
An Interval-Based Algebra for
Restricted Event Detection

Jan Carlson and Björn Lisper

Department of Computer Science and Engineering
Mälardalen University, Sweden

jan.carlson@mdh.se bjorn.lisper@mdh.se

Abstract. In this article, we propose an interval based algebra for de-
tection of complex events. The algebra includes a strong restriction policy
in order to comply with the resource requirements of embedded or real-
time applications. We prove a set of algebraic properties to justify the
novel restriction policy and to establish the relation between the unre-
stricted algebra and the restricted version. Finally, we present an efficient
algorithm that implements the proposed algebra.

1 Introduction

A wide range of applications, including active databases, traffic monitoring sys-
tems and rule based embedded systems, are based on the detection of events
that trigger an appropriate response from the system. Events can be simple,
e.g., sampled directly from the environment or occuring within the system, but
it is often necessary to react to more sophisticated situations involving a number
of simpler events that occur in accordance with some pattern.

A standard way in which to allow systems to react to sophisticated situations
is to introduce complex events by means of an event algebra. These complex
events can then be used to trigger actions just like simple events. A benefit of
this method is that the mechanisms handling event detection are separated from
the rest of the system logic.

Since our primary interest concerns embedded applications and systems with
strict timeliness requirements, it is essential that the event detection can be
implemented with limited resources. As a result, the algebra must be restricted
so as to only detect a subset of all possible occurrences of complex events. This
can be achieved by applying a suitable restriction policy, as will be described in
the next section.

A great many event algebras have been proposed for different applications.
Most of them include operators such as disjunction, sequence, conjunction and
some form of negation, but the semantics of these operators vary. Further, many
systems add to these some operators of their own. Restriction policies are typi-
cally informally defined and little effort spent determining the algebraic proper-
ties of the algebra.

We propose an interval based event algebra with well-defined formal seman-
tics, and with a restriction policy strong enough to make it effectively imple-
mentable. We also state a number of algebraic properties, including a clear de-
scription of the relation between the unrestricted algebra and the restricted
version. Finally, we present an efficient algorithm that implements the proposed
algebra.

The rest of this paper is organised as follows: Section 2 introduces techniques
commonly used in event algebras and presents related work. The algebra is
defined in Section 3, followed by a presentation of the algebraic properties in
Section 4. Section 5 presents the algorithm, and Section 6 concludes the paper.

2 Event Algebras

The following operations, or variants of them, are found in most event algebras.
Disjunction of A and B means that either of A and B occurs, here denoted A∨B.
Conjunction means that both events have occurred, possibly not simultaneously,
and is denoted A + B. The negation, denoted A − B, occurs when there is an
occurrence of A during which there is no occurrence of B. Finally, a sequence of
A and B is an occurrence of A followed by an occurrence of B, and is denoted
A;B.

Examples of how event algebras are used in the area of active datebases
include SAMOS [5], Snoop [3] and Ode [6]. These three systems differ primarily
in the choice of detection mechanism. SAMOS is based on Petri nets, while Snoop
uses event graphs. In Ode, event definitions are equivalent to regular expressions
and can be detected by state automata.

A formalized schema for this type of event detection, including a definition
of the operations and restriction policies of Snoop using this schema, has been
defined by Mellin and Andler [10]. Liu et al. uses Real Time Logic to define
the semantics of an event detection system. As a result, the conditions for event
occurrences can be transformed into timing constraints and handled by general
timing constraint monitoring techniques [9].

The event algebra developed by Hinze and Voisard is designed to suite event
notification service systems in general [7]. Their algebra contains time restricted
sequence and conjunction, which permits events like A occurs less than t time
units before B to be expressed.

In the area of knowledge representation, similar techniques are used to reason
about event occurrences. Interval Calculus introduce formalised concepts for
properties, actions and events, where events are expressed in terms of conditions
for their occurrence [2]. Event Calculus [8] also deals with the occurrences of
events, but, as in the Interval Calculus, the motivation is slightly different from
ours. Rather than detecting complex events as they occur, the focus of Event
Calculus is the inferences that can be made from the fact that certain events
have occurred.

2.1 Restricted Detection

A very straightforward definition of the sequence operator is that the sequence
A;B should occur whenever A occurs and then B occurs. Using this definition,
three occurrences of A followed by two occurrences of B would generate six
occurrences of the sequence. While this may be acceptable, or even desirable,
in some applications, the memory requirements (each occurrence of A must be
remembered forever) and the increasing number of simultaneous events means
that it is unsuitable in many cases. Also, it is argued that many applications are
interested only in a subset of the instances that are generated by this definition.

One way to deal with this is to define the event algebra in two steps. The
operations are defined in an unrestricted, straightforward way like in our example
above. Then a restriction policy is defined. This acts like a filter, so that only
a subset of the occurrences allowed by the unrestricted definition are detected.
For example, the restriction policy could state that only the latest occurrence of
A are allowed to create an occurrence of A;B when B occurs.

This type of restriction based methods are for example used by Snoop [3] and
in the algebra proposed by Hinze and Voisard [7]. Zimmer and Unland present
a formal restriction framework in which the event algebras of Snoop, SAMOS
and Ode are compared [11].

2.2 Interval-Based Event Detection

Single point detection means that every complex event, including those that
occur during a time interval, is associated with a single time point (the time of
detection, i.e, the end of the occurrence interval). Galton and Augusto [4] showed
that this results in unintended semantics for some operation compositions.

For example, using single point detection an instance of the event A; (B;C)
is detected if B occurs first, and then A followed by C. The reason is that these
occurrences cause a detection of B;C which is associated with the occurrence
time of C. Since A occurs before this time point, an occurrence of A; (B;C) is
detected.

This problem can be solved by associating the occurrence of a complex event
with the occurrence interval, rather than the time of detection. In this setting,
the sequence A;B can be defined to occur only if the intervals of A and B are
non-overlapping. In our example, no occurrence of A; (B;C) would be detected,
since A occurs within the interval associated with the occurrence of B;C.

Most event algebras, especially in the area of active databases, use single
point detection. An interval based version of Snoop has been developed by
Adaikkalavan and Chakravarthy [1], and the work by Mellin and Andler is also
based on intervals [10].

3 The Event Algebra

The system is assumed to have a pre-defined set of primitive events that it should
be able to react to. These events can be external (sampled from the environment

or originating from another system) or internal (such as the violation of a con-
dition over the system state, or a timeout), but the detection mechanism does
not distinguish between these categories.

We assume occurrences of primitive events to be instantaneous and atomic,
and allow occurrences to carry values. This value could for example identify
at which external device the event occurred, or be some measured value from
the environment. The values are not manipulated in any way by the detection
mechanism, but simply forwarded to the part of the system that reacts to the
detected events. An occurrence of a primitive event is represented by the tuple
〈υ, τ〉, where υ is the value (υ belongs to some arbitrary domain of values), and τ
is the time of the occurrence. We assume a discrete time modelled by the natural
numbers.

3.1 Basic Concepts

From the simple events, represented by a set I of identifiers, expressions repre-
senting complex events can be constructed as follows.

Definition 1. Given a set I of identifiers we define:

– If A ∈ I, then A is an event expression.
– If A and B are event expressions, so are A ∨B, A + B, A−B and A;B.

The complex event expressions in the definition represent disjunction, conjunc-
tion, negation and sequence, respectively.

Definition 2. An event instance is a set of value-time tuples. A primitive event
instance is a singleton set. For an event instance a, we define:

start(a)= Min〈υ,τ〉∈a (τ)
end(a) = Max〈υ,τ〉∈a (τ)

From the definition follows that for any primitive event instance a, start(a) =
end(a). Non-primitive event instances are considered to occur throughout an
interval from the earliest of the included primitive event instances, to the latest
one.

All instances of a particular event form an event stream. The semantics of the
algebra, presented below, associates with each event expression a corresponding
event stream.

Definition 3. An event stream is a set of event instances. An event stream A is
said to be non-simultaneous if all instances have different end times. A primitive
event stream is a non-simultaneous event stream containing only primitive event
instances.

3.2 Unrestricted Semantics

Definition 4. For an event stream S and an event instance a, define empty(S, a)
to hold iff there is no s ∈ S such that start(a) ≤ start(s) and end(s) ≤ end(a).

The following four functions over event streams form the core of the algebra
semantics, as they define the basic characteristics of the four operations.

Definition 5. For event streams S and T , define:

dissem(S, T) = S ∪ T
consem(S, T) = {s ∪ t | s ∈ S ∧ t ∈ T}
negsem(S, T) = {s | s ∈ S ∧ empty(T, s)}
seqsem(S, T) = {s ∪ t | s ∈ S ∧ t ∈ T ∧ end(s) < start(t)}

Definition 6. An interpretation is a function that maps each identifier in I to
a primitive event stream.

Definition 7. The unrestricted meaning of an event expression for a given in-
terpretation S is defined as follows:

[A]S = S(A) if A ∈ I
[A ∨B]S = dissem([A]S , [B]S)
[A + B]S = consem([A]S , [B]S)
[A−B]S = negsem([A]S , [B]S)
[A;B]S = seqsem([A]S , [B]S)

To simplify the presentation, we will use the notation [A] instead of [A]S when-
ever the choice of S is obvious or arbitrary.

3.3 Restricted Semantics

As discussed in the introduction, due to efficiency considerations we have to
restrict the detection to a subset of the instances defined by the unrestricted
semantics. As a first step, we remove simultaneous instances of an event stream
(i.e., instances a and a′ of the same event stream with end(a) = end(a′)). In
order not to lose the desired algebraic properties, this filtering must be done
carefully.

Definition 8. Let remsim be any function over event streams such that the
following holds. For an event stream S, remsim(S) is a minimal subset of S such
that for any element s ∈ S there is an element s′ ∈ remsim(S) with start(s) ≤
start(s′) and end(s) = end(s′).

Informally, from a number of instances with the same end time, we keep only
one with maximal start time. Using discrete time ensures that such a function
exists.

For all operations except sequence, this restriction is enough to allow an
efficient implementation (negation does not need any restriction at all). For

sequence, however, we also have to deal with the problem that in the unrestricted
version, each occurrence of the first argument is used over and over again in
combination with all subsequent instances of the second argument. This means
that every instance of the first argument must be stored throughout the system
lifetime, thus precluding an implementation with limited resources.

Definition 9. Let restrict be any function over event streams such that the
following holds. For an event stream S, restrict(S) is a minimal subset of S
such that for any element s ∈ S there is an element s′ ∈ restrict(S) with
start(s) ≤ start(s′) and end(s′) ≤ end(s).

Informally, when detecting a sequence A;B, an instance of A can only be com-
bined with the earliest possible instance of B. Similarly, an instance of B can
only be combined with the latest possible instance of A. This is similar, but not
equivalent, to the recent context of Snoop.

Definition 10. The restricted meaning of an event expression for a given in-
terpretation S is:

[[A]]S = S(A) if A ∈ I
[[A ∨B]]S = remsim(dissem([[A]]S , [[B]]S))
[[A + B]]S = remsim(consem([[A]]S , [[B]]S))
[[A−B]]S = negsem([[A]]S , [[B]]S)
[[A;B]]S = restrict(seqsem([[A]]S , [[B]]S))

As in the unrestricted version, we will use the notation [[A]] instead of [[A]]S

whenever the choice of S is obvious or arbitrary.

Example 1. To illustrate the difference between the unrestricted and the re-
stricted semantics, these tables show the event instances of A and B (which we
assume to be primitive, so [A] = [[A]] and [B] = [[B]]), together with the corre-
sponding instances of the complex events A+B and A;B, using both unrestricted
and restricted semantics.

Expression Instances

[A]

[B]

[A + B]

[[A + B]]

Expression Instances

[A]

[B]

[A;B]

[[A;B]]

4 Algebraic Properties

A main concern regarding the restriction policy has been to ensure that the
restricted algebra should comply with the algebraic laws that intuitively should

hold for an event algebra. Disjunction and sequence should be associative, con-
junction should be distributive over disjunction, etc. This is not the only re-
quirement, however, since it would be trivially satisfied by a restriction policy
that simply filters away all instances. The restriction policy should remove as
few instances as possible, while still ensuring the desired algebraic properties
and allowing an implementation with bounded resources. More specifically, we
want a theoretical description of the relation between the unrestricted semantics
and the restricted version.

The following theorem justifies the proposed restriction policy. The subset
result is not trivial, since with a different restriction policy [[B]] ⊂ [B] could
easily mean that [[A − B]] ⊃ [A − B]. The second statement ensures that our
restriction policy does not remove too much. Every removed instance leaves some
trace in the restricted version, as the interval between the start and end time of
the removed instance must be non-empty.

Theorem 1. For any event expression A, the following holds:

i) [[A]] ⊆ [A]
ii) a ∈ [A] ⇒ ∃a′∈[[A]] (start(a) ≤ start(a′) ∧ end(a′) ≤ end(a))

Proof. We prove the theorem by structural induction over expressions. As a
base case, both statements hold trivially for any primitive event expression since
[[A]] = [A] when A ∈ I. For the inductive case, assume that both statements
hold for event expressions A1 and A2. From Definition 5, and the fact that
restrict(P) ⊆ P and remsim(S) ⊆ S, it follows that statement i) holds for
A1 ∨A2, A1 + A2 and A1;A2.

In order to show that statement i) holds for negation, take an arbitrary a ∈
[[A1−A2]]. Then a ∈ [[A1]] and empty([[A2]], a). By assumption i), this means that
a ∈ [A1] and assumption ii) implies empty([A2], a). Thus, a ∈ negsem([A1], [A2]),
so a ∈ [A1 −A2] which means that we have [[A1 −A2]] ⊆ [A1 −A2].

Continuing the inductive case with statement ii), we consider first the case
of sequence. We take an arbitrary a ∈ [A1;A2] which implies a = a1 ∪ a2 where
a1 ∈ [A1] and a2 ∈ [A2] with end(a1) < start(a2). By assumption ii), there are
instances a′1 ∈ [[A1]] and a′2 ∈ [[A2]] such that start(ai) ≤ start(a′i) and end(a′i) ≤
end(ai) for i ∈ {1, 2} and thus a′1 ∪ a′2 ∈ seqsem([[A1]], [[A2]]). Then, by the defi-
nition of restrict, there must be some element a′ ∈ restrict(seqsem([[A1]], [[A2]]))
with start(a′1) ≤ start(a′) and end(a′) ≤ end(a′2). So, we have found an in-
stance a′ ∈ [[A1;A2]] for which start(a) = start(a1) ≤ start(a′1) ≤ start(a′) and
end(a′) ≤ end(a′2) ≤ end(a2) = end(a).

For negation, we take an arbitrary a ∈ [A1 − A2]. This implies a ∈ [A1]
and empty([A2], a), which by assumption i) means that empty([[A2]], a). By as-
sumption ii), there is an instance a′ ∈ [[A1]] with start(a) ≤ start(a′) and
end(a′) ≤ end(a). We have empty([[A2]], a′), and thus a′ ∈ negsem([[A1]], [[A2]]).
So, we have found an instance a′ ∈ [[A1−A2]] for which start(a) ≤ start(a′) and
end(a′) ≤ end(a).

The proofs for disjunction and conjunction are similar to the cases above, and
have been left out due to space limitations. Together, this proves by induction
that both statements hold for any event expression A. ut

In order to reason about algebraic properties like associativity, etc. we must
define a relaxed concept of equivalence. As a result of the restriction policy, the
two sets [[A; (B;C)]] and [[(A;B);C]] are not necessarily equal. However, we can
show that for every instance of [[A; (B;C)]] there is an instance of [[(A;B);C]]
with the same start- and end time, and vice versa. This means, for example, that
in systems where events are used to trigger response actions, the two expressions
would trigger actions at the same time (although possibly with different values).
This time based notion of equality is formalised as follows.

Definition 11. For event instances a and b, event streams S and T , and event
expressions A and B, define:

a ∼= b iff start(a) = start(b) and end(a) = end(b)
S ∼= T iff {〈start(a), end(a)〉 | a ∈ S} = {〈start(b), end(b)〉 | b ∈ T}
A ∼= B iff [[A]] ∼= [[B]]

Trivially, ∼= in an equivalence relation. Moreover, we will show that it satisfies
the substitutive condition, and hence defines structural congruence over event
expressions. For the proof, we need the following lemma.

Lemma 1. For event streams such that S ∼= S′ and T ∼= T ′, we have:

dissem(S, T) ∼= dissem(S′, T ′) negsem(S, T) ∼= negsem(S′, T ′)
consem(S, T) ∼= consem(S′, T ′) remsim(S) ∼= remsim(S′)
seqsem(S, T) ∼= seqsem(S′, T ′) restrict(S) ∼= restrict(S′)

Proof. The four equivalences regarding dissem, consem, etc. follow trivially from
the fact that Definition 5 only considers start and end times. For the remsim
equivalence, take an arbitrary a ∈ remsim(S). Then a ∈ S so there is an a′ ∈ S′

with a ∼= a′. The definition of remsim implies that there is some b ∈ remsim(S′)
such that start(a′) ≤ start(b) and end(b) = end(a′). In the same way, there
is a corresponding element b′ ∈ S such that b ∼= b′ so there is some element
c ∈ remsim(S) with start(b′) ≤ start(c) and end(c) = end(b′).

We have two elements a and c in remsim(S) with start(a) ≤ start(c) and
end(a) = end(c). Assuming a 6= c, the set remsim(S)−{a}meets the requirement
in the definition of remsim, contradicting the minimality. Hence, we must have
a = c, which implies start(a) = start(b). So, for an arbitrary a ∈ remsim(S) we
have found a b ∈ remsim(S′) with a ∼= b, and hence remsim(S) ∼= remsim(S′).

The proof of the restrict equivalence is very similar to the one above. ut

Theorem 2. If A1
∼= A′

1 and A2
∼= A′

2 then we have (A1 ∨ A2) ∼= (A′
1 ∨ A′

2),
(A1 + A2) ∼= (A′

1 + A′
2), (A1 −A2) ∼= (A′

1 −A′
2) and (A1;A2) ∼= (A′

1;A
′
2).

Proof. This follows trivially from Lemma 1 and Definition 10. ut

Using the weak equivalence, we can formulate a number of algebraic laws.

Theorem 3. For any event expressions A, B and C, the following laws hold:

R1 : A ∨B ∼= B ∨A
R2 : A ∨A ∼= A
R3 : A ∨ (B ∨ C) ∼= (A ∨B) ∨ C
R4 : A; (B;C) ∼= (A;B);C
R5 : A + B ∼= B + A
R6 : A + A ∼= A
R7 : A + (B + C) ∼= (A + B) + C
R8 : A + (B ∨ C) ∼= (A + B) ∨ (A + C)
R9 : (A ∨B) + C ∼= (A + C) ∨ (B + C)
R10 : (A ∨B)− C ∼= (A− C) ∨ (B − C)
R11 : (A−B)−B ∼= A−B
R12 : A− (B ∨ C) ∼= (A−B)− C

Proof. R1, R2 and R3 follow trivially from Definitions 10 and 5 and the definition
of remsim. For R4, we first take an arbitrary d ∈ [[A; (B;C)]]. Using Theorem 1 it
is straightforward to show that d ∈ [(A;B);C] which implies that there is some
d′ ∈ [[(A;B);C]] with start(d) ≤ start(d′) and end(d′) ≤ end(d). In the same
way, this implies that there is some d′′ ∈ [[A; (B;C)]] with start(d′) ≤ start(d′′)
and end(d′′) ≤ end(d′). The minimality condition in the definition of restrict
means that we must in fact have d ∼= d′′, which implies d ∼= d′. Thus, for an
arbitrary d ∈ [[A; (B;C)]] there is ad′ ∈ [[(A;B);C]] such that d ∼= d′. In the same
way we can show that for an arbitrary d ∈ [[(A;B);C]] there is a d′ ∈ [[A; (B;C)]]
with d ∼= d′.

R5 and R6 follow trivially from Definitions 10 and 5 and the definition of
remsim. The proofs of R7 and R8 are very similar to that of R4. R9 follows
trivially from R5 and R8.

For R10, we take an arbitrary d ∈ [[(A∨B)−C]]. This means that d ∈ [[A∨B]]
and empty([[C]], d). Thus either d ∈ [[A]] or d ∈ [[B]], which means that d ∈ [[A−C]]
or d ∈ [[B − C]], but in both cases we have d ∈ dissem([[A − C]], [[B − C]]).
Thus there is some d′ ∈ [[(A − C) ∨ (B − C)]] with start(d) ≤ start(d′) and
end(d) = end(d′). Since d′ ∈ dissem([[A]], [[B]]), by minimality of remsim we
must have d ∼= d′. In a similar way we can show that any d ∈ [[(A−C)∨(B−C)]]
implies the existence of an d′ ∈ [[(A ∨B)− C]] such that d ∼= d′.

R11 follows trivially from Definitions 10 and 5. For R12, if a ∈ [[A − (B ∨
C)]] we have a ∈ [[A]] and empty([[B ∨ C]], a). By Theorem 1, we must have
empty([B∨C], a) and thus, empty([[B]], a) and empty([[C]], a). Then a ∈ [[A−B]],
and a ∈ [[(A−B)−C]]. Starting instead with an a ∈ [[(A−B)−C]], this means
a ∈ [[A]], empty([[B]], a) and empty([[C]], a). Then empty([[B ∨ C]], a) and thus
a ∈ [[A− (B ∨ C)]]. ut

5 Event Detection Algorithm

For the detection algorithm, we let 1 denote the first time point at which events
may occur, using 0 only when referring to the time of system initialisation.

To simplify the algorithm presentation, we use the following auxiliary func-
tions (match is not well-defined, but any function that meets the condition can
be used).

get(A,S, τ) =
{
{〈υ, τ〉} if {〈υ, τ〉} ∈ S(A)
〈〉 if no such instance exists in S(A)

match(y, q) =
{

y ∪ an element in filter(y, q) with maximum start time
〈〉 if filter(y, q) is empty

filter(y, q) = {e | e ∈ q ∧ end(e) < start(y)}

The symbol 〈〉 is used to represent a non-occurrence, and we use the symbol τ c

when referring to the current time in the algorithm. Since each operator occur-
rence in the expression requires its own state variables, we simplify the presen-
tation by using variables that are indexed with subexpressions. Thus, for each
subexpression A, vA denotes the v variable of A. An equivalent method would
be to number each subexpression, and use ordinary integer indexed variables.

5.1 Algorithm Description

Figure 1 presents the algorithm for detecting an event expression E. The al-
gorithm is presented in a meta format that can be instantiated for any fixed
expression. The top level conditionals can be evaluated statically, which per-
mits statically unrolling the foreach statement. All indices can also be evaluated
statically. A concrete example of this is given in Example 2.

In the initial state, at time 0, let wA = zA = 〈〉, tA = 0 and qA = ∅ for every
subexpression A in E. Each time instant, the algorithm takes as input the current
instances of primitive events (provided by the get function) and computes the
current instance of E, if there is one. The following theorem formalises the output
of the algorithm.

Theorem 4. For any subexpression A in E, after executing the algorithm at
time instants 1 to τ , vA = a if there is an instance a ∈ [[A]] with end(a) = τ . If
there is no such instance in [[A]], vA = 〈〉.

Proof. We only outline very informally the core of the correctness proof, provid-
ing some intuition to the relation between the algorithm and the formal seman-
tics. When processing a subexpression A on the form B ∨C, vB and vC already
contain the current instances of B and C, respectively, since the original expres-
sion is processed bottom-up. The algorithm assigns to vA the one with latest
start time, which according to the definition of remsim is the current instance
of A.

Conjunctions are handled by storing in w and z the instances with latest
start time from B and C, respectively. If there is a current instance of B or

For each subexpression A in E, in bottom-up order, do the following:

if A ∈ I then vA := get(A,S, τ c)

if A is B ∨ C then
if vB = 〈〉 or (vC 6= 〈〉 and start(vB) ≤ start(vC))

then vA := vC

else vA := vB

if A is B + C then
if vB 6= 〈〉 and (wA = 〈〉 or start(wA) < start(vB)) then wA := vB

if vC 6= 〈〉 and (zA = 〈〉 or start(zA) < start(vC)) then zA := vC

if vB 6= 〈〉 and ((vC = 〈〉 and zA 6= 〈〉) or
(vC 6= 〈〉 and start(vC) ≤ start(vB)))

then vA := vB ∪ zA

if vC 6= 〈〉 and ((vB = 〈〉 and wA 6= 〈〉) or
(vB 6= 〈〉 and start(vB) < start(vC)))

then vA := wA ∪ vC

if A is B − C then
if vC 6= 〈〉 and tA < start(vC) then tA := start(vC)
if vB 6= 〈〉 and tA < start(vB) then vA := vB

if A is B; C then
if vC = 〈〉 then vA := 〈〉

else vA := match(vC , qA); qA := qA − filter(vC , qA)
if vB 6= 〈〉 and tA < start(vB)

then qA := qA ∪ {vB}; tA := start(vB)

Fig. 1. Meta-algorithm for the detection of E under the interpretation S

C, the current instance of A is formed by combining instances from B and C
such that at least one is a current instance, and such that the start time of the
combination is as late as possible.

For negations, the variable t contains the latest start time of all instances of
C that has occurred until now. The current instance of B becomes the current
instance of A if it starts later than t, which conforms to the definition of negsem.

To deal with sequences, the variable q stores instances of B that has not yet
been possible to match with any instance of C. In addition, the variable t is
used to ensure that no instances in q are fully overlapping. If there is a current
instance of C, it is combined with the best matching instance in q to form the
current instance of A. Also, the definition of restrict dictates that instances of
B that end before the start time of the current instance of C, may not be used
to form future instances of A. Hence, these are removed from q. ut

Example 2. Assume we are detecting the event (A∨B)−C. After instantiating
the meta-algorithm, we can unroll the foreach statement and statically evaluate

the top-level conditionals. We also instantiate the subexpression indicies with
corresponding integers. The resulting algorithm is presented in Figure 2.

v1 := get(A,S, τ c)
v2 := get(B,S, τ c)
v3 := get(C,S, τ c)
if v1 = 〈〉 or (v2 6= 〈〉 and start(v1) ≤ start(v2))

then v4 := v2

else v4 := v1

if v3 6= 〈〉 and t5 < start(v3) then t5 := start(v3)
if v4 6= 〈〉 and t5 < start(v4) then v5 := v4

Fig. 2. Instantiated algorithm for detecting (A ∨B)− C

6 Conclusions and Future Work

We have developed an interval based algebra for detection of complex events.
The algebra includes a strong restriction policy in order to comply with the
resource requirements of embedded or real-time applications. The restriction
policy is justified by a theorem stating that it never adds instances, compared
to the unrestricted semantics. Also, every removed instance leaves some trace
in the restricted version, as the interval between the start and end time of the
removed instance must still contain at least one instance.

An event detection algorithm that implements the proposed algebra was
presented. In this algorithm, each disjunction, conjunction and negation in the
event expression requires a constant amount of storage, and contributes with a
constant factor to the computation time. For the sequence A;B, on the other
hand, a set of instances must be stored and the computation time is proportional
to the size of this set. This is a result of Theorem 1, since it is not enough to
store a single best instance of A (i.e., the one with latest start time). Once an
instance of B occurs, it must be combined with the best allowed instance of A.
This might not be the best instance of A that has occurred so far, if the interval
of B is long.

This is clearly a weakness, but as it follows from one of the desired properties
of the restriction, we have to look for other ways to ensure limited resource
demands. The maximum size of the storage set for A;B depends on the relative
frequence of occurrences in A and B. Roughly, if no more that n instances of
A can occur during the longest possible interval in which no B occurs, n is the
maximum size of the storage set.

We are currently formalising this idea, including how to calculate frequence
bounds for complex events from frequence bounds of the primitive events. This

seems to be possible for all expressions except negations, so there is still a prob-
lem with expressions like A; (B − C). If C and B occur together, B − C never
occurs at all, so every instance of A is stored forever.

Additional future work includes finishing the formal proof of Theorem 4.We
are also considering extending the algebra with additional operations, especially
time limited versions of sequence and conjunction.

References

1. R. Adaikkalavan and S. Chakravarthy. Event operators: Formalization algorithms,
and implementation using interval-based semantics. Technical Report CSE-2002-3,
University of Texas at Arlington, Department of Computer Science and Engineer-
ing, June 2002.

2. J. F. Allen and G. Ferguson. Actions and events in interval temporal logic. Journal
of Logic and Computation, 4(5):531–579, October 1994.

3. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In Jorge B. Bocca,
Matthias Jarke, and Carlo Zaniolo, editors, 20th International Conference on Very
Large Data Bases, September 12–15, 1994, Santiago, Chile proceedings, pages 606–
617, Los Altos, CA 94022, USA, 1994. Morgan Kaufmann Publishers.

4. A. Galton and J. C. Augusto. Two approaches to event definition. In R. Cicchetti,
A. Hameurlain, and R. Traunmller, editors, Proc. of Database and Expert Systems
Applications 13th International Conference (DEXA’02), volume 2453 of Lecture
Notes in Computer Science, pages 547–556, Aix-en-Provence, France, 2–6 Septem-
ber 2002. Springer-Verlag.

5. S. Gatziu and K.R. Dittrich. Events in an Active Object-Oriented Database Sys-
tem. In N.W. Paton and H.W. Williams, editors, Proc. 1st Intl. Workshop on Rules
in Database Systems (RIDS), Edinburgh, UK, September 1993. Springer-Verlag,
Workshops in Computing.

6. N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for composite
specification and detection. In Advanced Database Systems, volume 759 of Lecture
Notes in Computer Science. Springer, 1993.

7. A. Hinze and A. Voisard. A parameterized algebra for event notification services.
In Proceedings of the 9th International Symposium on Temporal Representation
and Reasoning (TIME 2002), Manchester, UK, 2002.

8. R. Kowalski and M. Sergot. A logic-based calculus of events. In J. W. Schmidt and
C. Thanos, editors, Foundations of Knowledge Base Management: Contributions
from Logic, Databases, and Artificial Intelligence, pages 23–55. Springer, Berlin,
Heidelberg, 1989.

9. G. Liu, A. Mok, and P. Konana. A unified approach for specifying timing con-
straints and composite events in active real-time database systems. In 4th IEEE
Real-Time Technology and Applications Symposium (RTAS ’98), pages 199–209,
Washington - Brussels - Tokyo, June 1998. IEEE.

10. J. Mellin and S. F. Adler. A formalized schema for event composition. In Proc.
8th Int. Conf on Real-Time Computing Systems and Applications (RTCSA 2002),
pages 201–210, Tokyo, Japan, 18–20 March 2002.

11. D. Zimmer and R. Unland. On the Semantics of Complex Events in Active
Database Management Systems. In Proceedings of the 15th International Con-
ference on Data Engineering, pages 392–399. IEEE Computer Society Press, 1999.

