
Attaining Flexible Real-Time Systems by Bringing Together

Component Technologies and Real-Time Systems Theory

Johan Fredriksson, Mikael Åkerholm, Kristian Sandström and Radu Dobrin

Department of Computer Science and Engineering, Mälardalen University, Väster̊as, Sweden

{johan.fredriksson, mikael.akerholm, kristian.sandstrom, radu.dobrin}@mdh.se

Abstract

In this paper we propose a component model and
run-time mechanisms, gathering benefits provided by
both Real Time Systems (RTS) and Component Based
Software Engineering (CBSE). In particular, we show
that the proposed model is a suitable package for effi-
cient utilization of the multiple version paradigm. The
purpose of using a multiple version technique is to en-
sure a minimum level of quality while providing run-
time flexibility.

1 Introduction

Computer control systems are embedded in a large
and growing group of products such as automotive ve-
hicles, aircrafts, and industrial robots. A reason for
establishing a CBSE discipline for such systems is that
the systems are becoming increasingly more complex
due to the inclusion of more functionality. At the same
time the product cycles are becoming shorter, leading
to requirements of shorter time to market. Moreover,
the industry strives to enable cost effective implemen-
tation of new functionality. Although the motivation
for utilizing CBSE methods for development of embed-
ded control systems are essentially the same as for gen-
eral purpose software, the requirements on them dif-
fer. For embedded control systems a component model
must focus on extra-functional requirements, such as
reliability, timing, resource usage and linkage to spe-
cific hardware.

This paper propose a component model that adopt
The Multiple Versions Paradigm [11], which is a
method that can be used to achieve more efficient re-
source usage. The Multiple Versions Paradigm uses
different versions of implementations for solving a prob-
lem. This could involve different implementations of a
task monitoring varying numbers of parameters, more
or less deep iterations in numerical approximations

(imprecise computing )within different versions. The
proposed component model is based on the model de-
scribed in [13]. Their work defines a Prediction Enabled
Component Technology (PECT) [6].

The contribution of this work is the introduction of
a component model with real-time attributes, which is
a suitable package for utilisation of the multiple version
paradigm. To use the multiple version paradigm, the
Adaptive Threshold Algorithm [4] is adopted.

A second contribution is an adaptation of the Adap-
tive Threshold Algorithm to also handle aperiodic
tasks.

The rest of the paper is outlined as follows. In sec-
tion 2 we present real-time basics. In section 3 the
component model is presented. The paper proceeds in
section 4 by describing the run-time mechanisms. The
5th and final section concludes the paper and contains
suggestions for future work.

2 Real-Time Systems

Real-time systems are computer systems in which
the correctness of the system depends not only on
the logical correctness of the computations performed,
but also on time factors [10]. What is common for
most real-time tasks is the Worst Case Execution Time
(WCET), which has to be calculated in order to make
predictions about the system behaviour, e.g., to guar-
antee timing requirements.

Real-time systems can be classified into two major
categories: hard and soft real-time systems, depending
on the consequences of a deadline miss. The deadline
is derived from the latest point in time when a response
to an event must be generated. Hard real-time systems
are computer systems in which all task deadlines must
be met. On the other hand, in soft real-time systems,
a number of deadlines can be missed without serious
consequences. This paper primarily focuses on hard
real-time systems.



The choice of scheduling technique used in order to
achieve different requirements has been well analyzed
and discussed [14]. If the main goal is to achieve run-
time flexibility, the approach typically used is priority
driven scheduling. Priority driven (on-line) scheduling
can be divided in two main categories: Fixed Priority
Scheduling (FPS) or dynamic priority scheduling such
as Earliest Deadline First (EDF). Common for both
categories is that the scheduling decision for individual
tasks is made during run-time, based on the priority
of the tasks. This results in a flexible system with a
potentially higher ability to cope with run-time events.
In fixed priority based systems, guarantees for tempo-
ral behaviour are achieved by performing response time
analysis [1], [2],[10]. In dynamic priority based systems,
e.g., EDF, the guarantee that all tasks will meet their
deadlines is based on the processor utilization [8].

3 Component Model

This section briefly outlines the proposed compo-
nent model, by defining a single component and how
to compose components. Below is some of the basic
component properties listed.

• A basic property of a component is that the im-
plementation is not reachable by a third party; a
component is a pre-compiled black-box. The only
way to communicate with a component is through
its interfaces.

• Components can be composed from other compo-
nents, denoted composed components or compos-
ites.

• A service provided by a component can be imple-
mented in different versions. As in the Multiple
Version Paradigm, the different versions are de-
noted quality levels. Each quality level is assigned
a value.

• A service provided by a component can be active,
or passive. An active service is scheduled by the
run-time system, while a passive service is not di-
rectly in contact with the run-time mechanisms.

3.1 Component Description

In Figure 1, a UML meta-model of a component is
shown. A component provides one or more services,
which in some sense are related. As Port Based Ob-
jects (PBO) [12], the services provide in and out ports
for exchanging data with each others. An active service
has an associated descriptor containing all parameters

InPort
<<constructive>>

OutPort
<<constructive>>

implementation

subServiceSequence
programPointer

<<constructive>>

Properties

WCET
V_value

<<analytic>>
Component

<<constructive>>

QualityLevel
<<constructive>>

ActiveDescriptor

P_priority
T_ periodTime
D_deadline

<<constructive>>

Service
<<constructive>>

1..*1..*

1..*1..*

0..10..1

Port

type

<<constructive>>

0..*0..*

Figure 1. UML meta-model of a component
needed by the run-time system. Furthermore, a ser-
vice has one or more quality levels and the number
of provided quality levels is free for the developer to
specify. However, at least one quality level is required.
Each quality level has an implementation. A function
pointer represents the implementation of the quality
level for a basic component, but a quality level pro-
vided by a composite has a sequence of sub-services
that should be executed upon an invocation. A quality
level also has a WCET and a value associated with it-
self. Theories regarding WCET estimation have been
presented, in e.g., [5],[9]. Another analytic property is
the value V that can be set to an arbitrary number,
and is used by the run-time system to choose a quality
level. The run-time system tries to schedule the service
with highest value, the run-time treatment of the value
is introduced in formula (3), section 4.1.

A component has three interfaces, which are the
specification of its access points, as in [3]. Data inter-
faces, are port based, and contain information about
existing ports and data type definitions. Control inter-
faces provide methods for invocation of the different
encapsulated services. If a service is defined as active,
it consists of parameters and structures required by
the run-time system. Analytic interfaces provide pa-
rameters concerning different quality levels of a service.
Here the number of levels with corresponding WCET
and value are included, but the analytical interface can
be extended with other attributes, e.g., memory con-
sumption.

3.2 Assembling Components

Assembling components or parts of components
into composed components, and assembling systems
through exchanging data between components, is car-
ried out by utilizing different interfaces. Hence, data
exchange and component composition are independent
to each others. Therefore, data can cross component
boundaries utilizing the same interfaces as within a
component.

Exchanging data between services is carried out by



Application
Active 

Component
1..*1..*

Composed 
Component

0..*0..*

Basic 
Component

0..*0..*
1..*1..*

Figure 2. Components building an application

connecting in ports and out ports. A smallest require-
ment on the type level is that the interacting in and
out ports uses the same data types. The ports of a
particular service is accessible trough the data interface
provided by the component hosting the service. When
a service is launched, it begins with reading data from
all its in ports (zero or more) and, when its execution is
finished, data is written to its out ports (zero or more).
Composing a service within a component from services
provided by other components is achieved through the
definition of a sequence. The sequence is constructed
by using the control interface provided by the subcom-
ponents. Assembly of applications may be viewed as a
hierarchy. Basically, as in Figure 2, we can distinguish
between, basic components, composed components or
composites, active components and applications.

4. Component Technology

In the model proposed in section 3, a service has a
number of quality levels. One of the levels is a basic
level that has been analysed pre-runtime by a schedu-
lability test. In our approach, a schedulability analysis
is performed in order to guarantee the basic level for
each periodic service. There are many ways of formally
guaranteeing that a set of services will complete before
their deadlines [1],[2],[8].

4.1 On-Line Service Scheduler

The Adaptive Threshold Algorithm is modified and
applied to the component model. We also define how
to handle run-time events with incompletely known pa-
rameters, i.e., aperiodic services.

For executing components at a higher quality level
during runtime, the Adaptive Threshold algorithm
adopts two techniques, resource reclaiming and Slack-
stealing[7]. In some cases it is of greater value to the
system to execute an aperiodic service, rather than exe-
cuting a periodic service at a higher quality level. How-
ever, all the periodic services have to be guaranteed
to complete their basic quality level before their dead-
lines. Terms that will be used in the following sections
are listed below.

Residual time Ll is the difference in time between
the estimated WCET and Actual Case Execution
Time (ACET) of a quality level l of a service. Us-
ing this residual time is called resource reclaiming.

Slack time Sl represents slack time for a quality level
l. The slack is the extra interference that a service
can be subjected to without missing its deadline.
This can be performed with the slackstealing al-
gorithm.

Spare time is the smallest of the residual and the
slack time. It is the maximum time that any
lower prioritized service can be subjected to with-
out missing its next deadline.

Available time As(t) is the spare time together with
the scheduled time for the specified service.

Each quality level l, in a service s has a worst-case
execution time WCET l

s and a value V l
s which is set pre

runtime. The service incorporates a deadline Ds, and
a release time Rs. The basic quality level of a service
is indexed with P (WCET P

s ). The values of aperi-
odic services are decided the same way as the periodic
services.

In [4], an expression (1) for calculating the avail-
able time is proposed. Ll(t, Ds) is the residual time
available at priority level l in the interval [t, t + Ds).
min∀j∈lp(l)Sj(t) is the extra interference that any lower
prioritized service can be subjected to without missing
its next deadline, assuming it will use its basic quality
level.

As(t)=WCET p
s +min[Ll(t, Ds), min∀j∈lp(l)Sj(t)] (1)

The run-time system must decide if there is enough
available time for a specific quality level before it is
scheduled. The system must also determine if the ape-
riodic service should be run at all. Since the peri-
odic services must be guaranteed to run, the aperiodic
services are not guaranteed pre run-time. Hence, the
available time for the aperiodic services is not the same
as for the periodic, thus (2).

As(t)=min[Ll(t, Ds), min∀j∈lp(l)Sj(t)] (2)

As Figure 3 shows, at time t, the time interval avail-
able for executing a medium priority service (MP) is Ll.
That is the additional execution time, i.e., the time not
used by any service. The reclaimed time can be used
for any service ready to execute at time t. However,
the maximum amount of time that can be used by MP
is until its deadline DMP .

In addition to the values V l
s corresponding to each

service, there is also a global system value V SY S . The
V SY S value is the mean of all executed periodic ser-
vices. In [4], a value-density based strategy has been



Figure 3. Visual explanation of Formula 1
proposed. The strategy chooses the quality level with
the highest value density W l

s. The value-density W l
s is

given by (3). This approach also applies to aperiodic
services since V SY S is the mean value of all periodic
services. Hence it is easy to determine if the system
accrues a higher value by scheduling the aperiodic ser-
vice.

∀l[WCET l
s ≤ As(t)] :

W l
s =

V l
s · WCET l

s + [As(t) − WCET l
s] · V

SY S

As(t)
(3)

However, an interesting discussion is which services
should contribute to the V SY S . Should it be only
periodic services, or aperiodic services as well. In a
system where aperiodic services are rare and come in
bursts, the V SY S may become very unstable and fluc-
tuating, perhaps misguiding the system. However, if
aperiodic services come regularly and with some even
distribution, they should very much be taken into ac-
count to promote high value aperiodic services before
higher quality levels of periodic services.

5. Conclusions and Future Work

In this paper we have shown that a real-time com-
ponent is a suitable package for the multiple versions
paradigm. We have proposed a component model with
a run-time mechanism that gives the developer possi-
bilities for issuing real-time guarantees with additional
flexibility through implementing multiple versions.

Furthermore, the Adaptive Threshold Algorithm is
used and adapted to also cater for aperiodic services.
This is important in order to provide flexibility in many
real-time systems.

A prototype implementation of the proposal with
development tools and possibility to compile for execu-
tion upon some commercial real-time operating system
is the next step towards a realization of the model. Try-
ing to utilize such a prototype in the development of an
embedded control system, would result in useful input
for future development of the component model.

Acknowledgements We would like to thank all
anonymous reviewers for constructive and helpful com-

ments. Special thanks to Jukka Mäki-Turja and Tomas
Lennvall for peer reviewing this paper.

References

[1] N. C. Audsley. Optimal Priority Assignment and Fea-
sibility of Static Priority Tasks with Arbitrary Start
Times. Technical report, Department of Computer
Science, University of York, 1991.

[2] N. C. Audsley, A. Burns, M. Richardson, K. Tindell,
and A. J. Wellings. Applying New Scheduling theory
to Static Priority Pre-Emptive Scheduling. In Software
Engineering Journal, pages 284–292, 1993.

[3] I. Crnkovic and M. Larsson. Building Reliable
Component-based Software Systems. Number ISBN 1-
58053-327-2. Artech House computing libraray, 2002.

[4] R. Davis, S. Punnekkat, N. Audsley, and A. Burns.
Flexible Scheduling for Adaptable Real-Time Systems.
1080-1812/95 IEEE, 1995.

[5] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson,
and H. Hansson. Execution-Time Analysis for Embed-
ded Real-Time Systems. In In proceedings of Software
Tools for Technology Transfer, 2000.

[6] S. A. Hissam, G. A. Moreno, J. Stafford, and
K. C. Wallnau. Packaging Predictable Assembly with
Prediction-Enabled Component Technology. Tech-
nical Report CMU/SEI-2001-TR-024 ESC-TR-2001-
024, Software Engineering Institute, Caregie Mellon
University, 2001.

[7] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Al-
gorith for Scheduling Soft-Aperiodic Tasks Fixed Pri-
ority Preemptive Systems. In Proceedings Real-Time
System Symposium, pages 110–123, 1992.

[8] C. I. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environ-
ment. Journal of the ACM, 20(1), 1973.

[9] P. Puschner. A Tool for High-Level Language Anal-
ysis of Worst-Case Execution Times. In Proceedings
of 10th Euromicro Workshop on Real-Time Systems,
pages 130 –137, 1998.

[10] L. Sha, R. Rajkumar, and J. Lehoczky. Task Period
Selection and Schedulability in Real-Time Systems.
IEEE Transactions on Computer, 39(9), 1990.

[11] J. A. Stankovic and K. Ramamritham. What is Pre-
dictability for Real-Time Systems? Real-Time Sys-
tems, 2(4), 1990.

[12] D. B. Stewart, R. A. Volpe, and P. Khosla. Design of
Dynamically Reconfigurable Real-Time Software us-
ing Port-Based Objects. IEEE Transactions on Soft-
ware Engineering, 23(12), 1997.

[13] A. Wall, M. Larsson, and C. Norstrom. Towards
an Impact Analysis for Component Based Real-Time
Product Line Architectures. In Proceedings of the 28th
Euromicro Conference, pages 81–88, 2002.

[14] J. Xu and D. L. Parnas. Priority Scheduling versus
Pre-run-time Scheduling. Journal of Real-Time Sys-
tems, 2000.


