Acta Informatica (2017) 54:343-378 @ CrossMark
DOI 10.1007/500236-015-0254-x

ORIGINAL ARTICLE

Compositional schedulability analysis of real-time
actor-based systems

Mohammad Mahdi JaghooriL2 - Frank de Boer?3 .
Delphine Longuet* - Tom Chothia® -
Marjan Sirjani®’

Received: 15 June 2015 / Accepted: 27 December 2015 / Published online: 25 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present an extension of the actor model with real-time, including deadlines
associated with messages, and explicit application-level scheduling policies, e.g.,“earliest
deadline first” which can be associated with individual actors. Schedulability analysis in this
setting amounts to checking whether, given a scheduling policy for each actor, every task is
processed within its designated deadline. To check schedulability, we introduce a compo-
sitional automata-theoretic approach, based on maximal use of model checking combined
with testing. Behavioral interfaces define what an actor expects from the environment, and the
deadlines for messages given these assumptions. We use model checking to verify that actors
match their behavioral interfaces. We extend timed automata refinement with the notion of
deadlines and use it to define compatibility of actor environments with the behavioral inter-
faces. Model checking of compatibility is computationally hard, so we propose a special
testing process. We show that the analyses are decidable and automate the process using the
UPPAAL model checker.

This work was partly funded by the European IST-33826 STREP project CREDO and FP7-231620 project
HATS. The work of the third author was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Program.

Bl Mohammad Mahdi Jaghoori
jaghouri @cwi.nl

Frank de Boer
E.S.de.Boer@cwi.nl

1 AMC, Amsterdam, The Netherlands

2 CWI, Amsterdam, The Netherlands

Leiden University, Leiden, The Netherlands

4 University Paris-Sud, LRI UMR8623, 91405 Orsay, Paris, France

School of Computer Science, University of Birmingham, Birmingham, UK
Reykjavik University, Reykjavik, Iceland

University of Tehran and IPM, Tehran, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-015-0254-x&domain=pdf

344 M. M. Jaghoori et al.

1 Introduction

Actors were originally introduced by Hewitt as autonomous reasoning objects [33]. Actor
languages have since then evolved as a powerful tool for modeling distributed and concur-
rent systems [3,4]. Different extensions of Actors are proposed in several domains and are
claimed to be the most suitable model of computation for many dominating applications [34].
Examples of these domains include designing embedded systems [50,51], wireless sensor
networks [19], multi-core programming [43] and designing web services [16,17].

In an Actor-based model, actors are (re)active objects with encapsulated data and methods
which represent their state and behavior, respectively. Actors are the units of concurrency,
i.e., an actor conceptually has a dedicated processor. In the pure asynchronous setting [3,33],
actors can only send asynchronous messages and have queues for receiving messages. An
actor progresses by taking a message out of its queue and processing it by executing its
corresponding method. A method is a piece of sequential code that may send messages. We
model dynamic reconfiguration by deciding the message recipients based on actor states, but
we do not consider dynamic creation of actors. We may use the terms actors and objects
interchangeably.

This model of concurrent computation forms the basis of the programming languages
Erlang [9] and Scala [30] that have recently gained in popularity, in part due to their support
for scalable concurrency. However, for optimal use of both hardware and software resources,
we cannot avoid leveraging scheduling and performance related issues from the underlying
operating system to the application level as argued for example in [8,11]. In general, the goal
of resource-aware programming (RAP [54], SUMATRA [2], CAMELOT [52]) is to express
policies for the management of resources.

In this paper, we focus on CPU time and introduce a new extension of the actor model
with real-time and present a methodology for compositional schedulability analysis. The key
to compositionality is the actors’ behavioral interfaces where the communication protocol
of each actor is defined in terms of how it is expected to send and receive messages. In
the first step for compositional analysis, as previously introduced in [38], every actor is
individually analyzed for schedulability by taking its behavioral interface as an abstraction
of the environment. However, at the next step of composing the actors, we need to make sure
thateach actor’s environment is indeed compatible with the protocol specified in its behavioral
interface. As discussed in Sect. 4, it does not suffice to check compatibility only at the level
of behavioral interfaces and we did not address this problem in our previous work [38] due
to its complexity. This paper, as the extended version of our initial report in [40], proves
that the notion of refinement including quiescence and deadlines is a sufficient condition
for compositionality, even in presence of dynamic reconfiguration. Nevertheless since this
approach still requires reasoning on the global system, we propose a testing method. By
using UPPAAL model checker for testing, we aims at finding counter-examples to refinement,
which may in turn be used as test cases for global schedulability. In the rest of this section,
we present an intuitive introduction to our methodology for modeling and the schedulability
analysis framework and finally, at the end of this section, the extension points with respect
to our initial report in [40] are identified.

Figure 1 presents the two levels of abstraction we propose for modeling real-time actors.
At the detailed level, an actor consists of its methods, scheduler and queue. This specifica-
tion is given in timed automata [7] in order to support automated analysis techniques. In this
model, deadlines are assigned to messages and explicit application-level scheduling policies
are associated to the individual actors (rather than, for instance, assuming “First Come First

@ Springer

Compositional schedulability analysis of real-time actor... 345

pmmmmssmsmsmse—————— - - On -

{ B — Composition of BIMs Behavioral Interface . . . (Behavioral Interface } !
: P Model (BIM:) Model (BIMn) }
‘Q. ----- - J s ,"
S = System Composition Actor: Actorn

Method |...[Method Method |...[Method '
Automaton Automaton Automaton Automaton H

I Scheduler l e I Scheduler l

I Message Queue l I Message Queue l

h¢ [. S mmmmsmsmssssmssssssssssssss—=——— -

."'--__.Individual Actor Analysisﬁ,.-":

Fig. 1 An off-the-shelf actor component is guaranteed to be schedulable if it is used as expected in its
behavioral interface. This correct usage in a system S can be tested, called the compatibility check

Served” (FCFS) by default). A scheduling policy determines the order in which the (methods
corresponding to) queued messages should be executed. We restrict to schedulers in which
a new message cannot preempt the currently running method; as we discussed in [37,38],
preemptive scheduling is undecidable in this framework unless a minimum delay is enforced
between every two rounds of preemption. Method automata mainly specify what messages
are sent and when. Received messages are handled by the schedulers and can be seen as
events generating tasks (as a comparison to Task Automata [25]). A deadline is assigned to
each message specifying the time before which the intended job should be accomplished.
Although we ignore communication delays, they can be added as we considered in [39].
This framework allows quality-of-service and deployment requirements to be analyzed and
resolved at design time. For example in a real-time setting, we must guarantee a maximum on
average response-time (end-to-end deadlines) or a minimum on the level of system through-
put. For our analysis, we have chosen to use UPPAAL [49]; this choice is however not essential
and in principle other tools for timed automata can also be employed. This framework com-
plements the work in [57], in which we describe how application-level scheduling policies
can be implemented into a programming language on top of Java. To exemplify our approach,
we model in Sect. 3.2 a peer-to-peer system with an architecture similar to that of Skype: a
centralized broker is responsible for connecting the clients (aka peers). The goal is to ensure
that the system will function quickly without delays. The analysis is difficult because this
is a large distributed system; furthermore, the network of the connected peers may change
dynamically.

As seen in Fig. 1, a behavioral interface provides an abstract and high-level view of the
actor by abstracting from the queue and method implementations. In fact, it shows the pattern
of possible interactions it may have with its environment. This captures the valid sequences
of provided and required services (received and sent messages). We model a behavioral
interface as a deterministic timed automaton to further capture the timings and deadlines
of the messages. For instance, the behavioral interface of a server that handles at most one
request at a time can be defined as a loop of receiving a ‘request’ followed by a ‘reply’, i.e.,
no second request is allowed before providing a reply.

To perform schedulability analysis of an actor-based system in a compositional manner,
first schedulablity of every actor has to be analyzed individually with respect to its behavioral
interface. This was elaborated in our previous work [38], which is based on the ideas of Task

@ Springer

346 M. M. Jaghoori et al.

Automata [25]. As an actor is expected to be used as specified by its behavioral interface,
we restrict the actor behavior accordingly when checking its schedulability in isolation. Our
method allows us to statically find an upper bound on the length of schedulable queues;
hence, the behavioral model of the actor has a finite number of states and the analysis is
decidable. This way, one can analyze the actor with regard to different scheduling strategies,
and find the best strategy.

Once an actor is proved schedulable, in order to use it as an off-the-shelf component we
need to check additionally that its actual usage in a given distributed system follows the
expected usage (as specified by the behavioral interface), called the compatibility check. In
other words, checking compatibility for each actor A; involves ensuring that the rest of the
system respects the requirements specified in its behavioral interface B;. Unfortunately, as
we explain in Sect. 4, this cannot be checked simply at the level of behavioral interfaces,
because they include only an approximation of when messages are sent.

In theory, compatibility can be checked by to constructing the complete system behavior
S of all actors together and showing that § is a refinement of the product of the automata
for behavioral interfaces (call it B), i.e., the set of timed traces of S is a subset of that of B.
Assuming that B is deterministic, one can prove that S is refinement of B by model-checking
the synchronous product of S and B (restricted by the computed queue bounds). Due to
the message queues (one for each actor) in S, this would lead however to an unmanageable
state-space explosion. In [36], we have investigated a compositional approach purely based
on model checking for schedulability and compatibility analysis, but to preserve soundness,
it becomes pessimistic. Instead of verifying the refinement relation, we introduce a novel
method for counter-example oriented testing, which is more realistic. In this method we
generate a test case from B as follows. We take a trace from B and complete it into a test
case for S by adding transitions that capture all possible one-step deviations from the original
trace. Among these transitions, those not allowed in B produce a counter-example, i.e., a
trace of S which does not belong to B. This technique is much more effective than generating
test cases from S to be checked against B, because it allows for automated generation of test
cases from B (note that B does not involve queues) and a reduction of the overall system
behavior S by the test case.

Our proposed testing technique gives rise to some issues which are not common in standard
frameworks. First, the system under test is a model and not a real implementation. We do not
take advantage of our knowledge of the model, so it can be seen as black-box testing, but
the execution of test cases will be simplified as we can apply tools that can systematically
explore a model. Another difference from usual frameworks is that the system involves
internal actions that are not specified in the behavioral interfaces. The consequence is that
the test, built from the abstract specification only, will not be able to fully control the system
under test during its execution. This leads to a lot of non-determinism but this can be solved
by using a model checker to execute a test case. Last but not least, our main goal is to find
a counter-example in the case of wrong refinement. Then test cases must be as “rigid” as
possible to take any incorrect behavior into account.

The following items summarize the key points of the compositional schedulability analysis
framework, and in which paper they were first introduced.

— Modeling real-time actors

— Behavioral interfaces
e Defined in [38] as drivers, i.e., only including inputs to the actor
e Synthetic behavior of the actor (abstract from queue and methods) including
both inputs and outputs [40]

@ Springer

Compositional schedulability analysis of real-time actor... 347

e Deadlines as schedulability requirements [38]
— Actors with explicit scheduling policies [38]
— Formal semantics of a closed system of actors [this paper]

— Schedulability analysis of individual actors

— Behavioral interface as a contract between actor and its environment [38,40]

— Decidability because of queue size limit [38]

— Modeling and analysis in UPPAAL (introduced in [40], a complete presentation in
this paper)

— Schedulability of the composition of individually schedulable actors

— Compatibility defined in terms of refinement extended with deadlines and quiescence
(introduced in [40], formally defined in this paper)
— Counter-example oriented testing [40]
e Soundness [proof in this paper]
e Exhaustiveness [proof in this paper]
e Rigidness [introduced and proved in this paper]

— A peer-to-peer case study with dynamically reconfigurable network [this paper]

Paper structure Section 2 provides the grounds for the approach by explaining timed
automata. In Sect. 3, we explain how we model real-time actors and exemplify this by means
of a peer-to-peer case study. A review of our compositional schedulability analysis technique
is given in Sect. 4. Section 5 describes our approach to testing refinement for timed automata,
which is then applied to test compatibility in the context of schedulability analysis. Related
works are presented in Sect. 6. Section 7 concludes the paper.

2 Preliminaries: timed automata

We base our techniques on timed automata [7] and thus can take advantage of the abundant
tools available. As we choose UPPAAL [49], we tailor the definitions accordingly.

Syntax Let Act be a finite set of actions. Let C be a finite set of real-valued clocks. We
define B(C), the set of clock constraints, as the set of boolean formulas built over elementary
constraints x ~ n and x —y ~ n where x,y € C,n € N,and ~ € {<, <,=,>, >},
with boolean operators V, A and —. A timed automaton A over Act and C is a tuple
(L,lp, E, I) where L is a finite set of locations, with [y € L being the initial location.
E C L x B(C) x Act x 2€ x L is a finite set of edges. We write [B4 1 for an edge
from location / to location I’ guarded by a clock constraint g € B(C), labeled with the action
a € Act and resetting the subset r of C. Finally, I : L — B(C) assigns an invariant to each
location. Location invariants are restricted to conjunctions of constraints of the form x < n
orx <nforx e Candn € N.

Semantics A timed automaton defines an infinite labeled transition system whose states
are pairs (/,u) where [l € L andu : C — Ry is a clock assignment. We denote by 0
the assignment mapping every clock in C to 0. The initial state is so = (I, 0). There are

two types of transitions: action transitions (I, u) 5 (', u") where a € Act, if there exists

1 %% 1/ such that u satisfies the guard g, u’ is obtained by resetting to zero all clocks in r

@ Springer

348 M. M. Jaghoori et al.

and leaving the others unchanged and u’ satisfies the invariant of location I’; delay transitions

d
(I,u) — (I,u") where d € Ry, if u’ is obtained by delaying every clock for d time units and
foreach 0 < d’ < d, u’ satisfies the invariant of location /.
. w
For a sequence of labels w = wjw; ... w,, we write so — s, to denote the sequence of

.. wi Wy
transitions s — §| — ... —> Sp.

Deterministic timed automata We call a timed automaton deterministic if and only if given
,a,r "a,r' e .
any two edges [B4 1V and 1 255 17, the guards g and g’ are disjoint (i.e. g A g’ is

unsatisfiable). Furthermore, there is at most one transition with an invisible action / &8y
from any location /, in which case, g is disjoint from guards of other transitions from /. Note
that deterministic timed automata may still produce nondeterministic behavior in the sense

that at a given state, multiple transitions may be enabled, but only if they have different actions.

Variables As accepted in UPPAAL, we allow variables of type boolean and bounded integers
for each automaton. Variables can appear in guards and updates. The semantics of timed
automata changes such that each state will include the current values of the variables as
well, i.e. (I, u, v) with v a variable assignment. An action transition (I, u, v) S W)
additionally requires v and v’ to be considered in the corresponding guard and update.

Timed automata with inputs and outputs In the following, we assume the set of actions Act
is partitioned into two disjoints sets: a set Act; of input actions a? and a set Actp of output
actions a!. A non-observable internal action t is also assumed. A timed automaton with
inputs and outputs is a timed automaton over Act, = Act U {t}.

Network of timed automata A system may be described as a collection of timed automata
with inputs and outputs A; (1 < i < n) communicating with each other. The behavior of
the system, referred to as the product or network of these automata, is then defined as the
parallel composition of A || --- || A,. Semantically, the system can delay if all automata
can delay and can perform an action if one of the automata can perform an internal action or
if two automata can synchronize on complementary actions (inputs and outputs are comple-
mentary). Notice that a network of deterministic timed automata is not in general necessarily
deterministic. In a network of timed automata, variables can be defined locally for one
automaton, globally (shared between all automata), or as parameters to the automata.

Using terminology of UPPAAL, alocation can be marked urgent in an automaton to indicate
that the automaton cannot spend any time in that location. This is equivalent to resetting a
fresh clock x in all of its incoming edges and adding an invariant x < 0 to the location. In a
network of timed automata, the enabled transitions from an urgent location may be interleaved
with the enabled transitions from other automata (while time is frozen). Like urgent locations,
committed locations freeze time; furthermore, if any process is in a committed location, the
next step must involve an edge from one of the committed locations.

Timed traces A timed sequence o € (Act; UR,)* is a sequence of timed actions in the form
of o = tjaihas . ..apty41 such that foralli, 1 <i <mn,t; < ;4. Given a timed sequence
o, ps(0) denotes the timed sequence obtained after deleting #; T occurrences. The sequence
obs(0) s called the observable timed sequence associated to o.

A run of a timed automaton A from initial state (lp, 0) over a timed sequence o =
taithas . .. apty,+1 is a sequence of transitions:

@ Springer

Compositional schedulability analysis of real-time actor... 349

n+l1

n d,
U0 0) S (o ul) S (oun) B - 5 () ™S5 (U ul)

where di = t; and foralli, 1 <i <n+1,t = t;_1 + d;. The set Traces(A) of timed
traces of A is the set of timed sequences o for which there exists a run of A over o. The set
Traces,ps(A) of observable timed traces of A is the set {7 ps(0) | 0 € Traces(A)}.

3 Actors as real-time asynchronous concurrent objects

We describe in this section how to use automata theory, along the lines of our previous work
[38,40], to describe actors. Actors in our framework specify local scheduling strategies, e.g.,
based on fixed priorities, earliest deadline first, or a combination of such policies. Real-
time actors may need certain customized scheduling strategies in order to meet their QoS
requirements. Our approach can be easily adapted to any actor-based modeling platform, e.g.,
Rebeca [1,63], Creol [42], which in turn may provide abstractions on programs in actor-based
languages like Scala or Erlang.

3.1 A formal model of actors

An actor must be modeled at two levels of abstraction (cf. Fig. 1). First a synthetic abstract
behavior of the actor is given in one automaton called its behavioral interface. Second, a more
detailed specification of the actor behavior is given in terms of its methods, each modeled as an
automaton, plus a scheduling strategy. The behavioral interface presents the actor behavior
in one place, contrasted to the detailed behavior specification which is scattered over the
methods. At the end of this section, we will describe how composition of multiple actor
instances comprises a closed system.

Behavioral interface model A behavioral interface specifies at a high level, and in the most
general terms, how an actor behaves. It consists of the messages an actor may receive and
send. A behavioral interface abstracts from specific method implementations, the message
queue in the actor and the scheduling strategy. As explained later in this section, behavioral
interfaces are key to compositional analysis of actors.

To formally define a behavioral interface, we assume a finite set M for method names.
Since every message is handled by one corresponding method, we use the terms ‘method
name’ and ‘message name’ interchangeably. We assume without loss of generality that for
any given method m, there are unique actors a and b such that only a can send m and only b can
receive m, i.e., messages communicated between actors are one-to-one and unidirectional.
This assumption may seem restrictive as it disallows a method to be called by different
actors. To overcome this, one may duplicate the method for each caller and give it a different
name; alternatively, in our implementation in the next sub-section, we consider the sender
and receiver of each message as part of the message name.

Definition 1 (Behavioral interface) A behavioral interface B providing a set of method
names Mp C M is a deterministic timed automaton over alphabet Act® such that AcrB is
partitioned into two finite sets of actions:
- outputs:ActB ={m!lme MAm¢ Mp}
— inputs: Act? = {m(d)?m € Mg A d € N}
The number d associated to input actions represents a deadline. Intuitively, this is arequire-
ment on the implementation of an actor saying that the actor should be able to finish method m

@ Springer

350 M. M. Jaghoori et al.

before d time units. We restrict to natural numbers for deadlines, because using real numbers
makes analysis of timed automata undecidable. Output actions are the methods called by this
actor and should be handled by (other actors in) the environment. We choose to disallow
transitions at the level of behavioral interfaces to guarantee determinism in their products
(see the lemma below), although in theory t transitions can be removed if clocks are not
reset [10].

The semantics of a behavioral interface is defined simply as the timed traces on its action
set. We define composition of behavioral interfaces as their synchronous product on com-
plementary actions, where an output action m! synchronizes with input actions m(d)? and
produces the action m(d) in the composed automaton.

Lemma 1 Given a set of actors, the product of their behavioral interfaces is deterministic.

Proof Based on the definition of determinism (see Sect. 2) and due to absence of 7 transitions,
nondeterminism in the product of behavioral interfaces may arise only if there are two edges
from the same location with the same action, say m(d). Since messages are assumed to
be one-to-one, m! and m(d)? can each appear in only one behavioral interface. Therefore,
nondeterminism in the product is only possible if there is a similar nondeterminism in the
individual behavioral interfaces, which is by definition not the case.

Behavioral interfaces conceptually serve two purposes: (1) represent the actor to the envi-
ronment, as explained above; (2) represent the environment to the actor. The latter function
can be enabled by syntactically swapping the ! and ? signs in a behavioral interface. Thus one
obtains an abstraction of the environments in which an actor may be used. In the following
sections, this abstraction will be used for modeling and analysis of actors in UPPAAL.

Actor definition An actor may implement a behavioral interface B by providing implemen-
tation for the methods in Mp. Additionally, it has an unbounded queue to store incoming
messages and a scheduling policy.

Definition 2 (State of Queue): One state of a queue defined over a set of messages M is a
finite list of triples m(d, ¢) where m € M, d € N is deadline of m and c is a clock.

A queue uses a clock ¢ to keep track of the waiting time for message m. This clock is
reset to zero when the message is added to the queue. This message misses its deadline when
¢ > d. In the sequel, we do not distinguish between a queue as a general data structure and
a particular state of the queue.

As part of the actor state, a queue shows the messages pending to be processed, while the
first message in the queue represents the currently running method. Messages are inserted into
the queue by a scheduler in the order they should be executed, based on a scheduling strategy,
e.g., FCFS (First Come First Served) or EDF (Earliest Deadline First). Typically the scheduler
could dynamically examine the remaining time before the deadline of each message in the
queue. However, to be able to statically write down the specification of a scheduler, we define
a scheduler function that returns the set of all possibilities for putting the new message in the
queue depending on different clock values. Examples of such functions are given in Fig. 2.

Definition 3 (Scheduler function) A scheduler function acting on a set Q of queues defined
over messages M is a function ‘sched(q, m(d))’ that giveng € Q and m € M with deadline
d, returns a set of triples {(G, ¢, ¢’)}, where

— G is a guard on clocks in ¢ (possibly based on d);

@ Springer

Compositional schedulability analysis of real-time actor... 351

A ‘first come first served’ scheduler always puts the new job at the back of the queue.
Given a queue g = [mi(di,c1),...,mg(dk,ck)] and a new task m(d), we write this as:

FCFS(q,m(d)) = {(true = [mi(d1,c1),...,mg(dk,cx), m(d, C)])}

where c is a fresh clock not assigned to any message in q.

An ‘earliest deadline first’ scheduler inserts messages into the queue based on the remain-
ing deadlines of the existing queue members. The scheduler cannot reorder the queue, so
here we assume as an invariant that the messages already in the queue are in the right
order.

EDF(q, m(d)) =

{(d <do—co = [m1(d1,c1), m(d, ¢), ma(da, c2), ..., mu(de, ci)]),
(do —ca <d<d3z—c3 = [m1(d1, c1), ma(dz, c2),m(d, c), ..., my(dg, ck)]),

(dr—1 —cxg—1 < d < dp — ¢ = [m1(d1,c1), ma(dz, c2),...,m(d,c), my(dg, cx)]),

(dy —cr <d = [ma(dy, 1), ma(da, c2), . m(di o), m(ds)]) |
where c is a fresh clock not assigned to any message in q.

Fig. 2 Scheduling functions acting on a queue: ¢ = [m1(dy, c1), ..., mi(dg, c)]. We write g = ¢ to mean
that once guard g is satisfied the scheduler should produce the queue ¢

— cis a fresh clock not used (i.e., not assigned to any messages) in ¢; and,
— g’ € Q is the queue after inserting m(d, ¢) in a particular position as implied by the
guard G.

An overloading of the scheduler function is defined as sched(q, m(d, c)) such that it
inserts a task into the queue using a given clock c. By reusing the deadline and the clock
already assigned to a task in the queue, we can model inheriting the deadline. A scheduler
function is preemptive if it can place the new task in the first position. As discussed in [38],
we only consider non-preemptive schedulers because preemption leads to undecidability. In
our implementation, we will use a timed automaton to act as both the queue and the scheduler
function (cf. Sect. 3.2).

Definition 4 (Actor) An actor R implementing the behavioral interface B is a tuple
< Mg, AR, Og, Sg > where:

— Mg ={my,...,m,} € M is a set of method names such that Mz C Mp;

— Agr = {Ay1, ..., Ay} such that A; is a timed automaton implementing method m; with
the alphabet Act; U {t} such that Act; = {m!|m € Mg} U {m(d)!|m e M Ad € N};

QR is the set of all queues defined over Mg and defines the set of all possible valuations
of the actor’s queue; and,

— Sg is a scheduling function acting on Qg.

There is always initialg € Mg that is responsible for initialization of the actor.

Method automata A; € Ar only send messages while computations are abstracted into
time delays. Sending a message m € Mpg is called a self call. A self call with no explicit
deadline inherits the (remaining) deadline of the method that triggers it (as described above
using the overloaded scheduler definition); this mechanism is called delegation. Other send
operations are to be given explicit deadlines. Finally note that unlike behavioral interfaces,
actor automata can be nondeterministic possibly due to the 7 transitions in the methods.

The semantics of an actor can be defined as a timed automaton, called actor automaton.
Every location of the actor automaton is written as a pair (/, ¢) where g represents the contents

@ Springer

352 M. M. Jaghoori et al.

of the queue and / refers to the current location of the currently executing method, i.e., the
first method in the queue. The actor takes one transition if the currently running method takes
a step. On the other hand, changes to the queue also cause a transition in the actor automaton.
This may be receiving a new message or removing a message from the queue after it has
been processed.

To concretely define semantics of an actor, one needs to characterize its environment.
As mentioned earlier, the behavioral interface can act as an abstract representation of the
environment. In [38], such semantics is defined and it forms the basis of individual actor
analysis in Sect. 4.1. Alternatively, we define below the semantics of actors in a closed
system.

Definition S5 (Schedulable actor) An actor is schedulable if it never reaches a state in which
the queue contains a triple m(d, ¢) such thatd < c.

In this paper, an actor is said to be schedulable if and only if it finishes all of the tasks
within their deadlines, assuming the specific scheduling policy that is given for the actor. In
principle, actors have infinite queues, but we have shown in [38] that in a schedulable system
they do not put more than [dy,4x /bmin] messages in their queues, where dy,,, is the longest
deadline for the messages and b,,;, is the shortest termination time of its method automata.

Lemma 2 (Queue length) An actor with an unbounded queue is schedulable if and only if
the actor is schedulable with a queue length of [dyax /bmin]-

Proof The “if” part is trivial, so we prove the “only if”” part. Assume an actor with unbounded
queue hasn = [dyqx /bmin] +1 messages in the queue. Processing them takes at least nx by,
time units and that is then longer than d,,x. In other words, the last message finishes after
more than d,,,,, time units since its creation and therefore misses its deadline.

One can calculate the best case runtime for timed automata as shown by Courcoubetis
and Yannakakis [22]. This is important because finite queues make it possible to use model
checking techniques for schedulability analysis (see Sect. 4).

System composition We define a system as a number of actors that run concurrently, each
maintaining a queue of the messages it has to process. The system must be closed, i.e., any
output actions by an actor must be either a self call or included in the the behavioral interface
of another actor in the system.

Definition 6 (Closed system) A set of actors Ry, ..., R, (as in Definition 4) with behavioral
interfaces Bj, ..., B, (as in Definition 1) comprise a closed system if for all R; we have
Act; C (MR,' U UISiSn MB,-)'

The semantics of a system is defined by a timed automaton, called the system automaton.
The system automaton for a given system with method names Mg = J,.;., Mg, and
a scheduler function sched is a timed automaton S = (Ls, s, Es, Is) over the alphabet
Acts = Mg and the clocks Cg:

— The set of clocks Cy is the union of all sets of clocks for the method automata plus the
queue clocks of each actor.
— The locations of the system are the product of each of the locations of actors together

with a queue, i.e., { (l1,q1), (12, g2), - -» (ln, qn) }-
— The initial location /g is:

{ Grart(Ay), [mi(dy, cDD, ..., (start(Ay), [mn(dn, cn)]) }

@ Springer

Compositional schedulability analysis of real-time actor... 353

Ly q), ... i i
()} o ().} [invocation]
if (1292 1) & (Gei,q) € sched(q,m(d)) & m € M,
g3
(@ Imid,e),. D),) —2g {0, -} [delegation]
gNG ; X

if (1 LX> 1) & (G,c,q') € sched([m1(d,c),...],m(d,c)) & m € M,
g

m(d)
gNG ; X,c; =0

{(l17QI)7 (l27QQ) e }

m(d)!
if (14 g(—;> 1) & me My, & (G,ci,q}) € sched(qz, m(d))

s {4, q1),(2,d5),. ..} [remote invocation]

{(LQ)M"} g;—X>S {(llvq)""} if (l g—X> ll) [z’nternal}
{(l,[mi(d,), ma(d,c)...]),... } H)S{(l',[mg(d,c)...})...} [context switch]

if 1is final & C) =local clocks(ma) & U = start(ma)

Fig. 3 Reductions for a system

where m; is initialg;, A; is the automata corresponding to m; and start(A;) is its initial
location, d; is its deadline and ¢; is a clock.
— The edges Eg are defined with the rules in Fig. 3 (M is the set of methods provided by

the actor that is in location /). We write BN ¢ for an edge of S with action m, guard g
gsr
and update r.

— The invariant of a location is defined as the conjunction of the location invariants of all
currently executing actor locations.

In Fig. 3, function start(m) returns the initial location of the automaton for method m.
Locations in method automata with no outgoing transitions are called final. The first three
rules in this figure take care of enqueuing sent messages. The first two are for self calls and
therefore the queue of the same object is used. In case of delegation, the clock of the current
task is reused and thus the deadline is inherited. Whenever the execution of the current task
finishes, the context switch rule makes sure the next method in the queue is executed, if there
is any. If in a location {(/, ¢), ...}, [is final and ¢ has more than one element, the location
is marked urgent. This forces context switch to happen as soon as it is possible.

Definition 7 (Schedulable system) A closed system is schedulable if non of its constituent
actors reaches a state in which the queue contains a triple m(d, c¢) such thatd < c.

Lemma 2 still applies in the context of a closed system. Therefore, we can put a maximum
on the queue length and ensure the rules in Fig. 3 are used only if the queue bound is not
exceeded. Going beyond the maximum queue length for any actor or missing a deadline by
a message in a queue must also lead to an error state. The extra rules in Fig. 4 depict cases
of nonschedulability by moving to an explicit error state.

In the following, we explain how to use UPPAAL to implement actors and behavioral
interfaces using an example.

@ Springer

354 M. M. Jaghoori et al.

{(l,q),...} — Error if a queue length is longer than mazimum [overflow]
l,[mi1(di,c1),...,mg(dk,cx)]), .- Error
{0 (@),)]}
if 11is not final [missed deadline]

Fig. 4 Missing a deadline leads to an error

3.2 Modeling in UPPAAL: a peer-to-peer case study

Peer-to-peer systems are a commonly used way of sharing data as well as chat-based com-
munication. Contrasted to a client-server architecture, these systems are called peer-to-peer
because all nodes can act both as a server and a client; simply said, they are all peers. We
model and analyze a hybrid peer-to-peer architecture (like in Skype or BitTorrent), where a
central server (called the broker or tracker) keeps track of all active nodes in the system.!

To start communication, a node acts as a client and asks the broker to connect it to another
node. In case of Skype, the client provides the Skype ID to the broker. In a file-sharing system,
a keyword is provided in order to search for some data, for example, the name of a song.
The broker connects the client to a proper server, e.g., with the given Skype ID, or having
the song with the given name. The two nodes then communicate directly by sending requests
and replies.

Each node, upon creation, registers its ID/data with the broker. In the case of a file-sharing
system, the nodes may obtain new data after every round of communication with other nodes.
In this case, they need to update their information registered at the broker.

In UPPAAL, we model for each actor three parts: the behavioral interface, the methods
and the scheduler (which in turn includes a queue). These automata are parameterized on the
identity of the actor itself (written as self), and the identifiers of the actors communicating
with it (called its known actors). In this case, the known actor of a peer is a broker, and
a broker has some peers as its known actors. To have more than one instance of an actor,
we instantiate the scheduler and method automata and provide different identity values (i.e.,
self) to different actor instances.

Communication In UPPAAL, communication between automata is done via channels. We
use the channels invoke and delegate for sending messages. The channel invoke
has three dimensions (parameters), the message name, the sender and the receiver, e.g.,
invoke[connect] [Peer] [self]!. This way, actors instantiated from the same automata
will have disjoint method names by assigning different identities to their self parameter. By
setting both sender and receiver as self (in method automata), one can invoke a self call (when
a deadline is to be given, as explained next). The delegate channel is used for delegation.
The self call made using the delegate channel inherits the deadline of the currently running
method (it is taken care of by the scheduler automaton). Since a delegation is used only for
self calls, no sender is specified (it has only two parameters).

Deadlines and parameters We take advantage of the fact that when two edges synchronize,
UPPAAL performs the updates on the emitter before the receiver. Hence we can use global
variables for passing information. In this case study, we use variables deadline and srv to

! These UPPAAL models are available at http://www.cwi.nl/~jaghouri/P2P/.

@ Springer

http://www.cwi.nl/~jaghouri/P2P/

Compositional schedulability analysis of real-time actor... 355

pass deadlines and the parameter to sReq message (cf. Sect. 3.2.2), respectively. The emitter
sets the desired value into the corresponding variable which is read by the receiver. The
receiver, however, cannot use this value in its guard, as guards are evaluated before updates.
We define these variables as meta, i.e., they are not kept in the state, which implies that their
values must be stored properly by the receiver.

3.2.1 Behavioral interfaces

The first thing to model for an actor is its behavioral interface. Following the explanation
in the previous subsection, we model a behavioral interface to represent the environment to
the actor. To enable synchronization between outputs of method automata and output actions
of the behavioral interface (and similarly between inputs of the scheduler and inputs of the
behavioral interface), we use the ! sign for inputs and ? for outputs of the behavioral interface.

Both the broker and peers have relatively independent behavior on their server side and
client side. Therefore, we model these two sides using independent automata in Fig. 5, which
need to be interleaved in order to produce the complete behavior of the actor. Since the
messages sent by different peers to the broker are also independent, the client and server side
automata of the broker are defined per peer. Figure 5 shows the messages that a broker object
may use to communicate with one peer.

On the server side, the broker specifies only that a peer must register its local information
once. However, on the client side, the broker expects to receive requests (CReq messages)
from a peer repeatedly. For each request, the broker connects it to a server, i.e., the ID of the
server is sent as a parameter of the connect message to the client; outgoing parameters are
not captured in the behavioral interface. For simplicity, we assume that a request by a client
is always successful, i.e., every data item searched for is available. The connections between
peers is transparent to the broker. Assuming that the client peer has obtained new data after
this connection, it should update its registry at the broker (because it can now provide more
data on its server side). The clock x is used to ensure a delay of at least 5 time units between
sending the update message and the subsequent request.

Similarly, the server side behavioral interface of a peer starts by registering its data with
the broker to initialize its operation. Then it can receive requests (SReq messages) and send
replies to other peers. We opt for a simple scenario, i.e., each server or client handles only one
request at a time. The peer may accept an SReq message from any peer (s:int[1,0BJ-1])

x>5
invoke[register][self][Peer]!
Broker (@ e O
deadline =MD, x=0
Client Side Server Side
invoke CReq][broker][self]2 s:int[1,0BJ-1] ister][broker][self]?

invoke[connect][self][broker]! .

server := s, deadline = MD invoke[repl
Peer: i s:int[1,0BJ-1] O

s:int[1,0BJ-1] s I= self
invokel[reply][self][srv]! invoke[SReq][s][self]? invoke[SReq][self][s]!

Client Side Server Side

deadline = MD rv:=s deadline =MD, srv:=s

Fig. 5 Behavioral interfaces for broker and peer as interleaving of client-side and server-side automata

@ Springer

356 M. M. Jaghoori et al.

excluding itself (s != self). It may only send a reply message to the same peer; this is
ensured by means of the srv variable.

The behavioral interface of the peer is similar to broker on the client side, too, except
that it additionally models the communication with a server after a connection has been
established. The client can send any number of requests per connection, although only one at
a time. Furthermore, the incoming parameter of the connect message is also captured with
a select expression s:int[1,0BJ-1] in UPPAAL, which means that it may receive the ID
of any peer. The global variable server is used for communicating this parameter (like the
deadline variable).

3.2.2 Broker and peer actors

Figure 6 shows the method automata of the broker and peer. In this implementation, each
method is modeled as a separate automaton. A method may start its behavior when it receives
a signal on the start channel from the scheduler. After accomplishing its tasks, it sends a
signal on the £inish channel to the scheduler, who will select the next method for execution
(see next subsection).

The initial, register and update methods take one time unit to execute. These methods
do not perform any computation as we abstract from the data. The cReq method nondeter-
ministically selects a server and sends a connect message back to the sender. The variable
sender is set by the scheduler to refer to the sender of a message. The ID of the selected
server is sent using the server variable.

In addition to initial, a peer implements the connect and reply methods as a client,
and the sreq method as a server. Furthermore, the method userrReq simulates a user who
initiates a search request by sending a CReq message to the broker. The userReq message is
sent first by the initial method and then by the reply method in order to create a loop.
Notice that this implementation of a peer sends exactly one request per connection, while
the behavioral interface allows for any number of requests.

3.2.3 Modeling the scheduler

A scheduler function, as described in the previous section, can be implemented as a scheduler
automaton. This automaton also contains a queue. Figure 7 shows the general structure of a
scheduler automaton. This general picture does not specify any specific scheduling strategy.
The scheduler automata applies the scheduling strategy at dispatch time (instead of insertion
time like in Definition 3), but since we only deal with non-preemptive schedulers, the resulting
behavior, i.e., the order of processing messages, is the same. The reason is to enable using
deadlines in the strategy. As explained earlier, the deadline value cannot be used (in the guard)
on the same transition where a message is received.

Queue The queue is modeled using arrays in UPPAAL and thus it can be modeled compactly,
i.e., without different locations for different queue states. Tasks in the queue are modeled
using the following arrays: g holds the message names, d holds their initial deadline values
and c1k consists of clocks that keep track of the time a task has been in the queue. The sender
of every message is stored in the s array. If messages can have parameters, p arrays will be
added for each parameter. We assume a maximum length of Max for these arrays. As described
in Sect. 4, we can find such a maximum for queues of schedulable objects. The array ca shows
the clock assigned to each message (task), such that ‘d[cal[i]] - clkl[ca[i]] represents
the remaining deadline of g[i] at any time. counter[i] holds the number of tasks using

@ Springer

Compositional schedulability analysis of real-time actor... 357

Broker

start[initial][self]?

Broker initialization only takes one time
unit. This method is always called implic-
itly upon creation.

. !
Initial finish[seff]!

Called once by each server (cf. Server Side
of the behavioral interface) to add its in-
formation to the broker registry.

Register

When a peer obtains new information (on
its client side), the broker registry is up-
dated by this method.

Update

This method handles a client’s request by
connecting the sender to a server. Having
abstracted from data, the server is chosen
nondeterministically.

finish[self]!
CRequest nishise

int[1,0BJ-1
) !

rver =
invoke[connect][sender][self]! O

Peer

Upon initialization, a peer registers its in-
formation at the broker (cf. Server Side of
the behavioral interface). Further, it sim-
ulates a request made by an external user
of the peer.

Initial

A user request is transformed into a client-

UserRequest side request from the peer to the broker.

As response to a CRequest, the peer re-
ceives from the broker the ID of a peer
which will act as the server for the original
request. This method, as a client, sends a
SRequest to the server peer.

Connect

On its server side, a peer may get SRe-
quests for some information. Having ab-
stracted from data, this method only sends
back a Reply message to the client peer.

SRequest

Having received a reply as a client, a peer
can initiate a new round by simulating a
fresh user request. Additionally, an update
message is sent to the broker.

I == 1 finish[self]
invoke[update][broker][self]!

Reply

invoke[userReq][self][self]!

Fig. 6 Method automata defining the broker and peer actors using the clock x to specify timing constraints

clock c1k[i]. A clock is free if its counter is zero. When delegation is used, the counter
becomes greater than one.

Initializaton The initialization of a queue takes place in the initialize function. This
transition is taken before any method in any actor is started, because its start location is

@ Springer

358

M. M. Jaghoori et al.

@ initialize()

msg : int[0,MSG],

sender : int [0,0BJ-1]
invoke[msg][self][sender]?
insertinvoke(msg, sender)

msg : int[0,MSG]
delegate[msg][self]?
insertDelegate(msg)

i : int[0,MAX-1]
ing counterfi] > 0 && @

clk[i] > dfi]

i int[0,MAX-1]
scheduling policy
finish[self]?

run := i, shift|

tail ==
finish[self]?
shift()

start[g[run]][self]!
sender[self] = s[run]

Fig. 7 A general scheduler automaton (repeated from the main text)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void initialize () { 25 void insertInvoke (int m, int snd) {
op_init; 26 int ¢, i;
self; 27 c = MAX;
remains O 28 for (i = 0; c == MAX; i++) {
INIT_DEADLINE; 29 if (counter[i][s]==0) c = i;

0; 30 }
// clock clk[0] is assigned 31 gltail] = m;
counter([0] = 1; 32 s[tail] = snd;
tail = 1; 33 // store parameters if any, e.g.
34 // pltail] = server; in Peer
void shift (int a) { 35 caltail] = c;
counter[calal] --; 36 clk[c] = 0;
(counter([cala]] == 0) 37 d[c] = deadline;
// 1f the clock is no longer used 38 counter([c] = 1;
al]]l] = MD; 39 tail++;
40 }
(a < tail && a < MAX-1) { 41 void insertDelegate (int msg) {
= qla+l]; 42 gltail]l = msg;
al] = cala+l]; 43 s[tail] = s[run];
44 // pass on parameters if any
45 caltail] = calrun];
0; 46 counter[caltail]] ++;
0; 47 tail ++;
48 }

Fig. 8 Inserting a message into the queue using invoke and delegate mechanisms

committed. The function shown in Fig. 8 puts the initialization method op_init in the queue
and assigns a free clock to it.

Input-enabledness A scheduler for a class R should allow receiving any message in Mg at
any time. In Fig. 7, there is an edge (top-left in the picture) that allows receiving a message on
the invoke channel (from any sender). To allow any message and sender, ‘select’ expressions
are used. The expression msg : int[0,MSG] nondeterministically selects a value between
0 and MsG for msg. This is equivalent to adding a transition for each value of msg. Similarly,
any sender (sender : int[0,0BJ-11]) can be selected. This message is put at the tail of the
queue (g[tail] = msg), and a free clock (counter[c] == 0) is assigned to it (ca[tail]
= c), and the deadline value is recorded (d[c] = deadline); this is handled in the function

@ Springer

Compositional schedulability analysis of real-time actor... 359

insertInvoke shown in Fig. 8. The synchronization between this transition and the method
automata corresponds to the invocation rules in Fig. 3.

A similar transition accepts messages on the delegate channel (top-right in the picture).
In this case, the clock already assigned to the currently running task (parent task) is assigned
to the internal task (ca[tail] = calrun]);thisishandled in the function insertbDelegate
shown in Fig. 8. In a delegated task, no sender is specified (it is always self). The variable
run shows the index of the currently running task in the queue (which is not necessarily the
first task). This handles the rule delegation in Fig. 3.

Error The scheduler automaton moves to the Error state if a deadline is missed (c1k[i]>
d[i]). The guard counter[i]> 0 checks whether the corresponding clock is currently in
use, i.e., assigned to a message in the queue. Furthermore, to make sure no queue overflow
occurs, the property to check should include tail < MAX.

Scheduling strategy When a message is added to an empty queue, the corresponding method
is immediately started. When a method is finished (synchronizing on f£inish channel), it
is taken out of the queue (by shift () given in Fig. 8). If the currently running method
is the last in the queue, nothing needs to be selected (i.e., if tail == 1 we only need to
shift). Otherwise, the next method to be executed should be chosen based on a specific
scheduling strategy (by assigning the right value to run). For a concrete scheduler, the guard
and update of run should be well defined. If run is always assigned O during context switch,
the automaton serves as a First Come First Served (FCFS) scheduler. In an FCFS scheduler,
the two transitions on £inish channel can be combined.

A Fixed Priority Scheduler (FPS) can be implemented by associating a constant priority
value to each method/task type. Suppose the array p represents the static priority of all
methods, such that for a message g[1i] in the queue, its priority can be obtained by p[q[i]].
We can then formulate FPS strategy using the guard:

1 < tail && 1 != run &&
forall (m : int[0,MAX-1])
(m == run) ||

(plgli]] >= plalml])

This formula selects i such that g[i] is not an empty queue cell (i < tail) or the currently
finished method (run), and p[q[i]] is the highest priority. If there are multiple tasks with
the same priority, the following can be added to the above guard to ensure the first task is
selected:

forall (m : int[0,MAX-11])

m == running ||

m<=1i ||

m >= tail ||

x[ca[i]l]-x[ca[m]] >= d[cali]l]l-d[calm]]

An Earliest Deadline First (EDF) scheduler always selects the task with the smallest
remaining deadline. This is an example of dynamic priority scheduling because the remaining
deadline of a task gets smaller as time passes. The remaining deadline of message i is given

by dli] - clk[i]. This can be encoded using a guard like:
i < tail && 1 != run &&
forall (m : int[0,MAX-1])
(m == run) ||
(clk[cal[i]] - clk[ca[m]] >= dlcal[i]] - d[calm]])

@ Springer

360 M. M. Jaghoori et al.

and i will show the task with the smallest remaining deadline. Notice that clk[a] — clk[m] >
d[a] — d[m] is equivalent to d[m] — clk[m] > d[a] — clk[a]. The rest ensures that an empty
queue cell (i < tail) or the currently finished method (run) is not selected.

After the next method to execute is selected, context-switch happens by starting the
selected method. Having defined start as an urgent channel, the next method is imme-
diately scheduled (if queue is not empty) by taking the bottom-right transition in Fig. 7.

4 Compositional schedulability analysis

We can use the value [d,qx /bmin] for bounding the queues of schedulers as explained in the
previous section. These automata have a special location Error such that a missed deadline
results in an error. The system is then schedulable if the Error location is not reachable and
no queue overflow occurs. In other words, schedulability analysis is reduced to reachability
analysis in a tool like UPPAAL and thus it is decidable. However, the intrinsic asynchrony of
actors and their message buffers will lead to state space explosion for larger systems. This can
be avoided by compositional analysis of the actors. To this end, we use the behavioral interface
of every actor as a contract between the actor and its environment. Below, we describe how
to check whether, firstly the actor itself, and secondly the environment in which it is used,
respect this contract. We refer to the latter as compatibility check.

4.1 Individual actor analysis

Analyzing actors in isolation is hindered by the fact that the methods of an actor can in
theory be called in infinitely many ways. However, taking the behavioral interface as the
contract to which the actor should adhere, it is reasonable to restrict only to the incoming
method calls specified in its behavioral interface. In other words, we use the behavioral
interface as a driver where the input actions correspond to the incoming messages. Incoming
messages are buffered in the actor; this can be interpreted as creating a new task for handling
that message. The behavioral interface doesn’t capture the internal tasks triggered by self
calls. Therefore, one needs to consider both the internal tasks and the tasks triggered by the
behavioral interface, which abstractly models the acceptable environments.

The semantics of an isolated actor can be defined as an isolated actor automaton. The
states of this automaton are written as (/;, g;, b;) where [; shows the current location of the
currently running method, ¢; reflects the contents of the actor queue, and b; is the current
location of the behavioral interface; a full characterization is given in [38].

Peers and broker To analyze the broker, we need to know from how many peers it may receive
requests. The automata representing the behavioral interfaces of the broker (cf. Fig. 5) need
to be replicated for every peer, and these instances should be interleaved. For more efficient
analysis, queue sizes smaller than [d,4x /bmin] can be tried first; and, to handle three peers
it turns out that the broker can manage with a queue of size 7. For bigger systems, the model
checking becomes very time consuming and intractable. To improve efficiency one can follow
the guidelines in Credo methodology [29]. The analysis of each peer can be performed with
one instance of its client side and server side behavioral interfaces.

Table 1 summarized schedulability analysis times of different configurations. The table on
the left shows the analysis of individual actors. The high level of asynchrony introduced by
increasing the number of known actors for the broker results in highly exponential increase
in the analysis time. For comparison, the table on the right shows how long it would take

@ Springer

Compositional schedulability analysis of real-time actor... 361

Table 1 Schedulability analysis

of peer and broker individually Single actor # Known actors Time
(top) and in a system (bottom). .
The number of known actors of a Peer I Broker 0:07
broker changes its behavioral Broker 1 Peer 0:00
interface and hence its analysis
time 2 Peers 0:02
3 Peers 1:34:38
4 Peers 00
Composed system Time
1 Peer and 1 broker 0:00
2 Peers and 1 broker 4:02
3 Peers and 1 broker o0

to analyze a complete system. We can see that analysis of a complete system takes a much
longer time and becomes intractable faster than individual actors. The combination of model
checking and testing for compositional schedulability analysis proposed in this paper is an
effective method to overcome this problem.

4.2 Compatibility check

Once an actor is proved to be schedulable with respect to its behavioral interface, it can be used
as an off-the-shelf component. A system composed of individually schedulable actors is itself
schedulable if the actual use of the actors in this system is compatible with their behavioral
interfaces. For each actor, the behavioral interface abstractly models its observable behavior
in terms of the messages it may receive and the messages it sends.

Ideally, it would be enough to check compatibility only considering the behavioral inter-
faces, for example, by checking deadlock freedom in the composition of the behavioral
interfaces [58]. Unfortunately, this is not possible in a real-time system. We explain this
using three sample pairs of behavioral interfaces shown in Fig. 9. On the one hand, behav-
ioral interfaces cannot be used to disprove compatibility. Consider the two automata in Fig. 9a.
If both automata take their left transitions, i.e., communicate by message c, there will be a
deadlock because of the mismatching provided and required messages. However since these

c? al
O Ol
a! b?
c! a?
O Ol
d? b!
(a) (b) (©

Fig. 9 Compatibility cannot be checked at the level of behavioral interfaces

@ Springer

362 M. M. Jaghoori et al.

behavioral interfaces are abstractions of object behaviors, such a mismatch could be due to a
spurious behavior not possible in the real system model. In other word, the implementations
of these behavioral interfaces could happily communicate only a and b messages.

On the other hand, behavioral interfaces cannot be used to prove compatibility, either.
For example, the automata in Fig. 9b can be composed with no problem, e.g., no deadlock
occurs. Such a compatibility means that compatible implementations exist; but this does
not guarantee compatibility of every possible implementation. An actor implementing the
top interface may be too fast and send a outside the time constraint required by the bottom
interface. In general, a behavioral interface does not reflect the precise timing of the send
action by the real system model. In the work of [23], this problem is avoided by requiring
the specifications to be input-enabled, like Fig. 9c where unacceptable inputs lead to an error
location. This is, however, too restrictive because for example, it makes the example in Fig. 9¢
incompatible whereas we know already that compatible implementations exist.

The only solution to this problem is to take both the system composition and the behav-
ioral interfaces into account. Intuitively, a running system of actors is compatible with their
behavioral interfaces if its observable behavior is captured by the composition of the behav-
ioral interfaces of the participating actors. Checking compatibility is prone to state-space
explosion due to the size of the system; we avoid this by means of the testing technique
described in Sect. 5. We first formally define compatibility in terms of a refinement relation.

Quiescence in refinement In the context of timed automata, an observable behavior is either
an observable action (any action except t), the passage of time (a delay) or blocking (also
called quiescence, i.e., the absence of observable actions). Actions and delays are already
taken into account in timed traces, which describe the possible distribution of observable
actions in time. To be able to take blocking into account, we need to represent them explicitly
in the specification. There are three different scenarios for blocking a real-time system:

Deadlock No action is possible but time can go on.

Timelock Time is stopped, no action and no delay is possible (in the left hand side of
Fig. 10 the synchronization cannot happen due to the mismatching invariant
and guard).

Zeno-timelock Infinitely many actions can occur in finite time.

Deadlocks and timelocks can occur as a result of composing the behavioral interfaces, and
are therefore allowed in our refinement definition; the specifications, however, should not

z>1 z>1

a a

Deadlock: oO——® ----> O—0
x<5b
Timelock: v >b5! I 1> O
x<5b

z=0
Zeno-timelock: @ c Not allowed

x:=0

Fig. 10 Examples of building suspension automata. We do not allow zeno-timelocks in our models

@ Springer

Compositional schedulability analysis of real-time actor... 363

include zeno-timelocks. Approaches like [65] can be employed to make sure zeno-timelocks
do not appear in the specification. For a correct refinement, the system may deadlock (resp.
timelock) only if the composition of behavioral interfaces deadlocks (resp. timelocks). Loca-
tions with a deadlock or timelock are called quiescent. To explicitly specify quiescence in the
specification, we add a loop on each blocking location labeled by a new action §, considered
to be an observable action [64] (see the right hand side of Fig. 10). The automaton obtained
by adding § actions is called a suspension automaton.

Definition 8 (Suspension automaton) Let A = (L, Iy, E, I) be a timed automaton over
clocks C and actions Act. The suspension automaton of A is the timed automaton A(A) =
(L, lo, Ea, I)over C and Act U {8} where E A is defined as follows:

Er=EU{l i) | 1 is quiescent}

The traces of the suspension automaton, called suspension traces, then represent all the
observable behaviors of this automaton. The set of all suspension traces of a timed automaton
A is the set Traces(A(A)) denoted by STraces(A).

In our models, S represents the system composition, and B is the synchronous product
of the behavioral interfaces. Thus B and S represent two timed automata on the same set of
actions, while S also contains 7 actions. In the definition of refinement below, we consider
observable suspension traces of S and all suspension traces of B.

Further we need to consider deadlines in refinement. Recall that in the behavioral inter-
faces, only input actions are assigned deadlines, whereas in the system of actors, the output
actions in method automata have deadlines. Input actions in B provide the guaranteed dead-
lines (checked during individual actor analysis) whereas output actions in methods specify the
required deadlines. In the definition of refinement below, we define that a deadline required
by an action in § may not be smaller than the deadline guaranteed by a matching action in B.

Definition 9 (Refinement) S is a refinement of B, denoted by S T B, if and only if for
every observable suspension trace o = ..., t;, m;(d;), ... in STraces,ps(S), there exists a
matching trace 0’ = ..., #;, m;(d}), . .. in STraces(B), such that d; > d for every i.

Definition 10 (Compatibility) The system S is compatible with the behavioral interfaces if
and only if § & B where B is the synchronous product of the behavioral interfaces.

The actors used in a system are proved individually schedulable with respect to their
behavioral interfaces (as explained in Sect. 4.1). The following theorem states that compati-
bility implies schedulability of the whole system provided that individual behavioral object
models are schedulable. Intuitively, this means that every message in the system will be
finished within the designated deadline.

Theorem 1 (System schedulability) A system composed of a set of actors Oy, ..., Oy is
schedulable, if every actor O; is individually schedulable and the system is compatible with
the behavioral interfaces of the actors.

Proof To prove this we can assume that the system is compatible but not schedu-
lable and all actors are individually schedulable. This means that there is a trace
o = t,ai,t,...,a, tyy of the system automaton (cf. Sect. 3.1) in which one of the
actors, say O}, drives the system to the Error state, i.e., either the queue of O; is overflown
or a task in its queue misses its deadline. We show that this requires the existence of a trace
in B; that drives O to the Error state, which contradicts the schedulability assumption.

@ Springer

364 M. M. Jaghoori et al.

Due to compatibility, o, exists in the product of behavioral interfaces. This trace can be
projected onto the behavioral interface of O; alone by removing the delay-actions #;, a; for
every a; that is not in the action set of the behavioral interface of O;. Call the resulting trace
oops|j. We can compute a set of traces in ‘isolated actor automaton’ of O; (cf. Sect. 3) as
T ={¢;i : ¢i,, = 0obslj}. Since the actor individually is schedulable, these traces do not
lead to Error state, i.e., given this sequence of inputs and outputs, none of the tasks in the
queue of O; misses its deadline, nor a queue overflow occurs.

On the other hand, the trace o corresponds to a run of the system:

A, eSS w2 (Error, w)

where I/ is the location of actor j after i steps. Formally, I/ = (s, Q) where s is the location
of its currently running task and Q is the current task queue. For brevity the delay transitions
are not shown. We project the trace o = t1,ay, f, ..., ax, ty+ onto the actions of O}, by
removing the delay-actions #;, a; such that l;.’_ = l;.’ . We represent the resulting trace as
olj =u1,br,uz, ..., by, upyq.

By considering the definition of system automaton, we can show that o|; € T. This
requires that | ; drives O; to the Error state, which is in contradiction with the schedulability
assumption. O

Since B is deterministic, checking trace inclusion becomes decidable [7,62], but due to
the size of S, it may be susceptible to state-space explosion. To avoid this, we propose a
method for testing trace inclusion in the next section. In particular, we want to be able to
exhibit a counter-example if some incompatibility is found.

5 Counter-example oriented testing: compatibility check

We will show in this section how compatibility, defined as a refinement relation based on trace
inclusion, can be tested. Trace inclusion is a usual notion of correctness (or conformance)
between a system and its abstract specification B in formal testing frameworks [32]. A naive
approach involves taking a trace from the system model and check if it is a valid trace in
the abstract specification. This is not practical because the system model is very big and is
not a suitable source of generating test cases. Our idea is to generate test cases based on
traces from B and use it to restrict the system behavior. As long as the system can follow this
trace, the test case looks for possible violations of the refinement relation. We will formally
define rigidness in this section as a characteristic of counter-example oriented testing. First,
we formally define a test case.

We are given two timed automata: one is the system of actors that we call the model under
test MUT, and the other is the product of the behavioral interfaces of these actors. To test
compatibility, we take the suspension automaton of the latter as the abstract specification.
We denote this by B, which is then a deterministic timed automaton over the action set Actp.
MUT is a timed automaton over the set of actions Actyyr = Actp U {t}. A test case is a
deterministic timed automaton without loops whose leaves are labeled with verdicts.

Definition 11 (7Test case) Let B be a timed automaton over Actg. A test case for B is a
deterministic acyclic timed automaton 7C = (L, ly, E, I) over Actg U {t}, in which all leaf
locations (i.e., those with no outgoing transitions) are labeled with a verdict Pass or Fail.
We refer to a set of test cases as a test set.

@ Springer

Compositional schedulability analysis of real-time actor... 365

A verdict labeling a location allows us to evaluate an execution of the test case terminating
on this location. The Pass verdict is reachable via only one path, which covers exactly
the intended behavior we are testing for. This means that the system fulfilled the test case
requirements. To find a counter-example to refinement, we need to search for locations marked
Fail. These are the locations that are reachable with forbidden behaviors of the system (a
non-specified action or an action happening outside its time constraints in the specification
of B, for example). If the system deviates from the behavior aimed at by the test case without
violating refinement, the test may terminate prematurely resulting in an inconclusive verdict.
This is similar to the ‘timed failures’ used in [59] as a semantic model for timed CSP.

Recall that proving compatibility implies schedulability of the system. However, violating
refinement and thus compatibility does not per se imply the violation of schedulability.
Nevertheless, considering the assume-guarantee approach, it does violate the assumptions
on schedulability of individual actors specified in the behavioral interfaces. Therefore, by
means of testing one can find and remove counter-examples to compatibility and, as a result,
attain more confidence in schedulability of the system.

The fact that a test case is deterministic means that from any location /, for any action
a € Actp, all transitions from [labeled by a, as well as the transition labeled by 7 if any,

have disjoint guards: given action a € Actp and location [€ Lp, then for any two guards g;

and g, from the set {g;|/ LULSUN 11U {gkll LULLY I;}, the formula g; A g is unsatisfiable.

5.1 Generating a test case

The idea is to take a timed trace from the abstract specification B and turn it into a test case (cf.
Fig. 11). Since the exact timing of actions in a timed trace make the test case too restrictive,
we take instead a linear timed automaton 7'. This consists of a sequence of transitions from B

Inputs B=(Lp,log,EB,IB): A timed automaton specifying the abstract behavior
T = (Lt,lo, E7, I7) such that Ly C Lp and Ep C Ep in linear form as:

@ glaml(dl)vrl ;<) . ;O gn7mn(dn)urn;o
ln

lo l ln—1
Output TC= (L U{f} lo,Ec, TR): A timed automaton representing the test case
where TR is a function that always returns true as location invariant

Constructing the transitions: Verdicts:
Ec:={} Label l,, with the verdict Pass
for each i € [0..n — 1] do Label f with the verdict Fail
hi :==1p(l;) // the invariant of I; in B
Ec :=FEc U {li M f}

i NhiAN(d>d; i (d
o o= Ho U {1, SiAhin@2d)mid).

for each action m € Actp do
gy = false

liv1}

d/
for each transition I; M '€ Ep dog, :=g, V(gAd2>d) endfor

hiA=gg,m(d),0
Ec = Ec U{l; —2"—" f}
endfor

endfor

Fig. 11 Test case generation algorithm

@ Springer

366 M. M. Jaghoori et al.

Input:

Linear Timed Automaton T'

Output:

Fail

Fig. 12 In this example, the input B is a suspension automaton. Actions with no deadlines in the output test
case imply unrestricted deadline values. Label Act means all actions are possible

representing a set of timed traces, but correspondig to exactly one untimed trace. As shown

in Fig. 11, T contains a sequence of transitions written as ;| ST li,1 <i <n.Such
a sequence abstractly represents a desired system behavior (the test purpose).

The sequence of transitions of 7' corresponds to the behavior we want to test so the last
location must be labeled Pass. All other locations are completed as follows, such that any
forbidden behavior makes the test fail. If a location has an invariant 4; in B, violating this
invariant must make the test fail; thus, a transition labeled with t and with guard —h; leading
to Fail is added. Furthermore, no other transition may be taken if the invariant is violated;
this is ensured by conjunction of guards of all other transitions with /;. Additionally, every
behavior which is not allowed in B is forbidden, so for every action, a transition labeled by
this action and whose guard is the complement of all the existing guards for this action leads
to a Fail location; this guard is computed in g,. Any trace leading to Fail is an example of
behavior not allowed in the abstract behavior specification.

Example 1 In Fig. 12, B shows the suspension automaton of an abstract specification, 7T is a
selected sequence of transitions from B and finally 7C is the test case generated from 7 by
the algorithm. The location invariant x < 10 is kept in bold face in the test case only to show
its effect on guards. The transition labeled by Act stands for three transitions labeled by a, b
and ¢ with guard frue.

The theorem below states that the timed automaton we obtain by this construction is a test
case in the sense of Definition 11. The proof is straightforward by following the steps in the
algorithm.

Theorem 2 Let B be a timed automaton over Actg. For any linear timed automaton from B,
the automaton generated using the algorithm in Fig. 11 is a test case.

Remark. The starting point for test case generation is a sequence of transitions in the specifica-
tion. Given a desired reachability property ¢, we can generate such a sequence of transitions

@ Springer

Compositional schedulability analysis of real-time actor... 367

automatically. We start by model-checking ¢ on the suspension automaton of the specifi-
cation B. The diagnostic trace produced by the model-checking tool gives the sequence of
moves that have to be made by this automaton and the required clock constraints needed to
reach the targeted location. This method is in parts similar to [32]. Instead of checking for a
reachability property, one can also use the simulation feature of a model-checker to gener-
ate specific hand-made traces. Another interesting property is a deadlock or timelock in the
abstract specification B. Although a correct refinement is theoretically allowed to deadlock or
timelock in such cases, too, such situations are in practice undesired. Therefore, such traces
could also contribute to good test cases for checking system correctness. Note that a timelock
in our models does not violate schedulability because when time stops no deadline is missed,
but such a scenario is in fact an unrealistic situation.

5.2 Properties of the generated test cases

A test case must drive the execution of the system such that actions happen in the specified
order. Usually, this happens by feeding inputs to the system and observing the outputs. In
our case, we deal with a closed system which has no inputs to be controlled. Instead, since
we deal with a system model, we drive the system execution by making it synchronize with
the test case. Formally, the execution of a test case on the system is defined as the parallel
composition of the automata of the test case and the system, synchronizing on the same
actions. We denote the product automaton by 7C || MUT.

The model under test passes the test, denoted by MUT passes TC, if and only if the Fail
location is not reachable in the product 7C || MUT. A test set 7 being a set of test cases, the
model under test passes 7', denoted by MUT passes 7, if and only if for all test cases TC
in 7, MUT passes TC.

5.2.1 Soundness

The soundness requirement for a test set states that it must not reject a correct refinement. In
other words, any counter-example reported by a test case (a trace leading to the Fail verdict)
should indeed violate the refinement. A test case is formally defined to be sound (or unbiased)
for the refinement relation C if and only if

MUTC B — MUT passes TC

A test set 7 is sound if and only if all test cases in 7 are sound.

Theorem 3 (Soundness) Let B be a deterministic timed automaton and T be a linear timed
automaton built from a sequence of transitions in B. The test case T C generated from T and
B by the algorithm in Fig. 11 is sound for C.

Proof We assume that MUT does not pass T C, i.e., there is a trace in 7 C || MUT that leads to
the fail locationly = (I, f). This trace can be decomposed into its MUT and T C components.
Every location in 7'C, except for f, can be mapped to a location in B; since B is deterministic,
this mapping is unique. The diagram below, shows the decomposition of this trace and the
mapping to B.

@ Springer

368

M. M. Jaghoori et al.

B O
T i 1)
TC U 0 2% @) T (fody)
T i) T
TC||MUT Uy Iy 0) 2% o] 0") S (@ foug)

lL U U

d() agp di ,a; M

M
{ fou f)
We show that the last step in the trace does not exist in B. This step is due to a transition
to the fail location f of TC which may be due to one of the following cases, based on the
test case generation algorithm in Fig. 11.

MUT C— (liM,u,M)

— It might be a t transition which implies that the delay d; is not permitted by the invariant
of lis in B; or,

— It might be that the action a; that happens at uz +dijleadsTCto f,ie., “Z satisfies the
guard —g y where g is the disjunction of all guards that allow a;. As a result, action g;
is not allowed at this time in B.

The trace shown above does not exist in the suspension traces of B, while it obviously
does exist in the observable suspension traces of MUT. Therefore, MUT is not a refinement
of B.]

5.2.2 Exhaustiveness

Soundness is not sufficient to ensure the relevance of test cases. A test case with no Fail
location is sound but cannot reject any system. We also need to be sure that if the system
is a wrong refinement, there exists a test case able to reject it. An exhaustive test set rejects
any wrong refinement in the system. In other words, any system that passes the test set is a
correct refinement of the specification. A test set is formally defined to be exhaustive for the
refinement relation C if and only if

MUT passes T =—> MUTC B

Theorem 4 (Exhaustiveness) The set of all test cases for B that can be generated by the
algorithm in Fig. 11 is exhaustive for C.

Proof We must prove that if the system is not a refinement, there exists a test case that makes
the system fail. In other words, assuming that there exists an observable suspension timed
trace of MUT not belonging to suspension timed traces of B, we must show that there exists
a test case 7TC such that the Fail location is reachable in the product 7C || MUT.

Without loss of generality, we consider o = t1aj ... txax € STraces,ps(MUT). The cor-
responding observable run in MUT is the following:

(5. 0) 4 (o, uo) (lk, ug)

If o is not a trace of B, then two cases are possible depending on the first behavior diverging
from the trace of B:

Sl u) —> . —>(lk)

1. There existsi,0 <i <k — 1 such that tja ...
STraces(B), i.e.,adelay of dj+1 = tj+1

tia; € STraces(B) and t1ay . ..taitiy1 ¢
— t; is not possible in B at state (/;, ;). It means

@ Springer

Compositional schedulability analysis of real-time actor... 369

that location /; has an invariant & that is violated by u; +d;11. Let T be a sequence of i + 1
transitions from B such that t1a; .. . t;a; € STraces(T). Let TC be the test case generated
from T by the algorithm. Since location /; has an invariant /4, there is a transition in
TC from [; to location f whose guard is —h and labeled with t. As u; + d; 41 does not
satisfy £, location f is reachable in the product TC || MUT with the trace tyay . . . t;a;ti+1 T
corresponding to the run
/ d ’ 7y @ diyi / N T ’
((lo, 1p), 0) — (Uo, lp), up) — .. —> (Ui,) uy) = ((fy L), wit1)

2. There exists i, 0 < i < k — 1 such that t1ay...tiaitiy1 € STraces(B) and
fai ...tajti1ai41 ¢ STraces(B), i.e., the action a; 41 is not allowed in B at time f; 4.
It means that there is no transition in B from location /; labeled with a; | whose guard
is satisfied by u; + d;j4+1. Let T be a sequence of i + 1 transitions from B such that
tiay ... tiaiti1 € STraces(T). Let TC be the test case generated from 7 by the algo-
rithm. By construction of TC, there is a transition from location /; to location f labeled
with a; 41 whose guard is the complement of all other guards of transitions from /; labeled
with a1, letus callit g. Since u; +d; 1 does not satisfy any of these guards, it satisfies g.
Then location f is reachable in the product 7C || MUT with the trace tya; . . . tia;ti41ai+1
corresponding to the run

d ’ d; ’ 7y i ’
(o, 1), 0) = (o, 1)), ug) => oo = (Ui, 1),) = ((F 1)), wis1)

Therefore, the set of all test cases generated by the algorithm is exhaustive for C.

A sound and exhaustive test set is called complete. Completeness is in general impossible
to reach, since it usually needs an infinite test set. Thus we know that we cannot in practice
find all counter examples to refinement. However, we still want to ensure a certain quality
to test cases. For instance, we want to avoid useless sound test cases where all paths lead to
Pass. Below, we introduce a more practical property for test cases.

5.2.3 Rigidness

We are interested in test cases that reject models which behave in a wrong way along the
test case: the test case should not say Pass if it is possible to detect something wrong during
the test case execution. We show that any test case generated by our algorithm can detect
every wrong behavior occurring along it. We can actually show that we can provide a counter-
example for any incorrect refinement occurring along the sequence of transitions the test case
is built from. Given a trace o € STraces(B), an incorrect refinement is formally characterized
as an action or delay e € Act U {8} U R that is allowed after o in MUT but not in B, i.e.,
o.e € STraces,ps(MUT)\STraces(B). A test case TC is rigid for the refinement relation C if
and only if it rejects any incorrect refinement along the traces of the test case:

o € Traces(TC) A ly 2 li,1 <i<n= o.e¢€Traces(TC) Ny 24 Fail

Intuitively, if o ends in a non-leaf location in 7C, the test case T C will observe any one-
step divergence after o. This notion is close to the notions of non-laxness in the untimed
setting [41] and of strictness in the timed setting [46] but it is stronger. These notions state
that if the system behaves in a non-conforming way during the execution of the test case,
it must be rejected. Also in our framework, every detected divergence leads to the rejection
of the system, but we can add that every divergence is actually detected. This result directly
follows from the construction of the test case.

@ Springer

370 M. M. Jaghoori et al.

Theorem 5 (Rigidness) Let B be a deterministic timed automaton and T be a linear timed
automaton built from a sequence of transitions in B. The test case for B generated from T by
the algorithm in Fig. 11 is rigid for C.

Proof We show that for every trace o of the test case TC ending in a non-leaf location, o.e
is a trace of TC leading to Fail if 0.e is a trace of MUT and not of B.
Ife € ActU {8}, leto = tay ...ty € Traces(TC) corresponding to the run

d a d,
(10, 0) S (o, ufp) Sy up) = -+ 5 ey uf_y)

where k — 1 # n. Since o.e is not a trace of B, it means that e is not allowed in B at location
[r—1 after a delay of di. Then, by construction of the test case TC, there is a transition from
lx—1 to the Fail location labeled with action e and whose guard satisfies u;(_l. Theno.eisa

trace of TC and [y Z5 Fail.
Ife e Ry,leto =t1ay ...ax € Traces(TC) corresponding to the run

U0, 0) L (o, ul) & (hup) — 5 (e)

where k # n. Since o.e is not a trace of B, it means that a delay of e is not allowed in B
at location /i, due to an invariant / at this location in B. Then, by construction of the test
case TC, there is a transition from [to the Fail location labeled with t and whose guard —4

satisfies uy. Then o.e is a trace of TC and [y Z5 Fail. O

5.3 Executing test cases in UPPAAL

Recall that we are testing the inclusion of the observable traces of a system S in the traces of
a specification B. Test cases generated from B are used to restrict the system behavior and
at the same time detect any violations of refinement along the test case. When submitting a
test case, we require that any communication between two actors should synchronize with
the test case, as well. Practically, this means that the sender actor (in one of its methods),
the receiver actor (in its scheduler) and the test case should synchronize. Since we do not
want to change the specification of the model under test, we solve the problem of three-way
synchronization by splitting every action in the test case into two steps. At the first step,
the sender actor synchronizes with the test case, and immediately afterwards, the test case
synchronizes with the receiver actor. The urgency between these two steps is modeled by
using a ‘committed’ location in the test case between these two steps. For the test case to be
able to intercept the messages, we bind all known actors to refer to the test case (see Fig. 13).

Although a test case is deterministic and its synchronization with the system resolves
part of the non-determinism, the final model is not yet completely deterministic. The actor
implementations may also contain some internal choices that are not controlled by the test
case. In principle, this would mean that a test case needs to be repeated several times and a
coverage of different nondeterministic choices requires extra control over the system behav-
ior. To avoid this problem, we take advantage of the model checking capability of UPPAAL
as explained in the sequel.

What is important in the execution of a test case is the final verdict. Reaching a Pass or
Fail verdict can in fact be formulated as a reachability property in UPPAAL. This way each
test case needs to be submitted once. The UPPAAL model checker can provide a diagnostic
trace whenever the searched verdict is reachable. A trace leading to the Fail verdict shows
exactly how and when the system is not compatible.

@ Springer

Compositional schedulability analysis of real-time actor... 371

deadline < MD

1. The test scenario begins by the @invoke[register]M][ﬂ? urginvoke[register1l01l51!/

three peers (ID: 1, 2, 3) regis- deadline >= MD
tering themselves at the broker.

Messages intended for the bro- deadline < MD

ker are sent to ID 4, which are : " L .
invoke[register][4][2]? invoke[register][0][6]!

received by the test case. The <) deadline >= MD

test case adds 4 to the ID of the

sender and sends the register deadline < MD

messages to the broker (ID: 0) if invokelregisterl[4]1312___ (o invokelregisterl[0]71

a valid deadline is specified. Oth- ©) deadline >= MD /

erwise, the test case fails.

deadline < XD || x1 <=5
2. At the next step, each peer at- invoke[CReq][4][1]? /5 invoke[CReq][O][5]! /

tempts to make a connection as a deadline >= XD
client. To do so, the peers send a &&x1>5

CReq message to the broker. The
broker expects no CReq message
invoke[CReq][4][2]?

deadline < XD || x2 <=5
C invoke[CReq][0][6]!

before 5 time units has passed.

Besides the deadline value, the g%aggn:) 5> =XDb
test case checks whether each
message has arrived at a proper deadline < XD || x3 <= 5
time. Note that the broker has a invoke[CReq][4][3]?) invoke[CReq][0][71!
separate clock corresponding to deadline >= XD
each peer. 8&x3>5

deadline < MD

3. Processing the CReg messages,
the broker connects the client
peers to server peers. The ID of

deadline >= MD
server=ps+4

ps = server

the server peer is communicated deadline < MD

fllong the connect': IMESSAge Us- invoke[connect][6][0]? /C;invoke[connect][21[4]!
ing the global variable server. ps=server & deadline >= MD
The test case adds 4 to the ac- server=ps+4

tor ID to be able to intercept -

the possible replies. As in previ- deadline < MD

ous steps, the test case results in invoke[connect][7][0]? _ ="} invoke[connect][3][4]!
the Fail verdict if the deadline ps=server deadline >= MD

. =ps+4
value is smaller than the guar- server=ps

anteed one.

deadline < MD

T

4. Peer 1 sends a data request (as a invoke[SReq][6][1]? © Hnvoke[SReq][2][5]!
. deadline >= MD
client) to peer 2 (as a server).

5. Peer 2 cannot receive two re-) FAIL
quests in a row as a server (leads invoke[SReq][6][2]? O J
to Fail).
PASS

7

6. A reply from peer 2 to peer 1
leads to Pass.

invoke[reply][5][2]? O

Fig. 13 In this test case, the broker actor is assigned 0 while the peer actors are assigned 1, 2 and 3. In order
to intercept the messages between actors, the test automaton represents each actor by adding 4 to its ID (when
binding the known actors). For the sake of simplicity, this test case does not include all possible violations of
refinement that lead to the Fail verdict

@ Springer

372 M. M. Jaghoori et al.

Using the model checker in this scenario is plausible because the system behavior is
controlled by the test case, while model-checking the whole system may not be tractable.
We thus avoid state space explosion by restricting verification to the part of system behavior
that follows the main line of the test case.

5.4 Testing compatibility for the peer-to-peer system

In this section, we give a sample test case generated for a system consisting of 3 peers and
a broker. We have already demonstrated in Table 1 that model checking the whole system
runs out of system resources and is not feasible for 3 or more peers. The test case in Fig. 13
is generated from the composition of the behavioral interfaces of peer and broker (cf. Fig. 5)
considering three peers. Execution of this test case takes less than a second.

As mentioned earlier, the server side behavioral interface of a peer allows only one request
at a time. This means that two SReq messages may not be sent to the same peer before it
has replied to the first one. The scenario captured in this test case is designed to check this
property for peer number 2 (in Step 5).

This test case starts with registering the servers at the broker followed by requests from
clients to the broker. Then the broker replies to these requests by sending via the server
variable. Since server is defined as a meta variable, the test case uses a temporary variable
ps in order to pass on this value to the clients. If a behavioral interface specification requires
special conditions on the values of this parameter, the test case would also check these
conditions. Finally, if two SReq messages are sent to peer number 2, the test fails, i.e., there
is a counter-example to compatibility. The test passes if server 2 replies to the first request.

Given the nondeterministic selection of a server in the cReq method (cf. Fig. 6), the test
case in Fig. 13 will fail. The reason is that the broker may assign the same server to multiple
clients which may independently send a request to this server. One simple solution to this
incompatibility would be using a round-robin assignment of the servers by the broker to the
incoming requests. With this strategy, the test case in Fig. 13 does not lead to the Fail verdict
anymore.

6 Related work

There has been lots of work on scheduling in real-time systems [13]. The main aspect of our
work is that we address schedulability at a modeling level as in [6,25,27,56], whereas [21,45]
are applied to programming languages. This results in a major methodological difference. In
the latter case, analysis is performed only after the software has been developed: a given appli-
cation is augmented with real-time requirements (like deadlines) and automata are derived
from code. This approach can be useful specifically for legacy software. In contrast, we use
automata for platform-independent modeling of actors and their behavioral interfaces at the
design stage. One can thus boost the application performance by fine-tuning the scheduling
in the early steps of development and at a much lower cost. With this in mind, we compare our
schedulability and testing methods with some most relevant works, focusing on its different
aspects.

Task specifications Schedulability analysis results depend on the assumptions on task gen-
eration. Many approaches are based on simple task generation patterns like periodic tasks
and rate-monotonic analysis [27,61]. Although useful in many cases, such techniques are
too coarse in many distributed systems and produce pessimistic outcomes. In our work,

@ Springer

Compositional schedulability analysis of real-time actor... 373

behavioral interfaces specify how tasks may be generated in an actor. Being based on Task
automata [25], we can describe non-uniformly recurring tasks, inducing much more accurate
analysis. We extend also the decidability results by Fersman et al. [25] and show that our
analysis (based on non-preemptive scheduling) can be reduced to checking for reachability
in timed automata, and is therefore decidable [31]. Although [21,45] also use automata, they
do not discuss decidability.

The main difference between our work and task automata is that in our framework tasks
are specified as timed automata. Therefore tasks can trigger other (internal) tasks during
execution, which may inherit the (remaining) deadline of the task generating them (called
delegation). In task automata, a task is completely abstracted away into an execution time, and
generation of all tasks is captured in the task automaton. In our approach, internal tasks cannot
be captured in the behavioral interfaces, because their arrival depends on the scheduling of
the parent tasks, which in turn depends on the selected scheduling strategy. Our approach is
therefore strictly more expressive than task automata.

Compositionality Schedulability has usually been analyzed for a whole system running on
a single processor, whether at modeling [6,25] or programming level [21,45]. We address
distributed systems where each actor has a dedicated processor and scheduling policy. In our
approach, behavioral interfaces are key to compositionality. They model the most general
message arrival pattern for actors. They can be viewed as a contract as in ‘design by contract’
[53] or as a most general assumption in modular model checking [48] (based on assume-
guarantee reasoning); schedulability is guaranteed if the actual use of the actor (i.e., at the
method definition level) satisfies this assumption in the behavioral interface.

The approach in [56] is modular in the sense that the untimed specification of the actors,
and the timing constraints (specified separately) can be reused. However, they still analyze a
complete system, rather than individual actors. Furthermore, a deadline in their framework
includes only the time until an event is received. Hence, their approach cannot address
complications like delegation of a task to subtasks. Another related work is TAXYS [21],
where an abstract model of the environment is used for schedulability analysis. However, it
is used to analyze a complete program and is not used compositionally.

Interface design Our behavioral interfaces are similar to Timed Interface Automata [24],
but the notion of compatibility is different. Alfaro et al. [24] take an optimistic approach in
which two interfaces are compatible if there is a possible way for them to work properly.
This leads to a simpler theory but to implement these interfaces, one needs to adhere to these
possibilities to end up with a working system. David et al. [23] suggest to make specifications
input-enabled by adding an Error state and directing every undesired behavior to that state.
They define two specifications to be compatible if their composition does not reach the Error
state. This is unfortunately too restrictive for high-level specifications; abstract behavioral
interfaces easily fall into spurious incompatibilities whereas their implementations may still
work together. Our approach bridges the gap between these two methods by considering the
actual implementation of actors. We check whether the implementations at hand, when com-
posed, indeed follow the behavior that makes their interfaces compatible (w.r.t. the optimistic
approach of [24]). Finally, timed actor interfaces in [28] are defined to accept early actions.
This is an orthogonal feature and can be combined with our notion of behavioral interfaces
if desired.

Analyzing the composition of the concurrent objects is subject to state space explosion
because of their asynchronous nature and all their queues. We discussed in [36] the necessary
conditions for compositional model checking of refinement. However it is not sufficient

@ Springer

374 M. M. Jaghoori et al.

to prove refinement in all cases. We proposed in this paper a sound and complete testing
technique for compatibility, based on finding counter-examples to refinement, as positioned
below.

Testing real-time systems In real-time systems, conformance (or refinement) is tested in
terms of allowed actions as well as of right timings. Different conformance relations have been
investigated: timed bisimulation [14], may and must preorders [55], timed trace inclusion [15,
32,441, and timed extension of Tretmans’ conformance relation ioco [47,60,64]. The main
difference here is that our notion of refinement takes deadlines on actions into account.
Similarly, timelocks (and sometimes also deadlocks) are generally considered errors in a
specification. When testing, the specification and the implementation are usually assumed to
be non-blocking, meaning that they will never block time in any environment. However, since
our specification is obtained by synchronous product of behavioral interfaces, such cases can
happen, it makes sense to allow the same “errors” in the system as in its specification: Our
conformance relation then takes into account the presence of deadlocks and timelocks, and
allows them in the system whenever they exist in the specification.

A naive approach to testing refinement is to take a trace from the concrete system and
check whether it exists also in the abstract specification. This approach is impractical because
the concrete system is too complicated. Therefore, as is usual in the literature, e.g., in ioco
testing, we generate test cases from the abstract specification. A main difference is that these
techniques are for testing an open system, i.e., by feeding inputs and observing the outputs.
However, we deal with a closed system, i.e., we have no inputs and outputs. In this respect,
we take advantage of the fact that the system under test is also a model in our case (and not
an implementation for example in Java or C), so we can use a tool like UPPAAL, and drive
the system execution by synchronizing on the actions of the test case. This greatly restricts
the system behavior, although still nondeterministic. The restricted system behavior is now
amenable to model checking in order to address the remaining nondeterminism during test
submission.

A similar approach of using testing techniques to avoid state space explosion in the analysis
of real-time system models has been followed by Clarke and Lee [20], in the setting of a
real-time process algebraic formalism called ACSR (the Algebra of Communicating Shared
Resources). They focus on testing timing constraints of real-time systems, deriving time-
efficient test cases from a graphical representation of those constraints and defining time
domains coverage criteria.

The soundness of our testing method depends on the determinism of the behavioral inter-
faces. The problem of determinizability of arbitrary timed automata is undecidable [26,66],
so in this paper we require the behavioral interfaces to be given as deterministic automata.
To relax this requirement, one can consider the class of determinizable timed automata as
in [44], or use digital test cases [47], where time is discrete to answer the implementabil-
ity of test cases. Alternatively, automated over-approximation techniques as in [12] can be
employed.

7 Conclusions
The main contribution of this work is the integration of the abstract formalism of timed
automata into a high-level object based modeling paradigm (along the same lines as typestate-

oriented programming [5]). On the one hand, the abstraction level of automata theory enables
us to provide powerful analysis techniques and specifically less pessimistic schedulability

@ Springer

Compositional schedulability analysis of real-time actor... 375

analysis compared to traditional approaches. On the other hand, we augment the successful
actor-based approach to object-orientation (as in Scala and Erlang) with application-level
scheduling, as also motivated in resource-aware programming techniques.

We presented a complete framework for compositional schedulability analysis of dis-
tributed systems. Schedulability of each actor is analyzed individually with respect to its
behavioral interface. This is made feasible by putting a finite bound on the task queue such
that the schedulability results hold for any queue length. We can then test a system of com-
municating objects to make sure objects are used as expected. This compatibility further
implies the schedulability of the whole system. In this paper, we specifically gave a detailed
account of a novel counter-example oriented technique for testing refinement as the basis for
compatibility check. To this end, we gave an algorithm to generate sound, complete and rigid
test cases. Overall, we envisage such maximal use of verification combined with testing as a
promising approach to deal with state-space explosion problem.

As future work, we are planning to integrate this high-level analysis framework into our
implementation of application-level scheduling on top of Java [57]. The integrated tool suite
will span a complete software development cycle, and will be a basis for developing safety
critical real-time distributed and embedded systems. The main advantage of such a tool
suite is that the designer/programmer will gain direct control on scheduling in the whole
development cycle, which is in turn the key to efficiency in the software running on future
multi-core and cloud infrastructures. Nonetheless, it will in practice be based on a best-effort
basis as true runtime guarantees depend on the exact operating system and the hardware.

A specific and interesting case where we can apply our approach is in modeling TinyOS
[18,35]. TinyOS is an actor-based open-source runtime environment designed for sensor
network and has a large user base of over 500 research groups and companies [18]. The event-
driven execution model of TinyOS enables fine-grained power management yet allows the
scheduling flexibility made necessary by the unpredictable nature of wireless communication
and physical world interfaces. Modeling a TinyOS instance as an actor, we can define its own
scheduling policy and hence the designer is able to introduce and analyze different policies
in scheduling.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aceto, L., Cimini, M., Ing6lfsdéttir, A., Reynisson, A.H., Sigurdarson, S.H., Sirjani, M.: Modelling and
simulation of asynchronous real-time systems using timed rebeca. In: Proceedings of Foundations of
Coordination Languages and Software Architectures (FOCLASA’11), volume 58 of EPTCS, pp. 1-19
(2011)

2. Acharya, A., Ranganathan, M., Saltz, J.H.: Sumatra: A language for resource-aware mobile programs.
In: Mobile Object Systems, pp. 111-130 (1996)

3. Agha, G.: The structure and semantics of actor languages. In: Proceedings of the REX, Workshop, pp
1-59 (1990)

4. Agha, G., Mason, L., Smith, S., Talcott, C.: A foundation for actor computation. J. Funct. Program. 7,
1-72 (1997)

5. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming. In: Proceedings of 24th
ACM SIGPLAN conference companion on object oriented programming systems languages and appli-
cations, OOPSLA ’09, pp. 1015-1022 (2009)

@ Springer

http://creativecommons.org/licenses/by/4.0/

376

M. M. Jaghoori et al.

13.
14.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Altisen, K., GoBler, G., Sifakis, J.: Scheduler modeling based on the controller synthesis paradigm. Real-
Time Syst. 23(1-2), 55-84 (2002)

Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comp. Sci. 126(2), 183-235 (1994)

Alur, R., Weiss, G.: Rtcomposer: a framework for real-time components with scheduling interfaces. In:
de Alfaro, L., Palsberg, J. (eds.) Proceedings of Embedded software (EMSOFT’08), pp. 159-168. ACM
(2008)

Armstrong, J.: Erlang. Commun. ACM 53(9), 68-75 (2010)

Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive power of silent transitions
in timed automata. Fundam. Inf. 36(2-3), 145-182 (1998)

. Berman, F., Wolski, R.: Scheduling from the perspective of the application. In: Proceedings of High

Performance Distributed Computing (HPDC’96), pp. 100-111. IEEE Computer Society (1996)
Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize timed automata. In:
Proceedings of foundations of software science and computational structures, FOSSACS’11/ETAPS’11,
pp. 245-259. Springer (2011)

Buttazzo, G.: Hard Real-Time Computing Systems, 3rd edn. Springer, Berlin (2011)

Cardell-Oliver, R., Glover, T.: A practical and complete algorithm for testing real-time systems. In: Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), volume 1486 of Lecture Notes in
Computer Science, pp. 251-261 (1998)

Cattani, S., Kwiatkowska, M.Z.: A refinement-based process algebra for timed automata. Formal Asp.
Comput. 17(2), 138-159 (2005)

Chang, P-H., Agha, G.: Supporting reconfigurable object distribution for customized web applications.
In: The 22nd Annual ACM Symposium on Applied Computing (SAC), pp. 1286-1292 (2007)

Chang, P.-H., Agha, G.: Towards context-aware web applications. In: 7th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS), pp. 239-252 (2007)

Cheong, E.: Actor-Oriented Programming for Wireless Sensor Networks. PhD thesis, Electrical Engi-
neering and Computer Sciences University of California at Berkeley (2007)

Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation environment for tinyos-
based wireless sensor networks. In: Proceedings of Embedded net. sensor sys., SenSys 2005, pp. 302-302
(2005)

Clarke, D., Lee, I.: Automatic test generation for the analysis of a real-time system: case study. In: IEEE
Real Time Technology and Applications Symposium, pp. 112-124 (1997)

Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.: TAXYS: A tool for the
development and verification of real-time embedded systems. In: Berry, G., Comon, H., Finkel, A. (eds.)
Proceedings of Computer Aided Verification, volume 2102 of LNCS, pp. 391-395. Springer (2001)
Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Form.
Methods Syst. Des. 1(4), 385-415 (1992)

David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete spec-
ification theory for real-time systems. In: Proceedings of Hybrid Systems: Computation and Control
(HSCC’10), pp. 91-100. ACM (2010)

de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Proceedings of Embedded Software
(EMSOFT), volume 2491 of LNCS, pp. 108-122 (2002)

Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulability, decidability and undecidabil-
ity. Inf. Comput. 205(8), 1149-1172 (2007)

Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) Proceedings of
Formal Modeling and Analysis of Timed Systems (FORMATS’06), volume 4202 of LNCS, pp. 187-199.
Springer (2006)

Garcia, J.J.G., Gutierrez, J.C.P.,, Harbour, M.G.: Schedulability analysis of distributed hard real-time
systems with multiple-event synchronization. In: Proceedings of 12th Euromicro Conference on Real-
Time Systems, pp. 15-24. IEEE (2000)

Geilen, S., Tripakis, M., Wiggers, M.: The earlier the better: a theory of timed actor interfaces. In:
Caccamo, M., Frazzoli, E., Grosu, R. (eds.) Proceedings of Hybrid Systems: Computation and Control
(HSCC’11), pp. 23-32. ACM (2011)

Grabe, 1., Jaghoori, M.M., Klein, J., Kliippelholz, S., Stam, A., Baier, C., Blechmann, T., Aichernig, B.K.,
de Boer, E.S., Griesmayer, A., Johnsen, E.B., Kyas, M., Leister, W., Schlatte, R., Steffen, M., Tschirner,
S., Liang, X., Yi, W.: The credo methodology - (extended version). In: de Boer, F.S., Bonsangue, M.M.,
Hallerstede, S., Leuschel, M. (eds.) Proceedings of 8th Formal Methods for Components and Objects
(FMCO’09), volume 6286 of LNCS, pp. 41-69 (2009)

Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theor. Com-
put. Sci. 410(2-3), 202-220 (2009)

@ Springer

Compositional schedulability analysis of real-time actor... 377

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.
49.

50.

S1.

52.

53.

55.

56.

57.

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems.
Inf. Comput. 111(2), 193-244 (1994)

Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-time systems
using uppaal. In: Formal Methods and Testing, volume 4949 of LNCS, pp. 77-117 (2008)

Hewitt, C.: Procedural embedding of knowledge in planner. In: Proceedings of the 2nd International Joint
Conference on Artificial Intelligence, pp. 167-184 (1971)

Hewitt, C.: What is commitment? physical, organizational, and social (revised). In: Proceedings of Coor-
dination, Organizations, Institutions, and Norms in Agent Systems II, LNCS Series, pp. 293-307. Springer
(2007)

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for
networked sensors. In Proc. Arch. Support for Prog. Lang. and Operating Sys., pages 93—104, (2000)
Jaghoori, M.M.: Composing real-time concurrent objects—refinement, compatibility and schedulability.
In: Proceedings of Fundamentals of Software Engineering (FSEN’11), volume 7141 of LNCS, pp. 96-111.
Springer (2011)

Jaghoori, M.M.: From nonpreemptive to preemptive scheduling: from single-processor to multi-processor.
In: Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.-C. (eds.) Proceedings of ACM Symposium on Applied
Computing (SAC’11), pp. 717-722. ACM (2011)

Jaghoori, M.M., de Boer, E.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-time concur-
rent objects. J. Logic Alg. Prog. 78(5), 402-416 (2009)

Jaghoori, M.M., Hlynsson, O., Sirjani, M.: Networks of real-time actors. In: Arbab, F., Olveczky, PC.
(eds.) Formal Aspects of Component Software - 8th International Symposium (FACS’11), volume 7253
of LNCS, pp. 168—-186. Springer (2012)

Jaghoori, M.M., Longuet, D., de Boer, E.S., Chothia, T.: Schedulability and compatibility of real time
asynchronous objects. In: Proceedings of Real Time Systems Symposium, pp. 70-79. IEEE CS (2008)
Jard, C., Jéron, T., Morel, P.: Verification of test suites. In: International Conference on Testing Commu-
nicating Systems (TestCom 2000), pp. 3—18 (2000)

Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent objects. Softw.
Syst. Model. 6(1), 35-58 (2007)

Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a comparative analysis. In:
Proceedings of Principles and Practice of Progress in Java (PPPJ’09), pp. 11-20. ACM (2009)
Khoumsi, A., Jéron, T., Marchand, H.: Test cases generation for nondeterministic real-time systems. In:
Formal Approaches to Software Testing (FATES’03), volume 2931 of LNCS, pp. 131-146 (2004)
Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, application specific schedulers for heteroge-
neous real-time systems. In: Proceedings of Euromicro Conference on Real-Time Systems, pp. 287-294.
IEEE CS (2003)

Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Model Checking
Software, 11th International SPIN Workshop, volume 2989 of LNCS, pp. 109-126 (2004)

Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Methods Syst. Des. 34(3),
238-304 (2009)

Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Inf. Comput. 164(2), 322-344 (2001)
Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. (STTT)
1(1-2), 134-152 (1997)

Lee, E.A., Liu, X., Neuendorffer, S.: Classes and inheritance in actor-oriented design. ACM Trans. Embed-
ded Comput. Syst. 8(4), (2009)

Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded hardware and software
systems. J. Circuits Syst. Comput. 12(3), 231-260 (2003)

MacKenzie, K., Wolverson, N.: Camelot and grail: resource-aware functional programming for the jvm.
In: Trends in Functional Programming, pp. 29-46 (2003)

Meyer, B.: Eiffel: The Language. Prentice-Hall, New Jersey, 1992. (first printing: 1991)

Moreau, L., Queinnec, C.: Resource aware programming. ACM Trans. Program. Lang. Syst. 27(3), 441—
476 (2005)

Nielsen, B., Skou, A.: Automated test generation from timed automata. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’01), volume 2031 of LNCS, pp. 343-357 (2001)

Nigro, L., Pupo, F.: Schedulability analysis of real time actor systems using coloured petri nets. In:
Proceedings of Concurrent Object-Oriented Prog. and Petri Nets, volume 2001 of LNCS, pp. 493-513.
Springer (2001)

Nobakht, B., de Boer, E.S., Jaghoori, M.M., Schlatte, R.: Programming and deployment of active objects
with application-level scheduling. In: Proceedings of ACM Symposium on Applied Computing (SAC’12).
ACM (2012). To appear

@ Springer

378

M. M. Jaghoori et al.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Rajamani, S., Rehof, J.: A behavioral module system for the pi-calculus. In: Cousot, P. (ed.) Static Analysis
Symposium. LNCS, vol. 2126, pp. 375-394. Springer, Berlin (2001)

Reed, G., Roscoe, A.: The timed failures - stability model for CSP. Theor. Comput. Sci. 211(1-2), 85-127
(1999)

Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Formal Modeling and Analysis
of Timed Systems, volume 5215 of LNCS, pp. 250-264. Springer (2008)

Shin, I, Lee, I.: Compositional real-time scheduling framework with periodic model. ACM Trans. Embed.
Comput. Syst. 7, 30:1-30:39 (2008)

Simons, D.P.L., Stoelinga, M.: Mechanical verification of the IEEE 1394a root contention protocol using
Uppaal2k. Int. J. Softw. Tools Technol. Transf. (STTT) 3(4), 469-485 (2001)

Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In: Formal Modeling:
Actors, Open Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her
70th Birthday, volume 7000 of LNCS, pp. 20-56. Springer (2011)

Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Softw. Conc. Tools 17(3),
103-120 (1996)

Tripakis, S.: Verifying progress in timed systems. In: Katoen, J-P. (ed.) Formal Methods for Real-Time
and Probabilistic Systems. LNCS, vol. 1601, pp. 299-314. Springer, Berlin, Heidelberg (1999). doi:10.
1007/3-540-48778-6_18

Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Inf. Process.
Lett. 99, 222-226 (2006)

@ Springer

http://dx.doi.org/10.1007/3-540-48778-6_18
http://dx.doi.org/10.1007/3-540-48778-6_18

	Compositional schedulability analysis of real-time actor-based systems
	Abstract
	1 Introduction
	2 Preliminaries: timed automata
	3 Actors as real-time asynchronous concurrent objects
	3.1 A formal model of actors
	3.2 Modeling in Uppaal: a peer-to-peer case study
	3.2.1 Behavioral interfaces
	3.2.2 Broker and peer actors
	3.2.3 Modeling the scheduler

	4 Compositional schedulability analysis
	4.1 Individual actor analysis
	4.2 Compatibility check

	5 Counter-example oriented testing: compatibility check
	5.1 Generating a test case
	5.2 Properties of the generated test cases
	5.2.1 Soundness
	5.2.2 Exhaustiveness
	5.2.3 Rigidness

	5.3 Executing test cases in Uppaal
	5.4 Testing compatibility for the peer-to-peer system

	6 Related work
	7 Conclusions
	References

