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Distributed systems exhibit probabilistic and non-deterministic behaviors and may have 
time constraints. Probabilistic Timed Rebeca (PTRebeca) is introduced as a timed and 
probabilistic actor-based language for modeling distributed real-time systems with asyn-
chronous message passing. The semantics of PTRebeca is a Timed Markov Decision Process. 
In this paper, we provide SOS rules for PTRebeca, introduce a new tool-set and describe 
the corresponding mappings. The tool-set automatically generates a Markov Automaton 
from a PTRebeca model in the form of the input language of the Interactive Markov Chain 
Analyzer (IMCA). The IMCA can be used as a back-end model checker for performance 
analysis of PTRebeca models against expected reachability and probabilistic reachability 
properties. Comparing to the existing tool-set, proposed in the conference paper, we now 
have the ability of analyzing significantly larger models, and we also can add different 
rewards to the model. We show the applicability of our approach and efficiency of our tool 
by analyzing a Network on Chip architecture as a real-world case study.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Our modern society more and more relies on software systems that are distributed and consist of concurrently executing 
components which communicate asynchronously over networks. Modeling and analyzing these complex systems is a non-
trivial and intricate task. There is thus a need for modeling languages that match well with computational models of such 
systems, and are supported by tools for analyzing performance and dependability aspects of these systems.

A well-established paradigm for modeling the functional behavior of distributed and asynchronous systems is the actor 
model. Actor model is introduced by Hewitt as an agent-based language for programming distributed systems [1], and is 
later developed by Agha [2–4] into a concurrent object-based model. Actors are distributed, autonomous objects that interact 
via asynchronous message passing. Building on an event-driven and message-based foundation, actors provide scalability 
and are easy-to-grasp concurrency models. With the growth of cloud computing, web services, networks of embedded 
computers, and multicore architectures, programming using the actor model has become increasingly relevant.
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Popular actor programming languages and frameworks include Erlang [5] and the Scala/Akka family [6]. Many projects in 
industry, e.g. at Google (like DART) and Microsoft (like Asynchronous Agents Library), have explored the actor model. Large 
applications such as Twitter’s message queuing, image processing in MS Visual Studio 2010, as well as the Vendetta game 
engine [7] have been designed on the basis of this model.

Rebeca [8,9] is an actor-based modeling language designed to enable formal verification of actor models. It hence bridges 
the gap between formal methods and software engineering. Using Rebeca we can deploy a model-driven development 
approach with a formal basis. Rebeca is supported by formal verification tools and techniques which are based on the 
formal semantics of the language [10]. An extension of Rebeca [11] has been proposed to provide the ability of modeling 
and verification of distributed systems with real-time constraints. In this context, Floating Time Transition System (FTTS) 
is introduced to significantly reduce the state space generated when model checking Timed Rebeca (TRebeca) models [12]. 
Checks for absence of deadlock freedom and schedulability analysis of TRebeca models can be performed using FTTS.

Since its introduction, TRebeca has been used in different areas. Examples include the analysis of different routing algo-
rithms and scheduling policies in NoC (Network on Chip) designs [13,14], as well as schedulability analysis of distributed 
real-time sensor network applications [15], more specifically a real-time continuous sensing application for structural health 
monitoring in [16]. In analyzing the above mentioned applications, we observed the need for modeling probabilistic behav-
ior. In an earlier work, pRebeca has beem proposed as an extension of Rebeca to model probabilistic systems [17]. However, 
pRebeca does not support the timing features.

In [18], we proposed Probabilistic Timed Rebeca (PTRebeca) which benefits from and integrates modeling features of 
TRebeca and pRebeca, combining their respective syntax. This aims at enhancing our modeling ability in order to cover more 
properties, so as to support performance evaluation of probabilistic real-time actors. To keep the consistency, we designed 
the syntax of PTRebeca as a combination of TRebeca and pRebeca. Still, as to be expected, existing formal semantics and 
supporting tools are not directly applicable to PTRebeca. Consequently, Timed Markov Decision Processes (TMDP) are used 
as the semantics of PTRebeca, to support timing, probabilistic, and non-deterministic features. TMDP can be regarded as the 
discrete-time semantics of probabilistic timed automata (PTA) [19], or as variation of interactive probabilistic chains [20]. 
For performance evaluation of PTRebeca models we employ probabilistic model checking, for both functional verification 
and performance evaluation. The benefits of combining performance evaluation with functional verification is elaborated 
upon in [21].

This paper is an extended version of the paper presented at AVoCS conference [18]. In this paper, we provide Structural 
Operational Semantics (SOS rules) for the PTRebeca language in the style of Plotkin [22]. The tool developed in [18] uses 
PRISM [23] as a back-end model checker while in this paper we instead use the IMCA (Interactive Markov Chain Analyzer) 
tool [24]. In our conference paper [18], we mapped a PTRebeca model to a single, flat Markov Decision Process (MDP) 
module. This approach is consistent with the semantics of PTRebeca. But as the entire PTRebeca model is mapped into a 
single MDP module, the module becomes prohibitively large. As a consequence, the analysis time is very high. To overcome 
this problem, we used the explicit engine of PRISM which works with an intermediate transition matrix representation. This 
allows us to analyze larger models, but PRISM does not provide full support for this format. Therefore, we were only able 
to use it for the analysis of probabilistic reachability properties, but not for the expected reachability ones.

An alternative way, detailed in the present paper, maps each component (reactive object) in a PTRebeca model to a 
Probabilistic Timed Automaton (PTA). Then the parallel composition of PTA (of all components) represents the behavior of 
the PTRebeca model. We call this approach the parallel composition approach and we will show this approach in Section 4.3. 
In Section 4.3, we will also compare the parallel composition approach with TMDP semantics. We will demonstrate that the 
state space generated via the TMDP semantics (proposed in the conference paper) is much smaller than the state space 
generated from the parallel composition approach. So, although this way we can use the full power of PRISM the state 
space explosion problem occurs very quickly.

To deal with the restriction of the previous approaches, as explained above, we turned to the IMCA (Interactive Markov 
Chain Analyzer) model checker [24], and we used it as the back-end model checker for the analysis of PTRebeca mod-
els. IMCA accepts Markov Automata (MA) [25] and Interactive Markov Chain (IMC) [26] models. An MA-transition is either 
labelled with an action (probabilistic transition), or with a positive real number representing the rate of a negative exponen-
tial distribution (Markovian transition). An action (probabilistic) transition leads to a discrete probability distribution over 
states. MA can thus model action transitions as in labelled transition systems, probabilistic branching, as well as delays that 
are governed by exponential distributions [27].

In order to use IMCA as a back-end model checker, we need to convert the TMDP of an underlying PTRebeca model to 
its corresponding MA. There are two types of transitions in a TMDP: action (probabilistic) transition, leading to a discrete 
probability distribution over states, and delay transition, carrying a positive integer value. Probabilistic transitions in TMDP 
are mapped directly to probabilistic transitions in MA. For the transition rate in the MA, the inverse of the integer value of 
a delay transition in TMDP is considered as the rate of the corresponding transition in the MA. This conversion is proved to 
be correct for checking expectation properties, and not for time-bounded reachability property. Therefore, we can use our 
previously developed tools to generate the TMDP of our models automatically. The obtained TMDP is converted to its Markov 
Automaton which is then the input to IMCA. Using this approach, we are able to evaluate the performance of our models 
against probabilistic reachability, expected reward reachability, and expected time reachability properties. In Section 5, we 
mathematically prove that the values of expected time reachability in TMDP and its corresponding MA are identical.
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Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;

Msg Srv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }
Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | i f (e) { Stmt∗ } [else { Stmt∗ }]
Call ::= rebecName.methodName(〈e〉∗)

(a) Abstract Syntax of Rebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | i f (e) { Stmt∗ } [else { Stmt∗ }] | delay(v);
Call ::= rebecName.MethodName(〈e〉∗) [after(v)] [deadline(v)]

(b) Changes in the syntax of Rebeca to build TRebeca

Stmt ::= v = e; | v =?(e〈, e〉+); | Call; | i f (e) { Stmt∗ } [else { Stmt∗ }] |
delay(v); | v =?(ep : e〈,ep : e〉+);

(c) Changes in the syntax of TRebeca to build PTRebeca

Fig. 1. (a) Abstract syntax of Rebeca. Angle brackets 〈...〉 are used as meta parenthesis, superscript + for repetition at least once, superscript ∗ for repetition 
zero or more times, whereas using 〈...〉 with repetition denotes a comma separated list. Brackets [...] indicates that the text within the brackets is optional. 
The symbol ? shows non-deterministic choice. Identifiers className, rebecName, methodName, v , literal, and type denote class name, rebec name, method 
name, variable, literal, and type, respectively; and e denotes an (arithmetic, boolean or nondetermistic choice) expression. (b) Changes for Timed Rebeca. 
The timing primitives are added to Stmt and Call statements. The value of variable v in timing primitives is a natural number. (c) Changes for Probabilistic 
Timed Rebeca. The probabilistic assignment is added to Stmt. The expression epi denotes an expression which returns probability. The symbol ? shows 
either non-deterministic assignment or probabilistic assignment.

The main contributions of this paper in comparison with the conference paper are as follows:

• Semantics: We present the SOS semantics of PTRebeca language. This provides a formal presentation that is approach-
able for more researchers, and is the reference for any implementation effort.

• Analysis: We use Interactive Markov Chain Analyzer (IMCA) as a back-end model checker for PTRebeca, and we use 
probabilistic model checking algorithms developed for Markov Automata for the analysis of probabilistic timed proper-
ties. We are able to check probabilistic reachability, long-run average, expected reward reachability, and expected time 
reachability properties for PTRebeca models.

• Implementation: We use our tool developed in [18] to generate the TMDP of a PTRebeca models automatically. The 
generated TMDP is in the form of an XML file. The XML file is converted to the input language of IMCA.

• Case Study: We present an analysis of a Network on Chip (NoC) architecture to demonstrate the feasibility of our 
approach for a real-world case study.

2. Probabilistic Timed Rebeca

In this section, we introduce Probabilistic Timed Rebeca (PTRebeca). We first present Rebeca [8,9], and then we show its 
extension with timing features to build TRebeca [11]. Finally we discuss how probability and time are added to Rebeca to 
build PTRebeca, enabling the modeling of probabilistic timed behaviors. The syntax of PTRebeca is presented in Fig. 1. We 
model a simple ticket service example to explain the modeling features of PTRebeca.

Rebeca Rebeca is an actor-based modelling language with formal semantics that is supported by model checking tools. 
A Rebeca model consists of the definition of reactive classes and the instantiation part which is called main. The main part 
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Fig. 2. The PTRebeca model of the ticket service system.

defines instances of reactive classes, called rebecs. The behavior of the instances of a reactive class is determined by its 
message servers. The internal state of a reactive class is represented by the valuation of its state variables.

In Rebeca, computation is event-driven, where messages can be seen as events. Each rebec takes a message from its 
message queue and executes the corresponding message server. Execution of a message server body takes place atomically 
(non-preemptively). Communication takes place by asynchronous message passing, which is non-blocking for both sender 
and receiver. The sender rebec sends a message to the receiver rebec and continues its work. The message is put in the 
message queue of the receiver. The message stays in the queue until the receiver takes and serves it. Although in theory 
we define no boundary for the queue length, in the supporting tools we always have a queue length that is defined by the 
user. The operational semantics of Rebeca is introduced in [9], to which we refer for more details. The syntax of Rebeca is 
represented in Fig. 1.

Timed Rebeca TRebeca was introduced as an extension of the Rebeca language to model real-time reactive systems. Just as 
with Rebeca, the formal semantics of TRebeca is defined using Structural Operational Semantics (SOS) [11]. In a TRebeca 
model, each rebec has its own local time, which can be considered as synchronized distributed clocks. Methods are executed 
atomically, but passing of time can be modeled while executing a method. Instead of a message queue for each rebec, there 
exists a bag containing sent messages together with the timing information, which are used to process the message in the 
intended order in time. Different timing primitives are added to Rebeca syntax to cover a variety of timing features that a 
modeler might need to address in a message-based, asynchronous and distributed setting. These timing primitives are delay, 
deadline and after, and are detailed below. The syntax of timing primitives is shown in Fig. 1.
Delay: delay(t) increases the value of the local time of the respective rebec by the amount of t.
Deadline: r.m() deadline(t), after t units of time the message m of rebec r is not valid any more and is to be purged from 
the bag.
After: r.m() after(t), the message cannot be taken from the bag before t time units have passed.

Upon sending a message, it is put in the message bag of the receiver, together with its associated time tag and deadline
tag. The time tag of a message is the value of the local time of the sender when the message was sent, unless the message 
is augmented with an after primitive. In this case the value of the argument of after is added to the value of local time of 
the sender to build the time tag.

Probabilistic Timed Rebeca PTRebeca language supports modeling and verification of real-time systems with probabilistic 
behaviors. Syntax of PTRebeca is a combination of pRebeca and TRebeca. In Fig. 1, we show the extension made to the 
syntax of TRebeca to build PTRebeca [18]. In a probabilistic assignment, a value is assigned to the variable with the specified 
probability. In the probabilistic assignment, ep1 . . . epn are real values between 0 and 1, and sum up to 1. Notably, by using 
probabilistic assignments, the value of the timing constructs (delay, after, and deadline) can also become probabilistic.
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Different probabilistic behaviors can be modeled using PTRebeca language, depending on the system under study. We 
present a simple ticket service system in Fig. 2 to illustrate how PTRebeca can be applied. Each entity in the system is 
mapped to an actor in the PTRebeca model. The ticket service model includes a customer, a ticket service, and an agent. 
The customer c sends a ticket request by sending the message requestTicket() to the agent a (line 39). The agent 
forwards the request to the ticket service ts by sending the message requestTicket() (line 24). The message re-
questTicket() has a deadline which is set non-deterministically (line 23). The ticket service issues a ticket and replies 
to the agent request by sending the message ticketIssued() (line 13). The agent sends the message ticketIssued
to the customer to complete the issuing process (line 27). The customer sends a new request after 10 or 30 units of time 
with probabilities of 0.25 or 0.75, respectively (lines 42 and 43).

3. Structural operational semantics of PTRebeca

We present the TMDP of a PTRebeca model as a tuple (S, s0, Act, →, ⇒) where S is a set of states, s0 is the initial state, 
Act is a set of actions which consists of τ , signatures of all the messages, and N. The union of scheduler and msg-fetcher 
transitions is → (probabilistic transitions) and the set of time-progress transitions (delay transitions) is ⇒. Scheduler tran-
sitions, msg-fetcher transitions, and time-progress transitions are defined in the following paragraphs.

In this section we provide an SOS semantics for PTRebeca in the style of Plotkin [22]. The behavior of PTRebeca programs 
is described by means of transition relations that govern the step-by-step evolution of the system.

The states of the system are tuples (Env, B, T ), where Env is a finite set of environments, B is a bag of messages and 
T is a natural number that represents the current time of the system. For each rebec A of the system, Env contains an 
environment σA that is a function that maps variables to their values. Basically, σA is the private store of the rebec A. En-
vironments contain four special-purpose variables: self, which contains the name of the rebec, pc, which stands for program 
counter and contains the code that is currently being executed, rt, which stores the resume time of the rebec, and sender, 
which stores the name of the rebec that invoked the method that is currently being executed. Whenever a rebec A of a 
reactive class O is created, an environment σA is assumed to be initialized. In particular, the code of each message server 
m of O is loaded in σA(m) as a null-terminated list of statements.

The bag contains an unordered collection of messages of the form

(Ai,m(v), A j, T T , DL).

Intuitively, such a tuple says that at time T T the sender A j sent the message to the rebec Ai asking it to execute its method 
m with actual parameters v . Moreover this message expires at time DL.

We denote by Tmsg the set of all the possible messages. Given a message msg ∈ Tmsg, ar(msg) denotes the arrival time 
of the message msg, that is, T T in the tuple above. At each step, the system progresses thanks to one of three transition 
relations: τ→, 

msg→ with msg ∈ Tmsg, and n→ with n ∈N. Any of these transitions evolves a state (Env, B, T ) into a probability 
distribution pv that assigns probability values to states. For readability, we represent pv as a set of mappings, for instance 
the probability distribution {(Env, B, T ) �→ 1} maps the state (Env, B, T ) to probability 1. Whenever more cases need to be 
specified for pv , they will be embraced in a large bracket and the mappings involved in the distribution will be graphically 
clear. States that are not mentioned in pv are assumed to be mapped to probability 0.

As a convention, whenever we single out an element from a set, as in the sets σA ∪ Env and msg ∪ B , we will assume 
that σA 
∈ Env and msg 
∈ B . Moreover, we will use the notation σ [x = e] to denote the mapping σ where x is redefined in 
order to map x to e.

The transitions τ→, 
msg→ , n→, are formally defined by the following rules.

(scheduler)

σA(pc) = s s 
= null σA(rt) = T

(s, σA [pc = null], Env, B, T ) s−→ pv

({σA} ∪ Env, B, T )
τ→ pv

(msg-fetcher)

σAi (pc) = null T T ≤ T ≤ DL
σ ′

Ai
= σAi [pc = σAi (m), σAi (rt) = T , arg = v, sender = A j ]

msg = {(Ai , m(v), A j , T T , DL)}

({σAi } ∪ Env,msg ∪ B, T )
msg→ {({σ ′

Ai
} ∪ Env, B, T ) �→ 1}

(time-progress)

(Env, B, T ) τ
� (Env, B, T ) msg

�

n1 = minσ∈Env
{
σ(rt)

}
n2 = minmsg∈B

{
ar(msg)

}
T ′ = min{n1, n2} n = T ′ − T

(Env, B, T )
n→{(Env, B, T ′) �→ 1}
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The (scheduler) rule is responsible for picking a rebec and executing its pending statements. This rule choses a rebec 
non-deterministically among those for which the program counter still contains statements to execute (conditions σA (pc) =
s and s 
= null). Moreover, a rebec is eligible for being chosen only as long as its resume time coincides with the current 
time (condition σA(rt) = T ). Rebecs that have previously executed a delay statement might have a resume time ahead of 
the current time and in that case they would not be chosen. The execution of the statement is performed with the auxiliary 
transition relation s→, described later in detail. Such a transition is responsible for the execution of one statements from 
the list of statements s, the first one. It is to notice that the program counter is consumed immediately before the call to 
statement execution (indeed, the environment σA[pc = null] is passed). However, s might contain more than one statement 
and, moreover, statements such as if-then-else might imply the execution of further statements (one of the branches). As we 
will see later, these scenarios are taken care by the transition s−→. This transition will be responsible to feed the program 
counter back with the possible leftover statements to be executed.

In our semantics, the transition s→ returns the probability distribution pv for the next state of the system. The (scheduler)
rule simply uses pv for the transition. In order to let the system progress after a step, we implicitly assume picking a state 
of pv according to its probability.

The (msg-fetcher) rule allows the system to progress by picking up a message from the bag and initialize the rebec 
receiver of the message for the execution of such message. This rule is applicable for a rebec only as long as this latter is 
not in the phase of executing any other message (condition σAi (pc) = null). Moreover, the message can be picked only so 
long it is not too soon for fetching it nor too late (condition T T ≤ T ≤ DL). The rule prepare the rebec Ai for the execution 
of the message m in the following way.

• The method body of m is looked up from the environment of Ai and loaded in the program counter.
• The resume time for Ai is set to the current time of the system, stating that is to be executed immediately.
• The variable sender is set to the sender of the message.
• In executing the method m, the formal parameters arg are set to the values of the actual parameters v . Methods of 

arity k are indeed supposed to have arg1, arg2, . . . , argk as formal parameters. This is without loss of generality since 
such a change of variable names can be performed in a pre-processing step for any program.

The (time-progress) rule is responsible for letting time pass for some units of time. This happens when the system has no 
eligible statements of rebecs to execute and no eligible messages that can be picked from the bag (eligible w.r.t. the condi-
tions of rules (scheduler) and (msg-fetcher), respectively). In such a scenario, the system lets the time pass for the minumum 
amount of time necessary to enable the rebec whose resume time is the closest to the current time (minσ∈Env {σ(rt)}) or 
to enable the fetch of a message whose picking time is the closest to the current time (minmsg∈B {ar(msg)}).

Fig. 3 shows the SOS rules for the execution of statements in PTRebeca. The transition relation s−→ defines the execution 
of statements. The general form of this type of transition is (s, σ , Env, B, T ) s−→ pv , where s is a list of statements or a 
single statement1, σ is the local environment where to evaluate statements, and Env, B , and T are the components of 
the system state. The step evolves into a probability distribution pv . Carrying the global bag B is important because new 
messages may be added to it with the execution of a statement. The global set of environments Env is also required because 
new statements create new rebecs and may therefore add new environments to it. In the semantics, σ is separated from 
Env and passed as a parameter for the sake of clarity and also because nearly every rule needs to readily affect it. A few 
statements make use of the current time T which is therefore promoted as parameter as well.

For all rules with the exception of (prob), the result of the step s−→ first creates a new state that has a new environment, 
a new bag and the current time, then this state is injected into a probability distribution function where it has probability 1. 
The simple and non-deterministic assignment statements are handled by rules (assign) and (non-det), respectively, and it is 
easy to see that they follow the schema just depicted: their semantics coincides indeed with the standard one, modulo our 
injection to a probability distribution.

Rule (prob) handles the probabilistic assignment x =? p1 : e1 ⊕ p2 : e2 . . . ⊕ pn : en . In such a case, n states are created 
that differ only in the assignment to the variable x for the local environment being used. These states are injected into a 
probability distribution pv that maps them to the probabilities p1, p2, . . . , pn . The rules for the timing primitives deserve 
some explanation.

• Rule msg describes the effect of method invocation statements. For the sake of brevity, we limit ourselves to presenting 
the rule for method invocation statements that involve both the after and deadline keywords. The semantics of instances 
of that statement without those keywords can be handled as special cases of that rule by setting the argument of after
to zero and that of deadline to +∞, meaning that the message never expires. Method invocation statements put a new 
message in the bag, taking care of properly setting its fields. In particular the arrival time for the message is the current 
time T plus the number d that is the parameter of the after keyword.

• Delay statements change the resume time of the rebec to T + d, where d is the parameter of the delay keyword.

1 We overload s−→ for lists of statements in rule (stmts∗). We prefer this presentation rather than splitting s−→ into two relations or splitting the 
scheduler into two parts.
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(msg)
pv = (σ ∪ Env, {(σ (varname),m(eval(v, σ )),σ (self ), T + d, T + DL)} ∪ B, T ) �→ 1

(varname.m(v) after(d) deadline(DL),σ ,Env, B, T )
s−→ pv

(delay)
pv = (σ [rt = T + d] ∪ Env, B, T ) �→ 1

(delay(d),σ ,Env, B, T )
s−→ pv

(assign)
pv = (σ [x = eval(e, σ )] ∪ Env, B, T ) �→ 1

(x = e, σ ,Env, B, T )
s−→ pv

(non-det)
pv = (σ [x = eval(ei , σ )] ∪ Env, B, T ) �→ 1 (with 1 ≤ i ≤ n)

(x =? e1 ⊕ e2 . . . ⊕ en, σ ,Env, B, T )
s−→ pv

(prob)

pv =

⎧⎪⎨
⎪⎩

(σ [x = eval(e1, σ )] ∪ Env, B, T ) �→ p1
(σ [x = eval(e2, σ )] ∪ Env, B, T ) �→ p2

. . .

(σ [x = eval(en, σ )] ∪ Env, B, T ) �→ pn

(x =? p1 : e1 ⊕ p2 : e2 . . . ⊕ pn : en, σ ,Env, B, T )
s−→ pv

(create)

σA = initialEnviroment(O ) with A fresh in σ ∪ Env

pv =
(
σ [varname = A] ∪ {σA [self = A, pc = null]} ∪ Env,

{(A, initial(eval(v, σ)), σ(self )), T , +∞)} ∪ B, T
)

�→ 1

(varname = new O (v),σ ,Env, B, T )
s−→ pv

(cond1)
eval(e, σ ) = true pv = (σ [pc = s1]⋃ Env, B, T ) �→ 1

(if (e) then s1 else s2, σ ,Env, B, T )
s−→ pv

(cond2)
eval(e, σ ) = false pv = (σ [pc = s2]⋃Env, B, T ) �→ 1

(if (e) then s1 else s2, σ ,Env, B, T )
s−→ pv

(stmts∗)
(s1, σ ,Env, B, T )

τ ,n→ pv inject(rest, σ (self ),pv) = pv ′

(s1 :: rest, σ ,Env, B, T )
s−→ pv ′

where the function inject(rest,ref,pv) is defined below:

if pv =

⎧⎪⎨
⎪⎩

(σ ∪ Env1, B1, T ) �→ p1
(σ ∪ Env2, B2, T ) �→ p2

. . .

(σ ∪ Envn, Bn, T ) �→ pn

where σ(self ) = ref

then inject(rest,ref,pv) = 

⎧⎪⎨
⎪⎩

(σ [pc = σ(pc) :: rest] ∪ Env1, B1, T ) �→ p1
(σ [pc = σ(pc) :: rest] ∪ Env2, B2, T ) �→ p2

. . .

(σ [pc = σ(pc) :: rest] ∪ Envn, Bn, T ) �→ pn

we assume that the append operation :: is such that null :: rest = rest.

Fig. 3. SOS rules for the execution of statements of PTRebeca.

The creation of new rebecs is handled by the rule create. Whenever a rebec must be created out of the reactive class O , 
we first pick a fresh name A that it is used to identify the newly created rebec. The name A is assigned to the variable 
varname of the sender. We assume a function initialEnvironment(O ) that returns a new environment σA that is initialized 
depending on the specification of the rebec O , i.e. inspecting the body of the specification reactiveclass O  . . .. In particular, 
the code of each message server m of O is loaded in σA(m) as a null-terminated list of statements. Ultimately, a message is 
put in the bag in order to execute the initial method of the newly created rebec.

The reader should recall that the scheduler sets the program counter to null before executing a statement (passing 
σA[pc = null] in rule (scheduler)). The statements that we have described so far have no continuation and simply leave the 
pc variable set to null.
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A conditional statement if (e) then s1 else s2 is different in this respect because after evaluating the guard e the contin-
uation is either s1 or s2. Rules (cond1) and (cond2) handle the execution of conditional statements and they take care of 
setting pc to s1 or s2 according to the evaluation of e.

Another rule that affects the pc variable is (stmts∗). This rule handles the execution of the first statement of a list. After 
the first statement has been executed, it might return some continuation statements. We therefore need to put these latter 
statements in front, before evaluating the rest of the original list of statements (rest). However, the execution step s−→
returns a probability distribution. We therefore use an auxiliary function in order to inject these statements in all of the 
possible states of such distribution. Precisely, the function inject(rest,ref,pv) seeks for the private store of the rebec ref in 
each of the states of the distribution pv and queues the statements rest in the program counter of those private stores.

4. Performance analysis of PTRebeca models using PRISM

In [18], we presented the Afra tool-set in order to generate the TMDP corresponding to a PTRebeca model. The resulting 
TMDP can be considered as the integral semantics of a probabilistic time automaton with one digital clock. As shown in 
[19], probabilistic reachability and expected reachability properties can be analyzed for PTA with digital clocks. Therefore, 
we are able to analyze PTRebeca models against these two important performance measures.

To be able to implement PTA with digital clocks in PRISM, there are some restrictions in [19]. It does not allow atomic 
constraints of the form x > c or x < c (closed) or x − y ∼ c (diagonal free), where c ∈N, ∼∈ {≤, =, ≥}, x and y are different 
clocks. In this way, “digital clocks” engine of PRISM is used, and PTA modules are defined. In another way, we can consider 
MDP modules with integer-valued variables representing clocks in order to define PTA with digital clocks in PRISM. Using 
this approach, there is no need to satisfy the above restrictions. In an MDP module, variables can be compared together 
without any limitations.

In [19], the semantics of probabilistic timed automata is defined in terms of timed probabilistic systems, which show 
timed, non-deterministic, and probabilistic behaviors. They are a variant of Markov decision processes [28] and Segala’s 
probabilistic timed automata [29]. The syntax of probabilistic timed automata is defined as follows.

Definition 1 (Syntax of PTA). A probabilistic timed automaton is a tuple(L, ̄l, χ, 
∑

, I, prob) where: L is a finite set of locations 
including the initial location l̄; χ is a set of clocks; 

∑
is a finite set of events; the function I : L → Zones(χ) is the invariant 

condition; and the finite set prob ⊆ L × Zones(χ) × ∑×Dist(2χ × L) is the probabilistic edge relation. �
Let T ∈ {R, N} be the time domain of either the non-negative reals or naturals. A point v ∈ T

|χ | is referred to as a 
clock valuation. Let 0 ∈ T

|χ | be the clock valuation which assigns 0 to all clocks in χ . For any v ∈ T
|χ | and t ∈ T, the clock 

valuation v ⊕ t denotes the time increment of values in v by t . We use v[X := 0] to denote the clock valuation obtained from 
v by resetting all of the clocks in X ∈ χ to 0. Let Zones(χ) be the set of zones over χ , which are conjunctions of atomic 
constraints of the form x ∼ c for x ∈ χ , ∼∈ {≤, =, ≥}, and c ∈ N. The clock valuation v satisfies the zone ζ , written v |= ζ , 
if and only if ζ resolves to true after substituting each clock x ∈ χ with the corresponding clock value from v . A state of a 
probabilistic timed automaton is a pair (l, v) where l ∈ L and v ∈ T

|χ | are such that v |= I(l).

4.1. Problem statement

In this section we discuss two previously investigated approaches for modeling and verification of PTRebeca models in 
PRISM. We need an approach in which two features are preserved: First, the definition of rewards is possible to be able to 
verify expected reachability properties. Second, model checking of a large PTRebeca model should take a reasonable amount 
of time.

Standard PRISM input language In [19], the integral semantics of a probabilistic timed automaton is implemented in PRISM 
by using an MDP module and integer-valued variables representing clocks. Similarly, in [18] the TMDP semantics of a 
PTRebeca model is implemented in PRISM using one MDP module and an integer-valued variable for modeling passage of 
time. The MDP module is defined using the standard input language of PRISM. We define a specific action called time, and 
each transition of module corresponding to passage of time is labeled with this action. Using time action and the ability 
of assigning rewards to transitions in PRISM, we can analyze expected-time reachability and time-bounded probabilistic 
reachability properties. More generally, expected reachability and probabilistic reachability properties can be verified for 
PTRebeca models.

In [18], we examine different case studies with different sizes. When the PTRebeca model is small, like the ticket service 
example, the model checking is fast and takes a few seconds. When the model has a medium size, like the sensor network 
example, its corresponding MDP module includes many states and transitions and its analysis takes a few minutes. Obvi-
ously, model checking a large case study will take more time. To support this claim, in Section 6.3 we report the time and 
memory needed to evaluate different PTRebeca models with PRISM as the backend model checker. Although this approach 
supports the definition of rewards, model checking of large PTRebeca models takes a significant amount of time.
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Explicit engine of PRISM To tackle the problem mentioned above, instead of using the standard PRISM input language, we 
decided to use the possibility of constructing models in PRISM through direct specification of transition and state matrices. 
In [18], we used this method for the sensor network case study. We provided the corresponding MDP in the form of its 
transition and state matrices and input the matrices into PRISM for model checking. This method is faster than the previous 
one, but rewards are not supported and we can only evaluate probabilistic reachability properties.

To provide faster model checking and support rewards for PTRebeca models, we introduce the parallel composition 
approach for PTRebeca models which can be verified using PRISM. In this approach, rewards can be defined and so the 
evaluation of both expected reachability and probabilistic reachability properties is possible. In the following section, we 
first introduce the approach and then we have to investigate the efficiency of our approach for medium-size and large 
PTRebeca models in terms of the state space size.

4.2. Parallel composition approach for Probabilistic Timed Rebeca

Probabilistic timed automata (PTA) is one of the most widely used modeling languages for modeling of real-time proba-
bilistic systems. It is supported by the Modest toolset [30] and by PRISM. An alternative approach for performance analysis 
of a PTRebeca model is a component-wise mapping of the PTRebeca model to a number of PTA. The parallel composition 
of these modules (PTAs) represents the PTRebeca model. We optimized the mapping to achieve the smallest possible state 
space, similar to what we did for mapping from Timed Rebeca to timed automata in [12]. In the proposed mapping, each 
rebec is mapped into two timed automata, called rebec-behavior automaton and rebec-bag automaton. Additionally, one time 
automaton is defined to handle the behavior of after primitive for all rebecs, called after-handler automaton.

The rebec-behavior automaton models the behavior of a rebec according to the statements of its message servers and 
valuations of state variables. The state variables of each rebec are mapped into variables of its corresponding rebec-behavior
automaton and its statements are mapped to transitions of the automaton. The rebec-bag automaton handles the behavior of 
the message bag of each rebec using an internal buffer. The rebec-bag accepts messages which are sent to its corresponding 
rebec asynchronously, regardless of the state of the corresponding rebec-behavior automaton. The after-handler automaton 
handles the messages which should be delivered to rebec-bag automata in the future (messages which are sent by after
primitive). The after-handler automaton accepts messages and put them into its buffer until the release time of the messages 
arrives. When a message in buffer of after-handler is released, it is sent to its corresponding rebec-bag automaton. Each 
probabilistic timed automaton can be implemented in PRISM in the form of an MDP module with integer-valued variables 
representing digital clocks.

In Rebeca language and its extensions, the execution of message servers are atomic, making the coarse-grain execution 
of a Rebeca model possible [9]. The coarse-grain execution of message servers reduces the state space size significantly. 
We use the same approach in the TMDP semantics of a PTRebeca model to reach a smaller state space. In the parallel 
composition approach, we implemented coarse-grain execution by combining statements of different transitions; however, 
because of synchronization points among automata, there is a poor chance for combining statements. It is the main obstacle 
against using network of PTA as an ideal approach for PTRebeca models. Different automata need to be synchronized on 
different points: when a message is sent; when a message is taken from the message bag to start its execution; when a 
transition modeling a delay statement is reached; when it is the time for a sent message to be delivered to its receiver. The 
mapping from a PTRebeca model to PTA is discussed in more details in the following subsection.

4.2.1. Mapping from a PTRebeca model to PTA.
To show the mapping procedure, the PTRebeca model of Fig. 2 in Section 2 is considered and the resulting PTAs are 

explained. In these PTAs, the condition on a state should be satisfied on its outgoing transitions. It means that, the condition 
on a state can be considered as a guard for all the outgoing transitions. The transition guard is the same as the one in PTA, 
meaning that a transition can be enabled if its guard is satisfied. The mapping is not straightforward because in PTRebeca
message passing is asynchronous, while in PTA message passing occurs synchronously.

Rebec-behavior The rebec-behavior automaton models the behavior of a rebec according to the statements of its message 
servers and valuations of variables. To construct the rebec-behavior automaton of a rebec, a corresponding PTA is generated 
for each message server, and then PTAs (of message servers) are connected together in a way to describe the overall 
behavior of the rebec. Figs. 4, 5, and 6 show the rebec-behavior PTA for reactive classes of Customer, TicketService, and 
Agent, respectively.

Here, we explain the mapping of different statements and valuation of state variables.

• State variables: State variables are mapped to variables of the PTA.
• Ordinary Statements: The mapping for statements like conditionals, loops, assignments, etc., is straightforward.
• Non-deterministic Assignment: A non-deterministic statement is mapped to a number of states and transitions. The 

number of states depends on the number of different possible values for the variable. Line 23 of Fig. 2 is mapped to 
transitions from “S2” to “S5” and to “S6” in Fig. 6. The transitions are chosen non-deterministically.



A. Jafari et al. / Science of Computer Programming 128 (2016) 22–50 31
Fig. 4. The rebec-behavior PTA of Customer reactive class.

Fig. 5. The rebec-behavior PTA of TicketService reactive class.

Fig. 6. The rebec-behavior PTA of Agent reactive class.

• Probabilistic Assignment: In PTA, a probabilistic assignment statement is mapped to a number of states, each of them 
assigning a different value to the variable, and a probabilistic transition into the states. The mapping of line 42 of Fig. 2
is shown in Fig. 4 as the transitions from “S2” to “S4” and “S5”.

• Delay Statement: Delays are mapped by the use of one clock, a location and transition guards to PTA. Mapping for 
delay statement of line 12 of Fig. 2 is depicted in Fig. 5, specified as transitions from “S1” to “S3”. The required clock is 
extracted from pool of clocks using function selectClock.

• Sending Message Statement: In PTRebeca, each rebec has an internal clock, which shows the time elapsed since the 
creation of the rebec. This specifies an absolute model of time, which cannot be implemented in PTA, because it makes 
clock values to grow unboundedly. To solve the problem, for message sending, a clock is dedicated to the message. The 
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Fig. 7. PTA of rebec-bag for a rebec.

Fig. 8. PTA of After-handler.

clock of a message is used for checking its deadline and enabling time. The clock is returned to the pool, when the 
message is delivered to the rebec-behavior automaton for execution. For example, message sending of Line 24 of Fig. 2
is mapped to the transitions from “S1” to “S3”, and from “S3” to “S7” in Fig. 6.

Message sending is synchronized with either rebec-bag automaton or after-handler automaton. We use channel “send” 
if the message is sent immediately and channel “after” if the sent message has “after” value. Messages which are sent via 
send channel are directly put in the rebec-bag of their receivers. Messages which are sent via after channel are put in a 
buffer in after-handler automaton. A message will be delivered to the rebec-bag of the receiver when the value of the clock 
which is dedicated to the message reaches the value of “after”.

Rebec-bag The rebec-bag PTA always accept messages asynchronously, regardless of the state of the corresponding rebec-
behavior, and then delivers them, upon the rebec-behavior automaton’s request. The rebec-bag is responsible to handle 
activation time and deadlines of messages. As depicted in Fig. 7, rebec-bag PTA inserts the incoming messages of the owner 
rebec (transition from “S1” to “S3”), discards the messages with passed deadlines (self loop transition in “S1”), and extracts 
the messages from its buffer and delivers them (transition from “S1” to “S2”). Extracting the message from the buffer is 
done by shift function which is used as the update function of transition from “S2” to “S1”.

After-handler The after-handler probabilistic timed automaton always accepts message asynchronously and puts them in a 
buffer until its enabling time. Fig. 8 shows the PTA of after-handler. As depicted in Fig. 8, it inserts the incoming messages 
(transition from “S1” to “S2”) and extracts the messages from its buffer and delivers them if the clock of any of them reaches 
the value of its corresponding enable time, i.e. the value of its after (self loop transition of “S1”).

4.3. Comparison of parallel composition approach with TMDP semantics

In this section, we discuss which of the proposed analysis techniques is appropriate for performance analysis of PTRebeca 
models. In [12] we reported the size of the state space for timed semantics of Timed Rebeca and parallel composition 
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approach of Timed Rebeca. In the parallel composition approach, each rebec is converted to a timed automaton and parallel 
composition of timed automata represents the behavior of Timed Rebeca model. There, UPPAAL was used, a well-known 
model checker for timed systems, for the parallel composition of timed automata. We developed a tool to generate the state 
space based on timed semantics of Timed Rebeca.

Experimental results show that the parallel composition of timed automata generates too many states in comparison 
to timed semantics of Timed Rebeca. The main reason of this difference lies in the modeling of asynchronous message 
passing between actors using synchronous communication between timed automata. This increases the number of states. 
This problem is also mentioned in [31] on modeling distributed systems using timed automata. Additionally, the number of 
clocks grows linearly by the number of rebecs. When the number of clock increases, the state space grows exponentially. 
We have the same results for comparison of the parallel composition of PTAs and the TMDP semantics of a PTRebeca model. 
The parallel composition of PTAs generates too many states.

We explained the parallel composition approach in Section 4.2 without considering the details of implementation. We 
chose PRISM, a well-established model checker, for modeling PTAs and verifying probabilistic properties. Since the input 
language of PRISM is a state-based language and lacks array, conditional and loops statements, implementing these state-
ments in PTAs increases the number of generated states significantly. For example, implementation of rebec-queue PTA and 
related functions (like insert, shift, and discard shown in Fig. 7) adds many states to the corresponding PTA. So, the proposed 
approach becomes more complicated and creates a large state space.

Although the parallel composition approach supports the definition of rewards, it generates more states comparing to 
TMDP semantics of a PTRebeca model, and it cannot be the suitable approach for large PTRebeca models. In Section 5 and 
Section 6, we provide a new approach in which the TMDP model of a large case study is converted into one Markov au-
tomata. Then, the IMCA is used as the back-end model checker to analyze the PTRebeca model against expected reachability 
and probabilistic reachability properties.

5. Performance analysis of PTRebeca models using IMCA

As we concluded in Section 4.3, the parallel composition approach is not efficient for performance analysis of large 
PTRebeca models. To provide a practical approach, we convert the TMDP underlying a PTRebeca model to a Markov au-
tomaton (MA) [32] to be able to use the IMCA model checker for performance analysis of PTRebeca models. In this section, 
we mathematically prove that expectation properties are preserved by this conversion. The proofs are presented for mini-
mum expected time reachability and minimum expected reward reachability properties. Maximum values of expected time 
reachability and expected reward reachability can be proved similarly.

5.1. Preliminaries

Prior to our proof, we have to prepare the following definitions and notations for TMDP. We also define how a TMDP is 
converted to MA.

Definition 2 (Timed Markov decision process). A timed Markov decision process T = (S, s0, Act, ↪→, L) consists of a set S
of states, an initial state s0 ∈ S , a set Act of actions, a timed probabilistic, non-deterministic transition relation ↪→⊆
S × Act ×N × Dist(S) such that, for each state s ∈ S , there exists at least one tuple (s, a, d, μ) ∈↪→. �

The transitions in a TMDP are performed in two steps: given that the current state is s, the first step is a non-
deterministic selection of (s, act, d, μ) ∈↪→, where act denotes a possible action and d specifies the duration of the 
transition; in the second step, a probabilistic transition to state s′ is made with probability μ(s′). Function μ ∈ Dist(S)

denotes a discrete probability distribution.
We present the TMDP TM of a given PTRebeca model M as a tuple (S, s0, Act, →, ⇒) where S is a set of states, s0 is 

the initial state, Act is a set of actions which consists of τ , signatures of all the messages, and N. Considering Section 3, 
the union of scheduler and msg-fetcher transitions is → (probabilistic transitions) and the set of time-progress transitions 
(delay transitions) is ⇒.

In the TMDP of a PTRebeca model, because of the maximal progress assumption, probabilistic transitions have a higher 
priority than delay transitions in the execution as their execution time is zero. According to the maximal progress assump-
tion, transitions with execution time of zero, i.e. probabilistic transitions, must be executed before any time progress which 
is caused by the execution of delay transitions. Therefore, in states with enabled probabilistic transitions, delay transitions 
are disabled. Here, states with some enabled probabilistic transitions are called probabilistic states (PS) and states with 
delay transitions are called delay states (DS). For a given delay state s the value of its unique outgoing delay transition is 
shown by ds .

Definition 3 (Paths). A path in a TMDP is an infinite sequence π = s0
σ0,μ0,t0−−−−−→ s1

σ1,μ1,t1−−−−−→ · · · where si ∈ S , σi ∈ Act ∪ {⊥}, 
and ti ∈ N. In case of σi ∈ Act the value of ti is zero and it means that TMDP moves from si to si+1 using a probabilistic 
transition with the probability of μi = μ

si
σ (si+1). In case of σi = ⊥ the value of ti is larger than zero and TMDP moves from 
i
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si to si+1 after residing ti units of time with the probability of μi = 1. For any given t ∈ N>0, π@t denotes the sequence of 
all states that π occupies at time t , i.e. π@t specifies a path at time t . �

Due to the instantaneous probabilistic transitions, a TMDP may occupy various states at the same time instance. The time 
elapsed along the path π is computed by 

∑∞
i=0 ti . Path π is Zeno whenever this summation converges to a number and its 

corresponding TMDP has Zeno behavior. A TMDP has Zeno behavior if and only if it has a strongly connected component 
with only probabilistic transitions. In the rest of this paper we assume that TMDPs do not have Zeno behavior.

Definition 4 (Policies). Policies are used to resolve non-deterministic choices in states. To define a probability space, non-
determinism should be resolved. A policy is a measurable function (ranged over D) which provides for each finite path 
ending in state s, a probability distribution over the set of enabled transitions in s. A stationary deterministic policy is a 
special type of policy which always takes the same decision in a state s. �
Definition 5 (Stochastic Shortest Path (SSP) problem). A tuple (S, s0, G, Act, P, c, g) is a SSP problem (non-negative) such that 
(S, s0, Act, P) is a MDP, G ⊆ S is a set of goal states, c : S \ G ×Act →R≥0 is a cost function for non-goal states, g : G ×Act →
R≥0 is a cost function for goal states. �

As described in [33], the minimum expected cost reachability of one of the goals states in G from state s, shown by 
eRmin(s, �G), can be obtained by solving a linear programming (LP) problem. To compute the minimum expected cost 
reachability, we reduce the analysis of a TMDP to the analysis of a non-negative SSP problem to be able to use an LP 
problem.

In addition to the above definitions on TMDPs, we have to formally define MAs.

Definition 6 (A Markov Automaton). An MA is a transition system with two types of transitions, called probabilistic and 
Markovian transitions, shown by tuple (S ′, s′

0, Act′, →′, ⇒′). Here, S ′ is a set of states, s′
0 ∈ S ′ is an initial state, Act′ is 

a set of actions, →′ is set of probabilistic transitions, and ⇒′ is a set of Markovian transitions. Probabilistic transitions 
are instantaneous transitions which are defined as →′⊆ S ′ × Act′ × Distr(S ′) (where Distr(S ′) denote the set of discrete 
probability distribution functions over the countable set S ′) and Markovian transitions are defined as ⇒′⊆ S ′ × R≥0 × S ′
[32]. �

Here, transition (s′, α, μ) ∈ →′ is abbreviated to s′ α

→′ μ and (s′, λ, t′) ∈⇒′ by s′ λ

⇒′ t′ . An MA can evolve via its proba-

bilistic and Markovian transitions. In case of s′ α→′
μ, it leaves state s′ by executing action α and state t′ is its destination 

with the probability of μ(t′). Here, s′ is called a probabilistic state (PS). In case of s′ λ⇒′
t′ , state s′ is left after waiting for 

exponentially distributed units of time with rate λ and the target state is t′ . It means that the expected delay from s′ to t′
is 1/λ. Here, state s′ is called Markovian state (MS).

In the rest of this paper we used the primed version of alphabet and arrows to address MAs and the normal ones to 
address TMDPs.

Definition 7 (Conversion of the TMDP of PTRebeca model M). A given TMDP TM = (S, s0, Act, →, ⇒) is converted to MA AM =
(S ′, s′

0, Act′, →′, ⇒′) such that S = S ′ , s0 = s′
0, Act = Act′ , and →=→′ . In addition, (s, d, t) ∈⇒ implies that (s′, 1/d, t′) ∈⇒′ . 

In other words, TM and AM are the same except that the delay transitions in TM are converted to Markovian transitions 
in AM . In this conversion, if a given state s ∈ S is a delay state in TM , its corresponding state s′ ∈ S ′ is a Markovian state 
in AM , and if s is a probabilistic state in TM its corresponding state s′ is probabilistic state in AM . �
5.2. Expected time reachability in TMDP

Assume that for a given PTRebeca model M, its TMDP TM = (S, s0, Act, →, ⇒) is given and the set of goal states G ⊆ S
is defined. Here, we want to find the minimum expected time for reaching one of the states in G . So, we need to define a 
random variable on the time which is spent in paths from the start state to one of the goal states of G . Assume that random 
variable V G : Paths →N is this random variable. So, the minimum expected time reachability for a given state s ∈ S to one 
of the goal states is defined by

eT min(s,�G) = inf
D
Es,D(V G) = inf

D

∑
π∈Paths

V G(π) · Prs,D(π)

where D is a generic policy on M. To compute the value of eT min(s, �G) we have to reformulate the above equation into a 
linear equation system, as shown in the following theorem. Note that the proofs of theorems are depicted in the Appendix.
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Theorem 1. The function eT min is a fix point of the Bellman operator

[L(v)](s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ds + v(t) s ∈ D S \ G

min
a∈Act(s)

{∑
t∈S

μa(t) · v(t)

}
s ∈ P S \ G

0 s ∈ G

� (1)

The characterization of eT min(s, �G) in Theorem 1 allows us to reduce computing the minimum expected time reacha-
bility problem in a TMDP to the minimum expected time reachability in a non-negative SSP problem, denoted by sspet .

Definition 8 (SSP for minimum expected time reachability). The SSP of a given TMDP TM = (S, s0, Act, →, ⇒) for the expected 
time reachability to a set of goal states G ⊆ S is a tuple sspet(M) = (S, s0, Act ∪ {⊥}, G, c, g) where:

• S, s0, andAct in TMDP and sspet are the same,

• P(s, α, t) =

⎧⎪⎨
⎪⎩

1 s ∈ D S \ G

μs
α(t) s ∈ P S \ G

0 s ∈ G

,

• c(s, α) =
{

ds s ∈ D S \ G ∧ α = ⊥
0 otherwise

,

• g(s) = 0. �
As shown in [34], the minimum expected cost problem of a SSP has a unique fixed point; which enables us using 

standard solution techniques like value iteration and linear programming to compute the minimum expected cost of SSP. 
Using the reduction from TMDPs to SSP problems, we can use the same techniques as there is only one fixed point in 
TMDPs.

Theorem 2. For a TMDP TM the value of eT min(s, �G) equals to cRmin(s, �G) in sspet(M). �
This way, we showed how the minimum expected time reachability for a TMDP is computed. As we want to use the 

IMCA for computing the expected time reachability of the TMDP, we present the conversion of a TMDP to its corresponding 
MA (which can be analyzed by the IMCA). Then, we prove that expected time reachability in the TMDP and its conversion 
in the form of MA are equal.

As shown in [32] for a given Markov Automaton AM = (S ′, s′
0, Act′, →′, ⇒′) the following Bellman operator is used for 

finding the expected time reachability.

[L(v)](s′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

E(s′)
+

∑
t′∈S ′

P (s′, t′) · v(t′) s′ ∈ M S \ G ′

min
a∈Act(s′)

{∑
t′∈S ′

μa(t
′) · v(t′)

}
s′ ∈ P S \ G ′

0 s′ ∈ G ′

(2)

The TMDP conversion to its corresponding MA preserves the expected time reachability properties. As depicted in Equa-
tions (1) and (2), for a given state s ∈ S in TM where s is a probabilistic (or goal) state, its corresponding state s′ ∈ S ′
in AM is probabilistic (or goal) state, and the equations of finding [L(v)](s) is the same as [L(v)](s′). In the case of s is 
a delay state, based on the semantics of PTRebeca, delay states have only one outgoing delay transition. So, in its corre-
sponding state s′ in AM there is only one outgoing transition with the probability of one, results in changing the formula 
of computing the expected time reachability from 1

E(s′) + ∑
t′∈S ′ P (s′, t′) · v(t′) to 1

E(s′) + v(t′). As during conversion from 
TM to AM a delay value ds is changed to 1/ds , there is 1

E(s′) + v(t′) = ds + v(t). Here, we assumed that there are states 

t ∈ S and t′ ∈ S ′ such that s ds⇒ t and s′ 1/ds⇒′ t′ . In a nutshell, the minimum expected time reachability in all three cases of 
Equation (1) for state s is the same as the minimum expected time reachability in all three cases of Equation (2) for state s′ .

5.3. Expected reward reachability in TMDP

We want to compute expected reward reachability in TMPDs where the rewards are associated to delay states and 
probabilistic transitions. This is similar to what we did for computing expected time reachability in TMDPs. Assume that 
there are two functions ρ and r for accessing to the associated rewards to states and transitions respectively. For a given 
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state s function ρ(s) returns the reward which is associate to s. For a given transition from s to t with action α, function 
r(s, α) returns the reward which is associated to the transition.

Now, assume that TMDP TM = (S, s0, Act, →, ⇒) is given and the set of goal states is defined as G ⊆ S . Here, we want 
to find the minimum expected reward which is gained from each state s ∈ S to one of the states in G . So, we need to define 
a random variable on the total reward which is gained in paths from s to one of the goal states of G . Assume that random 
variable RG : Paths → N is this random variable. So, the minimum expected reward reachability from s to one of the goal 
states is defined by

eRmin(s,�G) = inf
D
Es,D(RG) = inf

D

∑
π∈Paths

RG(π) · Prs,D(π)

where D is a generic policy on M. To compute the value of eRmin(s, �G) we have to reformulate the above equation into 
a linear equation system, as shown in Theorem 3.

Theorem 3. The function eRmin is a fix point of the Bellman operator

[L(v)](s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ds × ρ(s) + v(t) s ∈ D S \ G

min
a∈Act(s)

{
r(s,a) +

∑
t

μa(t) · v(t)

}
s ∈ P S \ G

0 s ∈ G

(3)

The characterization of eRmin(s, �G) in Theorem 3 allows us to reduce computing the minimum expected reward reach-
ability problem in TMDPs to the minimum expected cost in non-negative SSP problems, shown by ssper .

Definition 9 (SSP for minimum expected reward reachability). The SSP of a given TMDP TM = (S, s0, Act, →, ⇒) for the ex-
pected reward reachability to a set of goal states G ⊆ S is a tuple ssper(M) = (S, s0, Act ∪ {⊥}, G, c, g) where:

• S, s0, andAct in TMDP and ssper are the same,

• P(s, α, t) =

⎧⎪⎨
⎪⎩

1 s ∈ D S \ G

μs
α(t) s ∈ P S \ G

0 s ∈ G

,

• c(s, α) =
{

r(s,α) s ∈ M S \ G

0 otherwise
,

• g(s) = ρ(s). �
As the problem is reduced to the minimum expected cost problem of a SSP, we conclude that there is only one fixed 

point in TMDPs as discussed before.

Theorem 4. For a TMDP TM the value of eRmin(s, �G) equals to cRmin(s, �G) in ssper(M). �
This way, we showed how the minimum expected reward reachability for a TMDP is computed. As we want to use the 

IMCA for computing the expected reward reachability of TMDPs, we present the conversion of a TMDP to its corresponding 
MA. Then, we prove that expected reward reachability in a TMDP and its conversion in the form of MA are equal.

A given TMDP TM = (S, s0, Act, →, ⇒) with reward functions ρ and r is converted to MA AM = (S ′, s′
0, Act′, →′, ⇒′)

with reward functions ρ ′ and r′ such that S = S ′ , s0 = s′
0, Act = Act′ , →=→′ , r(s, a) = r′(s′, a), and ρ(s) = ρ ′(s′). The 

properties of this conversion is the same as the properties of conversion which is described in Section 5.2.
As shown in [35] for a given Markov Automaton AM = (S ′, s′

0, Act′, →′, ⇒′) with reward functions ρ ′ and r′ the follow-
ing Bellman operator is used for finding the expected time reachability.

[L(v)](s′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ ′(s′)
E(s′)

+
∑
t′∈S ′

P (s′, t′) · v(t′) s′ ∈ M S \ G ′

min
a∈Act(s′)

{
r′(s′,a) +

∑
t′∈S ′

μa(t
′) · v(t′)

}
s′ ∈ P S \ G ′

0 s′ ∈ G ′

(4)

This conversion preserves the expected time reachability of states. As depicted in Equations (3) and (4), for a given state 
s ∈ S in TM where s is a probabilistic (or goal) state, its corresponding state s′ ∈ S ′ in AM is probabilistic (or goal) state, 
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Fig. 9. The architectural overview of the analyzer of PTRebeca models.

and the equations of finding [L(v)](s) is the same as [L(v)](s′). In the case of s is a delay state, based on the semantics 
of PTRebeca, delay states have only one outgoing delay transition. So, in its corresponding state s′ in AM there is only 
one outgoing transition with the probability of one, results in changing the formula of computing the expected reward 
reachability from ρ ′(s′)

E(s′) + ∑
t′∈S ′ P (s′, t′) · v(t′) to ρ ′(s′)

E(s′) + v(t′). As during conversion from TM to AM a delay value ds is 

changed to 1/ds , there is ρ ′(s′)
E(s′) + v(t′) = ds × ρ(s) + v(t). Here, we assumed that there are states t ∈ S and t′ ∈ S ′ such that 

s ds⇒ t and s′ 1/ds⇒′ t′ . In a nutshell, the minimum expected reward reachability in all three cases of Equation (3) for state s is 
the same as the minimum expected reward reachability in all three cases of Equation (4) for state s′ .

6. The toolset and case studies

To illustrate the applicability of the approach presented in this paper, we developed a toolset and analyzed two different 
case studies, which are accessible from Rebeca home page [36]. The architectural overview of the toolset is depicted in 
Fig. 9. As shown in the figure, Afra IDE serves as the front-end of the toolset and IMCA [24] is the back-end model checking 
engine of the toolset.

Using the Afra IDE, a number of C++ files are generated for a PTRebeca model. These C++ files are compiled and linked 
by g++ compiler, which results in an executable file. Running the executable file generates the TMDP of the model (i.e. the 
state space of the model). In the PTRebeca models, the size of message bags is bounded. The state space of a PTRebeca 
model is finite when the model shows a recurrent behavior. We used the time-shift equivalence approach, proposed in [12], 
to make the state space finite.

The TMDP-MA tool is developed to convert the TMDP of the model to the input language of IMCA model checker. To 
perform the conversion, the generated TMDP and the specification of the goal states of the model are input to TMDP-MA and 
one Markov automaton is generated. The obtained MA is imported to the IMCA for model checking.

Evaluation of the toolset IMCA provides algorithms for expected time and expected reward reachability analysis, long-run 
average analysis, time-bounded probabilistic reachability and probabilistic reachability analysis of Markov automata. Since 
IMCA is used as the backend model checker for PTRebeca models, we investigate which properties are preserved by the 
conversion (refer to Definition 7), and so can be evaluated by our developed toolset.

In Section 5, we proved that expected time reachability and expected reward reachability properties are preserved by the 
conversion. By using a dedicated time action in the TMDP (equivalently in its corresponding MA) and because of the ability 
of assigning rewards to the transitions in IMCA, expected reachability properties can be computed for a PTRebeca model. 
Therefore, our toolset can be used for the evaluation of expected reachability properties of PTRebeca models.

According to Definition 7, probabilistic transitions in the TMDP are directly converted to probabilistic transitions in the 
MA. Obviously, probabilistic reachability properties are preserved in this conversion, and so can be checked for PTRebeca 
models. The rate of a Markovian transition in the MA is estimated by the inverse of the integer value of a corresponding de-
lay transition in the TMDP. Because of this estimation, time-bounded probabilistic reachability properties are not preserved 
by the conversion. So, we are not able to evaluate this type of properties for PTRebeca models. We believe that long-run 
average properties are preserved by the conversion, but its mathematical proof remains as a future work.

In the following sections, we choose two case studies to cover the evaluation of two types of properties: expected 
reachability and probabilistic reachability. The probabilistic reachability property is checked for toxic gas sensing system, 
and the expected time reachability is calculated for network on chip case study. These case studies show the applicability 
of the toolset for the performance evaluation of systems.
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6.1. Performance analysis of a toxic gas sensing system

In the conference paper [18], we examined toxic gas sensing (named sensor network in the conference paper) case study 
and used PRISM as the back-end model checker. Here, we perform the experiments again and use IMCA for performance 
evaluation. We obtain the same results via PRISM and IMCA. The system consists of a lab environment in which the level 
of a toxic gas changes over time. There is one scientist in this lab. If the toxic gas level raises above a certain threshold, 
the scientist’s life is in danger. A sensor in the lab periodically measures the amount of toxicity in the air, and send the 
measurements to a central controller. The central controller periodically checks whether the scientist is in danger. If so, it 
notifies the scientist about the danger. The scientist should acknowledge the notification; if the scientist fails to do so in a 
timely manner, the central controller notifies a rescue team. When the team reaches the lab it notifies the controller that 
the scientist has been rescued. If the controller does not receive this notification, it means that the scientist has lost his life.

PTRebeca model The PTRebeca model of this system is shown in Fig. 10 and contains five different reactive classes: Envi-
ronment, Rescue, Controller, Sensor, and Scientist. The toxic level of the environment changes periodically by 
a probabilistic assignment of line 23. The sensor periodically measures the level of toxic gas by sending giveGas message 
to the environment (which is modeled in line 44). After sensing, the sensor reports the measured data to the controller. 
The sensor may fail to report the measured data as shown by the probabilistic assignment of line 46. Upon receiving the 
measured data from a sensor (in the report message server), the controller stores the value in sensorValue0 (line 82).

Periodically, in the checkSensors message server, the controller checks if the reported value is above the normal 
amount. In case of detecting high toxicity, the controller informs the scientist by sending abortPlan message (line 93), 
and checks the scientist’s acknowledgment after a specified amount of time (line 95). If the controller does not receive 
an ack message from the scientist, the rescue team is informed about the situation. If this process takes more than the 
value of scientistDeadline units of time, the scientist will die and this is modeled by sending a message die to the 
scientist by the environment. This message is scheduled immediately after changing the gas level to the dangerous level 
(line 25).

In this model, the network delay is assumed to be one time unit. In different experiments, we consider different values 
for the period in which the sensor measures the toxic level of the lab. The value ranges from 1 to 25. The period of the 
controller checking the sensor’s data is 5 time units.

Experimental results We study one property for this model which is “what is the probability of the death of the scien-
tist?”. Since the model includes non-deterministic behaviors, the model checker computes the maximum and the minimum 
probabilities over all paths in the generated state space.

Fig. 11(a) shows the maximum and the minimum probabilities of the scientist death when the value of variable checking-
Period of sensor changes. If the sensor checks the environment with a high frequency (i.e. the value of variable checkingPeriod
is low), the message server checkGasLevel is sent frequently (Line 49) which incurs frequently sending the message server 
doReport. So, the probability of sensor failure increases, resulting in high probability of the scientist death.

For example, when the sensor checks the environment once every unit of time, i.e. the value of checkingPeriod equals 
one (Line 49), the environment is checked five times before the first change in the environment. The first change in the 
environment occurs at time 5 as the value of variable changingPeriod equals 5 (Line 18). Therefore, the probability of sensor 
failure increases because of working a lot during time. When the sensor frequency is low, the environment changes cannot 
be detected on time; resulting in a high probability of the scientist death.

There is an optimum value for the variable checkingPeriod (i.e. sensor frequency) which is five according to the obtained 
results reported in Fig. 11(a) for the minimum probability of the scientist death. The value of variable scientistDeadline
equals 10. As the results show, the trend of changes in the value of the maximum probability of the scientist death is 
normal but at times 5, 10, 15, 20, and 25 it jumps to one. At these times because of concurrency between time related 
behaviors in the system, there is a scenario in which the dangerous level is reported too late to the administrator and the 
scientist will die. At these times, the execution sequence of the following messages is important and causes the special 
behavior: (1) checking the sensor value by the controller (it is repeated periodically after 5 units of time), (2) changing the 
toxic level of the environment to a dangerous level (period is 5 units of time), (3) checking the environment by the sensor 
(Fig. 11(a) shows the probability of the scientist death for different value of this period), and (4) sending a message die to 
the scientist (after 10 units of time) when the environment is dangerous.

In Fig. 11(b), the value of variable scientistDeadline equals 12; the scientist has more time to be saved before being killed 
by the toxic environment. The maximum probability of the scientist death is not equal to one at times 5, 10, 15, 20, and 25, 
but because of concurrency between time related behaviors, there is a scenario in which the dangerous level is reported too 
late and consequently the maximum probability of the scientist death increases. The same as the previous case, there is an 
optimum value for the variable checkingPeriod, i.e. sensor frequency, which is ten in this experiment.

6.2. Performance analysis of network on chip

Our second example is a model of a network on chip (NoC). NoC has emerged as a promising architecture paradigm 
for many-core systems. As complexity grows in NoCs, functional verification and performance evaluation in the early stages 
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Fig. 10. The model of toxic gas sensing system.
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Fig. 11. The maximum and minimum probabilities that the scientist eventually dies, when the sensor frequency changes.

of the design process are suggested as ways to reduce the fabrication cost. Globally Asynchronous Locally Synchronous 
(GALS) NoC [37] has gained many attentions in designing of such systems. As an example of a NoC, we model and analyze 
ASPIN (Asynchronous Scalable Packet switching Integrated Network), which is a fully asynchronous two-dimensional GALS 
NoC design using XY routing algorithm. Using this algorithm, packets can only move along X direction first, and then 
along Y direction to reach their destination. In ASPIN, packets are transferred through channels, using four-phase handshake 
communication protocol. The protocol uses two signals, namely Req and Ack to implement four-phase handshaking protocol. 
To transfer a packet, first, the sender sends a request by rising Req signal, and waits for an acknowledgment which is raising 
Ack from the receiver. All the signals return to zero after a successful communication. There are four adjacent routers to 
each router and also four internal buffer for storing the incoming packets of different neighbors.

The timed version of ASPIN was investigated in [13] using simulation and model checking. The Timed Rebeca language 
was used for modeling of ASPIN, and Afra tool-set [36] was applied to the model for estimating the maximum end-to-end 
latency through model checking. Here, we add faulty routers to ASPIN, and examine the model for different traffic patterns 
and faulty routers. In the PTRebeca model, all nodes are working correctly with probability one except a few of them which 
are specified in their constructors. For example, the node with Xid = 1 and Yid = 0 is supposed to be faulty (Line 15 of 
Fig. 12). A faulty node fails to forward received packets with a specified probability. The probabilistic version of the case 
study is similar to the timed version presented in [13]. The way we model channels, the topology of the communication, 
routing algorithm, buffer status, and communication protocol in the model is the same as in [13].

PTRebeca model The simplified version of PTRebeca model of ASPIN is shown in Fig. 12, which contains two different 
reactive classes: Manager and Router. The Manager does not exists in real NoCs. Here, it is used as the starter of the 
model. It sends init message to routers to ask them for generating packets. This way, different traffic patterns are created 
by modifying only Manager. The Router is the model of a router in an ASPIN. So, its definition contains four known rebecs 
which are its neighbor routers (line 7), its id in XY manner (Xid and Yid in line 8), its buffer variables which show that the 
buffer is enable or busy (line 10), a variable which shows that whether it works properly or not (line 11), and variables that 
show whether its neighbors are faulty or not (line 12). The communication channel functionalities among neighbors are 
modeled by message passing in Rebeca. Four-phase handshake protocol is modeled using three message servers: reqSend,
giveAck, and getAck. A router calls its reqSend message server to send a request to its neighbor. The XY-routing
algorithm is implemented inside reqSend (lines 25–56) and determines to which neighbor router the packet is sent. If the 
neighbor router is faulty, a dynamic XY-routing algorithm presented in [38] is used to reroute the packet. The congestion 
links are not considered in our algorithm. The packet is rerouted to an operative neighbor by calling function reRoute (e.g. 
line 31). In lines 40–46 of Fig. 12, the details of routing a packet with Xtarget > Xid and Y target > Y id is shown. If the 
packet must be sent to the router’s east neighbor and the east neighbor is not faulty (line 41), the function routeToEast
is called (line 42). In this function message giveAck is sent to the east neighbor and the internal state of the sender router 
is changed. The giveAck message server first checks the address of the destination of the newly received packet. If the 
address is the same as the current router, then the packet is consumed (line 85). Otherwise, if the router’s buffer is not 
full (line 75), the packet will be stored and an acknowledgment is sent to the sender router by calling its getAck message 
server (line 80). If the incoming buffer of the neighbor is full (line 73), the router must wait for some amount of time and 
try sending later, which is modeled by sending to itself (line 74).

To model the behavior of router buffers, we use the rebec’s queue to store all packets received by a router and only keep 
track of the length of north, south, east and west buffers to have buffer status at all time. The variable bufSize specifies 
the buffer size in each direction of routers. In the experiments, bufSize equals two (Line 1). Each router has an array
bufNum which keeps the number of sent packets in each direction for which their ack signals haven’t been received yet. 
When a message is sent to a direction, the number of sent messages to that direction is increase by one (Line 76). When an
ack signal is received from a direction, the number of sent messages to that direction is decreased by one. The complete 
PTRebeca model of ASPIN is accessible from Rebeca home page [36].
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Fig. 12. The model of ASPIN network.
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Fig. 13. The 4 × 4 ASPIN model: The traffic in experiment 1.

Fig. 14. Experiment 1: the min/max expected latency for different scenarios.

Experimental results We performed three experiments in a 4 × 4 ASPIN model. In each experiment we consider differ-
ent scenarios each of which including different faulty nodes to measure the end-to-end latency. The traffic pattern of all 
scenarios of each experiment is identical. In the following we explain each experiment and the obtained results in more 
details.

In all experiments, the minimum and maximum expected latencies of packet (1) are reported. The expected latency 
shows the needed time for delivery of packet (1) to its destination. The minimum and maximum probabilities of reaching 
packet (1) to its destination are equal to one for all scenarios. In other words, there is no scenario in which packet (1) does 
not reach to its destination.

As shown in Fig. 13, in the first experiment, packet (1) is sent from R00 to R23 and there is no other packet in the 
network. In scenario 1, router R10 is faulty. In scenario 2, routers R10 and R11 are faulty, and in scenario 3, routers R10, 
R11 and R12 are faulty. The results are presented in Fig. 14, where the minimum expected latency is the same as the 
maximum expected latency for all scenarios. Scenario 3 has the highest expected latency since there are more faulty routers 
and the packet is rerouted more times in comparison to other scenarios. Also, scenario 1 has the least expected latency as 
there are less faulty nodes in the network.

In the second experiment as shown in Fig. 15, router R10 generates packet (2) as soon as it receives packet (1), thus 
packet (2) may cause disruption to packet (1). On the other hand, R02 produces packet (3) in a way that it reaches R22 at 
the same time as packet (1), so packet (1) may be delayed by packet (3) too. In scenario 1, router R10 is faulty. In scenario 2, 
routers R10 and R11 are faulty, and in scenario 3 routers R10, R11 and R12 are faulty. The results are presented in Fig. 16. 
Scenario 3 has the highest and scenario 1 has the least expected latency. The reason is the same as the one explained for 
the first experiment.

In the third experiment, packet (1) is disrupted by packet (2), and packet (2) is itself disrupted because of congestion in 
R21. On the other hand, congestion in R23 leads packet (5) to be blocked until packet (4) leaves the input port of R22. This 
may results in disruption of packet (1) by packet (5), if they reach R32 at the same time (Fig. 17). In scenario 1, router R10 
is faulty. In scenario 2, routers R10 and R11 are faulty. The results are presented in Fig. 18. In contrast to experiments 1 
and 2, increasing the probability of fault decreases the maximum expected latency. The reason is that rerouting packet (1) 
from the normal path (i.e. R00 → R10 · · · → R30 → R31 · · · → R33) to an alternative path (i.e. R00 → R01 → R02 →
R12 · · · → R32 → R33 in case of in scenario 2), avoids the congestion caused by packets (3), (5), and (7). So, the total 
latency decreases.
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Fig. 15. The 4 × 4 ASPIN model: The traffic in experiment 2.

Fig. 16. Experiment 2: the expected latency for different scenarios.

Fig. 17. The 4 × 4 ASPIN model: The traffic in experiment 3.

Fig. 18. Experiment 3: the expected latency for different scenarios.
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Table 1
The time and memory needed to evaluate different case studies with PRISM-based and IMCA-based approaches. NA means not available.

Problem #states #trans Using PRISM Using IMCA

time (sec) memory time (sec) memory

NoC Exp 1-Scenario 1 84 109 23.52 NA 0.000711 ∼12.945 KB
Exp 1-Scenario 2 484 909 167.392 + 0.02 NA 0.017655 ∼79.07 KB
Exp 1-Scenario 3 507 666 307.439 + 0.03 NA 0.02387 ∼77.172 KB
Exp 2-Scenario 1 342 379 161.835 + 0.03 NA 0.033238 ∼51.187 KB
Exp 2-Scenario 2 2184 3045 1031.11 + 0.17 (∼17 min) NA 0.509681 ∼337.226 KB
Exp 2-Scenario 3 5220 9922 2955.611 + 0.94 (∼49 min) NA 1.768932 ∼857.344 KB
Exp 3-Scenario 1 10032 15915 3228.434 + 0.94 (∼54 min) NA 10.631929 ∼1.561 MB
Exp 3-Scenario 2 43290 71106 crashed NA 136.916137 ∼4.842 MB

Toxic Gas 
Sensing System

1 sensor 506 1170 222.787 + 0.01 NA 0.032514 ∼87.383 KB

6.3. Comparing PRISM-based and IMCA-based approaches

In this section we investigate the time and memory necessary to run experiments using the two approaches based on 
PRISM and IMCA. Table 1 presents the results for different case studies with different sizes. The experiments of PRISM-based 
approach are run on a laptop with Windows 7, 4 GB RAM, and Intel Core i5-2430M CPU @2.4 GHz. To run the experiments of 
IMCA-based approach, Ubuntu 12.04.5 LTS is installed on the same laptop, but RAM is restricted to 1 GB. In the PRISM-based 
approach, the TMDP of a PTRebeca model is input to PRISM as a single MDP module. The MDP module is defined using the 
standard PRISM input language. The IMCA-based approach was explained at the beginning of this section.

As Table 1 shows, two numbers are reported for time when using the PRISM-based approach. The first one is the time 
needed via PRISM to construct the model, and the second one is the computation time to model check the model. The time 
for model construction is considerable, and this makes the approach inefficient even for small case studies like scenario 1 
of experiment 2 in NoC case study (refer to Exp 2-Scenario 1 in Table 1). In the IMCA-based approach, the Markov 
automaton of a PTRebeca model is input using a state-based language. So, the time for model construction is negligible, 
and the approach is efficient for large PTRebeca models like scenario 2 of experiment 3 in NoC case study (refer to Exp 
3-Scenario 2 in Table 1). PRISM crashed when trying to construct the model for Exp 3-Scenario 2. The needed 
memory for model checking is not reported by PRISM, so it’s not available to be compared with the IMCA-based approach.

7. Related work

IMCA IMCA is a powerful model checker for analyzing interactive Markov chains (IMCs) and Markov automata (MA). IMCA 
has a state-based input language and lacks high-level programming constructs. Expected time and long-run average ob-
jectives, time-bounded probabilistic reachability and probabilistic reachability properties are supported for MA and IMC 
models [24,27].

In contrast to IMCA, PTRebeca provides high-level programming constructs and primary data structures, which makes 
modeling easier. In modeling we use the capabilities of PTRebeca, and in analysis we use IMCA for the evaluation of prob-
abilistic timed properties. The semantics of PTRebeca is defined in TMDP. To be able to use IMCA, the TMDP of a PTRebeca 
model is converted to a Markov automaton. This conversion preserves all the above mentioned objectives except time-
bounded reachability.

UPPAAL SMC In [39], authors introduce UPPAAL SMC in which systems are represented via networks of automata. In UPPAAL 
SMC, each component of the system is modeled with an automaton whose clocks can evolve with various rates. To provide 
efficient analysis of probabilistic properties, statistical model checking is used as a technique for fully stochastic models. The 
work supports modeling and performance analysis of systems with continuous time behaviors and dynamical features.

PTRebeca has a Java-like syntax which makes the language easy to use for practitioners. In PTRebeca time is discrete 
and discrete probability distributions are used to model probabilistic behaviors. In this work, we use the stochastic model 
checking algorithms for performance evaluation of systems via the IMCA model checker.

PRISM PRISM is a well-established and powerful model checker with a state-based input language. An input model of 
PRISM is composed of a number of modules which can share variables and interact with each other. PRISM is well equipped 
with theories and reduction techniques [23], but lacks high-level programming constructs like loops, and primary data 
structures like arrays, which makes modeling hard.

In contrast, PTRebeca provides high-level object-based programming features and asynchronous message passing, which 
makes modeling easier. In modeling we benefit from capabilities of PTRebeca, and in analysis we use the capabilities of 
the PRISM and the IMCA model checkers. As we showed earlier, using IMCA, we are able to model check larger PTRebeca 
models comparing to PRISM as the backend model checker.
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Modest Modest [30] is a high-level and convenient language for describing stochastic timed and hybrid systems. It supports 
loop constructs, structs and arrays, exception handling, and other advanced programming constructs. It also supports various 
model checking approaches. For the probabilistic timed fragment of Modest, model checking can be performed using a 
digital time semantics [40] or by a direct mapping to probabilistic timed automata. Both approaches use PRISM as a backend 
model checker.

In contrast to Modest, PTRebeca supports object-based programming features, and follows the asynchronous message 
passing paradigm of actors, while Modest relies on synchronous message passing. In the conference paper we used PRISM 
for the analysis of systems, which is similar to Modest with respect to the analysis. In this work IMCA is used to overcome 
the problem of time-consuming model checking of large PTRebeca models.

ProbMela ProbMela is a probabilistic version of Promela [41]. The operational semantics of ProbMela is defined as an MDP 
[42]. In [43], ProbMela is used as input language for the MDP model checker LiQuor which provides qualitative and quanti-
tative analysis of LTL properties. There is also a mapping from ProbMela to the PRISM language, which makes probabilistic 
analysis possible [44].

PTRebeca is an event-driven and actor-based language whereas ProbMela is process-based. Both languages are asyn-
chronous in spirit. We proposed a semantics of PTRebeca as TMDP (or PTA with digital clocks), enabling the analysis of 
timing and probabilistic behaviors of asynchronous systems via PRISM. In this work, the TMDP obtained from a PTRebeca 
model is converted to a Markov automaton and the IMCA model checker can be used for the performance evaluation anal-
ysis.

PMaude PMaude extends standard rewriting theories of Maude with probability [45]. There is an actor extension of proba-
bilistic rewriting theories for PMaude which removes non-determinism. A statistical technique is provided to analyze quan-
titative aspects of systems using discrete-event simulation. In comparison with PMaude, modeling asynchronous systems is 
more straightforward in PTRebeca language as it is an actor-based language. Also PTRebeca supports non-determinism in 
the model and there is no need to resolve it by assuming distribution on different choices of non-determinism. It is because 
of the probabilistic model checking facilities which are provided by PRISM and IMCA.

Actor languages Some work has been done on the development of actor frameworks based on familiar languages such 
as C/C++, Smalltalk, Python, Ruby, .NET and Java. To mention a few examples, Scala Actors library [6], Kilim [46], and 
ActorFoundry [47] are Java implementations of the actor model. More examples of actor frameworks for the above languages 
can be found in [48].

Comparing to the above actor-based programming languages, we are using a model-driven development approach in 
PTRebeca language. We can start with small models and use model checking and simulation to find possible correctness 
problems in our core algorithms, and also find how to improve the performance by changing some parameters while the 
code is still small, understandable, and easily manageable.

PCreol Creol is an object-oriented modeling language based on concurrent objects, communicating by asynchronous mes-
sage passing [49]. PCreol is the probabilistic extension of Creol, oriented towards quantitative analysis [50]. PCreol is 
integrated with VeStA [51] which enables the statistical model checking and quantitative analysis of PCreol models. Using 
VeStA, the full state-space exploration is replaced by Monte Carlo simulation, controlled by means of statistical hypothesis 
testing.

To have more accurate results, probabilistic model checking is provided for PTRebeca models via PRISM and IMCA model 
checkers, which allows functional correctness and performance evaluation of PTRebeca models. Both languages are similar 
with respect to asynchronous message passing among concurrent objects.

Summary In PMaude, probability distribution functions (rates and stochastic functions) are provided for modeling proba-
bilistic behaviors. Also, PMaude implements stochastic continuous-time. In ProbMela, probabilities are drawn from discrete 
probability distributions, and passage of time can be modeled using a timer process. Modest enables a direct high-level 
modelling of PTA and more complex models. In all aforementioned languages, non-deterministic behavior can be modeled. 
In analysis, PMaude resolves non-determinism, and uses statistical model checking to verify properties which results in in-
accurate results. In the analysis of ProbMela and Modest, non-determinism is not resolved. Modest also provides the option 
of a digital clock semantics, which, just like we did in the conference paper, is handed over to PRISM for model checking.

Our focus in designing PTRebeca has been on ease of modeling and efficiency of analysis mainly for asynchronous ap-
plications. To this end, we use discrete time model and discrete probability distributions. These decisions showed to be 
effective in modeling different applications that we have targeted. Moreover, resolving non-determinism by a discrete prob-
ability distribution generates inaccurate estimations, so, we avoided that by choosing TMDP as the semantics of PTRebeca. 
We were able to formalize the advance of time in our model using a single integer-valued variable. The language design of 
PTRebeca and its analysis approach when using PRISM, is closest to the Modest approach, apart from the latter not being 
object-oriented and not being asynchronous by design.

We also converted the TMDP resulted from a PTRebeca model to a Markov automaton. This way, we are able to use the 
IMCA model checker for large PTRebeca models. In Markov automata delays are governed by exponential distributions while 
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in PTRebeca time is discrete. In the conversion, the rate in a Markovian transition of the Markov automaton is approximated 
by the integer value of the corresponding delay transition in the TMDP. To ensure the approximations are correct, we 
mathematically proved that expectation properties are preserved by this conversion.

8. Conclusion

In this paper we introduced the syntax and semantics of Probabilistic Timed Rebeca (PTRebeca) for modeling and veri-
fication of probabilistic real-time actor systems. Semantics of PTRebeca is presented in SOS rules. As the model of time in 
PTRebeca is discrete, we decided to use discrete-time MDP with an integer-valued time variable for the semantics of PTRe-
beca. PTRebeca models can thus be analyzed against PCTL, expected reachability, and probabilistic reachability properties.

In the conference paper [18], we used PRISM as the back-end model checker for performance evaluation of PTRebeca 
models. As the TMDP of a PTRebeca model is input as one MDP module to PRISM, only small models like ticket service 
can be input via PRISM input language. To support the modeling of larger PTRebeca models, we used the explicit engine 
of PRISM which works with an intermediate transition matrix representation. Using this method, we could analyze larger 
models like sensor network, but PRISM does not support all the features for this format. So, we could analyze models only 
against probabilistic reachability properties. To overcome this shortage, in this paper we examined parallel composition 
approach in which each PTRebeca component is converted to a probabilistic timed automaton. The parallel composition of 
all PTAs represent the model behavior. The resulting PTA can be input to PRISM for performance analysis. We showed that 
this approach creates larger state space comparing to the TMDP semantics. So, it is not efficient for performance analysis of 
PTRebeca models.

To provide probabilistic reachability and expected reachability properties for larger models, we proposed an approach 
in which the TMDP of a PTRebeca model is converted to one Markov automaton. The MA is input to IMCA model checker 
for performance evaluation. We developed a toolset for automatic mapping of the TMDP to one MA. We examined two 
case studies to show the applicability of our approach. The toxic gas sensing system, called sensor network previously, was 
examined in the conference paper using explicit engine of PRISM. Here, we obtained the identical results via mapping the 
TMDP to one MA and using IMCA model checker, but in less amount of time. We also modeled a case study of NoC network 
using PTRebeca, and evaluated the expected time properties by using the developed toolset.

In addition to the benefits of using TMDP semantics for analysis of PTRebeca models, our technique is based on the actor 
model of computation where the interaction is solely based on asynchronous message passing between the components. 
Hence, the proposed semantics is general enough to be applied to similar computation models where there is message-
driven communication and autonomous objects as units of concurrency, and there exists discrete probabilistic behaviors in 
the model such as agent-based systems.
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Appendix A. Proof of Theorem 1

We show that

L(eT min(s,�G)) = eT min(s,�G) (A.1)

for all s ∈ S . To this aim, we distinguish three cases which are s ∈ D S \ G , s ∈ P S \ G , and s ∈ G .

• in case of s ∈ D S \ G , the left-hand side of (A.1) is:

L(eT min(s,�G)) = ds + eT min(t,�G), (A.2)

where ds is delay time reaching state t from state s. This delay time is deterministic. On the other hand,

eT min(t,�G) = inf
D
Et,D(V G) = inf

D

∑
Paths

V G(π) · Prt,D(π) (A.3)

Combining (A.2) and (A.3), we have

L(eT min(s,�G)) = ds + inf
D

∑
Paths

V G(π) · Prt,D(π)

= inf
D

∑
Paths

(V G(π) + ds) · Prt,D(π)

= inf
D

∑
Paths

(V G(π)) · Prs,D(π)

= eT min(s,�G) (A.4)
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Note that in (A.4), in the second line, paths, start from t , whereas, in the third line, paths start from s.
• in case of s ∈ P S \ G there is:

eT min(s,�G) = inf
D
Es,D(V G) = inf

D

∑
Paths

V G(π) · Prs,D(π)

= inf
D

∑
s

α,μ,0−−−→ t

D(s)(α) ·E
t,D(s

α,μ,0−−−→ ·)
(V G)

= inf
D

min
s

α→μs
α

∑
t∈S

μs
α(t) ·E

t,D(s
α,μ,0−−−→ ·)

(V G)

= min
s

α→μs
α

inf
D

∑
t∈S

μs
α(t) ·E

t,D(s
α,μ,0−−−→ ·)

(V G)

= min
s

α→μs
α

inf
D

∑
t∈S

μs
α(t) ·Et,D(V G)

= min
s

α→μs
α

∑
t∈S

μs
α(t) · eT min(s,�G)

= min
α∈Act(s)

∑
t∈S

μs
α(t) · eT min(s,�G)

= L(eT min(s,�G))

• in case of s ∈ G , based on the definition there is eT min(s, �G) = inf
D

∑
Paths

V G(π) · Prs,D(π) = 0, which is the same as the 

value of the Bellman operator for goal states.

Appendix B. Proof of Theorem 2

From [33], cRmin(s, �G) is the unique fixpoint of the bellman operator L′ defined as

[L′(v)](s) = min
α∈Act(s)

⎧⎨
⎩c(s,α) +

∑
s′∈S\G

P(s,α, s′).v(s′) +
∑
s′∈G

P(s,α, s′).g(s′)

⎫⎬
⎭ . (B.1)

Now we show that the Bellman operator L defined in Theorem 1, and the Bellman operator L′ defined in (B.1) for sspet(M)

are the same. By Definition 8, for each s ∈ S , g(s) = 0, therefore

[L′(v)](s) = min
α∈Act(s)

⎧⎨
⎩c(s,α) +

∑
s′∈S\G

P(s,α, s′).v(s′)

⎫⎬
⎭ . (B.2)

Consider three cases, s ∈ D S \ G , s ∈ P S \ G and s ∈ G .

• Case (I): Assume s ∈ D S \ G , by Definition 8, c(s, α) = ds and

P(s,α, s′) =
{

1 s′is reaching state from s by delay ds and α = ⊥,

0 otherwise

Only action belongs to Act(s) is ⊥, furthermore only state after s is state s′ , thus, from (B.2),

[L′(v)](s) = min
α∈Act(s)

⎧⎨
⎩c(s,α) +

∑
s′∈S\G

P(s,α, s′).v(s′)

⎫⎬
⎭ = ds + v(s′),

where s′ is deterministic reaching state from s by delay time ds . However from Theorem 1, ds + v(s′) = [L(v)](s), for 
each s ∈ D S \ G , so in this case, theorem is proved.

• Case (II): Assume s ∈ P S \ G . By Definition 8, P(s, α, s′) = μs
α(s′) and c(s, α) = 0. Therefore,

[L′(v)](s) = min
α∈Act(s)

{
c(s,α) +

∑
′

P(s,α, s′).v(s′)
}

= min

{∑
′

μs
α(s′).v(s′)

}

s ∈S s ∈S
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However in this case

[L(v)](s) = min

{∑
s′∈S

μs
α(s′).v(s′)

}
,

Therefore [L′(v)](s) = [L(v)](s), and the proof of the theorem in this case is complete.
• Case (III): Assume s ∈ G . Here in addition to g(s) = 0, we have c(s, α) = 0, for each action α, and P(s, α, s′) = 0, for each 

α ∈ Act(s) and s′ ∈ S . Therefore

[L′(v)](s) = min
α∈Act(s)

⎧⎨
⎩c(s,α) +

∑
s′∈S\G

P(s,α, s′).v(s′)

⎫⎬
⎭ = 0 = [L(v)](s).

Now the proof is complete.

Appendix C. Proof of Theorem 3

We show that

L(eRmin(s,�G)) = eRmin(s,�G) (C.1)

for all s ∈ S . To this aim, we distinguish three cases which are s ∈ D S \ G , s ∈ P S \ G , and s ∈ G .

• in case of s ∈ D S \ G , the left-hand side of (C.1) is:

L(eRmin(s,�G)) = ρ(s) × ds + eRmin(t,�G), (C.2)

where ρ(s) is the reward of staying in s. This reward is deterministic. On the other hand,

eRmin(t,�G) = inf
D
Et,D(RG) = inf

D

∑
Paths

RG(π) · Prt,D(π) (C.3)

Combining (C.2) and (C.3), we have

L(eRmin(s,�G)) = ρ(s) × ds + inf
D

∑
Paths

RG(π) · Prt,D(π)

= inf
D

∑
Paths

(RG(π) + ρ(s) × ds) · Prt,D(π)

= inf
D

∑
Paths

(RG(π)) · Prs,D(π)

= eRmin(s,�G) (C.4)

Note that in (C.4), in the second line, paths, start from t , whereas, in the third line, paths start from s.
• in case of s ∈ P S \ G there is:

eRmin(s,�G) = inf
D
Es,D(RG) = inf

D

∑
Paths

RG(π) · Prs,D(π)

= inf
D

∑
s

α,μ,0−−−→ t

D(s)(α) ·E
t,D(s

α,μ,0−−−→ ·)
(RG) + r(s,α)

= inf
D

min
s

α→μs
α

∑
t∈S

μs
α(t) ·E

t,D(s
α,μ,0−−−→ ·)

(RG) + r(s,α)

= inf
D

min
s

α→μs
α

r(s,α) +
∑
t∈S

μs
α(t) ·E

t,D(s
α,μ,0−−−→ ·)

(RG)

= min
s

α→μs
α

inf
D

r(s,α) +
∑
t∈S

μs
α(t) ·E

t,D(s
α,μ,0−−−→ ·)

(RG)

= min
s

α→μs
α

inf
D

r(s,α) +
∑
t∈S

μs
α(t) ·Et,D(RG)

= min
s

α→μs
r(s,α) +

∑
μs

α(t) · eRmin(s,�G)
α t∈S
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= min
α∈Act(s)

r(s,α) +
∑
t∈S

μs
α(t) · eRmin(s,�G)

= L(eRmin(s,�G))

• in case of s ∈ G , based on the definition there is eRmin(s, �G) = inf
D

∑
Paths

RG(π) · Prs,D(π) = 0, which is the same as the 

value of the Bellman operator for goal states.
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