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†IDT, Mälardalen University, Sweden.
‡Department of Automatic Control, Lund University, Sweden.

Email: ∗{ewnetu,cklein,elmroth}@cs.umu.se, †alessandro.papadopoulos@mdh.se, ‡martina@control.lth.se.

Abstract—Applications hosted in the cloud have become
indispensable in several contexts, with their performance often
being key to business operation and their running costs needing
to be minimized. To minimize running costs, most modern
virtualization technologies such as Linux Containers, Xen, and
KVM offer powerful resource control primitives for individual
provisioning – that enable adding or removing of fraction of
cores and/or megabytes of memory for as short as few seconds.
Despite the technology being ready, there is a lack of proper
techniques for fine-grained resource allocation, because there
is an inherent challenge in determining the correct composition
of resources an application needs, with varying workload, to
ensure deterministic performance.

This paper presents a control-based approach for the man-
agement of multiple resources, accounting for the resource con-
sumption, together with the application performance, enabling
fine-grained vertical elasticity. The control strategy ensures
that the application meets the target performance indicators,
consuming as less resources as possible. We carried out an
extensive set of experiments using different applications –
interactive with response-time requirements, as well as non-
interactive with throughput desires – by varying the workload
mixes of each application over time. The results demonstrate
that our solution precisely provides guaranteed performance
while at the same time avoiding both resource over- and under-
provisioning.

I. INTRODUCTION

Vertical elasticity is about increasing or decreasing the

amount of resources allocated to an application. For ex-

ample, for a Virtual Machine (VM) CPU cores or memory

can be added or removed. The latter is enabled by a tech-

nique called memory ballooning [10]. Similarly, Platform

as a Service (PaaS) providers may change the amount of

resources allocated to hosted applications using container-

specific technology, such as cgroups [12]. In contrast to

horizontal elasticity, which is about starting or stopping

whole VMs, vertical elasticity features lower overhead and

finer granularity control, allowing to allocate fractions of

CPU cores and megabytes of memory for intervals as short

as few seconds [21].

There are several reasons to pursue vertical elasticity.

First, decreasing the granularity at which resources are

allocated, both in amount and time, is known to lead to

increased resource utilization efficiency [7]. Second, for cost

efficiency reasons, hardware becomes increasingly dense,

featuring many CPU cores and DRAM modules. Appli-

cations that only require a fraction of such a server need

to be carefully co-located [26] to ensure efficient server

utilization and avoid resource sprawling [38]. Academia and

industry are already envisioning a form of hardware packing,

called Rack-Scale Computing, in which the boundary of

a traditional server will encompass all resources inside a

rack [13].
The decrease in granularity not only brings great oppor-

tunities in increasing efficiency, but also several challenges.

First, a vertical elasticity controller needs to react quickly

and accurately to fluctuation in resource requirements of

an application. Second, scaling needs to be performed in-

dependently in several resource dimensions, e.g., CPU and

memory. Third, each application may target a different Key

Performance Indicator (KPI), such as average response time,

tail response time or throughput. Translating target KPIs to

required resources is difficult, due to the non-linearity and

the time variability of the relationship [26] and the run-time

uncertainty about the actual performance delivered by the

shared hardware, a phenomenon called noisy neighbor [22].
Previous approaches only partially dealt with these issues.

They either targeted a single KPI [33], [14], a single

resource dimension [18], [9], [27] and/or required expert

knowledge to guide the vertical elasticity controller towards

which resource dimension to act upon [16]. In this paper,

we propose a KPI-agnostic methodology to design vertical

elasticity controller for multiple resource dimensions. Our

approach builds on well-established control-theoretical tools,

such as system identification and model predictive control.
The contribution of this paper is twofold.

1) From the theoretical perspective, we propose a method-

ology to design an application-specific vertical elastic-

ity controller. A rough model of the application behav-

ior is produced off-line using system identification. The

model is then used as a foundation to design a model

predictive Multiple Input Multiple Output (MIMO)

controller. At run-time, the controller collects resource

utilization and KPI, and updates the controller behavior

to compensate for run-time uncertainty (Section III-A).

2) From the practical standpoint, we evaluate the pro-

posed approach over multiple applications – RUBiS,

RUBBoS, Olio, and a video encoding service. In the

studied cases, we use two KPIs – response time and
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throughput – and two resource dimensions – CPU and

memory. We test the applications with realistic work-

loads – featuring periodicity as well as spikes – and

with synthetic workloads, providing a comprehensive

evaluation (Section V).

Results show that the obtained vertical elasticity controller

reacts quickly and adjusts CPU and memory allocation

accurately, to reach the target KPIs. The remainder of this

paper is organized as follows. Section II introduces the

related literature, providing an overview of the differences

with our approach, that is then detailed in Section III.

Our experimental setup is described in Section IV, while

Section V shows our results. Finally, Section VI concludes

the paper.

II. RELATED WORK

We have seen a lot of advancements in auto-scaling tech-

niques [24] in the last decade. However, the focus has mostly

been on horizontal auto-scaling and similar methods [30]

which are not directly applicable for vertical auto-scaling

due to their coarse-grained approaches. Vertical auto-scaling

has, however, gained a lot of attention recently [25], [28],

[21], [18], [39].

Delving into details, Kalyvianaki et al. [18] designed a

controller using Kalman filtering to control CPU allocation

based on the CPU utilization. Baresi et al. [9] use a control-

theoretical method based on loop shaping to allocate CPU

to the running applications in both containers and VMs,

and consequently allocate a fixed amount of memory per

core. The authors in [29] proposed a two stage controller

to allocate CPU cores for different tiers of a multi-tier

application. While the first controller regulates the relative

CPU utilization of each tier, the second controller adjusts

the allocations in cases of CPU contention. Yazdanov and

Fetzer [39] also developed a vertical auto-scaler to allocate

the right amount of CPU cores to high priority applications.

Their solution is built on top of the Xen Hypervisor using

a combination of CPU hot-plugging and tuning virtual CPU

power to provide a finer grain control of the physical

resources associated to the VM. Spinner et al. [33] proposed

a model-based approach that uses the relationship between

the CPU cores allocated and the observed application perfor-

mance to automatically extract and update the model using

resource demand estimation techniques. Lakew et al. [21]

presented two generic response time performance models,

queue length based and inverted response time, which map

performance to CPU capacity and provide performance

guarantees for interactive applications deployed in the cloud.

Some work has been done on optimal memory size alloca-

tion for a given application [27], [14], [15]. Molto et al. [27]

presented a mechanism to dynamically adjust the application

memory size to achieve efficient memory utilization. The

authors in [14], [15] presented control theoretic approach

to dynamically adjust application memory to meet response

time under workload dynamics.

The authors in [25], [16] considered multi-dimensional

resource (e.g., CPU and memory) vector for a single appli-

cation to meet its performance targets. More precisely, Lu

et al. [25] proposed a technique based on limits, reservation

and shares to automatically set resource control for both

VMs and resource pools to meet performance. Application

performance objectives were translated into the appropriate

resources, such as memory and CPU. The authors in [16]

proposed fuzzy control to coordinate two different con-

trollers each controlling CPU and memory for a single

application in order to meet its response time.

However, all the aforementioned approaches either tar-

geted a single KPI (e.g., response time [21], [16], [33],

[14], [15], resource utilization [18], [27]), a single resource

dimension (e.g., CPU [21], [18], [9], memory [27], [14],

[15]), required expert knowledge to guide the vertical elas-

ticity controller towards which resource dimension to act

upon [16], and/or may lead to resource under- or over-

provisioning during unexpected workload changes [25].

In this paper, we propose a KPI-agnostic methodology

to design vertical elasticity controllers meeting the target

performance of an application and considering multiple

resources.

III. THE CONTROL SYSTEM

We consider a cloud infrastructure that hosts multiple

services, each with different characteristics, as well as vari-

able and unpredictable workload dynamics. Each service

has a Service Level Agreement (SLA) that stipulates a

Service Level Objective (SLO) and optionally minimum and

maximum resource requirements. The minimum resource

constraints are often used to allow each service to maintain

some functionality at all times. The maximum limits are

usually set to shield the user from unexpectedly high costs

due to service malfunctioning or an attack. The SLO is

a target value for a KPI – for example, a specific value

for average response time or throughput of the system.

The goal is to continuously adjust the allocated resource

levels, without human intervention, to drive KPIs toward

their targets. Specifically, the resource allocation strategy

should be capable of allocating just the right amount of

resources for each service at the right time in order to meet

its respective performance target, avoiding both resource

under- and over-provisioning.

Fig. 1 shows the architecture of the proposed resource

allocation strategy. It loosely follows a Monitor Analyze

Plan and Execute with Knowledge (MAPE-K) loop based

on self-adaptive software terminology [19]. The monitor

part is implemented with sensors gathering information

about the observed KPIs and the resource consumption.

The monitor collects measurements periodically, the period

between observations is also used as the period between
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Figure 1. The architecture of the system. The contribution of this work is shown in gray.

activations of the controller. The analysis and planning phase

is left to the MIMO controller, that computes the CPU and

memory levels for the next time interval. Execution consists

in configuring the Hypervisor to enforce the computed

resources. Previous monitoring data is used to fit the model

parameters, which represent the knowledge component in

the MAPE-K loop. To easily integrate the controller under

different cloud frameworks such as Kubernetes, one instance

of the controller can be deployed for each Kubernetes node.

A. Controller design
This subsection describes in details the Multiple Input

Multiple Output (MIMO) controller. The design of the

controller is performed in two distinct phases. First, we

collect data about the application running conditions and

we use system identification to build a MIMO model of the

applications’ response to changes in resources. This phase is

carried out offline, while the application is working but there

is no control, to capture the typical operating conditions. We

then use that model to synthesize a controller that is executed

periodically and informs the hypervisor about the amount of

CPU cores and memory to allocate to the running VM.

For the model construction, we use the MOESP algo-

rithm [37] as the identification method. The method provides

us with a linear MIMO model based on the data we collected

offline. We select the lowest possible order that fits the data,

which we denote with n, to limit the model size1. Selecting

a higher order increases the accuracy of the model, together

with the risk of overfitting. In the obtained model, the system

has n states and a state vector x = [x1,x2, . . . ,xn]. The states

are not linked to any meaningful quantity in the system

but describe the dynamic relationship between the inputs

(the amount of resources given) and the output (the KPI

measured).

Formally, the MOESP algorithm returns a model S in

the difference equation form

S :

{
x(k+1) = A · x(k)+B · res(k)
meas(k) =C · x(k) , (1)

1The subspace identification procedure relies on the Matlab function
n4sid, using as parameters the given data and the keyword best for
the model order.

where res(k) is a vector denoting the amount of resources

to be given to the application and meas(k) is a vector

that includes the current KPI values and the percentages

of CPU and memory utilization to be informed on and

able to prevent over-provisioning. The model uses Δt as the

sampling interval, which is the distance in time between two

subsequent measurements in the data trace that we collected

for identification purposes. The time is represented with

the letter k, that denotes the sampling instants and assumes

values in the set of integers where a number k is the instant

t = Δt · k in time.

Based on the model S , we can synthesize a Model

Predictive Control (MPC) in the augmented velocity form,

with standard techniques [11]. MPC is a control technique

that formulates an optimization problem to use the available

actuators (the resources) to achieve a set of goals (the

KPIs). At every control instant k, the problem becomes

the minimization of a cost function Fk, subject to given

constraints. Having a controller in the augmented veloc-

ity form informally means that the controller is going to

compute the variations that should be applied to the control

signals (the resources allocated to the application), denoted

with Δres(k) rather than their absolute values res(k). This

controller is complemented with a Kalman Filter [23] to

update the system model as the controller runs.

The first equation in Eq. (1) describes how x(k + 1) is

function of x(k), while in the augmented velocity form

Δx(k+1) := x(k+1)− x(k) is as follows:

x̃(k+1)︷ ︸︸ ︷[
Δx(k+1)
meas(k)

]
=

Ã︷ ︸︸ ︷[
A 0n×3

C I3×3

] x̃(k)︷ ︸︸ ︷[
Δx(k)

meas(k−1)

]
+

B̃︷ ︸︸ ︷[
B

03×2

]
Δres(k)

meas(k) =

C̃︷ ︸︸ ︷[
C I3×3

] x̃(k)︷ ︸︸ ︷[
Δx(k)

meas(k−1)

]
(2)

where 0r×c is an all-zeroes matrix with r rows and c
columns, while Ip×p is the identity matrix of size p. Here,

Δx(k) = x(k)−x(k−1) is the state variation and Δres(k) :=
res(k)− res(k−1) is the control increment. The augmented

velocity form is typically used for the formulation of MPC
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controllers, since it guarantees that the controlled system

reaches all the goals when possible. The system output

meas(k) is unchanged but now expressed with respect to

the state variations Δx(k) and not with respect to the state

values x(k). This new model is used by the MPC controller

to predict the future state of the system with a time horizon

of L steps, a parameter that is configurable in our approach.

Denoting with kpim,k the measured value of the KPIs and

with kpik the desired value for them2, the MPC minimizes

the following cost function

Fk =
L

∑
i=1

[
kpik+i− kpim,k+i

]�Qi
[
kpik+i− kpim,k+i

]
+

[Δresk+i−1]
�Ri [Δresk+i−1] ,

(3)

where Qi ∈R
3,3 and Ri ∈R

2,2 are a symmetric positive semi-

definite weighting matrices. Qi represents the weights on the

considered KPIs and Ri represents the inertia to changing

the actuators. The superscript � used in (3) indicates the

transpose operator for a vector.

Qi and Ri are chosen to prioritize KPIs and resource usage.

The values in Qi are typically chosen to specify a weight

for the considered KPIs. For example, one may configure

the controller to prefer reaching a specific average response

time, even if this may result in allocating more CPU cores.

The matrix Ri indicates preferences on actuators, i.e., how

reactive the controller should be in changing each resource

specific allocation. For example, this allows one to configure

the controller to be very quick in assigning new cores, but

be more conservative with changing the memory allocation.

The resulting optimization problem is

minimizeΔresk+i−1
Fk

subject to resmin ≤ resk+i−1 ≤ resmax

Δresmin ≤ Δresk+i−1 ≤ Δresmax

x̃k+i = Ã · x̃k+i−1 + B̃ ·Δresk+i−1

kpim,k+i−1 = C̃ · x̃k+i−1

i = 1, . . . ,L,

(4)

where the constraints limits the amount of changes in the

actuators and their absolute values, and impose that the

model dynamics are followed for the solution finding. For

example, a VM cannot have more cores than the physical

machine it is deployed onto and the user may want the

number of cores not to increase more than a certain value

per iteration.

This formulation is equivalent to a convex Quadratic

Programming (QP) problem [20]. The solution of the QP

problem is an optimal plan for the future Δres�k+i−1, i =
1, . . . ,L. A receding horizon [20] approach is adopted, and

only the first action of the plan, Δres�k , is applied. This is to

2The vector of KPIs and desired values for them includes instances like
the response time or the throughput and also the percentages of CPU and
memory utilizations with respect to the allocated resources, for which the
desired values are 100%.

cope with disturbances that may occur at runtime and have

not being part of the model formulation.

The MPC strategy assumes that the process state x is

measurable, but this is not possible, since the system state

has a non-trivial interpretation. Instead of measuring x, we

then estimate it based on the values of resm and of the

measured kpim. We designed a Kalman filter that computes

an estimate x̂(k+ 1) of the state x(k+ 1), as a function of

res(k), kpim(k), and the estimation error kpim(k)− k̂pim(k):

k̂pim(k) =C · x̂(k)
x̂(k+1) =A · x̂(k)+B · res(k)+K(k) ·

(
kpim(k)− k̂pim(k)

)
(5)

where K(k) is called Kalman gain and changes over time

according to the estimation error [23]. The estimate x̂(k) can

be used, in place of x̃(k), to solve the optimization problem

in Eq. (4).

Overall, the input to the MPC controller are: (a) the model

that is computed offline with the subspace identification

method, (b) the prediction horizon L, (c) the values of Qi
and Ri, that determines the weights of the different entities

involved in the optimization, and (d) the constraints resmin,

resmax, Δresmin and Δresmax used to limit the solutions to

the effectively applicable ones.

B. Controller Implementation
This subsection describes the practical implementation of

the controller and the values of the parameters used in the

experimental campaign for the different applications. The

value of the prediction horizon L determines how far ahead

in time the controller is supposed to look at. This parameter

can be chosen keeping in mind that a larger value of L
will result in a better control plan, but at the same time

in higher computational overhead. In our experiments, we

chose the value of 15, meaning that the controller determines

a plan for the next 15 time steps and then applies only

the first instance of that plan, to always be able to cope

with runtime variations. The controller is executed every 10

seconds, therefore having a prediction horizon of 15 steps

means predicting the behavior of the system in the next 2.5
minutes.

The values of resmin, resmax, Δresmin and Δresmax de-

termine the physical limitations of the controller both in

absolute terms and in relative terms (the controller is not

able to allocate more than a certain number of CPUs per

application, and it is also not able to vary the number of

CPUs more than a given amount per execution). For our

experiments, the controller can allocate a minimum of 0.5
CPUs and a maximum of 25 and is able to add and remove

24 cores in a single instant. For the memory, the limitations

are a mimum of 0.7 GB and a maximum of 8 GB, with a

minimum and maximum variation of 7 GB at a time.

In our experimental evaluation, we use different appli-

cations, see Section IV for more details. The values in

Qi and Ri are chosen differently for each application, by
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looking at the identification data. For RUBiS and Olio, the

values in Qi are [1000,0.1,0.1], the higher value giving

more importance to the goal. The goals in this case are

respectively “keeping the response time to a target”, “using

all the given CPU”, and “using all the given memory”. The

weight 1000 multiplies a number of the order of 1 second,

while the two weights at 0.1 multiplies a number in the range

[0 . . .100]. This therefore determines that response time is

two orders of magnitude more important than keeping the

resource utilization to its target. In the case of RUBBoS,

the values in Qi are [15,0.1,0.1] as we have seen that

the response time varies less than in the other interactive

applications, and we can therefore focus more on resource-

related goals. For the video encoder, the values in Qi are

[100,0.5,0.5], because of similar considerations.

Finally, the weights Ri are determined so that the con-

troller is very quick in assigning new cores while it is more

conservative with memory allocation, as recovering from

memory under-provisioning (swapping) is more costly. For

all the interactive applications, the values of Ri are [0.1,10].
For the video encoder, due to the high variability of the load,

we want to be slightly more conservative in assigning CPUs

as well, so we chose a weight vector Ri = [0.5,10].
In general, the Qi and Ri values were different for each

application since they capture the intrinsic and complex

relationships between the applications and resources. In an

ideal scenario, the goal of the controller is to ensure that

the application meets its target performance while both

CPU and memory utilizations are at 100%. However, as

predicted by queuing theory, low response times cannot

be obtained under high CPU utilization, whereas a high

memory utilization leads to the risk of swapping and poor

performance. Therefore, to mitigate the conflict between

utilization and performance, more priority is given to the

application performance by providing more weight than the

two utilizations. As a result the control strategy ensures that

the application meets its target performance while keeping

both CPU and memory utilizations as high as possible.

Further information on how tune the different control pa-

rameters can be found in [8].

IV. EXPERIMENTAL SETUP

Experiments were conducted on a single Physical Ma-

chine (PM) equipped with a total of 32 cores3 and 56 GB of

memory. To emulate a typical cloud environment and easily

enable vertical elasticity, we used the Xen hypervisor [10].

Each tested application was deployed with all of its com-

ponents such as web servers and database servers inside its

own VM as is commonly done in practice [34], e.g. by using

a LAMP stack [1].

To demonstrate the applicability of the proposed solu-

tion for different types of KPIs, we used two types of

3Two AMD OpteronTM 6272 processors, 2100 MHz, 16 cores each, no
hyper-threading.
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Figure 2. Workloads from real world traces:Predictable, Wikipedia-based
and Unpredictable, FIFA-based traces.

applications: interactive applications – requiring a target

response-time – and a video application – requiring a target

throughput.

A. Interactive Applications
This type of applications only perform computations as

a result of a user request. We performed a wide range of

experiments using three different interactive applications:

RUBiS [4], RUBBoS [5] and Olio [2]. These applications are

widely-used cloud benchmarks – see e.g., [17], [32], [36],

[35] – and respectively represent an eBay-like e-commerce

application, a Slashdot-like bulletin board, and an Amazon-

like book store.

We performed experiments with different workloads to

characterize the performance models’ responses to workload

changes. Specifically, we used real workload from traces

and synthetic workload based on the open and closed-

system models [31]. The real workloads were extracted from

the Wikipedia [3] and FIFA [6] traces. These two traces

were selected due to their complementary nature. While the

Wikipedia workload shows a periodic and predictable trend,

the FIFA trace shows a bursty and an unpredictable trend.

For each application, we selected a representative day as

shown in Figure 2, to focus on different trends and peaks,

and to show that not all the applications may have the

same workload patterns. Note that, although the workload

traces are part of the evaluation, they are considered known

only a posteriori, i.e., the controller cannot access them

neither at design time nor during execution. In addition,

synthetic workloads were generated based on the open- and

closed-system models that gave us the freedom of evaluating

situations that were not present in the real world workloads,

such as increasing the number of requests five- or ten-

fold. Combined with periods of steady load, the synthetic

workloads allow us to better study the behavior of the

controller in both steady- and transient-state.

To emulate the users accessing the applications, under

the synthetic workload, we used our custom httpmon
workload generator4, which supports both open- and closed-

system model client behavior. For open clients, we changed

the arrival rate during the course of the experiments as

required to stress-test the system. For the closed case, the

think-time of each client was fixed at 1 second and the

number of users was varied. The change in arrival rates or

number of users was made instantly. This made it possible

4https://github.com/cloud-control/httpmon
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Table I
MEAN (M) AND VARIANCE (V) FOR RESPONSE TIME (RT) AND

RESOURCE UTILIZATION FOR MIMO AND FUZZY CONTROLLERS WITH

THE CLOSED AND OPEN WORKLOADS.

Controller Workload
RT CPU Util Mem Util
M V M V M V

MIMO Closed 0.61 0.06 95.82 34.4 56.3 174.8

Fuzzy Closed 0.66 0.45 81.8 247.4 67.4 29.1

MIMO Open 0.51 0.03 92.0 169.0 64.8 371.0

Fuzzy Open 0.57 0.35 82.2 138.6 52.6 22.4

to meaningfully compare the system’s behavior under the

two client models.

The response time of a request – our KPI – is defined

as the time that passes between sending the first byte of

the request and receiving the last byte of the reply. In our

evaluation, we focus on average response times per minute.

B. Non-Interactive Applications
For this type of application we used a video encoding ap-

plication, which requires a certain target frame-per-second.

The video itself changes in complexity, which induces

varying CPU and memory requirements. The throughput of

a video – our KPI – is defined as the number of frames

computed per second (fps).

V. EXPERIENTAL EVALUATION

In this section we highlight the dynamic behavior of the

controller and show how it responds to varying application

requirements. The plots in this section are structured as

follows. Each figure shows the results of a single experiment.

The bottom x-axis represents the time elapsed since the start

of the experiment. The upper graph in each figure plots

the mean response times or frames-per-second while the

middle and lower graphs plot the amount CPU cores and

memory (in GB) allocated to the application as computed

by the controller, respectively. Besides, for graphs that shows

resource utilization information, the graph right below the

upper graph plots the average CPU and memory utilization.

A. Comparison with state-of-the-art techniques
In this section, we present the experimental results of our

proposed MIMO controller in comparison with the fuzzy

controller presented in [16]. The fuzzy controller tries to

meet target response times by coordinating two separate

resource controllers, a separate memory and CPU controller

using fuzzy logic.

The evaluation goal is to compare how the fuzzy controller
and our new MIMO controller meet the desired response
time objective and manage to use a minimum amount of

resources. If the response time goal is met, a controller is

better than the other if it uses less resources.

Fig. 3 shows the results of the two controllers with 0.5s

target under open and closed system models for RUBiS

application. The response time remains stable and close to

the target value in the MIMO controller case, while more

oscillations are observed using the fuzzy controller. The

oscillations for the fuzzy controller are also noticeable in

the CPU allocation and utilization. Moreover, in the MIMO

controller case, the response time converges to the target

value immediately when the workload changes. In the fuzzy

controller case, the response time spikes are noticeable under

sudden workload surge, and the convergence time is higher.
Table I shows the aggregate means and variances of

response time and utilization during the life time of the

experiments. The MIMO controller allocates less CPU cores

on average, as can inferred from the high utilization value,

while achieving a better performance with low variability

than the fuzzy controller. The fuzzy controller appears more

efficient in terms of memory for closed workload. This

is due to the MIMO controller being more conservative

with memory, performing a higher initial allocation and

reducing memory allocation rather slowly. However, the

MIMO controller does slowly reduce memory allocated to

the application, until it reaches an optimal steady state.

Figure 3 shows indeed that less or comparable memory

is allocated after 340 seconds have passed. The longer the

MIMO controller executes, the more efficient it becomes.
In general, during the offline system identification phase,

the intrinsic relationship between application performance,

in this case response time, and resources is fully captured by

the MIMO controller, while this relationship requires expert

knowledge – which is often subjective – to train the fuzzy

controller. In addition, the fuzzy controller is designed for a

single KPI (i.e., response time) while the MIMO controller is

KPI-agnostic. The following sections will present a thorough

analysis of our new MIMO controller for both response-

time- and throughput-oriented applications.

B. Interactive Services under Real Workloads
Fig. 4 show the allocated resources and observed response

times when RUBBoS is subject to both the periodic and

predictable Wikipedia workload, as well as the more unpre-

dictable and bursty FIFA one, for target response times of

1.5s and 0.5s. The results show that the controller was able to

allocate the resources that satisfies the performance bounds

under both workloads. The utilization for both resources is

very high indicating efficient use of resources. Besides, a

close look at the results in the figures show that the CPU

cores allocated follow similar trend as the corresponding

workload patterns depicted in Fig. 2 indicating that the

application is more sensitive to CPU than memory allo-

cation. This phenomenon is also reflected in the fact that

a decrease in the response time target from 1.5s to 0.5s

shows a significant increase in the number of CPU cores

required for comparable workload pattern while memory

is invariable. Another important point to note is that the

controller is very conservative when allocating memory

since the application acquires and releases memory slowly.

This situation is reflected by how the memory utilization

mimics the workload pattern.
A closer observation to the figures shows that the results

in Fig. 4b exhibit more oscillation in the observed response

time around the target values than the corresponding results
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Figure 3. RUBiS–under open and closed system models. The target response time is set to 0.5s for both controllers.
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Figure 4. RUBBoS–under WIKI and FIFA workloads with 1.5s and 0.5s target response times.

in Fig. 4a. This is due to the unpredictability of the FIFA

workload. However, the controller behaves as intended even

under unpredictable workloads.

C. Interactive Services under Synthetic Workloads
Fig. 5 shows the results when the controller was config-

ured with 1.0s and 1.5s target response times under open-

and closed-system models for the RUBBoS application. The

results show that the response times converge to their re-

spective target values quite quickly after detecting a sudden

increase or decrease in workloads (manifested as a rapid

increase or decrease in the response time values) as depicted

in the figures at the beginning of each interval. This indicates

that the controller correctly detects changes in demands

and allocates the optimal amount of the resources to meet

the performance targets for both open- and closed-system

models.

Close observation of the results show that the open-system

model required more CPU cores than the closed-system

model when using comparable arrival rates and numbers

of users, respectively. Moreoever, the controller was able

to determine the right amount of memory for both models

which happens to be is relatively the same for both models

for the evaluated applications.

We also performed experiments with Olio and RUBiS.

Due to the similarity of the results to RUBBoS application,

we only present time series plots generated using a target

response time of 1.0s for these applications. As shown in

Figs. 6 and 7, the results show that the controller behave as
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Figure 5. RUBBoS–under open and closed system models with 1.0s and 1.5s target response times.

0
1
2
3
4

R
es

p
.

ti
m

e
[s
]

Target RT Measured RT CPU Memory

0
5

10
15

C
P

U
[C

o
re

s]

0 340 680 1020 1360 1700
0

0.5
1

1.5
2

Time [s]
(a) Open system model 1 target

M
em

o
ry

[G
B
]

0 340 680 1020 1360 1700

Time [s]
(b) Closed system model 1 target

50 100 80 150 60

Arrival rate [req/s]

50 100 80 150 60

Users with 1s think time

Figure 6. RUBiS–under open and closed system models with 1.0s target response time.

intended.

D. Non-interactive applications
Fig. 8 shows the results obtained when throughput is

used as KPI, i.e., number of frames per second (fps) for

the video application. We ran the experiment using two

different throughput target values in order to see how the

controller behaves. In the first experiment we set the target

to 800fps, whereas in the second experiment the target was

set half, 400fps. We ran each experiment until all videos

in a predefined list were converted. The total duration can

be inferred from the length of time each experiment took,

and, as expected, the 400fps target took twice as long as the

800fps target.

The target throughputs were met for both target values

indicating that the controller provides accurate capacity

estimation irrespective of the target value set. A closer

observation of the figure show that there is much oscillation

at the beginning, due to the controller needing some time to

capture the behavior of the application.

Looking at the resources required to meet each targets,

as expected, higher target values need more resources than

lower target values. Specifically, meeting the 800fps target

requires twice the number of CPU cores and 40% more

memory compared to meeting the 400fps target. The con-
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Figure 8. Video encoding application with different targets: 800fps and 400fps.

troller did manage to allocate the right amount of both CPU

and memory, as can be observed through the utilization plot.

The results show that the controller is able to maintain the

performance targets of the application no matter what affects

it i.e., whether the disturbance is from within the cloud (

e.g., noisy neighbours) or outside (e.g., intensity of the video

scenes).

E. Aggregate Analysis
To see the aggregate behavior of the controller over the

course of the experiment, we use mean and variance as

shown Table II. On average the observed performance of ap-

plications is very close to the target. Response time oriented

applications observed very low variance. In contrast, the

variance for throughput-oriented application was high due

to the high oscillation at the initial stage of the experiment

(see Fig. 8) until the controller learns the behavior of the

application.

VI. CONCLUSION

This paper presented a KPI-agnostic Model Predictive

Multiple Input Multiple Output (MIMO) Controller to au-

Table II
OBSERVED AGGREGATE PERFORMANCE OF APPLICATIONS UNDER

MIMO CONTROLLER.

Application Workload Target Mean Variance

RUBBoS

Wikipedia
001.500 001.511 0000.019
000.500 000.469 0000.009

FIFA
001.500 001.328 0000.041
000.500 000.326 0000.014

Open
001.500 001.504 0000.087
001.000 001.027 0000.080

Closed
001.500 001.457 0000.229
001.000 001.030 0000.168

RUBiS
Open 001.000 000.976 0000.144
Closed 001.000 000.985 0000.264

Olio
Open 000.500 000.461 0000.015
Closed 000.500 000.478 0000.027

Video
– 800.000 799.170 1832.910
– 400.000 402.850 1235.530

tomatically adjust the amount of CPU cores and memory

that an application receives to meet its performance require-

ment. We carried out an extensive set of experiments using

response time and throughput as performance indicators.

For interactive applications, we varied the workload mix

using both real and synthetic workloads. For non-interactive
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applications, we varied the target throughput value. The

results show that our MIMO controller is able to allocate

the right amount of resources to meet the performance

targets irrespective of the selected KPI, while keeping the

utilization of the resources – CPU and memory – high. We

have compared our solution with a state-of-the-art controller

implementation and showed that the proposed MIMO solu-

tion is more efficient in terms of resource utilization. Future

work includes extending the resource dimension to network

bandwidth slicing and guaranteeing tail values of KPIs for

more accurate control.
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[27] G. Moltó et al. Elastic memory management of virtualized
infrastructures for applications with dynamic memory require-
ments. Procedia Computer Science, 18:159–168, 2013.

[28] H. Nguyen et al. Agile: Elastic distributed resource scaling
for infrastructure-as-a-service. In ICAC, 2013.

[29] P. Padala et al. Adaptive control of virtualized resources
in utility computing environments. In SIGOPS Operating
Systems, volume 41, pages 289–302, 2007.

[30] I. Pietri and R. Sakellariou. Mapping virtual machines onto
physical machines in cloud computing: A survey. ACM
Comput. Surv., 49(3):49:1–49:30, Oct. 2016.

[31] B. Schroeder et al. Open versus closed: A cautionary tale. In
NSDI, 2006.

[32] Z. Shen et al. CloudScale: elastic resource scaling for multi-
tenant cloud systems. In SoCC. ACM, 2011.

[33] S. Spinner et al. Runtime vertical scaling of virtualized
applications via online model estimation. In SASO, 2014.

[34] K. Sripanidkulchai et al. Are clouds ready for large distributed
applications? SIGOPS Oper. Syst. Rev., 44(2), 2010.

[35] C. Stewart et al. Exploiting nonstationarity for performance
prediction. In EuroSys. ACM, 2007.
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