Towards Tool-based Security-informed Safety Oriented
Process Line Engineering

Inmaculada Ayala
inmaculada.ayala@mdh.se

Barbara Gallina
barbara.gallina@mdh.se

Méalardalen University
Vésteras, Sweden

ABSTRACT

For the purpose of certification, manufactures of nowadays
highly connected safety-critical systems are expected to en-
gineer their systems according to well-defined engineering
processes in compliance with safety and security standards.
Certification is an extremely expensive and time-consuming
process. Since safety and security standards exhibit a certain
degree of commonality, certification-related artifacts (e.g.,
process models) should to some extent be reusable. To en-
able systematic reuse and customization of process infor-
mation, in this paper we further develop security-informed
safety-oriented process line engineering (i.e., engineering of
sets of processes including security and safety concerns).
More specifically, first we consider three tool-supported ap-

proaches for process-related commonality and variability man-

agement and we apply them to limited but meaningful por-
tions of safety and security standards within airworthiness.
Then, we discuss our findings. Finally, we draw our conclu-
sions and sketch future work.

Keywords

Security-informed Safety; Security-informed Safety-oriented
Process Lines; Tool-supported Process Customization

1. INTRODUCTION

Safety and Security represent two dependability attributes
with a different focus in terms of dependability threats [3]:
safety cares about avoidance of catastrophic consequences
for users and the environment, while security cares about
the threat of intentional unauthorized electronic interaction.
Due to this different focus, two distinct communities have
been developed around these two attributes. The coopera-
tion of these communities with certification bodies has pro-
duced different normative documents (i.e. standards) aimed
at guiding the development of safety and security critical sys-
tems without convergence between both domains. As a con-
sequence, certifying a system in compliance with safety and
security requirements at the same time raises many issues

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00
DOL: 10.475,/123_4

such as duplication of work, adoption of measures for secu-
rity that conflicts with decisions taken for safety or viceversa
or lack of knowledge to take appropriate decisions for safety
or security just to mention a few [8].

Despite the different focus, opportunities for synergies be-
tween safety and security exist [4, 3]. In this paper, we focus
on opportunities for the re-use of process-related certifica-
tion artifacts. As stated, a system should be developed in
compliance with the process mandated in the standard to
get the corresponding certification. However, there is not
one certification process that fits the development of the
all possible systems. There are a lot of factors (e.g. busi-
ness area, integrity level, project-specific requirements, etc.)
that could cause variations in the development process and
indeed, certification processes can be tailored by applying
prescriptive tailoring rules. Since the tailoring is necessary,
the single process should be replaced with the more realistic
and applicable process line solution. A Process Line is de-
fined as a set of similar processes within a particular domain
or for a particular purpose, having common characteristics
and built based upon common and reusable process assets
[16]. Therefore, it is of utmost importance to have at dis-
posal adequate modeling means to support process engineers
and safety/security managers in modeling, communicating
and manage flexible families of processes for the develop-
ment of security informed safety critical systems.

In a previous work, we have analyzed the commonality
and variability of security and safety assessment processes
and sketched a possible way forward for making reuse via
Security-informed Safety-oriented Process Line Engineering
(SiSoPLE) [8]. A SiSoPLE is a safety-oriented process line,
focused on the alignment of safety and security aspects for
certification purposes. SiSoPLE is the only approach that
includes a way forward for modeling security informed safety
families of processes. However, up to now, SiSoPLE has
been formulated as a concept and a vision for SiS processes
customization. In this paper, we take one step further and
explore solutions at disposal for flexible process modeling to
implement SiSoPLE. Specifically, we explore the application
of SPEM 2.0 [13], a solution based on Software Product
Lines (SPL) [19], and the CASPER approach [1]. As case
study, we use fragments of the security standard DO-326A
[21] and the safety standard ARP4761 [20].

This paper is organized as follows: Section 2 provides
background and related work; Section 3 explores the ap-
plication of approaches for SiSoPLE; Section 4 discusses the
advantages of these approaches; and we draw our conclu-
sions and future work in Section 5.

2. BACKGROUND AND RELATED WORK

In this section, we recall the essential background on which
the presented work is based: security-informed safety; RTCA
DO-326A; ARP4761 and variability engineering in SPEM?2.0-
based approaches.

2.1 SiS in airworthiness

SiS, which stands for Security-informed Safety, is an ex-
pression that has been recently introduced [4] to indicate
an old truth: “For a system to be safe, it also has to be
secure”. In some circumstances, the threats that hinder
dependability can be equivalent for safety as well as secu-
rity. Within the airworthiness state of practice, safety and
security are treated separately and appropriate standards,
namely ARP4761 [20] and DO-326A /ED-202A [21], includ-
ing different assessment processes, have been proposed.

In recent years, however, the scientific community working
within industrial projects has started proposing the align-
ment of the two processes [17, 8] but such alignment is
still in its infancy. In this paper, we continue the work
aimed at aligning RTCA DO-326A /ED-202A and ARP4761.
Thus, we here recall essential information on these two stan-
dards and more specifically, on some of their sub-processes.
DO-326A provides guidance to handle the threat of inten-
tional unauthorized electronic interaction to aircraft safety.
It is composed of several activities and tasks but in this
paper we focus on the Preliminary Aircraft Security Risk
Assessment (PASRA) and on the Preliminary System Se-
curity Risk Assessment (PSSRA). The goal of PASRA plus
PSSRA is to identify threat conditions and threat scenar-
ios and assessing all security risks at the aircraft and sys-
tem level. ARP4761 includes two similar processes, called
Aircraft-Level and System-Level Functional Hazard Assess-
ment (FHA). AFHA and SFHA are focused on safety. Thus,
they are aimed at identifying failure conditions and assessing
all safety risks at the aircraft and system level.

PASRA takes as input three work products: the archi-
tecture under consideration, failure conditions and severity,
and the information related to the security environment and
perimeter. Based on these inputs, the following tasks are
performed: threat condition identification and evaluation;
threat scenario identification; security Measure Characteri-
zation; and level of threat evaluation. The final outcome of
PASRA is the preliminary security effectiveness objectives
based on identified and evaluated threat conditions. AFHA
takes as input the list of top-level functions plus the initial
design decisions of the aircraft. Additionally, it considers
as input the aircraft objectives and requirements. Based
on these elements, the following set of steps is performed:
identification of all functions and corresponding failure con-
ditions; determination of effects of the failure conditions and
classification of the determined effects. The final outcome of
AFHA is the safety objectives and the derived safety require-
ments based on identified and evaluated failure conditions.
Process at the system level (PSSRA and SFHA) have the
same structure but target aircraft systems, so they have mi-
nor differences with regard to inputs, outcomes and focus on
some tasks.

2.2 SPEM 2.0-based variability engineering

Various means are at disposal to model processes [11]. In
this paper, we select SPEM 2.0 [13], which is the Object
Management Group (OMG) standard for process modeling.

SPEM 2.0 offers support for systematic reuse, which is cru-
cial for dealing with SiS. Moreover, SPEM 2.0 is tool sup-
ported by means of the EPF composer [7] and the Rational
Method Composer [5]. In this paper, we use the EPF com-
poser, which is open source.

The conceptual framework of SPEM 2.0 considers two
views, the Method content and the Process packages. The
goal of the Method Content package is to set up a knowl-
edge base of intellectual capital for software development
that would allow them to manage and deploy their content
using a standardized format. Elements that are defined in
this package are tasks, roles, tools and support material like
white papers, principles or best practices. In contrast, the
Process package focus on supporting the systematic develop-
ment, management, and growth of development processes.
This is the package in which development process are ac-
tually defined using elements that point to elements of the
Method Content package. In order to define a process, tasks
are organized in activities, phases and iterations. Addition-
ally, SPEM 2.0 defines an structure known as process pattern
(capability pattern in the EPF composer) that represents
a reference process for a specific discipline and technology
that can be used for quickly assembling processes based on
project needs.

SPEM 2.0 has support for variability management in the
Method Content package. Specifically, it offers a mechanism
based on pairs of elements known as base and extension. So,
it is possible to define an extension by means of its relation-
ship with a base. SPEM 2.0 defines 5 types of variability
relationship na (by default), contributes, replaces, extends
and extends and replaces. In this work we apply contributes
and extends. The contributes variability allows the defini-
tion of an extension from a base in an additive fashion with-
out altering any of the existing properties of the base. The
behavior of the extends variability is similar but allows to
override properties of the base element.

Several works have highlighted limitations of SPEM 2.0 to
manage variability in process lines [14, 18, 2]. The main lim-
itation of this standard is the variability support is intended
to make faster the definition of new process elements and
does not provide guidance for the reuse of process elements
between similar processes. So, by instance, it is not possible
to model issues like in which context a process element can
be replaced by another or the order of the tasks modified. In
typical process line approaches, we have a reference process
that represents a family of processes to develop systems in a
particular domain. This reference process contains the nec-
essary information to tailor itself to meet the requirements
of a specific project. As SPEM 2.0 does not provide guid-
ance for the reuse of the process elements, this reference
process cannot be defined. Therefore, the derivation of a
new process for a specific project entails the selection of el-
ements of the Method Content package one by one selecting
variants when it is required taking into account information
provided in the standards. In the domain of the SiS process,
with process elements that comes from different standards
the composition of new processes is even more difficult due to
the number of process elements that can be included in the
process and the variability relations between them. Addi-
tionally, the certification requirements of this domain makes
even more important to not forget the inclusion or exclusion
of specific process elements in specific development contexts.

In order to overcome this limitation, several works have

g |

| @ ContextElement | [Q Dimensi--n](—‘@ ntext
[]

[E Configuration(ontextEIemenq |E Contextﬁ«ttribute\-"alue| | E ContextAttribute |
J| = value : EString = ™ |‘5.| = priority : EInt |

[Q ContextConfiguraticn] [Q ContextAttributeConfiguration]
J

! t 1

Figure 1: Context metamodel of CASPER.

‘ = name : EString
= description | EString

extended SPEM 2.0 with mechanisms of the SPL [19]. These
extensions have been performed by integrating process mod-
els with SPL tools [14] or extending process metamodels
with variability mechanisms of SPLs [18]. The problem of
existing solutions is they are difficult to be applied in real
scenarios. Some proposals are based on tools that are cur-
rently outdated [2] or are not at disposal [18]. Additionally,
the integration of existing SPL tools like the BVR tool [12]
with process tools like EPF is difficult to achieve.

The CASPER approach [1] intends to overcome the limita-
tions of SPEM 2.0 to model reference process, but in a man-
ner different to the mentioned works. The rational behind
these proposals is to model all possible alternatives in the
same process and select one of them. In contrast, CASPER
proposes to have a process that can be transformed to meet
the requirements of a specific project. This proposal uses
two models as input, a software process defined in a simpli-
fied variant of SPEM 2.0 (eSPEM) and a model of the or-
ganizational context of the enterprize for a specific project.
Then, using a set of ATL transformation rules [15] a new
adapted process model is generated. The key idea of the
authors is to codify the knowledge of the process engineer
to tailor process according to the context in the ATL trans-
formation rules. This approach has been validated in the
context of two small enterprizes. The main advantage of
this proposal is it relies on ready to use technologies, so it is
relatively easy to re-use results provided by this work. On
the other hand, the definition of the transformation rules
could be very complex even for simple processes and con-
text models.

The eSPEM metamodel has the same structure as SPEM
2.0, so it distinguishes between the Method Content and the
Process package. However, it does not have Guidance ele-
ments like white papers, methods or tool mentors. This is
a great disadvantage to model SiSoPLE because methods
and tools are an important part in certification processes.
On the other hand, the main novelty of CASPER is its
context metamodel (see Figure 1). The root class of this
metamodel is Context that is composed of Dimension and
ContextConfiguration elements. In Dimension, we model all
attributes of the context and their possible values using Con-
textAttribute and ContextAttribute Value. In ContextConfi-
guration, we select a specific configuration of the context
using ContextConfigurationAttribute elements. The work of
the ATL transformation rules is to analyze the reference pro-
cess modeled in eSPEM and to modify its process elements
taking into account values of ContextConfiguration.

3. TOWARDS TOOL-SUPPORTED SISOPLE

Prior to the application of the different proposals for SiSo-
PLE, it is necessary to analyze the two proposed standards
to find the commonalities and the variabilities of the process
fragments. In order to derive the commonalities of these
processes we use two tools. Firstly, in order to increase the
commonalities between the two processes, we use the defini-
tions of partial commonality and full commonality proposed
in [10]. Partial commonality is applied whenever process el-
ements of the same type expose at least one common aspect,
while full commonality is applied whenever process elements
of the same type expose only common aspects.

Secondly, we consider the terminological framework for
dependability and security proposed in [3]. We will make
some assumptions about this common framework and some
simplifications, since the focus of this paper is the explo-
ration of the use of tools for SiSoPLE. By instance, we are
going to assume that all the tasks are performed by the an-
alyst, and to derive the commonality we will focus on input
and outputs of the tasks. PASRA and AFHA (and attached
processes for the system level PSSRA and SFHA) are pro-
cesses that focus on the identification of failure conditions
and assessing the risk at the corresponding level (aircraft
or system level). Taking into account the mentioned frame-
work, we assume that failure conditions might include con-
ditions coming from malicious and non malicious behaviors
and thus a partial commonality could be identified. Addi-
tionally, we assume that risk is the same as the possibility
of failure. Taking into account these simplification, we find
five categories of partially and full common tasks in these
processes: (i) gathering of information for identification and
classification of failure conditions; (ii) identification of failure
conditions; (iii) classification of severity of failure condition
effects; (iv) assignment of probability to failures; and (v) up-
date of requirements and architecture at the corresponding
level. In addition, there are tasks that are specific to the
standards like the information to the development groups or
to find documentation and verification methods.

3.1 The EPF composer

In this section, we present the modeling of the SiS pro-
cess line using SPEM 2.0 and the EPF composer. As stated,
one of the strongest point of SPEM 2.0 is the concept of li-
brary of process elements also known as the Method Content
package. In order to define the SiSoPLE, we need to define
process elements to compose processes contained in both
standards, and additionally, the process elements that en-
able the modeling of a process aligned with the security and
safety standards. This last step is the most difficult because
it requires to find the full-commonality, partial-commonality
and the variability at the level of tasks for both standards.
In order to model the partial commonality, we use the vari-
ability mechanisms of SPEM.

The modeling of the process elements and their relative
order is derived from the analysis of the corresponding stan-
dard. In EPF, these contents are encapsulated in an struc-
ture known as Method plug-in. In Figure 2, we can see the
Method plug-in for the FHA process. In this Figure, we can
distinguish the Method Content and the Process packages.
In the first one, we can see tasks defined for the AFHA and
SFHA and in the second one, capability patterns for both
levels and a delivery process for the FHA. Tasks are used
to compose the two Capability Patterns. The process asso-

a <= arpd76l

4 = Method Content

4 |l Content Packages
a4 =i aircraft_level_fha
. 5 Roles
a [Tasks

apply_previous_experience
assingment_of_probability_requirements
assingment_of_qualitive_design_requirements
classification_of_failure_conditions_effects_on_the_aircraft
create_environmental_and_emergency_configuration_list
create_list_of_failure_conditions_at_the_aircraft_level
create_the_aircraft_level_function_list
determine_the_effect_of the failure_condition
identification_of_the_method_to_verify_compliance
identification_of_the_supporting_material
obtain_the_necessary_source_data

- (5 Work Preducts

> (@ Guidance
. B system_level_fha

URVEVRVAVRVRVEVRVRVEY

» [= Standard Categories
(= Custom Categories
4 g Processes

4 I3, Capability Patterns
‘s Aircraft Level FHA
g System Level FHA

4 i3, Delivery Processes
B FHA

Figure 2: EPF plugin for ARP4761.

ciated to the standard is obtained copying these capability
patterns in a Delivery Process and setting that the SFHA
is repeated for each system of the aircraft. We follow the
same procedure to model PASRA and PSSRA of DO-326A
and the SiS process that aligns both standards. To derive
tasks of this last process, we analyze the commonality rela-
tions between tasks of both standards taking into account
the framework for dependability and security. We analyze
the structure of the partial variability and apply variability
extension that allows a higher re-use of the attributes and
relations of the tasks.

In order to illustrate the derivation of the SiSoPLE tasks,
we focus on tasks devoted to the gathering of information
for identification and classification of failure conditions. In
this case, we have two couples of tasks that have partial-
commonality, Identify functional security dependencies and
Create the Environment and Emergency Configuration List,
and Identify Security Measures and Create the aircraft level
Function List.

The partial commonality of Identify functional security
dependencies and Create the Environment and Emergency
Configuration List can be modeled using a contributes vari-
ability. The first task identifies the functional security de-
pendencies but it does not consider environmental and emer-
gency factors, which are important in the safety domain.
The contributes variability allows to extends a base tasks in
an additive way without directly altering any of the existing
properties of this task. So, we create a new task Identify
functional SiS dependencies that has a relation of contribu-
tion with Identify functional security dependencies and add
a new element to the output of the task, the Environment
and Emergency Configuration List.

The tasks Identify Security Measures and Create the air-

4 ‘g Aircraft Level Security Informed FHA
4 5 Gathering of information for classification and identification

g Asses the aircraft architecture
L Asses aircraft requirements
L Identify functional 5i5 dependencies
Cer Create the aircraft level SiS Function List

fir;] Idenfitication of failures

55 Assingment of probability to failures (risk)

fﬁl Classification of severity of failure conditions

fﬁ] Update of systern requirements

L& Identification of the supporting material

L& Identification of the Method to verify compliance

i Inform design groups assurance actions

L& Inform design groups measures and guidance

Figure 3: Capability Pattern for the SiS process.

craft level Function List have a relation of partial common-
ality that can be modeled using extends. Both tasks have
the same goal, but the input of the first one is the aircraft
architecture and requirements, while the input of the second
one is source data. On the other hand, outputs of these tasks
are the security measures list and the external and internal
functionality at the aircraft level, respectively. Taking into
account the level of detail provided in these tasks and the
mentioned framework, one task that align the Safety and
Security with the same goal as them should have as the in-
put the architecture and requirements of the aircraft (from
PASRA) and as the output the list of external and internal
functions (from AFHA). The eztension variability allows to
use all the attributes of the base element (i.e. Identify Se-
curity Measures or Create the aircraft level Function List)
and at the same time, to override inherited properties with
the values of our election. In our case, we create a new task
Create the aircraft level SiS Function List that extends Cre-
ate the aircraft level Function List and overrides the input
with the value Aircraft architecture and requirements.

After the analysis of commonality and variability and the
derivation of the new tasks, we can model the capability
pattern for the Aircraft-Level (see Figure 3). This pattern
contains activities that model the four type of tasks with
full and partial commonality. Additionally, tasks that are
not common between processes are added to the capability
pattern as they are taking into account their relative order
with other tasks of the process. In this case, tasks related
to the verification of safety cases and information of the de-
velopment groups (see bottom of Figure 3) are placed in the
end of the capability pattern. We repeat the same process
for the System-Level to get its capability pattern, and with
these two capability patterns, we model the SiS process that
aligns AFHA, SFHA, PASRA and PSSRA.

3.2 Process model extended with SPL concepts

As stated in Subsection 2.2, there are not solutions based
on SPL tools that can be used in real scenarios. So, we
have implemented our own extension of SPEM 2.0 with
SPL concepts for testing purposes. This extension is im-
plemented using as a base the UMA metamodel [6], which
is one of the main components of the EPF composer. Ex-
tended UMA (see Figure 4) focus on the Process package

at two levels, process elements (i.e. Role Descriptor, Work
Product Descriptor and Task Descriptor) and process struc-
tures (i.e. Capability Pattern, Activity, Phase and Itera-
tion). Our goal is to make possible the definition of refer-
ence processes. S0, we create a new abstract class named
VariationPoint that extends BreakDownElement, which is
the super class of all elements that can be placed in a pro-
cess. With this extension, we can model a process that is
composed of elements from the original SPEM and elements
that extend VariationPoint. This class models a part of
the process that can vary and has specializations for each
type of SPEM 2.0 element that can vary in a process. We
illustrate the work of this class focusing on one of its spe-
cializations, TaskVP. If our reference process has more than
one task that can be placed in the same part of the process,
we add an instance of TaskVP. This class has a reference to
all the TaskDescriptor that can be placed in this part of the
process named occupation. The fields min and maz (inher-
ited of VariationPoint) indicate the minimum and the max-
imum number of TaskDescriptor elements from occupation
that can be placed in this part of the process. TaskVP ex-
tends WorkBreakDownFElement too, which is the class that
extends all the process elements that have an ordering in
the process (i.e. Activity, CapabilityPattern, TaskDescrip-
tor,...). Process elements that do not require ordering (i.e.
RoleDescriptor and WorkProductDescriptor) do not extend
WorkBreakDownElement. We apply the same mechanism
to model variation points for process structures, i.e. Phase,
CapabilityPattern, Iteration and Activity.

In order to model the SiSoPLE, we firstly model the tasks
that can be part of the process using the same procedure
that we have followed for SPEM 2.0 in Subsection 3.1. So, we
model tasks corresponding to both standards and derive the
SiS-informed tasks using the variability support of SPEM.
Then, we model the SiSoPLE using our extension.

The resultant SiSOPLE (see Figure 5) contains elements
from the original SPEM 2.0 and our extension. On the one
hand, we model common process elements of the process line
using original SPEM 2.0 elements, so the process is com-
posed of two capability patterns, one for the Aircraft-level
and another for the System-level. On the other hand, we
use specializations of VariationPoint to model alternatives
for a process element or optional elements. We have three
exclusive alternatives to model the task identification of de-
pendencies depending on if the process is PASRA, AFHA
or SiS process, so they are included in the occupation re-
lation of the identify_dependencies_vp with a min and max
set as 1. Optional elements like identification_of the_suppor-
ting-material are modeled using TaskVP with a min set as
0 and a maz set as 1.

The work of this metamodel requires additional tooling
which is out of the scope of this contribution. Firstly, it
needs a tool that allows to select and generate variants of our
reference process taking into account the cardinality given in
the VariationPoint. Secondly, it needs constructs to model
and enforce cross-tree constraints. These constraints are a
common tool in the SPL domain and determine the type
of relation between arbitrary process elements using logic
formulae. On the other hand, there are other elements of
SPEM 2.0 that has not been included in Figure 4 but they
are part of our extension, like Guidance and Tool.

3.3 Process transformation using CASPER

In order to apply CASPER for the SiSoPLE, we proceed as
in the case of the extension of SPEM 2.0 but the modeling of
the reference process will be different. The important aspect
for the CASPER approach is to have a process modeled in
eSPEM that can be transformed, so the reference process
can be any of the process that can be modeled in our process
line. For this example, we choose the process depicted in
Figure 3. In order to keep the example as simple as possible,
the model of the context only considers the domain of the
process that can be security, safety or SiS (see Figure 6).
Additionally, the context is configured for the security.

Guidelines for the definition of the transformation process
are given in [1]. An ATL transformation process consist of
a set of transformation rules and functions that facilitate
the transformation process known as helpers. CASPER has
two types of transformation rules, one for commonalities and
another for variabilities. Rules for commonalities focus on
generate a copy of a process element from the input process
model. Rules for variabilities vary the process elements ac-
cording to the context configuration. The detection of the
process elements that vary and the assignment of new values
is implemented using helpers. The rule for variable tasks is
depicted in Figure 7. To detect that the Task can vary de-
pending on the context is used the helper optionalRule (line
2), which internally contains a list of all the tasks that can
vary in the reference process. Then, the body of the rule
(lines 8-13) makes an exact copy of the incoming element
but the task (line 10). The new value of the task is given by
the helper selectTaskRule that analyzes the context and re-
turns the appropriate task. The result of the transformation
process is the PASRA and PSSRA processes from DO-326A.

4. DISCUSSION

As we stated in the introduction, our focus is to explore
the potential of SPEM 2.0, extended UMA and CASPER to
implement SiSoPLE. In this discussion, we focus on aspects
relevant for the definition of the reference process in the SiS
domain. Specifically, aspects under discussion are semantic
richness, extensibility and automation.

The semantic richness of proposals’ metamodels (UMA
from EPF, extended UMA and eSPEM from CASPER) is
very similar because they are based in the SPEM 2.0 meta-
model. However, extended UMA has constructs to define a
reference process with variant process elements, which is not
possible in UMA and eSPEM. Additionally, eSPEM has the
disadvantage of not having support for Guidance process el-
ements. An important limitation of the three metamodels is
they do not have concepts for the security and safety domain
that are important for certification purposes. Specifically, it
is not possible to model criticality levels and certification
requirements. Moreover, it is not possible to generate a log
of the execution of the certification process. In a previous
work, we explored the semantic extension of safety process
lines [9] using criticality levels and stereotypes.

The extensibility of the proposals is another important
factor because standards, tools and methods evolve quickly
in the security and safety domains. In the appearance of
new process elements, the three proposals require the mod-
eling of new elements in the Method Content package using
the variability mechanisms of SPEM. However, this affects
in a different way to the already modeled processes. In the

1..*] occupation

E BreakDownElement | | E Phase| |E Itel'ation| | E Descriptor|

|E CapabilityPattern| |E Pl'ocess| | E Activity
[] 1 J

] |] |] |] [1.*] occupation

IJ

i

1..*] occupation |

| Q CapabilityPattern'vP | | Q ‘WorkBreakdownElement
|] |

= min: EInt

‘ T = ma¥ : EInt

|Q Wo|'kP|'oductDescriptor| | E TaskDescriptor | |Q RoIeDescriptm|
[]|] 1 J

[1..*] occupdtion

[1..*] occupation

H ActivityVP| | H PhaseVP| | = Iteration\.rP| | H Taskvp | |Q workProductVP| | H Roleve |
]] |]

t t ¢

? ? [1..*] occup

[1.*] occupation

Figure 4: Partial view of the extended version of the UMA metamodel.

4 Delivery Process 5i5_Process_Line
4 4 <breakdownElement> Capability Pattern Aircraft-Level Assessment
4 < <breakdownElement> Activity Gathering of information
< =breakdownElement> Task Descriptor assess_the_aircraft_architecture
< <breakdownElement> Task Descriptor assess_the_aircraft_requirements
4 4 <breakdownElement> Task VP identify_dependencies_vp
<» Task Descriptor identify_functional_5i5_dependencies
<+ Task Descriptor create_environmental_and_emergency_configuration_list
<» Task Descriptor identify_functional_security_dependencies
4 4 <breakdownElement> Task VP create_aircraft_functionality_list_VP
<» Task Descriptor identify_existing_security_measures
<+ Task Descriptor create_the_aircraft_level_function_list
<» Task Descriptor create_the_aircraft_level_sis_function_List
< <breakdownElement> Activity Idenfitication of failures
<4 <breakdownElement> Activity Assingment of probability to failures (risk)
<4 <hbreakdownElement> Activity Classification of severity of failure conditions
<+ <breakdownElement> Activity Update of system requirements
4 <breakdownElement> Task VP identification_of_the_supporting_material_opt

Y

<+ Task Descriptor identification_of_the_supporting_material
4 <breakdownElement> Task VP identification_of_the_method_to_verify_compliance_opt
4 <breakdownElement> Task VP Inform design groups assurance actions_opt
> 4 <breakdownElement> Task VP inform_design_greups_measures_and_guidance_opt

: 4 <breakdownElement> Capability Pattern System-Level Assessment

Figure 5: SiSoPLe modeled in extended UMA.

4 < Context S5iSContext
4 <= Dimension Domain
4 Context Attribute Security
4 Context Attribute Safety
4 Context Attribute 5i5
<+ Context Configuration SecurityDomain

Figure 6: Context model configured for the Security.

rule VariableTaskUse{

2 from tu:MM!TaskUse(thisModule.optionalRule(tu.name))
3 usingq

4 task:MM! TaskDefinition =

5 thisModule. selectTaskRule(tu);
6 }

8 to tuu:MM2!TaskUse(

9 name <- tu.name,

16 linkTask<- task,

11 next <- tu.next,

12 ownedParemeter <- tu.ownedParemeter,

13 description <- tu.description)

F
e

Figure 7: ATL Transformation rule for variable

tasks.

case of EPF, we should analyze if the new process element
affects to an already defined process. In this case, each af-
fected process should be modified accordingly. In the case of
extended UMA, only the reference process should be mod-
ified. Finally, CASPER does not require any modification
of the reference process but the modification of the trans-
formation rules. In our opinion, the proposal with the most
challenging extension mechanism is EPF because it requires
the inspection of each defined process and their modifica-
tion. On the other hand, the extension of the CASPER
approach can be challenging too because if the new process
element is affected by the context, it requires to modify the
transformation process. In this case, in the simplest situa-
tion, it is necessary to add a new helper and modify rules to
detect variable process elements and the assignment of the
appropriate process element according to the context. The
risk in the extension of the CASPER is to make a modifi-
cation in the rules that affects an already existing rule. So,
additional testing will be required to check that the trans-
formation process works properly. Therefore, we consider
extended UMA is the easiest to be extended.

Finally, automation is an important feature for SiSoPLE
because it facilitates the work of process engineers and avoids
to forget the inclusion in the process important elements for
certification. In this regard, only CASPER supports the
automatic generation of processes.

Table 1 summarizes the results of this discussion. For each
discussed aspect, the proposal that achieves the best score
is marked with +++, the second with ++ and the worst
with +. According to this, there is not a perfect solution
to implement SiSoPLE but the most promising solution for
SiSoPLE is extended UMA. Its only limitation is with re-
gard to the automation, a feature that is only present in
the CASPER approach. In our opinion, an optimal solution
to implement SiSoPLE would be an integration of the EPF
composer with a variability management tool like BVR [12].
This solution provides the semantic richness and extensibil-
ity of extended UMA and the automation of the CASPER
approach. However, the integration of these tools implies to
overcome technical limitations that are out of the scope of
this exploratory study.

S. CONCLUSION AND FUTURE WORK

To reduce the cost and the time needed for process-related
certification within security-informed safety-critical systems,
systematic reuse represents a key solution and could be pur-

Table 1: Summary of the discussion

Semantic Extensibi- | Automation|
richness lity
EPF ++ ¥ T
Extended UMA | +++ Tt T
CASPER + Ir T+

sued via SiSoPLE. In this paper, we have conducted a study
ailmed at comparing available off the shelf tool-supported
modeling capabilities, which could serve the purpose of en-
gineering SiSoPLEs. To perform our comparison we have de-
fined a set of criteria and selected limited but generic enough
portions of safety and security standards, in use within air-
worthiness, namely DO-326A and ARP4761. Specifically,
we have used the EPF composer, a process model extended
with concepts of the SPL domain and the CASPER ap-
proach. From our study, it emerged that the most promising
approach for SiSoPLE is an integration of the EPF composer
with a tool for variability management like BVR.

As future work, we plan to further develop SiSoPLE in
various directions. Firstly, we plan to define a domain and
application engineering process that takes into account the
requirements of the SiS domain and the convergence between
certification standards. Additionally, as the most promis-
ing approach for SiSoPLE is the integration with SPLs by
means of variability management tools, we plan to use avail-
able metrics of this domain to define metrics that allow to
evaluate the reduction in terms of time and cost enabled by
the systematization of reuse.

6. ACKNOWLEDGMENT

This work is supported by EU and VINNOVA via the EC-
SEL Joint Undertaking under grant agreement No 692474,
project name AMASS.

7. REFERENCES

[1] J. A. H. Alegria and M. C. Bastarrica. Building
software process lines with casper. In International
Conference on Software and System Process, 2012.

[2] F. A. Aleixo, M. A. Freire, W. C. dos Santos, and
U. Kulesza. Automating the variability management,
customization and deployment of software processes:
A model-driven approach. In 12th International
Conference on Enterprise Information Systems.
Selected papers. Springer, 2011.

[3] A. Avizienis, J. C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11-33,
2004.

[4] R. Bloomfield, K. Netkachova, and R. Stroud.
Security-informed safety: If it’s not secure, it’s not
safe. In Proc. of 5th International Workshop on
Software Engineering for Resilient Systems
(SERENE). Springer, 2013.

[5] I. Corporation. Rational method composer.
http://www-03.ibm.com/software/products/es/rmc.
Accessed: 2016-08-30.

[6] E. Foundation. Eclipse process framework composer
1.0: Architecture overview.

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

http://www.eclipse.org/epf/composer_architecture/.
Accessed: 2016-08-29.

E. Foundation. Eclipse process framework project
(epf). https://eclipse.org/epf/. Accessed: 2016-07-12.
B. Gallina and L. Fabre. Benefits of security-informed
safety-oriented process line engineering. In
IEEE/AIAA 34th Digital Avionics Systems
Conference, 2015.

B. Gallina, K. R. Pitchai, and K. Lundqvist.
S-TunExSPEM: Towards an extension of SPEM 2.0 to
Model and Exchange Tunable Safety-Oriented
Processes. In Software Engineering Research,
Management and Applications. Springer, 2014.

B. Gallina, I. Sljivo, and O. Jaradat. Towards a
safety-oriented process line for enabling reuse in safety
critical systems development and certification. In 35th
IEEE Software Engineering Workshop, 2012.

L. Garcia-Borgonén, M. A. Barcelona, J. A.
Garcia-Garcia, M. Alba, and M. J. Escalona. Software
process modeling languages: A systematic literature
review. Information and Software Technology,
56(2):103 — 116, 2014.

M. R. Group. BVR tool.
http://modelbased.net/tools/bvr-tool/. Accessed:
2016-07-27.

O. M. Group. Software & systems process engineering
meta-model specification. Technical Report
formal/2008-04-01, Object Management Group, 2008.
J. A. Hurtado Alegria, M. C. Bastarrica, A. Quispe,
and S. F. Ochoa. An mde approach to software
process tailoring. In Proc. of the 2011 International
Conference on Software and Systems Process, 2011.

F. Jouault and I. Kurtev. Transforming models with
atl. In Proc. of the 2005 International Conference on
Satellite Fvents at the MoDFELS. Springer, 2006.

M. Kuhrmann, D. M. Fernandez, and T. Ternité.
Realizing software process lines: Insights and
experiences. In Proc. of the International Conference
on Software and System Process, 2014.

S. Lautieri, D. Cooper, and D. Jackson. Safsec:
Commonalities between safety and security assurance.
In Proc. of the 13th Safety-critical Systems
Symposium. Springer, 2005.

T. Martinez-Ruiz, F. Garcia, and M. Piattini. Towards
a SPEM v2.0 extension to define process lines
variability mechanisms. In Software Engineering
Research, Management and Applications. Springer,
2008.

K. Pohl, G. Biickle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 1st edition, 2010.
S. S-18. ARP4761: Guidelines and methods for
conducting the safety assessment process on civil
airborne systems and equipment. Technical report,
SAE International, 1996.

SC-216. DO-326: Airworthiness security process
specification. Technical report, Radio Technical
Commission for Aeronautics, 2010.

