
Integration of Software Systems – Process Challenges

Rikard Land, Ivica Crnkovic, Christina Wallin
Mälardalen University

Department of Computer Science and Engineering
PO Box 883, SE-721 23 Västerås, Sweden

+46 21 10 70 35, +46 21 10 31 83
{rikard.land, ivica.crnkovic, christina.wallin}@mdh.se

http://www.idt.mdh.se/{~rld, ~icc}

Abstract
The assumptions, requirements, and goals of integrating
existing software systems are different compared to other
software activities such as maintenance and development,
implying that the integration processes should be different.
But where there are similarities, proven processes should
be used.
In this paper, we analyze the process used by a recently
merged company, with the goal of deciding on an
integration approach for three systems. We point out
observations that illustrate key elements of such a process,
as well as challenges for the future.

Keywords
Software Architecture, Software Evolution, Software Integration,
Software Process Improvement.

1. Introduction
Software integration as a special type of software

evolution has become more and more important in recent
years [7], but brings new challenges and complexities.
There are many reasons for software integration; in many
cases software integration is a result of company mergers.
In this paper we describe such a case, which illustrates the
challenges of the decision process involved in deciding the
basic principles of the integration on the architectural level.

2. Case Study
Our case study concerns a large North-American

industrial enterprise with thousands of employees that
acquired a smaller (~800 employees) European company in
the same, non-software, business area where software,
mainly in-house developed, is used for simulations and
management of simulation data, i.e. as tools for
development and production of other products. The
expected benefits of an integration were increased value for
users (more functionality and all related data collected in
the same system) as well as more efficient use of software
development and maintenance resources. The first task was
to make a decision on an architecture to choose for the

integrated system. The present paper describes this decision
process.

Figure 1 describes the architectures of the three
existing systems in a high-level diagram blending an
execution view with a code view [3]. The most modern
system is built with a three-tier architecture in Java 2
Enterprise Edition (J2EE), while the two older systems are
designed to run in a Unix environment with only a thin “X”
client displaying the user interface (the “thin” client is
denoted by a rectangle with zero height in the figure); they
are written mostly in Tcl and C++, and C++ with the use of
Motif. The Tcl/C++ system contains ~350 KLOC
(thousands of lines of code), the C++/Motif system 140
KLOC, and the Java system 90 KLOC. The size of the
rectangles in the figure indicates the relative sizes between
the components of the systems (as measured in lines of
code). The Tcl/C++ system uses a proprietary object-
oriented database, implemented as files accessed through
library functions, while the two other systems, which were
developed at the same site, share data in a common
commercial relational database executing as a database
server.

Since the two software development departments (the
North American and the European) had cooperated only to
a small extent beforehand, the natural starting point was
simply to meet and discuss solutions. The managers of the
software development departments accompanied by a few
software developers met for about a week, outlined several
high-level alternatives and discussed their implications
both in terms of the integrated system’s technical features
and the impact on the organization. Since the requirements
for the integrated system was basically to provide the same
functionality as the existing systems, with the additional
benefits of having access to more and consistent data, user
involvement at this early stage was considered superfluous.
At this meeting, no formal decision was made, but the
participants were optimistic afterwards – they had “almost”
agreed. To reach an agreement, the same managers
accompanied with software developers met again after two
months and discussed the same alternatives (with only
small variations) and, once again, “almost agreed”. The

Phase 1: Evaluation. Six users experienced with
either of the three systems had hands-on tutorials and
explored all the existing systems, guided by an expert user.
They produced a high-level requirements specification with
references to what was good and less good in the existing
systems. In general they were content with the existing
systems and were explicit in that it was not necessary to
make the user interface more homogeneous; they would be
able to work in the three existing user interfaces, although
very dissimilar. The user evaluation would therefore not
affect the choice of architecture.

same procedure was repeated a third time with the same
result: the same alternatives were discussed, and no
decision on an integrated architecture was made. By now,
almost half a year had passed without arriving at a
decision.

Higher management insisted on the integration and
approved of a more ambitious project with the goal to
arrive at a decision. Compared to the previous sets of
meetings, it should contain more people and involve more
effort, and be divided into three phases: “Evaluation”,
“Design”, and “Decision”, with different stakeholders
participating in each; see Figure 2. First, the users were
supposed to evaluate the existing systems from a functional
point of view, and software developers from a technical
point of view. Then, this information should be fed into the
second phase, where software developers (basically the
same as in phase one) should design a few alternatives of
the architecture of an integrated system, analyze these, and
recommended one. In the last phase, the managers
concerned were to decide which architecture to use in the
future (maybe, but not necessarily, the one recommended
in phase 2). The first phase lasted for two weeks, while the
second and third phases lasted for one week each.

The developers found that although the existing
systems’ documentation included overall system
descriptions, they were of an informal and intuitive kind
(for example, none of them used UML), which meant that
the descriptions were not readily comparable, making the
development of architectural alternatives difficult. During
the first phase, the developers were therefore to produce
high-level descriptions of the existing systems that would
be easily comparable and “merge-able”.

Phase 2: Design. In phase 2, the software developers
tried several ways of “merging” these architectural
descriptions. Their experience and knowledge of the
existing systems was the most important asset. Two main
alternatives were developed, a “data level” integration
(preserving the differences between today’s systems but
adapting them to use the same database, see Figure 3a), and
the “code level” integration alternative (using the three-
tiered architecture of the existing Java system, see Figure
3b). The architectural descriptions were analyzed briefly
regarding functionality and extra-functional properties such
as performance, maintainability, and portability, and
project plans for the implementation of the two alternatives
were outlined. The developers recommended the “code
level” alternative due to its many perceived advantages: it
would be simpler to maintain, bring the users more value,
be perceived by users as a homogeneous system, while not
being more expensive in terms of effort to implement
(according to the estimations, that is).

Of course, this characterization is somewhat idealized
– in reality, there were more informal interactions between
the stakeholder groups and between the phases: briefings
were held almost each day during the course of the
meetings, to monitor progress, adjust the working groups’
focus etc.

Key

Server

Unix
Server

Client

Unix
Server

Client

Tcl

C++

Database
Server

C++

Server

Client

Java

Java

Data
Files

Process

File

File Access

Bidirected Runtime
Communication

Phase 1: Evaluation
Evaluation of existing
systems

Developers

Users

Developers Managers

Requirements
Specification

System
Descriptions

Description,
Analysis and

Recommendation

Phase 2: Design
Produce alternative
designs, analyze
these, and
recommend one

Phase 3: Decision
Decision which
design to use in
future

Figure 2. Project phases. Figure 1. Today’s three systems.

3. Analysis

Server

Server

Server

Clienta)

Server

Client

Database
Server

b)

Database Server

While a handful of alternatives were discussed during
the first meetings, there were only two alternatives
produced in the design phase of the three-phase project.
The alternatives themselves were not new – the developers
almost indignantly said that they discussed the same
alternatives and issues as they had done for six months. It
was rather the ability to agree on discarding some
alternatives with a certain amount of confidence that was
an improvement as compared to the first sets of meetings.
Assuming that the developers were correct in that the
discarded alternatives were inferior, this reduction of the
numbers of alternatives was arguably an improvement
compared to the first sets of meetings. The managers in the
third phase had “only” to choose between these two
alternatives, and as we described, the users did not favor
any of these, which made it possible for the managers to
base the decision on a smaller set of concerns.

In the rest of this section, the features of the process
that enabled these improvements are discussed. We
highlight what we believe to be good practices in general
during software integration as well as challenges for the
future. These conclusions are partly based on a
questionnaire responded to by (some of) the participants of
the projects.

Early meetings. In a newly merged organization, the
“people aspect” of software integration needs to be
addressed, and meeting in person to discuss integration in
general, and even particular alternatives, is the most
important means to build the trust and confidence needed.
This should not be seen as a replacement for a more
structured project, however.

Several-phase process. By dividing the stakeholders
into different activities with specific tasks, the discussions
become more focused and efficient. At the same time, more
interaction that only forwarding deliverables is needed; in
the project, briefings were held almost every day involving
people concerned, to monitor progress and adjust focus if
needed. The scheme used does not differ from already
documented good practices in other software activities,
such as development and maintenance.

Figure 3. The two main integration alternatives.

Phase 3: Decision. All written documentation

(architectural descriptions, project plans for their
implementation, and other analyses) was forwarded to the
third phase. The managers concerned had a meeting for
about a week when they discussed costs, risks, business
implications, organizational impact, etc. of the two
alternatives. It was decided that the systems should be
integrated according to the “data level” alternative, since
this solution was considered to be associated with a lower
risk than the “code level” alternative; risk meaning the
probability of overrunning budget and/or schedule,
producing a product of poor quality, or fail altogether with
the integration. The risk parameters are not only those
related to technical problems (such as those involved with
writing new code), but also the risk of successful
collaboration (in terms of “commitment required” from
departments of two previously separate organizations, not
yet so close collaborators).

User involvement. Performing a user evaluation of
existing systems prior to integration is crucial. If the
outcome does not affect the choice of architecture, this is
good news for the decision process – the choice can be
made based on other concerns. Moreover, any issues found
during the user evaluation are important inputs to
subsequent phases, during actual implementation. Since the
user evaluation did not affect the choice in the case study
however, it did not really fulfill the developers’
expectations. We therefore suggest that in an integration
process the expectations should be clearly articulated. If the
goal of the user involvement at this early stage is to assess
whether they have any preferences that affects the choice

of architecture, the type of evaluation performed in the case
study seems reasonable – enough users must be given time
to understand the systems in enough depth to achieve a
certain amount of confidence in the analysis results.
However, if the goal is to take the opportunity of
improving the existing systems significantly when
integrating them, the situation reminds of development of
new software, and established requirements engineering,
more heavily involving users and other stakeholders,
should then be applied [4]. The existing systems can be
thought of as a requirement specification or prototype in
evolutionary or spiral development [1]. A cheap, initial
investigation involving users may indicate that a more
thorough evaluation is needed.

Separating Stakeholders. This should be no surprise
– it does not make sense to bring all stakeholders together
for all meetings during the process. We have showed a
three-phase process where the separation of stakeholders
made the meetings more efficient and focused. The
discussions were kept at a level detailed and technical
enough to enable fruitful discussions since the participants
had similar background and roles. By assigning different
tasks to the different phases, the responsibilities became
clearer. The developers could first concentrate on
evaluating the existing systems, and only later bother about
their integration. The managers were reduced to “only”
making a decision, basically by choosing between two
alternatives with certain properties.

Active upper management. Upper management
insisted that the systems should be integrated: implicitly,
since they once again started a project with the same goal,
and more explicitly by deciding on a date when there had
to be a decision. There was an integration coordinator,
responsible for all integration activities resulting from the
company merger, who actively showed interest in the
project.

Architecture-centric process. During many software
activities, the process can benefit from being oriented
around the architecture of the system being built [8]. How
the architecture was used in this particular case study has
been described in more detail elsewhere [5,6].

Different people. Although there were developers and
managers participating in each project execution the people
participating in each meeting or in the final project were
not identical. Perhaps the mix of people in the successful
project was a successful blend of open minds, while in the
previous meetings this was not the case? According to the
questionnaire data, this might be the case.

It will take time. Eight months passed from the initial
meetings to the decision. This means that the project
members and the managers had got to know each other
better on a personal level, and overcome cultural
differences between the two countries and formerly
separate organizations [2]. When a decision is dependent
on people collaborating for the first time, especially when

they have different cultural backgrounds (as is the case
after mergers, especially international ones), it must be
expected that the process will take more time than a project
executed completely within either of the departments – and
possibly also a higher amount of disagreement and
frustration. With this in mind, it is likely that the actual
integration also will take time, and that an integration
project in the context of a company merger will face more
obstacles in terms of cultural differences and priority
clashes than a project within either of two collaborating
departments would do.

4. Summary
After a company merger, an organization typically

wants to integrate its software tools. In this paper, we
investigated a case study illustrating how this can be done,
and pointed out some key features of such a process that
can be summarized as early meetings, several-phase
process, user involvement, separating stakeholders, active
upper management, architecture-centric process, different
people, and not least: it will take time.

5. References
 [1] Boehm B., Spiral Development: Experience,

Principles and Refinements, report Special Report
CMU/SEI-2000-SR-008, Carnegie Mellon Software
Engineering Institute, 2000.

 [2] Carmel E., Global Software Teams - Collaborating
Across Borders and Time Zones, ISBN 0-13-
924218-X, Prentice-Hall, 1999.

 [3] Clements P., Bachmann F., Bass L., Garlan D., Ivers
J., Little R., Nord R., and Stafford J., Documenting
Software Architectures: Views and Beyond, SEI
Series in Software Engineering, ISBN 0201703726,
Addison-Wesley, 2002.

 [4] Kotonya G. and Sommerville I., Requirements
Engineering: Processes and Techniques, ISBN
0471972088, John Wiley & Sons, 1998.

 [5] Land R., “Applying the IEEE 1471-2000
Recommended Practice to a Software Integration
Project”, In Proceedings of International
Conference on Software Engineering Research and
Practice (SERP'03), CSREA Press, 2003.

 [6] Land R. and Crnkovic I., “Software Systems
Integration and Architectural Analysis – A Case
Study”, In Proceedings of International Conference
on Software Maintenance (ICSM), IEEE, 2003.

 [7] Linthicum D. S., Enterprise Application Integration,
Addison-Wesley Information Technology Series,
ISBN 0201615835, Addison-Wesley, 1999.

 [8] Paulish D., Architecture-Centric Software Project
Management: A Practical Guide, SEI Series in
Software Engineering, ISBN 0-201-73409-5,
Addison-Wesley, 2002.

	Introduction
	Case Study
	Analysis
	Summary
	References

