of the intervals and sc.

3.4.3 Guarantee Plug-Ins

When a plug-in is activated, it updates the intervals in conformity with the
last task execution and checks if there are any pending aperiodic tasks. If
so, it processes them and puts one or more of them into the ready-queue of
the scheduler. Figure 3.3 show the two plug-ins and the data structures they
contain.

Plug-In A

The plug-in keeps a table consisting of the intervals and their attributes (start,
end, sc, and so on) that was created in the off-line phase. It must also keep track
of which task executed last, when it started its latest execution, and how much

48 Paper B

time it consumed, to be able to update the intervals table. Using this informa-
tion, the plug-in updates interval spare capacities and possibly also wake-up
points.

Plug-in B

Plug-in B also needs information about the last task execution to be able to up-
date spare capacities and wake-up points in the intervals table it keeps locally.
It focuses on handling large numbers of aperiodic tasks with changing require-
ments, therefore accepting tasks is done with explicit guarantees via modifying
intervals and spare capacities. Rather, guarantees are including implicitly, by
keeping a list of the so far accepted task. Should a task finish early, it is re-
moved from the list and the resources reserved for it are freed without further
provisions. It is well suited for efficient overload handling, since task removals
do not require changes in intervals and spare capacities as in plug-in A.
After each scheduling decision, the spare capacities of the affected intervals
are updated as for plug-in A.

3.5 Example

In this section we will use an example to illustrate how the two plug-in modules
we defined earlier, plug-in A and plug-in B, work and interact with the rest of
the system. We assume that there are three periodic tasks scheduled by the EDF
algorithm, and the task-set is the following: � � � � � ��� , � � � � �	�*� , ��� � � � � � � ,
where (� �	
) represents WCET and period. Deadline is assumed to be equal
to the end of the period (� �
). The tasks have harmonic periods to make
the example simple. Firm aperiodic tasks have the format:
 +�� � ��� ��� � , and
soft aperiodic tasks have the following format:
 + � � ����� .
Off-line In the off-line phase the plug-ins create a table that contains all the
interval start and end points, the length of the interval, the sc and total execution
time in an interval, and lastly the wake-up (wu) point of the interval. This table
is stored within the plug-in and it will be updated during runtime to reflect the
correct state. Both plug-ins create identical tables as shown in table 3.1. The
table is created with a length equal to the least common multiple (LCM) of the
periods of the tasks. This table will be restored and repeated when time � is
equal to a multiple of the LCM.
The execution sequence table (ES-table) contains the following periodic tasks
from the start: ES-table��� � � ��� � � � ��� .

3.5. EXAMPLE 49

Interval start(I) end(I) � � � sc(I) wu(I)

� � 4 � � � �
�2� � � � � �
� � � � � � �

� � � � � � 4 �

Table 3.1: The original interval table.

On-line The on-line behavior of the two models differs so we will show step
by step how each of them behave, and what happens with the interval table at
different times. Below we will see the actions taken during each step by the
system and the plug-ins.

Time System actions Plug-in actions

This shows how the actions by the different parts will be represented. At each
point time we can see the system’s dispatcher, wake-up calendar actions, and
the plug-in’s actions.

�����
dispatch ��� setWakeUpPoint(�), dispatch()

No new aperiodic tasks have arrived so the plug-in sets a wake-up point and
suspends.

���
	
dispatch ���� remove(���), Guarantee-test,

deleteWakeUpPoint(3,critical-

slot), setWakeUpPoint(4),

insert(���� ,dl-pos), dispatch()

ES-table � � � � � � ��� and a firm aperiodic task has arrived,
 + � � � � � ��� .
Plug-in A The absolute deadline of
 + � is � , so ��� � � � and � � � �2� and the
available sc in this interval is 4 (12; ����� �(� 12; ��� ���), which is larger than
 + �
execution requirement, so
 + � will be guaranteed. Since
 + � ’s deadline, � , is
not equal to !2.0�"��� ��� , �2� will have to be split. The sc is also updated after the
split and the interval table for plug-in A is shown in table 3.2.
Plug-in B In this plug-in the set of guaranteed aperiodic tasks (�) is empty. The
plug-in tests if
 + � can be accepted together with the periodic tasks. This is
done by calculating the finishing time of
 +�� , which is � in this case (according

50 Paper B

Interval start(I) end(I) � � � sc(I) wu(I)

� � 4 � � � �
�2� � � � � 4 �
�2��� � � � 4 �
� � � � � � �

� � � � � � 4 �

Table 3.2: Updated interval table for plug-in A.

to formula 3.3). No interval split will occur in this plug-in, nor any change to
the sc of the intervals table because an aperiodic task was accepted.
Both plug-ins will set an updated wake-up point. The wake-up point has been
changed because task � � has executed one slot, and then suspend.

�����
event(taskEnd),

dispatch � �
remove(����),
Internal-work,

dispatch()

ES-table � � � � � � ��� . No new aperiodic tasks has arrived,
 +�� has finished.
The plug-ins will be activated by this task-end event, plug-in A will modify the
wake up point of the interval
 + � belonged to in the intervals table, ��� ���#�9+ �
�), and then suspend again. Plug-in B takes no action and suspends.

��� � event(taskEnd),

dispatch � �
remove(� �),
Internal-work,

dispatch()

ES-table � �&� � � . No new aperiodic tasks have arrived. � � will execute. � �
has finished, the wake up point is not modified because � � belongs to a later
interval (but the ��� in that interval is modified, so ��� ���&�8� ���).

���	�
event(wakeUp),

dispatch ����

insert(����
 ,first-pos),
insert(�� ,pos),

setWakeUpPoint(5), setWakeUp-

Point(6), dispatch()

ES-table � � � �#� � ��� . Next instance of task � is ready. ��� has finished exe-
cuting and it belongs to a later interval, so the wu of that interval is modified
(��� ��� �#� � �

).

3.5. EXAMPLE 51

A soft aperiodic task
 + � � � ��� has arrived. Both plug-ins will behave in the
same manner: since 12; �����=� � 4 , task
 +�� will be inserted first in the ready-
queue. Plug-in B will set the next wake up point and suspend. Plug-in A will
set the wake up to � even though the original ��� �����=� � � , this has changed
because
 + � executed in an earlier interval and thus the 12; �����=� increased to � .

�����
event(wakeUp),

dispatch ����

setWakeUpPoint(6), dispatch()

ES-table � � � �#� � ��� . Plug-in A is activated by the wake-up point event. Nor-
mally this means that the execution of the soft task must be stopped in favor
of a periodic task. But in this case we have only an interval change, and the
12; ����� � � 4 , so the soft task can continue to execute (12; ����� � � 4 because � � ex-
ecuted in an earlier interval). Plug-in A resets the wake up point and suspends
itself. Plug-in B is not activated.

�����
event(wakeUp),

dispatch ����

insert(� � ,EDF-pos), setWakeUp-

Point(7), dispatch()

ES-table � � � �#�����&� � � � . The second instance of task � is activated. Both
plug-ins are activated by wake up points, this means that the execution of the
soft task must be stopped in favor of a periodic task. Once again, there is
only an interval change and a new wake up point can be set, and since the
12; ����� � � 4 ,
 +�� can continue to execute. Both the plug-ins suspend.

�����
event(wakeUp),

dispatch ��
remove(����
),
setWakeUpPoint(8), dispatch()

ES-table � � � �#�����#� � ��� . The plug-ins are activated due to the wake up point.

 +�� must be interrupted so ��� won’t miss it’s deadline. The plug-ins set the
next wake up point and suspend.

�����
event(wakeUp),

event(taskEnd),

dispatch ����

remove(��), insert(��� ,pos),

insert(����
 ,first-pos), setWakeUp-

Point(9), dispatch()

ES-table � � � � �����&� � � � . The next instance of task � is activated. Since the
12; ����� � � 4 ,
 +�� will be put first in the ready queue and executed. The plug-ins
set the next wake up point and suspend.

52 Paper B

Taf TasA0 B0 B1A2A1C0 C0TasTasTas

Taf arrives Tas arrives

1110 2 3 4 5 6 7 8 9 10 12

Table 3.3: Example execution trace

�����
event(wakeUp),

event(taskEnd),

dispatch ���

remove(����
),
setWakeUpPoint(10), dispatch()

ES-table � � � � �����#� � � � .
 +�� has finished executing, the plug-ins set the next
wake up point and suspend.

���
	 �
event(wakeUp),

event(taskEnd),

dispatch � �

remove(���),
setWakeUpPoint(11), dispatch()

ES-table � � ���#� � ��� . � � has finished it’s execution, �'� is executed. The plug-
ins set the next wake-up point and suspend.

���
	 	
event(wakeUp),

event(taskEnd),

dispatch � �

remove(� �),
setWakeUpPoint(12), dispatch()

ES-table � �&� � � . ��� has finished executing, the plug-ins set the next wake up
point and suspend.
After this, because � � total length of the interval tables, the plug-ins recreate
the original intervals table by restoring the sc and wu of the intervals. If an ape-
riodic task arrives and has a deadline longer than the end of the interval table,
the table will be extended by repeatedly adding the original table to the end of
the extended table, until it is longer than the deadline. All the interval informa-
tion (start, end, sc, and so on) of the extended table is adjusted to represent a
larger table, and thus later time points.

3.6. CONCLUSION 53

3.6 Conclusion

In this paper we addressed the need for adding functionality to systems, in
particular scheduling algorithms, without need for abandoning trusted methods
or major revisions.
We proposed a plug-in approach for aperiodic task handling, presented two
different plug-in modules, and showed their applicability to two scheduling
schemes, EDF, and off-line scheduling. Our method concentrates the aperiodic
task functionality into a software module with a defined interface.
We presented an architecture to disentangle actual real-time scheduling from
dispatching and other kernel routines with a small API, suited for a variety of
scheduling schemes as plug-ins. As the functionality of the plug-in is inde-
pendent of the basic scheduling scheme and the interface is very small, we can
insert and apply the aperiodic-plug-ins to both off-line and on-line scheduling
methods.
Further research will go into extending the applicability to a wider range of
systems and algorithms.

Bibliography

[1] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogram-
ming in Hard Real-Time Environment. Journal of the ACM, 20, 1, Jan-
uary 1973.

[2] V. Yodaiken. Rough notes on Priority Inheritance. Technical report, New
Mexico Institute of Mining, 1998.

[3] S. R. Thuel and J.P. Lehoczky. On-Line Scheduling of Hard Deadline
APeriodic Tasks in Fixed-Priority Systems. In In Proceedings of the 14th
Real-Time Systems Symposium, Raleigh-Durham, USA, December 1993.

[4] S. R. Thuel and J.P. Lehoczky. Algorithms for Scheduling Hard Aperi-
odic Tasks in Fixed-Priority Systems using Slack Stealing. In In Proceed-
ings of the 15th Real-Time Systems Symposium, San Juan, Puerto Rico,
December 1994.

[5] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in Dynamic Pri-
ority Systems. In In Proceedings of the IEEE Real-Time Systems Sympo-
sium, Washington D.C., USA, December 1996.

[6] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A New Kernel Approach
for Modular Real-Time Systems Development. In Proceedings of the
13th Euromicro Real-Time Systems Conference, Delft, Netherlands, June
2001.

[7] D. Isovic and G. Fohler. Handling Sporadic Tasks in Statically Scheduled
Distributed Real-Time Systems. In Proceedings of the 11th Euromicro
Real-Time Systems Conference, York, England, June 1999.

BIBLIOGRAPHY 55

[8] K. Ramamritham. Allocation and scheduling of complex periodic tasks.
In In the 10th International Conference on Distributed Computing Sys-
tems, Paris, France, May 1990.

[9] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft,
and R. Zainlinger. Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach. IEEE Micro, February 1989.

[10] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems. In In Proceedings of
the 16th Real-Time Systems Symposium, Pisa, Italy, December 1995.

[11] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technishe Universität, Wienna, Austria, 1994.

[12] D. Isovic and G. Fohler. Efficient Scheduling of Sporadic, Aperiodic,
and Periodic Tasks with Complex Constraints. In Proceedings of the 21st
IEEE Real-Time Systems Symposium, Orlando, Florida, USA, November
2000.

Chapter 4

Paper C: Enhancing Time
Triggered Scheduling with
Value Based Overload
Handling and Task
Migration

Jan Carlson, Tomas Lennvall, and Gerhard Fohler
In the 6th International Symposium on Object-Oriented Real-Time Distributed
Computing, Hakodate, Japan, May 2003

Abstract

Time triggered methods provide deterministic behaviour suitable for critical
real-time systems. They perform less favourably, however, if the arrival times
of some activities are not known in advance, in particular if overload situations
have to be anticipated. In many systems, the criticality of only a subset of
activities justify the cost associated with the time triggered methods.
In this paper we consider distributed systems where a subset of critical activi-
ties are handled in a time triggered fashion, via an offline schedule. At runtime,
the arrival of aperiodic tasks may cause overload that demands to be handled
in such a way that i) time triggered activities still meet all their original con-
straints, ii) execution of high-valued tasks are prioritised over tasks with lower
value, iii) tasks can be quickly migrated to balance the overall system load.
We give a precise formulation of overload detection and value based task re-
jection in the presence of offline scheduled tasks, and present a heuristic algo-
rithm to handle overload. To benefit from the distributed setting, the overload
handling includes an algorithm that integrates migration of rejected tasks with
resource reclaiming and an acceptance test of newly arrived tasks.
Simulation results underline the effectiveness of the presented approach.

4.1. INTRODUCTION 59

4.1 Introduction

The time triggered approach has been shown to be suitable for critical real-
time systems [1] [2]. By applying strict temporal control, critical activities can
be performed in a deterministic way. Since scheduling is performed offline,
sufficient time can be spent constructing a feasible schedule to allow complex
constraints, e.g., concerning task separation or jitter.
However, time triggered scheduling performs less favourably with activities
for which the arrival time is not known in advance. If overload situations have
to be anticipated to occur at runtime, a time triggered design would typically
restrict the number of activities for the entire system lifetime, although solving
occasional overload situation by rejection of less important tasks would be ac-
ceptable. Designing the system for worst case load would in many cases result
in a prohibitively overdimensioned system.
In distributed systems, it is possible that overload situations occur on a set of
processing nodes although the system is globally underloaded. Such situations
can be resolved by migrating tasks from overloaded nodes to such with lower
load.
For many systems, only a subset of activities justifies the cost associated with
time triggered methods. In addition to this critical subset, the system may
perform a number of other activities of lower importance which may be of
different relative importance to the overall system performance.
As an example, imagine a system with a critical core responsible for system
stability, but less stringent applications; while a failure in the core system is
unacceptable, reduced application performance can be tolerated at overload, as
in, e.g., a telephone switch.
In this paper we consider distributed systems where a subset of activities are
handled in a time triggered fashion. At runtime, the arrival of aperiodic tasks
may cause overload, which cannot be planned for in advance. If overload oc-
curs, it must be detected and resolved in such a way that:

i) time triggered activities still meet all their original constraints,
ii) execution of high-valued tasks are prioritised over tasks with lower value,

iii) tasks can be quickly migrated between nodes to balance the overall sys-
tem load.

We describe how the time triggered approach can be enhanced to suit dis-
tributed real-time systems where overload situations must be anticipated. We
give a precise formulation of overload detection and value based task rejec-
tion in the presence of offline scheduled tasks, and present a heuristic overload

60 Paper C

handling algorithm. Overload situations are detected immediately when the
offending tasks arrive, and resolved by rejection of low value tasks.
The overload handling includes a task migration algorithm to benefit from the
distributed setting, that integrates migration of rejected tasks with resource re-
claiming and the acceptance test of newly arrived tasks.
We assume that the critical tasks are scheduled offline, but the schedule is han-
dled in a flexible way at runtime to facilitate the inclusion of aperiodic tasks.
This is achieved by including mechanisms from the slot shifting algorithm [3]
that allow the planned execution of offline scheduled tasks to be shifted in time,
while still ensuring that no critical constraints are violated. This allows the de-
signer to choose, for each activity individually, the tradeoff between guaranteed
timely execution, and less resource demanding non-guaranteed handling based
on values.
Value based overload handling has been thoroughly investigated. In [4], a num-
ber of methods that use values and deadlines to handle overload are compared.
For a wide range of overload conditions, the best performance was achieved
by EDF scheduling extended with a value based overload recovery mecha-
nism and resource reclaiming. An example of such an algorithm is RED [5].
For very high overloads, scheduling based on value density outperforms EDF
based methods. In [6], task priorities are calculated dynamically from val-
ues and remaining execution times. They consider tasks with soft deadlines,
i.e., values that decrease if the deadline is missed, rather than become zero or
negative. In [7], an overload algorithm is presented for the special case when
a minimum slack factor for every task is known. Also, tasks are assumed to be
equally important.
These methods do not consider distributed scheduling, or overload handling in
the presence of offline scheduled critical tasks.
Distributed overload handling is addressed in, e.g., [8], where an acceptance
test is performed upon arrival of aperiodic tasks. If it fails, the node initiates
an intricate bidding procedure in which nodes cooperate to decide where to
migrate the task. The problem considered in this paper requires an overload
handling where values are taken into account. Another difference is that in
our method migration is initiated by the receiving node rather than the current
owner of the task, and that migration is integrated with resource reclaiming and
the acceptance test of new aperiodic tasks.
The rest of this paper is organised as follows: Section 2 lists task and system as-
sumptions and discusses our method in general. The task migration algorithm
is presented in Section 3, followed by a description of the local overload han-
dling in Section 4. Simulation results are given in Section 5. Finally, Section 6

4.2. SYSTEM ASSUMPTIONS AND BASIC IDEA 61

concludes the paper.

4.2 System assumptions and basic idea

This section describes system assumptions, task model and value model we
used. It also includes a brief description of how the mixed task set is handled,
and the basic idea of the proposed method.
We consider a distributed system, i.e., one that consists of several processing
and communication nodes [9]. All nodes are assumed to have access to the
static parameters, including code, of all aperiodic tasks. This simplifies task
migration since only task identifiers are sent over the network. Also, we only
migrate tasks that have not started executing on a node, and thus no additional
data transfer is required.
We assume a discrete time model [10]. Time ticks are counted globally by a
synchronised clock, and assigned numbers from 0 to � . The time between two
consecutive ticks is called a slot. Slots have uniform length, and they start and
end at the same time for all nodes in the system.

4.2.1 Task model

We assume two different task types in the system: offline scheduled tasks and
aperiodic tasks, described below. All tasks are fully preemptive and commu-
nicate with the system via data read at the beginning and data written at the
end of execution. Hard deadlines must be met under any circumstance. Firm
deadlines can be missed, but a result delivered after the deadline is of no use to
the system.

Offline scheduled tasks have hard deadlines and can have complex constraints,
such as distribution, precedence, instance separation, jitter, etc. Solving these
constraints online is not feasible in the general case, due to the high complex-
ity. Instead, the offline scheduled tasks are transformed by an offline scheduler,
into simple runtime tasks with simple constraints: earliest start time, worst case
execution time (wcet), and a relative deadline.
Transformation of complex constraints into simpler ones is discussed in [11],
where an offline scheduler, e.g., [12] is used and the resulting schedule anal-
ysed to establish the new parameters.

Aperiodic tasks have firm deadlines, and arrival times unknown at design time.

62 Paper C

We also assume aperiodic tasks to be independent of each other, and of the
offline scheduled tasks. An aperiodic task is characterised by the following
set of parameters: arrival time, remaining worst case execution time (;), firm
absolute deadline (�*,), and value (�).
The term aperiodic reflects the fact that the system has no knowledge of arrival
times and thus do not consider the arrival of future instances when scheduling.
Aperiodic tasks can still be used to handle non-critical periodic activities.

Value is a measure of the benefit to the system associated with completing
the task in time. Only aperiodic tasks are associated with values, since offline
scheduled tasks are never considered for rejection when resolving overload
situations. The values are considered to be cumulative, i.e., two sets of tasks
can be compared by their respective sum of values. Tasks contribute with their
value to the system if they finish in time, otherwise they do not contribute at
all. In this paper we assume static values ranging from � to MaxValue, where a
higher value indicates a greater benefit.

4.2.2 Handling the mixed task set

At runtime, local scheduling uses the slot shifting algorithm described in [3],
except for the guarantee mechanism. Slot shifting introduces flexibility into
the offline schedule by allowing offline scheduled tasks to be shifted in time,
but never in such a way that their timely execution is impeded.
Information about this flexibility, i.e., available resources and leeway in the
offline schedule, is represented as spare capacity of disjoint time intervals. This
information is used by the runtime scheduler to decide for each slot whether to
execute an aperiodic or an offline task. In this paper, the spare capacity of these
fixed intervals are only considered as a way to determine the spare capacity of
arbitrary future intervals when handling overload.

4.2.3 Basic idea

As outlined above, slot shifting is used to decide when aperiodic tasks can be
allowed to run without causing an offline scheduled task to miss its deadline.
In addition, the scheduler must decide which aperiodic task to execute. In the
proposed method, aperiodic tasks are served according to EDF once accepted
by the overload detection mechanism.
To handle overload situations, each node keeps the ready queue, containing
the aperiodic tasks ready to be executed on that node, constantly free from

4.3. REMOTE TASK STEALING 63

overload. When new aperiodic tasks arrive, they are inserted into the ready
queue based on their deadlines. Then, the queue is processed to detect future
overload situations and to resolve them to make the queue free from overload
again.
All tasks removed from the ready queue due to overload are stored in a separate
maybe-later queue, as long as they have positive laxity. This queue is similar
to the reject queue in RED [5], but used for tasks migration as well as resource
reclaiming.
The basis of the task migration algorithm is that selected tasks from maybe-
later queues are retried, possibly on other nodes. Retrying tasks locally is
required to reclaim resources when tasks finish in less time than wcet. If a task
is accepted on the new node, it is immediately migrated. An important aspect
of this scheme is that a task is only migrated if it has been found non-profitable
for local execution, and if there is room for it on the new node, possibly after
rejecting a number of lower valued tasks.

4.3 Remote task stealing

A distributed system with runtime task migration must somehow decide when
and where to move tasks in order to maximise the total value of executed tasks.
These decisions become increasingly important when the load, or the value of
tasks, varies a lot between nodes. Ensuring optimal global scheduling is an
NP-hard problem, and we therefore aim for a sub-optimal solution.
In order to cope with the complexity of the problem, scheduling is primar-
ily handled locally on each node, as discussed in Section 4.4. Task migration
is handled together with acceptance tests of new tasks, and local resource re-
claiming. Further, task migration is always initiated by the node the task is to
migrate to, and not the current owner. Therefore, we use the term task stealing,
rather than migration.
To keep network usage low, and to simplify the algorithm by ruling out the
possibility of conflicting thefts, only one node at a time is allowed to steal
tasks. This is ensured by something similar to a conceptual token ring, where
the owner of the token may steal tasks from any other node during one slot,
before the token is passed to the next node in the ring.
By some arbitrary communication scheme, the maybe-later queues (or parts
of them) are made visible to all nodes in the system. At the start of a slot,
each node adds newly arrived aperiodic tasks to its ready queue. In addition,
the node holding the token may add tasks from any maybe-later queue in the

64 Paper C

system, including its own. After adding tasks, each node applies the overload
handling algorithm to resolve any overload situations.
Since only one node is allowed to steal tasks from any maybe-later queue at the
start of each slot, and no additional data have to be sent over the network, the
stealing node may execute one of the stolen task immediately (in the current
slot).

The Flea Market algorithm1

The parameter MaxTheft is used to adjust the algorithm w.r.t. network capacity
and system size. At the start of every slot, each node performs the following
algorithm:

1. Let � be the set of all aperiodic tasks currently in the ready queue.

2. Add to � all aperiodic tasks that arrived to the node at this tick.

3. This step is only performed by the node currently holding the token.
Gather tasks from the maybe-later queues of all nodes in the system.
From the maybe-later queues of other nodes, consider only tasks that
are movable. Add to � the tasks with highest value density, at most
MaxTheft tasks.

4. Apply the overload algorithm to � . The result is a boolean value � � for
each + ��� � , where 4 represents acceptance and � rejection. For each
� � , perform the following action depending on whether the task + � was
added during step 1, 2 or 3 of this algorithm.

� � step action
� 1 Remove + � from ready queue, and

insert it in the maybe-later queue.
� 2 Insert + � into maybe-later queue.
� 3 Do nothing.
4 1 Do nothing.
4 2 Insert + � into ready queue.
4 3 Insert + � into ready queue, and in-

form the current owner (possibly
yourself) of the theft.

5. If the node holds the token, send it to the next node.

1The name reflects that once a node is no longer interested in a task, the task is offered to the
other nodes of the system, and given to the first node that wants it.

4.4. OVERLOAD HANDLING 65

4.3.1 Node communication

The algorithm is described as if the whole maybe-later queues are visible to
all nodes, but this is actually not required. The node holding the token is in-
terested only in the MaxTheft tasks with highest value density. By keeping
maybe-later queues sorted according to value density, it is sufficient to make
the MaxTheft first tasks in each queue visible. Also, since aperiodic tasks are
assumed to reside on all nodes in the system, only tasks identifiers are sent over
the network.
Furthermore, only one node uses the maybe-later queues each slot. Thus, the
distribution of maybe-later queue information in a system of . nodes can be
accomplished by a total of . � � messages, each consisting of MaxTheft task
identifiers and remaining execution time.
Communication is also required in order to migrate tasks. Since only one node
may steal tasks from the maybe-later queues in each slot, the only communi-
cation needed in order to migrate a task is to inform the current owner of the
theft. Thus, a stolen task may execute on the new node in the same slot as it
is stolen. At most . � � messages, each containing one task identifier, are sent
each slot due to task migration.
The algorithm, as described above, assumes that the network is fast enough to
permit the following communication during a single slot:

� The node holding the token sends theft messages to all nodes.
� When receiving the theft message, each node sends its new maybe-later

queue information to the next token holder.

If the network does not permit this within a single slot, but within � slots, the
algorithm can be modified so that the token is inactive for � � � slots when it
arrives to a node. Figure 4.1 and 4.2 show the communication between three
nodes for ����� and ����� . Ticks are denoted by vertical lines, and the scheduling
performed in each slot is represented by a grid. Horizontal lines denote the
token holder, and dashed lines represent that the token is inactive. Arrows
starting in a grid are messages concerning stolen tasks, and those starting in
the middle of a slot are messages containing maybe-later queue information.

4.4 Overload handling

At run time, scheduling is performed locally via the slot shifting scheme, which
decides for each slot if an aperiodic task can be allowed to execute without
causing an offline scheduled task to miss its deadline.

66 Paper C

: �

: �

: �

�
�
� �

�
�
�
�
�
� �

�
�
� �

�
�
� �

�
�
� �

�
�
�
�
�
� �

�
�
� �

�
�
� �

�
�
� �

�
�
�
�
�
� � �

�
�
�
�
� �

�
�
� �

Figure 4.1: Node communication (�����).

: �

: �

: �

� � � � � � � � �
	

� � � � � � � � ���� � � � � �
�

� � � � � �
�

Figure 4.2: Node communication (�����).

Aperiodic tasks are served according to EDF, which gives good performance in
non-overload situations. When the system is overloaded, two important issues
must be addressed. In general, high valued tasks should be preferred over tasks
with low value. Additionally, tasks should be removed as early as possible,
rather than simply being allowed to miss their deadlines, since an early removal
might allow the task to be stolen by another node in the system.
Our algorithm ensures an overload-free ready queue, i.e., all tasks in the queue
can be executed without missing their deadlines, also in the presence of offline
scheduled tasks. When new aperiodic tasks arrive, the algorithm checks if
they cause overload, and if so, which tasks to reject in order to resolve this
efficiently.

4.4.1 Problem formulation

Detection and removal of overload can be formulated as a general binary op-
timisation problem. This allows us to abstract on details, since the dynamic
aspects of the rejection problem (e.g., that rejecting a task influences the fin-

4.4. OVERLOAD HANDLING 67

ishing times of the others) are represented by static restrictions. This facilitates
the development of a suitable algorithm.
Let �#�#�8787878� ��� be the aperiodic tasks currently in the ready queue, including
the ones that just arrived, sorted according to EDF. For each task � � we use a
boolean variable � � to represent whether the task should be kept in the ready
queue (� � � 4), or rejected (� � � �). These variables are the output of the over-
load algorithm, used by the Flea Market algorithm described in Section 4.3.
To explain the problem formulation, we first consider a simpler setting without
offline scheduled tasks, and then proceed by showing the modifications needed
to incorporate offline scheduled tasks as well.
Consider a single aperiodic task ��� . To detect if there is a risk of this task
missing its deadline, we need the expected finishing time, denoted

	
� � . In a

pure EDF setting, with no offline scheduled tasks to consider, this would be
computed by adding the remaining execution times ;&�#�8787879�; � to the current
time.
However, detecting overload is not enough. To solve it efficiently we need to
know the size of each deadline miss, so we denote by � � the overload amount
of � � , defined in the simple setting as

	
� � � �*, � . In order to ensure that ��� does

not miss its deadline, at least � � slots must be freed, by removing some of the
tasks �#�#�8787878� � � . This is represented by the following restriction:

;2� � �3��; � � ��� 78787#��; � � � � � �

Similar reasoning can be applied to each of the tasks in the ready queue, result-
ing in the following set of restrictions:

;2� � � � � �
;2� � �3��; � � � � � �

...
;2� � �3��; � � � � 78787#��;�� ��� � �

�

Note that these restrictions give a static formulation of the problem, since the
� -values are defined in term of the current ready queue, and do not depend on
the � -values.
An assignment of the values 4 or � to the � -variables corresponds to a poten-
tial solution to the task rejection problem. Furthermore, any assignment that
satisfies the restrictions corresponds to a solution that would result in a ready
queue free from overload. However, we do not simply look for a solution (re-
jecting all tasks is always a valid possibility), we want a solution that gives as

68 Paper C

high value as possible to the system. This means that the summed values of the
removed tasks should be minimised, which is represented as:

min �*��� �3� � � � � � 78787#� � � ���

So far, we have considered a simplified system that contains only aperiodic
tasks. In order to construct similar restrictions when offline scheduled tasks
also have to be considered, the definition of � � must be modified.
Let 12; � +"� � � be the spare capacity of the interval from + to

�
, i.e., the number

of slots in the interval that is not required to execute offline scheduled tasks in
time. Now, � � can be defined as follows:

� � � 12; � �*, �	� 	 � � �
This definition requires the expected finishing time to be computed, and now
that the system contains offline scheduled tasks as well, this is not straight-
forward. Instead, we use the following definition, which is equivalent to the
previous one except that it assigns negative values rather than zero to tasks that
finish before the deadline. In this definition, � � denotes the current time.

� � � ;2� ��12; � � �8���*,�� �
� � � � �
0�2� ; � ��12; � �*, �
0�&���*, � � � � � � � . �

The modified definition of � � allows the same restrictions to be used as in the
simplified setting, and the final representation of task rejection as a optimisa-
tion problem is:

min �*��� �3� � � � � � 78787&� � � ���
when ;2� � � � � �

;2� � �3��; � � � � � �
...

;2� � �3��; � � � � 78787#��;�� ��� � �
�

� �&� � � �8787878� ��� � �#46� � �

Example: Let the ready queue contain the following aperiodic tasks at the
beginning of slot �24 , where (�*,��	�; � � � �) represents � � .

�#��� � � � � � � � 4*� �����"� � � � �6� �24*� ����� � � � � � � � 4*�
� ��� � ���6� � � �24*� �

�
�"� � � � � � � � ����� � ��� � � � � 4*�

4.4. OVERLOAD HANDLING 69

The tasks ��� and ��� have just arrived, and might have caused overload. If no
more tasks were to arrive, the execution of the aperiodic tasks would look as
follows. The arrows denote deadlines, and the gaps indicate slots needed to
execute offline tasks. For simplicity, we assume that the offline schedule has a
low load in the interval.

�24 � � � 4 ���

�#�
�

� � � � �
� �

�
� � � � �

���
�

� � � � �
�
� �

�
� � � �

���
�

� � � �
���

�
� � � �

The corresponding optimisation problem is:

min � 4 � � � �24 � � � �24 ���(� � � � � � 4 ��� � � 4 � �
when � � � � � �

� � �3� � � � � � �
� � �3� � � � � � ��� � � �
� � �3� � � � � � ���(� � � � � � �
� � �3� � � � � � ���(� � � � �	� ��� � �
� � �3� � � � � � ���(� � � � �	� ��� �	� � � � �
� �&� � � �8787878� � � � �#46� � �

The last two inequalities correspond to the overload at � � and ��� , and describe
what must be done in order to resolve this.

4.4.2 Rejection algorithm

Even when all restrictions except the last one are trivially satisfied (� � � 4
for � � � � .), the problem is hard to solve. In fact, it has been reduced
to the well known NP-hard binary knapsack problem, which indicates that an
optimal alogrithm is not feasible. Instead, our algorithm is based on heuristics
that exploit properties of this particular problem.
One such property is that each restriction contains less variables than the sub-
sequent ones. Furthermore, a good solution (w.r.t. the minimisation criteria)
to a single restriction is a reasonably good partial solution to all subsequent
restrictions, since the variables are equally weighted in all restrictions.

70 Paper C

Algorithm description. Initially, all � � variables are set to 4 , which represents
a solution where no tasks are removed. The rejection algorithm traverses the
restrictions top-down, solving each of them individually.
The restrictions are solved by changing some of the variables from 4 to � .
Once a variable is set to � , this variable is never changed during the solving of
subsequent restrictions.
Each restriction, unless already satisfied by the current variable settings, is
solved in three steps.

� First, we consider the variables of the left-hand side of the restriction that
are currently set to 0, and would solve the restriction if set to 1. From
these we select as our best single candidate the one with lowest � � .

� Next, we construct the collection candidates. From the remaining left-
hand side variables that are currently set to 0 (i.e., those that would not
solve the restriction if set to 1), we collect variables from right to left
until the restriction would be solved if all variables in the collection are
set to 1.

� Finally the value of the best single candidate is compared against the
summed values of the collection candidates (if a large enough collection
was found), to decide what the final choice should be.

Complexity. Computing � -values for . aperiodic tasks can be done in linear
time. The algorithm has been left out due to space limitations, but can be found
in [13]. In the worst case, all . restrictions have to be solved and none of the
solutions solve any subsequent restriction. Solving a single restriction requires
a linear traversal of all earlier tasks, which gives the algorithms a worst case
complexity in � �-. � � .
In practical applications, this worst case complexity can be handled in essen-
tially two ways. We can restrict the overload algorithm to consider only a
prefix of the ready queue. Simulations presented in [13] show a moderate im-
pact on system performance when this type of restriction is applied. Another
possibility is to restrict the number of non-trivially solved restrictions that are
considered at each call to the overload algorithm. If this number is reached, the
system rejects all new tasks, which is always a valid option.

Efficiency improvements. Let ��� be the new task that has the earliest deadline.
Since the task set was free from overload before the new tasks arrived, the first
� � � restrictions are trivially satisfied and do not need to be considered.

4.4. OVERLOAD HANDLING 71

If, at any point, the sum � �

� � � � ��� � becomes greater than the summed value of
the newly arrived tasks, the algorithm stops, returning an answer where all new
tasks are rejected, and all old tasks are kept. This improvement ensures that
the total value of the ready queue is never decreased when new aperiodic tasks
arrive.

Example: For the task set in the previous example, the algorithm works in
the following way. The first new task was added at position three, so we need
only to check restrictions three to six. The third and fourth restrictions are
trivially satisfied, because the � -values are negative, but restriction five needs
to be solved.

� � � � � � � � � ��� � � � � �	� ����� �

To find the best single candidate, we choose between � � , ��� and ��� . Since � �
is smaller than �*� and � � , ��� is chosen as single candidate. Constructing the
collection, both � � and � � are added before the collection is large enough to
solve the restriction. Comparing ��� ���24 against �

� � � � ��� � we finally decide
to solve the fifth restriction by � � ��� .
Continuing the traversal of restrictions, we now consider the last one:

� � � � � � � � � ��� � � � � �	� ��� �	� � � � �

We find that the current variable values do not satisfy this restriction, and the
procedure of finding the best single candidate and a collection is repeated. This
time, the collection has a lower value, and the restriction is solved by �� � � � �
�
The solution to the whole problem is � � � ��� � � � ��� , � � � ��� � � � � 4 , mean-
ing that ��� is accepted, while � � , ��� and �

�
are removed from the ready queue.

Since all restrictions are satisfied by this solution, the ready queue is once again
free from overload. The future execution of aperiodic tasks, assuming no fur-
ther arrivals, is:

�24 � � � 4 ���

�#�
�

���
�

���
�

72 Paper C

4.5 Simulations

We have implemented the described method, and have run simulations for vari-
ous scenarios. The simulated system consists of � processing nodes, connected
via a network where all necessary messages can be sent during one time slot.
Each simulation has a length of � 4 4 4 slots. The offline schedules are created
from randomly generated precedence graphs, an offline scheduler transforms
the precedence graphs to offline schedules. Each node has one offline schedule
with a load of 467 � and a length between � 4 4 and �24 4 4 slots.
Worst case computation time for both offline and aperiodic tasks varies uni-
formly in the range � – �24 . Aperiodic tasks are assigned an actual execution
time uniformly distributed between 467 � and � 7 4 of its wcet, and relative dead-
lines varying between � – � times wcet.
Arrival times of aperiodic tasks are distributed over the simulation length, with
the restriction that no task have a deadline exceeding the simulation length.
Finally, values of aperiodic tasks vary uniformly in the range � – �24 4 .
The average node load varies between 467 � and �67 4 , the offline load of 467 � in-
cluded. The load parameter is based on wcet, and thus represents the load as
perceived by the overload algorithm. The actual system load is lower2, since
execution time is less than wcet.
We have studied the total accumulated value of aperiodic tasks that finished in
time, and the following methods have been compared:

1. The full method presented in the paper.
2. The overload handling algorithm, without task migration.
3. A basic algorithm that uses the offline schedule, assigning idle slots to

the aperiodic tasks based on value density.
4. Same as 3, but aperiodic tasks are ordered by value.
5. Same as 3, but aperiodic tasks are ordered EDF.
6. Same as 3, but aperiodic tasks are serviced in order of arrival.

Methods 1 and 2 implement the efficiency improvements suggested in Sec-
tion 4.4.2. Each point in the figures represents some � 4 4 simulations.
In the first experiment, all nodes in the system are subject to the same amount
of load. The result is presented in Figure 5.1. Because all nodes are overloaded,
the possibility of task migration does not provide any significant improvement.
Compared to the basic methods, the proposed method performs better.

2The actual system load varies approximately between
�

�

�
and

�
� � � in the experiments, based

on the distribution of actual execution times

4.6. CONCLUSIONS 73

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 4.3: Even load distribution.0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 4.4: Uneven load distribution.

The second experiment, shown in Figure 5.2, is a scenario of unevenly dis-
tributed load. Half of the nodes have no aperiodic tasks arriving, only offline
scheduled tasks. Here, the task migration algorithm clearly increases the sys-
tem performance, compared to overload handling without migration, because
tasks can migrate to nodes with no aperiodic load.

4.6 Conclusions

In this paper we have described how the time triggered approach can be en-
hanced to suit distributed real-time systems where overload situations have to
be anticipated. Overload situations are resolved w.r.t. task value, possibly by

74 Paper C

migration of tasks to nodes of lower load, without impeding the timely perfor-
mance of critical activities.
For many systems, the cost associated with time triggered methods is only jus-
tified for a subset of activities. In addition to this critical subset, the system
may perform a number of other non-critical activities, which may be of differ-
ent relative importance to the overall system performance.
We have formulated a binary optimisation problem that represents overload
detection and value based task rejection in the presence of offline scheduled
tasks that are guaranteed a timely execution.
We have also presented a heuristic overload handling algorithm that detects
overload situations immediately when the offending tasks arrive, and resolve
them by rejection of low value tasks. The overload resolver, although not op-
timal, never decreases the value of aperiodic tasks in the overload-free ready
queue.
As distributed systems were considered, the overload handling includes a task
migration algorithm that integrates migration of rejected tasks with resource
reclaiming and the acceptance test of newly arrived tasks. Task migration is
initiated by the receiving node. It is only applied to tasks that have been re-
jected by their current owner, and will increase the value of the receiving node.
A task can execute on the new node in the same slot it was migrated.
Critical tasks are scheduled offline, which allows complex constraints, such as
distribution, precedence and jitter, to be considered. Using mechanisms from
the slot shifting method, the schedule is handled in a flexible way at runtime to
facilitate the execution of aperiodic tasks, while still ensuring that no critical
constraints are violated.
This enables designers to choose the tradeoff between predictability and flex-
ibility individually for each activity in the system. It guarantees predictable
execution of critical activities even under overload situations, while minimis-
ing response times and maximising accumulated values.
Simulation results show the effectiveness of our approach for loads up to �67 4 ,
evenly and unevenly distributed over the nodes, compared to a basic algorithm
that uses the offline schedule directly and assigns idle slots to execution of ape-
riodic tasks in order of arrival. The results also show the performance increase
due to task migration.
An interesting future extension to this work would be to allow offline scheduled
tasks to be associated with values as well, and thus included in the rejection
process. The difference, compared to including them as aperiodic tasks in the
current method, would be that the information about future instances could be
taken into account.

Bibliography

[1] H. Kopetz. Time-Triggered Model of Computation. In In Proceeedings
19th Real-Time Systems Symposium, Madrid, Spain, December 1998.

[2] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft,
and R. Zainlinger. Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach. IEEE Micro, February 1989.

[3] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems. In In Proceedings of
the 16th Real-Time Systems Symposium, Pisa, Italy, December 1995.

[4] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. Deadline Scheduling in
Overload Conditions. In In Proceedings of the 16th Real-Time Systems
Symposium, Pisa, Italy, December 1995.

[5] G. Buttazzo and J. Stankovic. RED: A Robust Earliest Deadline Schedul-
ing Algorithm. In In Proceedings of the 3rd International Workshop on
Responsive Computing Systems, September 1993.

[6] S. A. Aldarmi and A. Burns. Dynamic Value-Density for Scheduling
Real-Time Systems. In In Proceedings of the 11th Euromicro Conference
on Real-Time Systems, York, England, June 1999.

[7] S. Baruah and J. Haritsa. Scheduling for Overload in Real-Time Systems.
IEEE Transactions on Computers, September 1997.

[8] K. Ramamritham, J.A. Stankovic, and W. Zhao. Distributed Scheduling
of Tasks with Deadlines and Resource Requirements. IEEE Transactions
on Computers, August 1989.

76 BIBLIOGRAPHY

[9] J.A. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation of a Flex-
ible Task Scheduling Algorithm for Distributed Hard Real-Time Systems.
IEEE Transanctions on Computers, December 1995.

[10] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-Time
Systems. In In the 12th International Conference on Distributed Com-
puting Systems, Washington D.C., USA, December 1996.

[11] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technishe Universität, Wienna, Austria, 1994.

[12] K. Ramamritham. Allocation and scheduling of complex periodic tasks.
In In the 10th International Conference on Distributed Computing Sys-
tems, Paris, France, May 1990.

[13] J. Carlson, T. Lennvall, and G. Fohler. Simulations Results and Al-
gorithm Details for Value Based Overload Handling. Technical report,
Mälaradlens Högskola, 2002.

Chapter 5

Paper D: Simulation Results
and Algorithm Details for
Value Based Overload
Handling

Jan Carlson, Tomas Lennvall, and Gerhard Fohler
Technical Report, Mälardalen University, Sweden, 2002

Abstract

In this paper we present the simulation results for a proposed algorithm for
value based task rejection in the presence of offline scheduled tasks for which
a timely execution have to be guaranteed. We also describe in detail the algo-
rithm for computing overload amounts.

5.1. ALGORITHM FOR COMPUTING OVERLOAD AMOUNT 79

5.1 Algorithm for computing overload amount

Given the deadlines and remaining execution times of the aperiodic tasks, and
the spare capacity (slots not reserved for offline scheduled tasks) of consecutive
intervals, this algorithm computes the overload amount of each aperiodic task.
Let �#� 78787 ��� be a sequence of aperiodic tasks sorted by increasing deadline.
Also, assume a sequence of consecutive, non-empty, time intervals, each as-
sociated to a number of offline scheduled tasks as defined by the slotshifting
algorithm [1]. The following additional notation is used in the algorithm.

�*, � the deadline of � �

; � the remaining execution time of � �

!2.0� � the end time of interval number �
12; � the spare capacity of interval number �
$&+ � will be assigned the overload amount of � �

Algorithm

Let ; � be the current time, and ;=� the number of the interval that ; � belongs to.
Further, assign $&+ � � � ;2� . If the algorithm is called with compute-oa ��; �=� � �;=� � 12;�� ��� ,
then $&+ contains the overload values for � � to ��� , upon termination.

function compute-oa � �=�� �	� �;8�
if � � . then

if �*,�� � !2.0� � then
�%<)� � � min ��;&��*,�� � �	�
$&+���� � $&+�� � �%<)�
if � � . then $&+�� ��� � � $&+�� ��;�� ���
compute-oa ���*,�� �� � � �	� �;�� �%<)���

else
$&+���� � $&+�� � ;
compute-oa ��!2.0� � �� �	� � � � 12; � ���9�

Note that the function is tail-recursive and thus can be implemented with bounded
memory, e.g., as a standard imperative loop.

Complexity

Before considering the complexity of the algorithm, we formulate an invariant,
i.e., a proposition that is true every time the function is called. For this, we

80 Paper D

define �/.3� ��� to be the number of the interval containing the time � . This allow
us to formulate the invariant as � � �/.3���*,��#� .
The correctness of the invariant is proven as follows. For the initial call to the
function, we have � � ;=� � �/.3���*,��9� since no task in the sequens has already
violated its deadline. Next, we assume that the invariant holds for one call, and
show that this implies that it must hold for the next recursive call as well.
If the first branch of the if-then-else statement is selected, � is unchanged and
� is increased by one in the next recursive call. Since �/.3���*, �#� � �/.3���*,�� ���=� , and
since � � �/.3���*,��2� by assumption, we have � � �/.3���*,�� ���=� so the invariant holds
for the next call as well.
If, instead, the else branch is selected, we must have �*, ��� !2.0� � . Assume
further that the invariant does not hold for the next call. Than, since it holds
for the current call, we must have � � �/.3���*,��2� . This implies that !2.0� � � �*, � ,
which leads to a contradiction and thus proves that the invariant must hold for
the next call.
By induction, we have now shown that the invariant holds each time the func-
tion is called.
Since we have � � . , the invariant implies � � �/.3���*, �6� . Also, we know that �
and � are never decreased, that one of them is increased in each recursive call,
and that they are initalised to � and ;=� respectivly. This implies that the total
number of calls to the function can be no more than . � < , where < is the
number of intervals between the current time, and the deadline of � � . Thus, the
worst case time complexity of the algorithm is in � �-. ��< � .
5.2 Simulations

We have implemented the algorithms described in [2], and have simulated vari-
ous scenarios. The simulated system consists of � processing nodes, connected
via a network where all necessary messages can be sent during one time slot.
Each simulation has a length of � 4 4 4 slots. The randomly created offline sched-
ules have a load of 467 � , evenly distributed over the nodes, and their length varies
between � 4 4 and �24 4 4 slots.
Worst case computation time for both offline and aperiodic tasks varies uni-
formly in the range � – �24 . Aperiodic tasks are assigned an actual execution
time uniformly distributed between 467 � and � 7 4 of its wcet, and relative dead-
lines varying between � – � times wcet.
Arrival times of aperiodic tasks are distributed over the simulation length, with
the restriction that no task have a deadline exceeding the simulation length.

5.2. SIMULATIONS 81

Finally, values of aperiodic tasks vary uniformly in the range � – �24 4 .
The total system load varies between 467 � and �67 4 , the offline load of 467 � in-
cluded. The load parameter is based on wcet, and thus represents the load as
perceived by the overload algorithm. The actual system load is lower1, since
execution time is less than wcet.

Experiment 1: Method comparison

We have studied the total accumulated value of aperiodic tasks that finished in
time, and the following methods have been compared:

1. The full method presented in the paper (Migration).

2. The overload handling algorithm, without task migration (Local).

3. A basic algorithm that uses the offline schedule, assigning idle slots to
aperiodic tasks based on value density (Offline Valuedensity).

4. Same as 3, but aperiodic tasks are ordered by value (Offline Value).

5. Same as 3, but aperiodic tasks are ordered EDF (Offline EDF).

6. Same as 3, but aperiodic tasks are serviced in order of arrival. (Offline
FCFS).

Methods 1 and 2 implement the efficiency improvements suggested in [2].
Each point in the figures represents some � 4 4 simulations.
In the first part of the experiment, all nodes in the system are subject to the same
amount of load. The result is presented in Figure 5.1. Here, the possibility of
task migration does not provide any significant improvement. Compared to the
basic method, the performance of the proposed method is significantly higher.
The second part of the experiment, shown in Figure 5.2, is a scenario of un-
evenly distributed load. Half of the nodes have no aperiodic tasks arriving, only
offline scheduled tasks. Here, the task migration algorithm clearly increases
the system performance, compared to overload handling without migration,
because tasks can migrate to nodes with no aperiodic load.

1The actual system load varies approximately between
�

�

�
and

�
� � � in the experiments, calcu-

lated from the distribution of actual execution times

82 Paper D

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3
System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3
System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 5.1: Accumulated value for even load distribution.

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3
System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3
System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 5.2: Accumulated value for uneven load distribution.

5.2. SIMULATIONS 83

Experiment 2: Restrictions

The theoretical worst case time complexity of the overload algorithm, for a
ready queue of length . , is � �-. � � . This experiment shows how the execution
time is affected by system load, and the impact on performance from restricting
the algorithm as suggested in [2] to deal with complexity issues.
The parameter cutoff denotes the maximum length of the ready queue. I.e.,
tasks that are inserted at a position greater than cutoff are automatically re-
jected, which means that they are placed in the maybe-later queue (if they just
arrived, or if they were in the ready queue during the previous slot), or not
stolen (if they were from a maybe-later queue).
We have measured the total accumulated value of aperiodic tasks that finished
in time (similar to experiment 1) for different cutoff values. Execution time has
been approximated by the number of arithmetic, comparison and assignment
operation performed in the overload algorithm, including the computation of
� -values.
The parameters are the same as in experiment 1, with the load evenly dis-
tributed over the nodes, and using the full method from the paper (Migration).
Figure 5.3 shows the accumulated value for different cutoff values. In Fig-
ure 5.4, the average number of operations for a single call to the overload al-
gorithm is presented. Figure 5.5 gives the maximum number of operations
performed during a single call to the overload algorithm. Each point in the
figures represents some � 4 4 simulations. Thus, in figures 5.4 and 5.5, each
point represents over � million calls to the overload algorithm (� nodes, and a
simulation length of � 4 4 4).

0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

cutoff=15

cutoff=10

cutoff=5

0

20

40

60

80

100

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

0

150

300

450

600

750

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

Figure 5.3: Accumulated value for different cutoff values.

84 Paper D0

25

50

75

100

125

150

175

200

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

A
c

c
u

m
u

la
te

d
 v

a
lu

e
 *
1

0
-3

cutoff=15

cutoff=10

cutoff=5

0

20

40

60

80

100

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

0

150

300

450

600

750

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

Figure 5.4: Average number of operations for different cutoff values.

0

150

300

450

600

750

0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

System load

O
p

e
ra

ti
o

n
s

cutoff=15

cutoff=10

cutoff=5

Figure 5.5: Maximum number of operations for different cutoff values.

In practice, the execution time is not as big an issue as the theoretical com-
plexity suggests. None of the � � million calls to the overload algorithm made
during simulations needed more than

� � 4 operations to be performed.
This is partly because the ready queue size (which is the parameter used in the
complexity analysis) is not proportional to system load. Also, the worst case
assumes that none of the restrictions are trivially solved by the solution to the
previous ones, which is highly unlikely when the queue is long.
The simulations show that restricting the length of the ready queue significantly
reduces worst case execution time, with only a moderate performance decrease.

Bibliography

[1] G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems. In In Proceedings of the
16th Real-Time Systems Symposium, Pisa, Italy, December 1995.

[2] T. Lennvall, J Carlson, and G. Fohler. Enhancing Time Triggered Schedul-
ing with Value Based Overload Handling and Task Migration. In Proceed-
ings of the 6th IEEE International Symposium on Object-oriented Real-
Time Distributed Computing (ISORC 2003), Hakodate, Japan, May 2003.

