
Building Multiple-Viewpoint Assurance Cases Using
Assumption/Guarantee Contracts

Irfan Sljivo
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

irfan.sljivo@mdh.se

Barbara Gallina
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

barbara.gallina@mdh.se

ABSTRACT
Assurance cases in form of structured arguments are
often required by standards to show that a system is
acceptable for its intended purpose with respect to a
particular assurance viewpoint such as safety or secu-
rity. The goal of such a case is to present an argument
that connects the requirements of a particular view-
point with the supporting evidence. Building a set of
assurance cases for the different viewpoints can be time-
consuming and costly. Means are needed to automate
and reuse the assurance case artefacts between the as-
surance cases for the different viewpoints.

In this paper we present how assumption/guarantee
contracts can be used to facilitate reuse of assurance
case artefacts by building multiple-viewpoint assurance
cases from the contracts. More specifically, we build
upon the previous work on argument-fragment genera-
tion from such contracts to allow for generating view-
point specific argument-fragments. We illustrate the
approach on a motivating case.

1. INTRODUCTION
The hierarchy of safety being over security is chang-

ing and more and more evidence is presented that equal
efforts need to be invested on achieving both proper-
ties [8]. Hence many critical systems such as passenger
vehicles require certificates for the different properties
such as safety and security. Assurance cases as a way to
document the assurance process in form of an argument
have been used to assure system safety and security [3].
There has been many discussions on the interplay of
the different properties that require assurance, mainly
safety and security, and how their interconnection can
be handled in the corresponding assurance processes.
These discussions are still ongoing for instance in the
automotive domain community (e.g., [13]) and suggest
including security assurance aspects in the next edi-
tion of the automotive functional safety standard ISO
26262 [7]. The discussions in the avionics domain have
resulted in publishing the RTCA DO-326A [12] stan-
dard, which focuses on the security aspects that may

affect aircraft airworthiness. The initiatives in both do-
mains aim at expanding the safety assurance case with
only those security assurance aspects deemed safety-
relevant. To reduce the efforts needed to build such
overlapping assurance cases, means are needed to reuse
assurance artefacts and reasoning between the different
assurance cases.

Assumption/guarantee contracts have been used to
achieve reuse of safety artefacts together with reusable
safety-relevant components [17]. A contract of a compo-
nent is defined as a pair of assumptions and guarantees,
where the component offers guarantees about its own
behaviour provided that the environment meets the as-
sumptions. Since a component can be described with a
set of such contracts, the different contracts can be used
to represent the different viewpoints of the component
behaviour [2]. For example, a functional viewpoint can
be represented with a contract stating functional be-
haviour of the component related to its interface, while
a timing viewpoint can be represented with contracts
addressing the timing behaviour of the component. The
contract theory [2] allows for the composition of the dif-
ferent viewpoints and ensures their consistency.

In our previous work [15, 17] we have demonstrated
how the assumption/guarantee contracts supported by
evidence can be used to generate argument-fragments,
which can be used to compose the safety assurance
case. In this work we present how associating assur-
ance viewpoints with such contracts can be used to
build multiple-viewpoint assurance case arguments by
generating argument-fragments for the different assur-
ance viewpoints. Generating such viewpoint-specific
argument-fragments from the same source supports reuse
of assurance artefacts related to the contracts that be-
long to the different viewpoints. More specifically, we
propose a contract-based assurance meta-model as an
extension of the previous work [17], then we map the
contract elements to the argumentation notation ele-
ments and extend the argument-generation algorithm
to generate viewpoint-specific argument-fragments. We
use a fictitious avionics wheel-braking example from the
avionics standard [18] to illustrate the approach.



The rest of the paper is structured as follows: In Sec-
tion 2 we provide some essential background informa-
tion. We present the overall idea in Section 3 and the
motivating case in Section 4. We present the related
work in Section 5 and finally, we present the conclu-
sions and future work in Section 6.

2. BACKGROUND
In this section we provide background information on

assurance cases and a contract-based approach that fa-
cilitates generating assurance case argument-fragments.

2.1 Assurance cases
An assurance case is defined as “a collection of au-

ditable claims, arguments, and evidence created to sup-
port the contention that a defined system/service will
satisfy the particular requirements.” [10]. An assurance
case is a generic term for cases where an argument is
used to connect the requirements with the supporting
evidence to assure certain property of the system such
as safety and security. The essential part of the assur-
ance case is the argument, which is usually divided to
a product and a process part. The process part relates
to the conformance to the mandated assurance process,
and the product part details the specific measures taken
to make the product exhibit the required property. The
argument can be represented in different ways ranging
from free text to more formal notations. To facilitate
creation of a well-structured and clear argument, the
graphical argumentation notation – Goal Structuring
Notation (GSN) [1], is proposed. GSN can be used to
record and present the main elements of any argument.
The main purpose of GSN is to show how goals (claims
about the system depicted with rectangles), are broken
down into subgoals and supported by solutions (the
gathered evidence depicted with circles used to support
the goals). Moreover, away goals are used to refer to
goals developed in other argument modules. A subset of
GSN elements is shown in Figure 1. To provide better
portability and exchange of the assurance arguments,
Structured Assurance Case Meta-model (SACM) [10] is
presented as a standard for representing structured as-
surance cases. Different assurance case argument mod-
elling tools support importing and exporting of assur-
ance cases in SACM-compliant format.

2.2 Contract-based assurance
A traditional component contract C = 〈A,G〉 is com-

posed of assumptions (A) on the environment of the
component and guarantees (G) that are offered by the
component if the assumptions are met [2]. Since not all
contracts are required to hold in every system, the no-
tion of strong and weak contracts [14] is introduced to
distinguish between the strong contracts whose assump-
tions should be always satisfied, and the weak contracts
whose guarantees (H) are offered only when together
with the strong assumptions the corresponding weak

Figure 1: A subset of GSN elements

assumptions (B) are also satisfied. While the tradi-
tional contracts are developed with the primary goal
of formal verification, strong and weak contracts are
introduced as a methodological extension to provide
support for utilising the behaviours of reusable compo-
nents for the development of assurance cases. Since the
reusable components are usually developed with differ-
ent configuration parameters that can be used to tailor
the behaviour of the component for the different usage
contexts, the traditional contracts and the strong/weak
contracts lack support for making strong assumptions
(the ones that must be met) for the different contexts.
Configuration-aware contracts [16] are introduced to ex-
plicitly distinguish between the component configura-
tion parameters that have constant value within a sin-
gle context and the operational variables whose value
is specified within a predefined range. OCRA1 (Oth-
ello Contracts Refinement Analysis) is a tool for check-
ing refinement between contracts. The Othello con-
straints syntax that we use in our examples includes
both boolean and temporal logic operators for specify-
ing the assumptions and guarantees of the contracts.

Safety contracts are a specific types of contracts that
deal specifically with component behaviours that are
deemed relevant from the perspective of hazard anal-
ysis. The Safety Element out-of-context Metamodel
(SEooCMM) [17] is developed around the notion of safety
contracts and deals with the safety viewpoint of the sys-
tem. SEooCMM provides the base for evidence reuse
through product-based argument-fragment generation.
It captures properties of an out-of-context component,
composed of safety-contracts, evidence and the assumed
safety requirements. Each safety requirement is satis-
fied by at least one safety contract, and each contract
can be supported by one or more evidence. Further-
more, both contracts and evidence can be further clar-
ified with informal context statements. Figure 2 shows
the core elements of SEooCMM in solid borders.

The rules for the generation of the argument-fragments
from safety contracts [15] generate an argument-fragment
by first arguing that all allocated requirements on the
component are satisfied. Then the rules iterate for each
of the requirements and generate a sub-argument that
all the contracts supporting the requirement are satis-
fied. The algorithm for the generation of the contract-
satisfaction argument-fragments is achieved through a
model-to-model (M2M) transformation as defined in Op-

1https://ocra.fbk.eu/



erational QVTo [4]. The algorithm for the transfor-
mation from SEooCMM to SACM [17] generates an
argument-fragment for each satisfied contract by show-
ing that the contract assumptions are met by the envi-
ronment, and that the contract is sufficiently complete
by attaching the supporting evidence.

3. MULTIPLE VIEWPOINT ASSURANCE
USING CONTRACTS

As mentioned in Section 1, the overlapping of the as-
surance processes for the different assurance viewpoints
such as safety and security requires mechanisms to con-
sider their interplay in both the system and the assur-
ance case domain. Contracts represent a way to anal-
yse and ensure coexistence of the different viewpoints
in the system domain. In this section we present how
contracts can also be used to consider the interplay of
the different assurance viewpoints, namely safety and
security, in the assurance case domain.

3.1 Multiple-Viewpoint SEooCMM
The SEooCMM component meta-model is limited to

a single viewpoint and one type of contracts. To con-
sider multiple viewpoints and different contract imple-
mentations, we generalise and extend SEooCMM to pro-
vide the basis for a generic Multiple-Viewpoint (*) Safety
Element out-of-Context Meta-Model (*SEooCMM) pre-
sented in Figure 2. As mentioned in Section 2.1, the
assurance case is requirements oriented. Hence, we de-
fine in *SEooCMM an assurance viewpoint as a set of
requirements. Since each requirement can be satisfied
by one or more contracts, and each of the contracts can
be supported by different evidence, through these con-
nections captured in *SEooCMM, we can extract those
relevant to a particular viewpoint. Since a single con-
tract can be used to satisfy (fully or partially) require-
ments that belong to different viewpoints, the corre-
sponding evidence and the argument-fragment related
to those contracts can be reused between the different
assurance case viewpoints. Moreover, *SEooCMM al-
lows that a single requirement can belong to one or more
viewpoints, which also facilitates reuse of the argument-
fragments supporting the satisfaction of the require-
ment in the different assurance case viewpoints.

Since *SEooCMM deals with multiple viewpoints, as
well as out-of-context components and their transition
to a particular context, we do not focus only on the
strong and weak contract as the out-of-context and in-
context component meta-models can have different im-
plementations of the notion of a contract. Instead,
we include the different contract implementations in
*SEooCMM to facilitate generation of assurance case
argument-fragments regardless of the specific contract
type used to specify the behaviour of components.

3.2 *SEooCMM-based argument-fragments
Although the different contract types facilitate cap-

Table 1: Conceptual mapping of the different
contracts to the corresponding GSN elements
GSN-elements Contract elements

Goal All properties representing guaran-
tees (strong, weak, traditional and
configuration-aware)

Away goal Properties representing assumptions
(strong, weak, traditional, and oper-
ation)

Context Configuration assumptions

turing different aspects of the component behaviours,
in general, their assumptions and guarantees can be
mapped equally to the argumentation elements. Es-
sentially, the two main components of a contract, its
assumptions and guarantees, are mapped to argumen-
tation elements by: (1) creating goals for each guarantee
to show how the guarantee is satisfied, and (2) by pro-
viding away goals for each assumption to show how each
of the assumptions is satisfied by a contract in the envi-
ronment. For both of the cases, the actual assumption
and guarantee statements could be provided as context
elements outside of the goals for better clarity of the
argument [15]. An exception to this mapping are the
configuration assumptions. Since they can have only
one value per context that cannot change, instead of
arguing over such assumptions, we provide them only
as contextual statements. The contracts element map-
ping to the argumentation elements is shown in Table 1.

Since the mapping between the different contracts el-
ements and the argumentation elements is generally the
same, the resulting arguments follow the same struc-
ture. But due to the different granularity of the as-
sumptions and guarantees in the different contracts, the
level of detail of the generated argument-fragments for
the different types of contracts differs. For example, the
weak contracts are usually captured as special types of
implications within guarantees of traditional contracts.
Hence, to achieve an argument with the same level of
detail as the argument based on the strong and weak
contracts, the traditional contract should be first parsed
to identify the suitable implications, and check that the
left side of the implication is true (i.e., that the implicit
assumption is satisfied), in order to obtain an argument
with the same level of detail as the one generated from
the strong and weak contracts.

Unlike the strong/weak and traditional contracts, the
configuration-aware contracts explicitly distinguish be-
tween configurable parameters and operational variables.
On the one hand, the configuration assumptions deal
with configuration parameters that do not change but
are fixed in a particular context, hence we consider that
satisfaction of such assumptions does not require to be
argued over, but just presented for information pur-
poses. On the other hand, the assumptions on the op-
erational variables are of more interest to argue over, as
their value can change during operational time. Due to
these characteristics, the configuration-aware contracts



Contract

-id

-needsFurtherSupport : Boolean

Component

Requirement

-id

satisfiedBy

supportedBy

cites

Evidence:EvidenceItem

0…*

supportedBy

1…*

1…*

Support Element

Context StatementJustification Statement

Evidence Citation

1…*

1…*

Support Statement

1

supportedBy

0...*1…*

inContextOf

0…* inContextOf

0…*

Viewpoint

1…*

-id

-value

Property

Strong Contract Weak Contract

Strong Assumption (A)

Strong 

Guarantee (G)

0...*

Weak Guarantee (H)Weak 

Assumption (B)

dependentOn

1…*

0…*

1…*

0…*

Traditional Contract

Assumption (A)

Guarantee (G)

Configuration-aware Contract

1…*

1…*
Configuration Assumption (Ac)

Operation Assumption (Ao)

0…*

1…*

1…* Guarantee (G)

Figure 2: SEooCMM [17] extension to *SEooCMM (the dashed elements newly added)

Security	Assurance	Case	

G1:	
The	system	is	
acceptably	safe	

G1:	
The	system	is	

acceptably	secure	
…	

…	

*SEooCMM-compliant	model	

Safety	Assurance	Case	

…	

A	family	of	semi-automa6cally	generated	argument-fragments	

Assurance	case	viewpoints	

Figure 3: Building multiple viewpoint assurance
cases with *SEooCMM

with the two level of assumptions offer purging of the
argument from the irrelevant assumptions and guaran-
tees by filtering only those relevant for the particular
system described by the set of parameters.

3.3 From contracts to assurance viewpoints
Assuring different viewpoints of a system requires

that specific analyses are performed and evidence gath-
ered to identify and support the different viewpoint-
specific requirements. Instead of running separate as-
surance processes, the idea with contract-based multi-
assurance approach is to use contracts as the meeting
point between the different assurance viewpoint pro-
cesses. Handling of the interplay of the e.g., safety and
security in the system domain within the contracts al-
lows us to automate and reuse within the creation of
the viewpoint-specific assurance arguments.

*SEooCMM allows that different viewpoints can have

some requirements in common, as well as that one con-
tract can be used to support several requirements. Sim-
ilarly, an evidence item such as hazard or vulnerabil-
ity analysis, can be used to support several contracts.
By capturing this interplay between the different view-
points in *SEooCMM, we can identify the viewpoint-
specific requirements, their supporting contracts and
the corresponding supporting evidence in the contracts.
Since this information represents the basis of an assur-
ance case argument, we utilise and adapt the existing
argument-fragment generation techniques mentioned in
Section 2.2 to semi-automatically generate argument-
fragments discussed in Section 3.2. The set of such
argument-fragments can be used to build a viewpoint-
specific product-based argument assuring e.g., that the
system is acceptably safe or secure (Figure 3). For clar-
ity we depict security related argument-fragments in
solid grey colour, the safety related ones in white and
the shared ones in the white-grey gradient.

The transformation from SEooCMM to SACM [17]
adapted to *SEooCMM is shown in Algorithm 1. To
generate the viewpoint-specific argument-fragments we
build upon the generation rules and the M2M algorithm
described in Section 2.2. The Algorithm 1 considers
only the requirements of a specific viewpoint, instead
of all the allocated requirements to a component. That
way distinct arguments can be generated for the differ-
ent viewpoints, while portions of those arguments re-
lated to the common entities are automatically identi-
fied and included in the resulting assurance case argu-
ments. Furthermore, in Algorithm 1 we parametrise the
rules for the higher-level argument generation to han-
dle the different viewpoints, while the lower-level ar-
guments follow pre-established argument patterns. To
support argument-fragment generation from different



Algorithm 1 M2M Transformation from *SEooCMM
to GSN SACM argumentation meta-model
*SEooCMM2SACM(in *SEooCMM, in Viewpoint, out
SACM){

topClaim(in *SEooCMM::Viewpoint, out SACM::GSN Goal);
for each *SEooCMM::Requirement req do

if req belongs to Viewpoint then
for each *SEooCMM::Contract sc that satisfies req do

sc2claim(in *SEooCMM::Contract, out SACM::GSN Goal);
scCont(in *SEooCMM::Context, out SACM::GSN Context);
scJust(in *SEooCMM::Justification, out
SACM::GSN Justification);
addSubGoals(in *SEooCMM::Contract, out SACM::GSN Goal);
sc2context(in *SEooCMM::Contract, out SACM::
GSN Context);
if sc type is traditional or strong/weak then

for each Assumption a in sc do
if a is satisfied then

a2claim(in *SEooCMM::Contract, out
SACM::GSN Goal);
away2a (in *SEooCMM::Contract, out
SACM::GSN AwayGoal);

else if a not satisfied then
a2cEvid (in *SEooCMM::Contract, out
SACM::GSN CounterEvidence);

end if
end for

else if sc type is configuration-aware then
confA2context(in *SEooCMM::Contract, out
SACM::GSN Context);
for each satisfied operational Assumption opA in sc do

if opA is satisfied then
opA2claim(in *SEooCMM::Contract, out
SACM::GSN Goal);
away2opA (in *SEooCMM::Contract, out
SACM::GSN AwayGoal);

else if opA not satisfied then
opA2cEvid (in *SEooCMM::Contract, out
SACM::GSN CounterEvidence);

end if
end for

end if
for each *SEooCMM::EvidenceCitation ec supporting sc do

ec2claim(in *SEooCMM::EvidenceCitation, out
SACM::GSN Goal);
ecSol(in *SEooCMM::EvidenceItem, out
SACM::GSN Solution);
ecCont(in *SEooCMM::Context, out SACM::GSN Context);
ecJust(in *SEooCMM::Justification, out
SACM::GSN Justification);

end for
end for

end if
end for

}

contract implementations, we parametrise the part of
Algorithm 1 to consider the exception related to the
configuration assumptions of the configuration-aware con-
tracts, as discussed in 3.2.

4. MOTIVATING CASE
In this section we illustrate how *SEooCMM-based

contract specification can be used to generate assur-
ance viewpoint specific arguments. More specifically, we
use the airplane Wheel Braking System (WBS) exam-
ple and perform a partial safety and security analyses.
We specify a set of contracts and generate assurance
viewpoint specific argument-fragments.

4.1 Wheel Braking System
The WBS information is adapted from the Avionics

Recommended Practices ARP4761 [18] and a previous
work [14]. WBS takes two input brake pedal signals and
outputs the brake signal that is applied on the wheel.
The system is designed with two redundant Brake Sys-

WBS 
BSCU Hydraulics 

subBSCU2 

subBSCU1 Select 
Switch 

Valid	
Switch	

Valid	

CMD_AS	

AS	

CMD_AS1	

CMD_AS2	

AS1	

AS2	

Valid2	

Valid1	

Pedal1	

Pedal2	

Valid1	

Braking	
command	

Guard	
ValidAuth	

Alternate	
mode	

Emergency	
mode	

Figure 4: Wheel Braking System Architecture

tem Control Units (subBSCUs), where both perform
the same calculations. By default the value of the pri-
mary subBSCU is forwarded to the output if its validity
flag is true, while the validity flag for the entire BSCU is
calculated based on the validity flags of both subBSCUs
and the Guard component. The command values and
the validity flag are forwarded to the hydraulics compo-
nent, where either the command is used if the validity
flag is true, or the alternate mode is engaged.

The systems safety analysis revealed several hazards.
We focus on the hazard H1: inadvertent braking, where
WBS may issue a braking command when not supposed
to. The redundant inputs and subBSCUs are used to
prevent that a wrong braking calculation is issued to
the hydraulics component.

The systems security analysis revealed a security vul-
nerability V1: unauthorised braking, where false pedal
signals that may be sent over the communication bus
may trigger unauthorised braking, which represents both
safety and security risk at the same time. To ensure that
unauthorised messages do not trigger the braking sys-
tem, a security kernel Guard is used to ensure that the
pedal signals are received from the authorised compo-
nents.The WBS architecture with the guard component
is shown in Figure 4.

4.2 Application example
In the example we address the following two require-

ments allocated to BSCU: (1) the software safety re-
quirement SwSafR1 : “BSCU shall not issue a valid brak-
ing command without present input.”; and a software se-
curity requirement SwSecR1 : “BSCU shall not issue a
valid braking command in presence of unauthorised in-
put signals.”. The BSCU as the main software controller
of WBS is developed to address these requirements.

The contracts supporting these requirements allocated
to BSCU and its subcomponents are shown in Tables 2
and 3. The P1 key send and P2 key send flags in the
Guard and BSCU contracts represent assumptions that
the Pedal1 and Pedal2 inputs contain key and sender
information. These assumptions are a prerequisite to
establish whether the origin of the signals Pedal1 and
Pedal2 can be authenticated (represented with P1 auth
and P2 auth flags). While the BSCU-1 and Guard-1



Table 2: An example of a BSCU contract
ABSCU−1: Pedal1==Pedal2 AND P1 key send AND

P2 key send ;
GBSCU−1: (P1 auth AND P2 auth AND noDuble-

Fault) implies (Valid AND CMD);
CBSCU−1: noDubleFault entails that BSCU can han-

dle failure of a single subBSCU;
EBSCU−1: name: BSCU integration testing results;

Table 3: A subset of the subBSCU, Guard and
ValidSwitch contracts
AsubBSCUx−1: Pedal1==Pedal2 ;
GsubBSCUx−1: noDubleFault implies Validx;
CsubBSCUx−1: Validx output can be trusted in pres-

ence of at most one internal fault;
EsubBSCUx−1: name: subBSCU unit testing results;
AGuard−1: P1 key send AND P2 key send ;
GGuard−1: (P1 auth AND P2 auth) implies Val-

idAuth;
EGuard−1: name: Guard unit testing results;
AV alidSwitch−1: -;
GV alidSwitch−1: ((Valid1 or Valid2) AND ValidAuth)

implies Valid;
CV alidSwitch−1: Valid is true if the inputs are authen-

ticated and at least one subBSCU re-
turns valid result;

EV alidSwitch−1: name: Switch unit testing results;

contracts support both of the requirements, contracts
subBSCUx-1, subBSCUx-2 and ValidSwitch-1 support
only the SwSafR1 requirement. Based on these depen-
dencies we apply the Algorithm 1 and generate the dif-
ferent assurance case viewpoints. The current version
of the algorithm is not implemented yet, hence we apply
the algorithm manually. Figure 5 shows the two assur-
ance case viewpoints merged for space limitations, and
following the same colouring scheme as Figure 3.

5. RELATED WORK
The interplay between safety and security as the prime

examples of the assurance viewpoints has motivated
many research works [11]. Lautieri et al. [9] explore
the commonalities between safety and security assur-
ance and propose a common methodology for the certi-
fication of highly modular safe and secure systems. The
methodology aims at combining the safety and security
analyses to reuse the same evidence for both authorities.

Dobbing [5] proposes dependability-by-contract (DbC)
approach that aims at building a single dependability
case that argues the achievement of an acceptably safe
and secure system. The contracts in DbC are extended
beyond assumptions and guarantees to include some in-
formation needed for building a dependability case.

Gallina et al. [6] focus on the reuse of process ele-
ments between the safety and security certification via
the Security-informed Safety-oriented Process Line En-
gineering (SiSoPLE) approach. The approach first per-
forms identification of commonalities and variabilities
between the two processes and builds a common process
line from which a specific process can be engineered to

satisfy different security or safety standards.
In this work, we propose to further extend the contract-

based approach by considering the different assurance
viewpoints in the underlying component meta-model
to allow for reuse of assurance artefacts and genera-
tion of product-based argument-fragments specific to a
particular assurance viewpoint. While creating a sin-
gle dependability case is beneficial, certification bodies
usually require a case that is specific to the assurance
viewpoint of the corresponding standard. Hence, we
introduce *SEooCMM to allow for extraction of such
assurance viewpoint-specific information.

6. CONCLUSIONS AND FUTURE WORK
Managing the interplay between the different assur-

ance viewpoints such as safety and security is becoming
an important issue. Due to the proliferation of stan-
dards and the risk of duplication of work and even
mitigation measures, the corresponding standards are
starting to consider their interplay. Achieving a unified
assurance process for the different viewpoints based on
the different standards is not realistic. Furthermore,
unifying assurance case arguments leads to overload-
ing them with unneeded information. Hence, means
are needed to reduce the time and efforts needed to
build the viewpoint-specific assurance case arguments.
Component contracts in component-based software en-
gineering provide means to capture the interplay of the
different system viewpoints. In this work we propose
that such contracts can also represent means to manage
the interplay of the different assurance viewpoints when
building the multiple-viewpoint assurance cases. We
have proposed a component meta-model *SEooCMM
to capture the relationship between the different view-
points, requirements, contracts and the evidence, all as-
pects needed to automate generation of product-based
assurance case arguments.

As our future work, we plan to investigate how con-
tracts can be used to capture the interplay between the
different viewpoints from the corresponding standards
perspective. Moreover, we plan to explore how the
contract-based assurance approach can be integrated in
the different domain-specific development processes. Fi-
nally, we plan to evaluate the usefulness of the proposed
approach on a real-world use case.

Acknowledgements
This work is supported by the EU and VINNOVA via
the ECSEL JU project AMASS (No 692474).

7. REFERENCES
[1] GSN Community Standard Version 1. Technical

report, Origin Consulting (York) Limited,
November 2011.

[2] A. Benveniste, B. Caillaud, A. Ferrari,
L. Mangeruca, R. Passerone, and C. Sofronis.
Multiple Viewpoint Contract-Based Specification



Guard-1
Guard-1 contract is satisfied 
with sufficient confidence

Guard-1_2
Contract Guard-1 is 

sufficiently complete

Guard-1_1
Every contract supporting assumed 

properties of the contract Guard-1 is 
satisfied with sufficient confidence

Guard-1_A1
Contract pedalChecker1 supports the 

assumption “P1_key_send AND 
P2_key_send”

Sol:Guard-1_E1
[Guard unit 

testing results]

GoalBSCU-1_E1
”Guard unit testing results” 
supports completeness of 

the contract 

Guard-1_Guarantee
{Pedal1, Pedal2} origin 

authenticated implies ValidAuth;

G1
The system is sufficiently safe

G1
The system is sufficiently secure

SwSafR1
Software Safety Requirement 1 is 

satisifed with sufficient confidence.

SwSecR1
Software Security Requirement 1 is 
satisifed with sufficient confidence.

subBSCUx-1
subBSCUx-1 contract is 
satisfied with sufficient 

confidence

subBSCUx-1_2
Contract subBSCUx-1 is 

sufficiently complete

subBSCUx-1_1
Every contract supporting assumed 

properties of the contract subBSCUx-1 is 
satisfied with sufficient confidence

subBSCUx-1_A1
Contract pedalChecker2 supports 
the assumption “Pedal1==Pedal2”

Sol:subBSCUx-
1_E1

[subBSCU unit 
testing results]

subBSCUx-1_E1
”subBSCU unit testing 

results” supports 
completeness of the contract 

subBSCUx-1_C1
Validx output can be trusted in 

presence of at most one 
internal fault

subBSCUx-1_Guarantee
noDubleFault implies Validx;

BSCU-1
BSCU-1 contract is satisfied 
with sufficient confidence

BSCU-1_2
Contract BSCU-1 is sufficiently complete

BSCU-1_1
Every contract supporting assumed 
properties of the contract BSCU-1 is 
satisfied with sufficient confidence

BSCU-1_A1
Contract pedalChecker2 
supports the assumption 

“Pedal1==Pedal2”

BSCU-1_A2
Contract pedalChecker1 supports the 

assumption “P1_key_send AND 
P2_key_send”

Sol:BSCU-1_E1
[BSCU 

Integration 
testing results]

GoalBSCU-1_E1
”BSCU integration testing 

results” supports 
completeness of the contract 

BSCU-1_C1
noDubleFault entails that 
BSCU can handle failure of 

a single subBSCU

BSCU-1_Guarantee
({Pedal1, Pedal2} origin 

authenticated AND noDubleFault) 
implies (Valid AND CMD)

...

...

Away Goal
Contract pedalChecker1 is satisfied 

with sufficient confidence

pedalChecker1

Away Goal
Contract pedalChecker2 is satisfied 

with sufficient confidence

PedalChecker2

Away Goal
Contract pedalChecker2 is satisfied 

with sufficient confidence

pedalChecker2

Away Goal
Contract pedalChecker1 is satisfied 

with sufficient confidence

pedalChecker1

Figure 5: A snippet of the two assurance case viewpoints with a shared argument-fragment

and Design. In Formal Methods for Components
and Objects, volume 5382 of LCNS, pages
200–225. Springer, 2007.

[3] R. Bloomfield and P. Bishop. Safety and
assurance cases: Past, present and possible
future–an Adelard perspective. In Making
Systems Safer, pages 51–67. Springer, 2010.

[4] S. Boyko, R. Dvorak, and A. Igdalov. The art of
model transformation with operational qvt, 2009.

[5] B. Dobbing and S. Lautieri. Dependability by
contract. In 15th Safety-critical Systems
Symposium, pages 35–51. Springer, February 2007.

[6] B. Gallina and L. Fabre. Benefits of
security-informed safety-oriented process line
engineering. In 34th Digital Avionics Systems
Conference (DASC), pages 8C1–1–8C1–9,
September 2015.

[7] International Organization for Standardization
(ISO). ISO 26262: Road vehicles — Functional
safety. ISO, 2011.

[8] N. Kuntze, C. Rudolph, G. B. Brisbois,
M. Boggess, B. Endicott-Popovsky, and
S. Leivesley. Security vs. safety: Why do people
die despite good safety? In Integrated
Communication, Navigation and Surveillance
Conference, pages 1–10, Apr. 2015.

[9] S. Lautieri, D. Cooper, and D. Jackson. SafSec:
Commonalities between safety and security
assurance. In Constituents of Modern System
safety Thinking, pages 65–75. Springer, 2005.

[10] O. M. G. (OMG). SACM: Structured Assurance
Case Metamodel. Technical report, Version 1.1,
OMG. http://www.omg.org/spec/SACM, 2015.

[11] L. Piètre-Cambacédès and M. Bouissou.
Cross-fertilization between safety and security
engineering. Rel. Eng. & Sys. Safety, pages
110–126, 2013.

[12] Radio Technical Commission for Aeronautics

(RTCA). DO-326A: Airworthiness Security
Process Specification. RTCA DO-326A, 2014.

[13] C. Schmittner, Z. Ma, and T. Gruber.
Standardization challenges for safety and security
of connected, automated and intelligent vehicles.
In Int. Conference on Connected Vehicles and
Expo, pages 941–942, November 2014.

[14] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson.
Strong and Weak Contract Formalism for
Third-Party Component Reuse. In 3rd Int.
Workshop on Software Certification, pages
359–364. IEEE, November 2013.

[15] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson.
Generation of Safety Case Argument-Fragments
from Safety Contracts. In 33rd Int. Conference on
Computer Safety, Reliability, and Security,
volume 8666 of LCNS, pages 170–185. Springer,
September 2014.

[16] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson.
Configuration-aware Contracts. In 4th Int.
Workshop on Assurance Cases for Software
intensive Systems. Springer, September 2016.

[17] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and
S. Puri. A method to generate reusable safety
case argument-fragments from compositional
safety analysis. Journal of Systems and Software:
Special Issue on Software Reuse, July 2016.

[18] Society of Automotive Engineers. ARP-4761:
Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems
and Equipment. SAE, 1996.


