Run-Time Component Allocation in
CPU-GPU Embedded Systems

Gabriel Campeanu
Malardalen Real-Time Research Center
Malardalen University, Sweden
gabriel.campeanu@mdh.se

ABSTRACT

Nowadays, many of the modern embedded applications such
as vehicles and robots, interact with the environment and
receive huge amount of data through various sensors such
as cameras and radars. The challenge of processing large
amount of data, within an acceptable performance, is solved
by employing embedded systems that incorporate comple-
mentary attributes of CPUs and Graphics Processing Units
(GPUs), i.e., sequential and parallel execution models.

Component-based development (CBD) is a software engi-
neering methodology that augments the applications devel-
opment through reuse of software blocks known as compo-
nents. In developing a CPU-GPU embedded application
using CBD, allocation of components to different process-
ing units of the platform is an important activity which can
affect the overall performance of the system. In this con-
text, there is also often the need to support and achieve
run-time component allocation due to various factors and
situations that can happen during system execution, such
as switching off parts of the system for energy saving. In
this paper, we provide a solution that dynamically allocates
components using various system information such as the
available resources (e.g., available GPU memory) and the
software behavior (e.g., in terms of GPU memory usage).
The novelty of our work is a formal allocation model that
considers GPU system characteristics computed on-the-fly
through software monitoring solutions. For the presentation
and validation of our solution, we utilize an existing under-
water robot demonstrator.

CCS Concepts

eComputer systems organization — Embedded sys-
tems; eSoftware and its engineering — Allocation /
deallocation strategies; Software system structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.

SAC 2017,April 03 - 07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. .. $15.00
http://dx.doi.org/l().1145/3019612.3019785

Mehrdad Saadatmand
Swedish Institute of Computer Science (SICS),
SICS Swedish ICT Véasteras AB, Sweden
mehrdad@sics.se

Keywords

embedded systems, component-based development, GPU,
CPU-GPU, component allocation, dynamic allocation, GPU
monitoring, monitor

1. INTRODUCTION

Embedded systems are computation systems with limited
resources and dedicated functionality. Nowadays, we have
embedded systems in almost all human-used devices, from
small size systems such as watches or telephones to large
and complex systems such as spaceships or satellites. Many
of the modern systems handle large amount of data in their
functionalities. In addition, these systems may have real-
time requirements, i.e., computing the outcome within a cer-
tain period of time. For example, the autonomous Google
Self-Driving car [8] needs to process on-the-fly data from
various sensors such as cameras, lasers and radars, in a spe-
cific time interval in order to adapt the car speed according
to the detected traffic and street objects.

Traditional embedded systems confront new challenges when
employed in the development of modern applications. One
of the challenges is in handling great amount of data with
an appropriate performance level. The CPU-based systems
are known to process large amount of data in an inefficient
way due to the CPU sequential architecture.

One solution to rapidly process large amount of data comes
from employing GPUs. Having a parallel processing archi-
tecture, the GPU is known to rapidly handle large amount
of data through data-parallel computations. Thus, it pro-
vides an improved performance compared to CPU, w.r.t.
extensive data processing. One of GPU characteristics is
that it can not function without a CPU. The recent technol-
ogy breakthroughs permit development of embedded boards
that contains CPUs and GPUs, such as NVIDIA [17] and
UNIBAP €2050 [4].

Another trend in embedded systems is the employment of
component-based development (CBD). As a software engi-
neering methodology, CBD handles the increased complexity
of embedded systems through composition of independent
software units known as software components. The method-
ology has been successfully adopted by industry through
dedicated component models such as AUTOSAR [18],
Rubus [10] and Koala [20].

A system may greatly benefit from running the appropriate

part of the software onto the right hardware. The software-
to-hardware allocation, known to be an NP problem [2],
is an acknowledge challenge in designing an embedded sys-
tem [21]. The component allocation in CPU-GPU embed-
ded systems is not an easy task. On one hand we have
two types of components characterized by different extra-
functional properties as follows: %) components that use
only the CPU characterized by typical system properties
such as memory and CPU workload usage; and %) compo-
nents that utilize both the CPU and GPU are character-
ized, besides the typical properties, by GPU specific proper-
ties such as GPU memory usage and GPU workload usage.
On the other hand, the hardware platform is composed of
two different computation nodes (i.e., CPU and GPU) that
have different properties such as available memory and GPU
workload. A higher number of platform properties increases
the allocation complexity.

In this paper, we develop a software allocation model that al-
locates components during run-time. The hardware targeted
by our solution is CPU-GPU-based platforms. The alloca-
tor handles components that either utilize the CPU or have
also GPU capabilities expressed using platform-independent
properties such as GPU workload usage and GPU memory
usage. The allocation model is formally described using a
mathematical model that incorporates the definitions of the
input software (i.e., component requirements) and hardware
(i.e., available resources) models. The mathematical model
is implemented using an integer programming model [7] that
computes allocation schemes. Regarding the hardware, we
equip each computation node with a monitoring solution to
provide, during run-time, information on the resources avail-
ability status. We use a running underwater robot example
during the paper to present the problem description and the
solution overview; the same demonstrator is used to validate
the feasibility of our proposed solution.

The remainder of the paper is divided as follows. Our work
motivation is covered by Section 2 followed by the context
background (Section 3). Problem description is introduced
in Section 4, while Section 5 gives an overview of our solu-
tion. The realization of the allocation mathematical model
is covered by Section 6. The solution is implemented as a
MINPL model (Section 6) and validated using an underwa-
ter robot example (Section 8). The paper, after presents the
related work in Section 9, concludes with a discussion about
the limitations and future work directions of our work.

2. MOTIVATION

Nowadays, there exists a multitude of embedded systems of
different sizes and complexities integrated in the daily hu-
man life. The small and simple embedded systems, charac-
terized by a reduced system complexity, allow a tight off-line
and static analysis of the temporal behavior using various
methods such as fixed priority analysis (FPA).

The temporal behavior of large and complex embedded sys-
tems that may have real-time demands, is not always an-
alyzable using off-line and static methods. The assump-
tions made by e.g., FPA may be violated by factors that
appear during run-time. For example, due to the ever evolv-
ing aspects of the environment, the data load received by a

system may greatly fluctuate from one moment to another.
The transient data load is an aspect that may not be cap-
tured or predicted by an off-line and static analysis. One
example that consistently deals with transient data load is
the telecommunication networks. Inside these networks, big
data loads arrive in an unpredictable and bursty manner
that can not be anticipated and analyzed by static methods.
Moreover, these networks can contain hundreds of compu-
tation nodes (e.g. Radio Network Controllers) that are dis-
tributed over large geographical regions. Being large sys-
tems, different extra-functional properties (EFPs) need to
be considered in the software-to-hardware allocation, such
as power consumption and heat generation. For example,
to reduce the power consumption, some computation nodes
may be switched off. Therefore, there are various factors
such as the dynamic nature of data loads and optimizing
system EFPs, that may uniformly require change in the al-
location of software over the computation nodes of an em-
bedded system.

3. CPU-GPU EMBEDDED SYSTEMS

When GPUs appeared in late 90s, they were used only for
graphic-based applications. With the technology improve-
ments, GPUs got increased computation power and also be-
came programmable units. Having now easier means to work
with GPUs, developers managed to port many non-graphical
applications onto GPUs such as cryptography solutions [16].

Due to their unique (parallel) architecture characteristics,
GPUs were successfully integrated into CPU-GPU embed-
ded systems such as NVIDIA Jetson TK1 [17] and UNIBAP
€2050 [4]. A CPU-GPU embedded system gets the most
benefits by combining the two processing units. While the
CPU is efficient in addressing sequential-based operations,
the GPU proved its effectiveness in parallel processing op-
erations. Equipped with hundreds of processing cores, the
GPU manages to address data-parallel operations through
the thousands of its computation threads. Figure 1 presents
a high level architecture of an underwater robot that has
three embedded boards from which two contain GPUs. A
characteristic of the GPUs is that each unit has its own
memory system. The embedded boards communicate using
a communication buss.

4. PROBLEM DESCRIPTION

The run-time software-to-hardware allocation may be trig-
gered by various factors (e.g., to save energy). The alloca-
tion needs to consider run-time software and hardware char-
acteristics in order to compute feasible allocation schemes.
There are several challenges in the allocation process as fol-
lows. The software needs to specify CPU-based attributes
(e.g., memory usage) and GPU aspects (e.g., GPU mem-
ory usage). Having a higher number of properties increases
the complexity of the allocation process. The hardware con-
tains CPUs and GPUs and the information regarding the
available resources needs to be determined during run-time.

To describe the problem in more details, we use a running
example. The example is an underwater robot that contains
three embedded boards connected by a CAN-bus link as de-
scribed in Figure 1. The boards are connected to several sen-

Ultrasonic | L

i
sensor __ | |_ Switch

rrecare 1 T aottom 1
| Pressure | | Bottom |
i sensor | | Camera }

Figure 1: High-level architecture of an underwater
robot that contains CPU-GPU embedded boards

sors and actuators such as pressure sensors, motors and cam-
eras. The robot, using two cameras (front and bottom side)
that provide a continuous stream of images, autonomously
navigates under water to accomplish various missions such
as detecting different objects (e.g., red buoys). A high-
level component-based software architecture of the vision
system is described in Figure 2. DecisionCenter is the com-
ponent that, based on received data (e.g., water pressure),
sets the configuration parameters (e.g., dive) and mission to
follow. Align component aligns the robot with a certain ob-
ject based on the feedback provided by VisionManager that
processes images received from the robot’s cameras.

Recorder

Movement
Navigation

Vision
Manager

Front
Object
Detector

Center

Peripherall

[Peripheral2] [Peripheral3]

Decision
Center

Bottom
Object
Detector

Figure 2: High-level component-based architecture
of the underwater robot

The robot uses two (front and bottom) cameras for its vi-
sion system. Each camera is connected to a CPU-GPU em-
bedded board as illustrated by Figure 1. Initially, the vi-
sion system, due to the GPUs easiness to process images,
is distributed over Board 1 and Board 3 as follows. The
part that handles the images received from front camera
is allocated onto Board 1, and the part that handles bot-
tom camera feedback is allocated onto Board 3. In order
to save energy (in the detriment of performance), the robot
switches to a SaveEnergy mode that shuts down one of the
CPU-GPU boards (e.g. Board 3), reallocating all the com-
ponents onto the rest of the system. The reallocation needs
to be done during run-time. In the case when the robot re-
quires a higher performance (e.g., many detected objects), it
may switch to a Performance mode where the switched-off

CPU-GPU board is again activated. When switching be-
tween modes, the components needs to be again on-the-fly
reallocated.

5. SOLUTION OVERVIEW

For this initial stage of our solution, we characterize the
software and hardware models with basic and abstract char-
acteristics as follows. Each software components, either it
has GPU capabilities or not, is characterized by four proper-
ties: 1) the static (RAM) memory usage, i) the CPU usage,
111) the GPU memory usage, and iv) the GPU usage. A com-
ponent with GPU capabilities specifies (not null) values for
all properties while a regular (CPU-based) component has
null values for the GPU-related properties.

In the same manner, we characterize the computation nodes
with four properties: i) the available static (RAM) mem-
ory, 4i) the available CPU workload, ii:) the available GPU
memory, and iv) the available GPU workload.

For the GPU usage and available GPU workload properties,
in this initial stage of our work, we use as a metric the num-
ber of threads. There are other parameters (e.g., registers
per thread) that should be considered when describing the
usage of GPUs, but we abstract them away and consider
it as future work. For the CPU wusage and available CPU
workload properties, we use a reference unit (i.e., 1 CPU
usage unit) and relate the properties to it. The properties
related to memory are expressed in kB.

Due to the nature of the GPU, i.e., being always connected
to a CPU that triggers all of the GPU activities, we see
a CPU-GPU processing combination as a single processing
node with (not null) value specifications of all four proper-
ties. The common CPU node defines null values for the two
GPU related properties.

The information from the software and hardware models is
fed to our proposed allocator solution that dynamically as-
signs components over hardware. The allocator is employed
when e.g., a part of the system needs to be reallocated to
save energy.

Figure 3 presents the overview picture of our solution. When-
ever a system change occurs, the allocator is triggered. For
example, in order to save energy, Board & is switched off;
thus, all components from Board 3 need to be reallocated.
The allocator is aware of the software model (i.e., the con-
straints of each component), hardware model (i.e., the avail-
ability status of the hardware recourses) and the current
allocation scheme. Using this information, it computes an
allocation scheme as described in the lower part of the figure.
The allocation scheme presents on which node the compo-
nents need to be allocated and how much of the resources
they access.

Each processing node is equipped with a software monitoring
solution that computes in real-time the available resources
and saves the information to e.g., a log data-base file. In
order to frequently refresh information on the available re-
sources, the monitors query the hardware at a specific period
of time that can be preset by the developer.

An alternative solution that tackles the overhead produced

Hardware model
Board 1| | Board 2 Board 3

' : | Monitor | | Monitor | | Monitor |
g g g g
g [Bus]

Components constrains:

Software model

Hardware status:

Available on Board 1:
20 Mb GPU memory
7000 GPU threads
Allocation trigger:
Dynamic Switch off Board 3
— =

Re-allocation scheme:

C, uses 1500 GPU threads
6 Mb GPU memory

Current allocation:

€, C,,C; ->Board3
€, C,,Cy ->Board 1

C,, C,->Board 1
C; ->Board2

C, uses 1000 GPU threads
6 Mb GPU memory

Figure 3: Overview of the dynamic allocation pro-
cess

by periodically executing all the system monitors, is for the
allocator to activate the monitors whenever it needs. The
disadvantage of this solution is that an overhead is also in-
troduced when the monitors are specifically triggering. In
this work we assume that each node has a monitor solution
that is periodically executed and stores the information into
a log file.

6. ALLOCATOR REALIZATION

The formal model that captures the system characteristics
and describes the allocation definition, is defined as follows:

6.1 Hardware and software model definitions

1. In our vision, the hardware system is a set H of k hard-
ware computation nodes described by five functions:
Mem_Free: H = R>o, Cpu_Free: H — Rx>o,

Mem_Gpu_Free : H — Rxo, Gpu_Free : H — N>,
where:
Vh € H,then
Mem_Free(h) = available static memory
Cpu_Free(h) = available CPU capacity
Mem_Gpu_Free(h) = available GPU static memory
Gpu_Free(h) available GPU capacity

2. We see the component-based application as set C' of n
components characterized by four functions:
Mem_Req : C' = R>o, Cpu_Req: C' = Rx>o,
Mem_Gpu_Req : C — R>o, and Gpu_Req : C — N>,
where:

Ve € C, then

Mem_Req(c) static memory required by c
Cpu_Req(c) = CPU workload required by c
Mem_Gpu_R(c) = GPU static memory required by ¢
Gpu_Req(c) = GPU workload required by c

6.2 Allocation definition

The allocator has the goal to dynamically map the compo-
nent to nodes using the function alloc : C' — H (i.e., one
component goes to one hardware node), and to optimize the
distribute of GPU threads among components through the
function gpu_alloc : C' — N, such that it satisfy the following
constraints:

1. The summed required (RAM) memory of components
placed on a node should not exceed the available node
(RAM) memory.

Vh € H,

ZcE{c|c€C/\alloc(c):h} M@’ITLRS(](C) < MerrLFree(h)

2. The summed required CPU load of components placed
on a node should not exceed the available node CPU
workload.

Vh € H,

ZcG{c\cEC/\alloc(c):h} prReq(c) < prFree(h)
3. The GPU memory allocation is realized in two cases:

e when h supports parallel execution, we need to
make sure that the demands of all components
that may run in parallel will not exceed the node
resources. Hence, the summed required GPU mem-
ory of components allocated onto a GPU unit
should not exceed the available GPU memory:

Vh € H and
Ve € C A alloc(c) = h A gpu_alloc(c) > 0,
> . Mem_Gpu_Req(c) < Mem_Gpu_Free(h)

e when h does not support parallel execution, i.e.,
components are sequentially executed onto GPU,
each component demands should not exceed the
node resources. Therefore, the required GPU mem-

ory of each component allocated onto a GPU node
should not exceed the available GPU memory:

Vh € H and
Ve € C A alloc(c) = h A gpu_alloc(c) > 0,
Mem_Gpu_Req(c) < Mem_Gpu_Free(h)

4. the distribution of the GPU computation threads among
components is done in two cases:

e if h supports parallel execution, the threads allo-
cation has a flexible manner as follows. A com-
ponent is not restricted to use a fixed number of
GPU threads for its execution. Instead, it can use
fewer computation threads (with a different per-
formance). For example, to filter an image that
contains 4096 pixels, we assume that a component
has a good performance when using 4096 threads
(i.e., one thread per pixel). However, it can also
use 1024 threads to process the same image by
employing a single thread to process four pixels,
but the execution time will increase. This way
of utilizing less threads than requested, increases
the possibilities of the allocator to compute feasi-
ble schemes.

We start by calculating the total amount of com-
putation threads demanded by components with
GPU capabilities, that require to be allocated:

Vh € H and
Ve € C A alloc(c) = h A gpu_alloc(c) > 0,
Total_Gpu_Req(h) = Y. Gpu_Req(c))

If there are more resources than requested, then
each component receives as many threads it re-
quired. In the opposite case, the allocator dis-
tributes threads proportional with the demands
of each component. For example, if a GPU has
4000 threads available and two components are to
be allocated on it and demand 3000 threads and
2000 threads respectively, then the allocator pro-
vides 2400 and respectively 1600 threads to the
components, using the following equations:

if Total Gpu_Req(h) > Gpu_Free(h) :

Gpu_Req(c)

Gpu-Req(c) = Total_Gpu_Req(h)

* Gpu_Free(h)
e if h does not support parallel execution (i.e., se-
quential execution), each component receives the
requested thread demands. In the case that the
available thread resources are lower than the com-

ponent requirement, then the component receives
as much as is available.

7. IMPLEMENTATION

This section describes how we implemented the GPU mon-
itoring system and the allocator.

7.1 The GPU monitoring system

The novelty of our work being related to GPUs, we present
a solution that implements GPU monitoring systems. Our
evaluation hardware contains an NVIDIA GPU hardware.
Therefore, in this initial development stage of our allocator,
we implemented a basic monitoring solution by using an ex-
isting library (i.e., nvidia-smi). The library displays, among
other information, the following GPU details relevant to our
work:

e the architecture employed by the GPU that reflects if
the parallel execution feature is supported or not;

e the available GPU static memory; and

e the GPU utilization.

The monitor regularly examines the hardware at a particular
period of time defined by the developer, e.g., every 3 seconds,
and saves the information into a log file.

7.2 The allocator

As described in Section 6, the allocation model is composed
of:

e two objective functions, i.e., one that maps compo-
nents to nodes and the other that distributes compu-
tation threads among components; and

e several constraints, such as memory restrictions (see
subsection 6.2).

The allocation model can be seen as a mixed-integer non-
linear programming (MINLP) model, where we optimize
(i.e., maximize) the function that distributes computation
threads to components subject to a number of constrains
(i.e., inequalities). For solving the proposed model, we em-
ploy a mixed-integer solver (i.e., SCIP [1]) to computes solu-
tions, given a specific input (hardware and software) model.

In order for the SCIP solver to interpret the allocation model,
we translated the mathematical formulation into a math-
ematical program by using the ZIMPL language [12]. In
Listing 1, we exemplify through a code line snippet, the al-
location model translation. In the first two lines, the C' and
H are defined as the sets of components and nodes. The
array variable alloc, defined as the Cartesian product of C'
and H, specifies the mapping between components and nodes
using (0 and 1) boolean values. Lines 4 and 5 enforce that
one component is allocated only to one node. The following
lines (i.e., 6 and 7) implement the memory constraint (sub-
section 6.2, constraint 1), where mem_host is a function that
previously defines the memory values of the nodes. In a sim-
ilarly way, the gpu_alloc function is defined and maximized
the GPU thread distribution.

Listing 1: Translation of the allocation model
Set C :={I|C1||’IIC2II’||C3ll’llc4ll,IIC5||,|IC6”’||c7ll’l|C8||};

>, set H :={llh1" "ho" "h3"}'
s var alloc[CH] binary;

subto assign: forall <c> in C do

sum <h> in H : alloc[c,h] == 1;

subto constraint: forall <h> in H do

(sum<c>in C:mem_comp[c]*alloc[c,h])<=mem_host[h];

8. EVALUATION

This section contains an evaluation of the feasibility of our
method by applying it on the underwater robot case study.
Table 1 presents the components allocation, as follows. Each
component of the robot solution, illustrated on the hand left

Table 1: Component allocation schemes for the underwater robot

Component Allocated on board | GPU usage Allocated on board | GPU usage
(before re-allocation) (threads) (after re-allocation) (threads)

Align 3 0 2 0
BottomCamera 3 0 1 0
BottomImageF'ilter 3 3000 1 1000
BottomObjectDetector 3 3000 1 1000
FrontCamera 1 0 1 0
FrontImageFilter 1 3000 1 3000
FrontObjectDetector 1 3000 1 3000
DataRecorder 2 0 2 0
DecisionCenter 2 0 2 0
InteractionCenter 2 0 2 0
MovementNavigation 3 0 2 0
Peripheral 1 1 0 1 0
Peripheral 2 2 0 2 0
Peripheral 3 3 0 1 0
VisionManager 3 0 1 0

side of the table, is initially allocated on a particular embed-
ded board and has a particular GPU usage expressed in the
number of used threads. We mention that each GPU con-
tains a total of 8000 threads and allows parallel activities
execution. The components that execute on Board 3, after it
is turned off, are redistributed by the allocator as presented
in the right hand side of the table with their new GPU usage
properties. Components BottomImageFilter and BottomOb-
jectDetector that require GPU, are allowed each to access
1000 threads (see last equation, subsection 6.2). Also, they
are permitted to be parallel executed with the rest of the
components with GPU capabilities, that reside on Board 1.

Although the underwater robot demonstrator exists and its
software application follows the described component-based
architecture (see Figure 2), our run-time allocator solution is
not integrated into the system. Further evaluations need to
look into how the solver affects the robot resources and the
overhead introduced when computing re-allocation schemes
and moving components between hardwares.

9. RELATED WORK

The software-to-hardware allocation concern is discused in
a large body-of-knowledge. Much of the work is done on
task allocation onto CPU-based systems. Static solutions
are covered by different surveys [13] and methods for dy-
namic task allocation are examined by various studies such
as [19].

Regarding heterogeneous embedded systems, there are sev-
eral works addressing the allocation issue. We mention the
work of R. Li et al. [14] that proposed an automated alloca-
tion process in which it considered different metrics such as
processor utilization and data flow latency.

It is worth to mention a static component optimization al-
locator for CPU-GPU embedded platforms which is intro-
duced by Campeanu et al. [5]. Similar to our approach,
the authors use a formal description of the allocation model
and employ the same SCIP solver [1] to compute allocation
schemes. There are several differences compared to our so-
lution, as follows. The allocator proposed by Campeanu is
more complex than our solution, by considering the compo-

nent communication aspects which provides a more accurate
allocation schemes. It also considers different optimization
criteria such as balancing system memory usage and opti-
mizing the GPU performance. The drawback of the static
allocator is that it always considers a parallel execution of
the components with GPU capabilities, regardless of the
hardware capabilities. Our work is more precise by check-
ing against the hardware capabilities (i.e., if it supports or
not parallel execution) and adjusting the allocation schemes
accordingly.

Regarding monitors, D. Haban et al. [9] introduced the soft-
ware monitoring solutions to aid scheduling tasks with ran-
dom execution times in real-time systems. The authors
present the performance degradation of (CPU-based) sys-
tems with less than 0.1% when using software monitoring.
For our work, we implemented the GPU monitoring as a
task executed on CPU that may affect the CPU workload.
There are different works that implement GPU monitors for
different purposes. For example, data flows monitoring solu-
tion are implemented to enable packet-level simulations for
large systems [3]. Another example employs GPU monitors
to dynamically balance GPU bandwidth use [11].

10. DISCUSSION AND LIMITATIONS

This paper provides a solution to dynamically allocate com-
ponents over CPU-GPU platforms. The hardware resource
availability information is provided in real-time to the allo-
cator by monitoring software solutions. In addition to the
hardware information, the allocator uses details on the soft-
ware model (e.g. components properties such as memory
usage) and the ongoing allocation scheme. The novelty of
our solution is a formal allocation methods that considers
GPU characteristics. Basically, our solution computes on-
the-fly allocation schemes and distributes the available GPU
resources (e.g., GPU threads) to components.

There are several limitations of our solution, and due to
the work being focused on GPUs, we discuss only the con-
straints related to the GPU part of our solution. To the best
of our knowledge, there is no developed component model
mechanism to allow parallel execution of components onto

GPU. Previous work that has been done that introduces
the GPU-aware component notion and enriches component
models with GPU specific artifacts (e.g., GPU ports), con-
siders sequential component execution onto GPU [6]. There
are other limitation regarding the parallel execution of com-
ponents with GPU capabilities. A more accurate analysis
should examine how many components are able to be ex-
ecuted in parallel. For example, having three components
with GPU capabilities as illustrated in Figure 4 that require
to be allocated, the allocation model should consider only
the parallel execution of components C2 and Cs, while Cy
is sequentially executed.

oL
Ne c,

Figure 4: Three connected components to be allo-
cated

Another limitation is that the allocation process considers
only a few basic GPU-aware component properties such as
GPU global memory usage and GPU load usage (expressed
in GPU threads usage). Other properties that have an im-
portant role in computing a more precise allocation scheme,
were abstracted away from this initial solution. For example,
we did not consider GPU properties such as shared memory
usage and registers per GPU thread usage. The described
limitations are seen as future work directions to extend and
improve our work.

Acknowledgments

Our research is supported by the RALF3 project [15] - (IIS11-
0060) through the Swedish Foundation for Strategic Re-
search (SSF).

11. REFERENCES

[1] T. Achterberg. Constraint Integer Programming. PhD
thesis, TU Berlin, Germany, 2007.

[2] S. K. Baruah. Task partitioning upon heterogeneous
multiprocessor platforms. In IEEE Real-Time and
Embedded Technology and Applications Symposium.
Citeseer, 2004.

[3] B. R. Bilel, N. Navid, and M. S. M. Bouksiaa. Hybrid
CPU-GPU distributed framework for large scale
mobile networks simulation. In Proceedings of the 2012
IEEE/ACM 16th International Symposium on
Distributed Simulation and Real Time Applications.
IEEE Computer Society, 2012.

[4] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, and
M. Norgren. Introducing radiation tolerant
heterogeneous computers for small satellites. In 2015
IEEE Aerospace Conference. IEEE, 2015.

[6] G. Campeanu, J. Carlson, and S. Sentilles.
Component allocation optimization for heterogeneous
CPU-GPU embedded systems. In 40th EUROMICRO
Conference on Software Engineering and Advanced
Applications. IEEE, 2014.

[6] G. Campeanu, J. Carlson, S. Sentilles, and S. Mubeen.
Extending the Rubus component model with
GPU-aware components. In Component-Based
Software Engineering (CBSE), 2016 19th International
ACM SIGSOFT Symposium on. IEEE, 2016.

[7] R.S. Garfinkel and G. L. Nemhauser. Integer
programming, volume 4. Wiley New York, 1972.

[8] Google. Google Self-Driving Car Project.
https://www.google.com/selfdrivingcar/. Accessed:
2016-08-18.

[9] D. Haban and K. G. Shin. Application of real-time
monitoring to scheduling tasks with random execution
times. IEEFE Transactions on software engineering, 16,
1990.

[10] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg,
J. Lundback, and K.-L. Lundback. The Rubus
component model for resource constrained real-time
systems. In Industrial Embedded Systems, 2008. SIES
2008. International Symposium on. IEEE, 2008.

[11] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. A
QoS-aware memory controller for dynamically
balancing GPU and CPU bandwidth use in an
MPSoC. In Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012.

[12] T. Koch. Rapid Mathematical Prototyping. PhD thesis,
Technische Universitédt Berlin, 2004.

[13] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Comput. Surv., 1999.

[14] R. Li, R. Etemaadi, M. T. Emmerich, and M. R.
Chaudron. An evolutionary multiobjective
optimization approach to component-based software
architecture design. In 2011 IEEE Congress of
Evolutionary Computation (CEC). IEEE, 2011.

[15] Malardalen University. RALF3 - Software for
Embedded High Performance Architectures.
http://www.mrtc.mdh.se/projects/ralf3/. accessed
September 28, 2016.

[16] S. A. Manavski. CUDA compatible GPU as an efficient
hardware accelerator for AES cryptography. In Signal
Processing and Communications, 2007. ICSPC 2007.
IEEE International Conference on. IEEE, 2007.

[17] NVIDIA. NVIDIA Jetson TK1. http://www.nvidia.
com/object/jetson-tk1l-embedded-dev-kit.html,
accessed September 14, 2016.

[18] A. D. Partnership. Technical overview v4.2.
http://www.autosar.org, (accessed September 28,
2016).

[19] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel.
Mapping on multi/many-core systems: Survey of
current and emerging trends. In Proceedings of the
50th Annual Design Automation Conference. ACM,
2013.

[20] R. Van Ommering, F. Van Der Linden, J. Kramer,
and J. Magee. The Koala component model for
consumer electronics software. Computer, 33, 2000.

[21] T.-Y. Yen and W. Wolf. Hardware-software
co-synthesis of distributed embedded systems. Springer

Science & Business Media, 2013.

