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Abstract

Caches have become increasingly important with the
widening gap between main memory and processor speeds.
Small and fast cache memories are designed to bridge this
discrepancy. However, they are only effective when pro-
grams exhibit sufficient data locality.

Performance of memory hierarchy can be improved by
means of data and loop transformations. Tiling is a loop
transformation that aims at reducing capacity misses by ex-
ploiting reuse at the lower levels of cache. Padding is a data
transformation targeted to reduce conflict misses.

This paper presents an accurate cost model which makes
use of the Cache Miss Equations (CMEs) to guide tiling and
padding transformations. It describes misses across differ-
ent hierarchy levels and considers the effects of other hard-
ware components such as branch predictors. We combine
the cost model with a genetic algorithm (GA) to select the
tile and pad factors that enhance the program.

Our results show that this scheme is useful to opti-
mize programs’ performance. When compared to previ-
ous works, we observe that with a reasonable compile-time
overhead, our approach obtains significant performance
improvements for all studied kernels on a variety of archi-
tectures.

1. Introduction

With ever-increasing clock rates and the use of new ar-
chitectural features, the speed of processors increases dra-
matically every year. Unfortunately, memory latency does
not decrease at the same pace, being a key obstacle to
achieve high IPC. The basic solution that almost all systems
rely on is the cache hierarchy.

While caches are useful, they are effective only when
programs exhibit sufficient data locality in their memory ac-
cesses. Numerical applications tend to operate on large data
sets, and usually present a large amount of reuse. However,

this reuse may not translate to locality since caches can only
hold a small fraction of the data accessed.

1.1. Cache Compiler Optimizations

Memory is organized hierarchically in such a way that
the lower levels are smaller and faster. In order to fully
exploit the memory hierarchy, one has to ensure that most
memory references are handled by the lowest levels of
cache. Various hardware and software approaches have
been proposed lately for increasing the effectiveness of
memory hierarchy. Software-controlled prefetching [23]
hides the memory latency by overlapping a memory access
with computation and other accesses. Other useful opti-
mizations are loop transformations such as tiling [4, 7, 20,
35] and data transformations such as padding [6, 17, 25, 27,
30]. In all cases, a fast and accurate assessment of a pro-
gram’s cache behavior at compile time is needed to make
an appropriate choice of transformation parameters.

Unfortunately, cache memory behavior is very hard to
predict. Thus, current approaches are based on simple mod-
els (heuristics) for estimating locality [5, 7, 20, 25, 27].
However, modern architectures have very complex internal
organization, with different levels of cache, branch predic-
tors, etc. Such models provide very rough performance es-
timates, and in practice, are too simplistic to statically select
the best optimizations.

Tiling has been shown to be useful for many algorithms
in linear algebra. By restructuring the loop and changing the
order in which memory references are executed, it reuses
data in the faster levels of the hierarchy; thus it reduces the
average latency. Nevertheless, finding the optimal tile sizes
is a very complex task. The solution space is huge, and
exploring all possible solutions is infeasible. A number of
algorithms have been proposed [4, 7, 20, 27, 35], which are
based on simple cost models that only consider one array
access and the first level of cache.

We introduce a method that aims at optimizing overall
performance via tiling and padding. It combines an ap-

1



proach to choose the best tile and pad factors in concert. Our
approach makes use of a very precise cost model that allows
us to consider all different levels of the memory hierarchy.
Furthermore, we consider the performance cost of the miss-
predicted branches. We present results for a collection of
kernels drawn from several related papers [4, 7, 20, 27, 35].
For the sake of concreteness, we report results for a set
of modern processors that represent current architectural
paradigms. We have chosen the Pentium-4 (CISC), Alpha-
21264 (RISC), and Itanium1 (EPIC). The centerpiece of the
proposed method is an accurate cost model combined with
a genetic algorithm. Although it is not shown in this paper,
this approach can be used to drive other program transfor-
mations oriented to enhance data locality.

1.2. An Overview

This paper proposes a new method to perform loop tiling
combined with padding for numeric codes. We use a static
data cache analysis that considers different levels of cache.
Moreover, it considers the cost of the branch instructions
accordingly to the outcome from the branch predictor.

We first start describing data reuse using the well-known
concept of reuse vectors [35]. We implemented Ghosh et
al’s Cache Miss Equations (CMEs) [10] to compute the lo-
cality of a program, extending its applicability to deal with
multi-level caches. This allows us to have a precise model
that describes cache memory behavior across different lev-
els. Once information about read and write misses for all
different levels is obtained, we set up the cost model func-
tion. We consider the relative costs of each memory level
and the cost of miss-predicted branches, which tunes the
cost function for improving execution time. Finally, we use
a genetic algorithm (GA) for traversing the solution space in
order to determine all tile and pad factors at the same time.

We have implemented our system in the SUIF2 compiler.
We identify high level information (such as array accesses
and loop constructs), that is used to model the cache behav-
ior. Then, the GA generates different possible combinations
of tile and pad factors, that are analyzed by the cost model
function. Finally, the best parameters are fed back and used
for generating the optimized code.

The rest of the paper is organized as follows. Section 2
reviews our method to describe data locality, and introduces
tiling and padding techniques. Section 3 describes our cost
model for estimating performance. Section 4 presents the
experimental framework, and Section 5 compares our re-
sults against the state-of-the-art techniques. Section 6 con-
tains some related work that aims at optimizing the cache
behavior statically. Finally, we conclude and outline a road
map to future extensions in Section 7.

1We do not consider the 16KB L1 cache since it only holds integers.

2. Improving Locality

In this section, we review the concepts of data reuse and
data locality. We first discuss some important concepts re-
lated to data cache analysis and how we model different
cache levels. Finally, we introduce loop tiling and padding,
and explain how they can be used to improve data locality.

Understanding data reuse is essential to predict cache be-
havior. Reuse happens whenever the same data item is ref-
erenced multiple times. This reuse results in locality if it is
actually realized; reuse will result in a cache hit if no inter-
vening reference flushes out the datum.

Given that, a static data cache analysis can be split into
the following steps:

1. Reuse Analysis describes the intrinsic data reuse
among all different memory references.2

2. Data Locality Analysis describes the subset of reuses
that actually results in locality.

In the following, we describe each step in detail.

2.1. Reuse Vectors

In order to describe data reuse, we use the well-known
concept of reuse vectors [35]. They provide a mechanism
for summarizing repeated memory accesses within a perfect
loop nest.

Trying to determine all iterations that use the same data
is extremely expensive. Thus, we use a concrete mathemat-
ical representation that describes the direction as well as the
distance of the reuse in a methodical way. The shape of the
set of iterations that uses the same data is represented by
a reuse vector space [35]. Whereas self reuse (both spa-
tial and temporal) and group-temporal reuse is computed in
an exact way, group-spatial reuse is only considered among
uniformly generated references (UGRs), this is, references
whose array index expressions differ at most in the constant
term [9].

Figure 1(b) presents the reuse vectors for the references
in our running example shown in Figure 1(a). The reference
a(i, j)(W ) may reuse from the same datum (hence, tempo-
ral reuse) that a(i, j)(R) (hence, group reuse) accessed at
the same iteration. Reference c(k, j) is associated with the
self-spatial reuse vector (0,0,1), since it may reuse the same
cache line (thus, spatial reuse) that it accessed one iteration
before of the innermost loop nest. The other reuse vectors
can be understood in a similar way.

In the case that a reuse vector is not present, we assume
there is not reuse, thus, there is not locality.

2We use memory reference to note a static read or write in the program.
A particular execution of that read or write at run-time is a memory access.



REAL*8 A(N,N), B(N,N), C(N,N)

DO 2 i=1,N
DO 2 j=1,N

DO 2 k=1,N
a(i,j)=a(i,j)+b(i,k)*c(k,j)

2 CONTINUE

(a) FORTRAN code.

Reusing reference Reused reference Reuse Vector
Self Spatial (1,0,0)a(i,j) (R)

Self Temporal (0,0,1)
Self Spatial (1,0,0)b(i,k)

Self Temporal (0,1,0)
Self Spatial (0,0,1)c(k,j)

Self Temporal (1,0,0)
a(i,j) (R) Group Spatial (0,0,0)

a(i,j) (W) Self Spatial (1,0,0)
Self Temporal (0,0,1)

(b) Computed reuse vectors. R stands for READ, W for WRITE.

Figure 1. The IJK matrix multiplication and the reuse vectors that describe its reuse.

2.2. Data Locality

Data locality is the subset of reuse that is realized; i.e.,
reuse where the subsequent use of data results in a hit in the
considered cache level. To discover whether a reuse trans-
lates to locality we need to know all data brought to the
cache between the two accesses (this implies knowledge
about loop bounds and memory access addresses) and the
particular cache architecture we are analyzing.

CMEs [10] are mathematical formulas that provide a
precise characterization of the cache behavior for perfect
nested loops consisting of straight-line assignments. Based
on the description of reuse given by reuse vectors, some
equations are set up that describe those iteration points
where the reuse is not realized. Recently, Vera and Xue [34]
have proposed a new CMEs that are capable of analyzing
whole programs. It takes into account imperfect loop nests,
data-independent conditionals and subroutines.

For every reuse vector, two types of CMEs are generated:

• Compulsory equations. Compulsory equations rep-
resent the first time a memory line is brought into the
cache.

• Replacement equations. Given a reference, replace-
ment equations represent the interferences with any
other reference. For each pair of references (RA and
RB), the following expression gives the condition that
determines whether they are mapped onto the same
cache set:

Cache Set(~ı)RA
= Cache Set(~)RB

~ ∈ I

where I represents the iteration points between ~ı (the
current one) and the iteration point from which RA

reuses. This condition is expanded into a set of equa-
tions for each reuse vector.

Each equation represents a real polyhedron, whose integer
points are potential cache misses (the number of points is
the number of potential cache misses).

Given a reference, all the iteration points can be tested
independently [10]. In order to know if an iteration point
~ı0 results in a miss we need to know when it fulfills the
CMEs. This problem is equivalent to finding out whether,
after substituting the iteration point in the CMEs, the result-
ing polyhedron is non-empty, which is an NP problem.

Even though generating the equations is linear in the
number of references, solving them can be very time con-
suming. We use our previous work, which presents proba-
bilistic methods based on sampling [33] to solve the equa-
tions in a fast and accurate way.

2.2.1 CMEs for Multi-level Caches

We now briefly discuss how we extend our analysis to mem-
ory hierarchies with more than one level.

For these architectures, we have to analyze differently
memory references depending on the cache level they are
accessing. For that purpose, a set of equations that describe
precisely the relationship among the iteration space, array
sizes and cache parameters is set up for each of the cache
levels.

When analyzing potential cache set contentions, only
memory accesses that miss in lower cache levels are con-
sidered. Thus, we can see the equations for each level as
filters, where only those memory accesses that miss are an-
alyzed in further levels.

2.3. Tiling and Padding Overview

In addition to the hardware organization, it is well known
that performance of memory hierarchy is very sensitive to
the particular memory reference patterns of each program.
In order to enhance locality, transformations that do not al-
ter the semantics of the program attempt to modify the order



REAL*8 A(N,N)
REAL*8 B(N,N)
REAL*8 C(N,N)

DO 2 ii=1,N,T1
DO 2 jj=1,N,T2

DO 2 k=1,N
DO 2 i=ii, min(ii+T1-1, N)

DO 2 j=jj, min(jj+T2-1, N)
a(i,j)=a(i,j)+b(i,k)*c(k,j)

2 CONTINUE

(a) Tiled Matrix Multiply.

REAL*8 A(N+Pad1,N+Pad2)
REAL*8 B(N+Pad3,N+Pad4)
REAL*8 C(N+Pad5,N+Pad6)

DO 2 ii=1,N,=T1
DO 2 jj=1,N,T2

DO 2 k=1,N
DO 2 i=ii, min(ii+T1-1, N)

DO 2 j=jj, min(jj+T2-1, N)
a(i,j)=a(i,j)+b(i,k)*c(k,j)

2 CONTINUE

(b) Tiled and Padded Matrix Multiply.

Figure 2. Matrix multiply algorithm after applying tiling and padding.

in which computations are performed, or simply change the
data layout.

Loop tiling combines strip-mining with loop interchange
for increasing the effectiveness of memory hierarchy. Fig-
ure 1(a) shows the code for the IJK matrix multiplication
of NxN arrays kernel, which we use as our running exam-
ple. We present the tiled version, with tile sizes T1 and
T2, in Figure 2(a). Loop tiling basically consists of two
steps [35]. The first one consists in restructuring the code to
enable tiling those loops that carry reuse. The second one
is to select the tile factors that maximize locality. It is the
latter step that is sensitive to the characteristics of the cache
memory considered. Due to hardware constraints, caches
have limited associativity, which may cause cache lines to
be flushed out of the cache before they are reused despite
sufficient capacity in the overall cache.

Unlike loop tiling, padding modifies the data layout to
eliminate conflict misses. It changes the data layout in two
different ways. Inter-padding modifies the base address of
the arrays, whereas intra-padding changes the size of array
dimensions. Figure 2(b) shows our running example after
tiling and intra-padding all array dimensions.

3. Performance Modeling

In this section, we introduce our cost model. We first de-
scribe how we model loop tiling, padding and branch pre-
dictor behavior. Then, we describe our cost function to es-
timate performance. Finally, we reason the use of a GA to
traverse the solution space.

3.1. Tiling and Padding Model

We want to improve data locality through loop tiling and
padding. We focus on removing capacity misses by means
of loop tiling, whereas we use padding to eliminate those
conflict misses that loop tiling cannot remove.

We present a compiler strategy that combines both opti-
mizations at the same time by implementing the CMEs in

a parameterized way. The domains of the parameters are
set as follows. Assuming normalized loops, each tile factor
will range between 1 and the upper bound of the respective
loop nest. For the pad factors, we use the cache size of the
smallest cache in the hierarchy (which in practice is L1) as
the domain [32].

Our measure of locality is the number of read and
write misses for each cache level. More formally stated,
given a loop nest L with n normalized enclosing loops
L = {l1, . . . , ln}, and a set of tile and pad fac-
tors F = {T1, . . . Tk, P1, . . . Pt}, we define a function
MCost(L,F ):

MCost(L, F ) 7−→ (rmL1, wmL1, . . . , rmLu, wmLu)

where rm (wm) stands for read (write) misses and Li for
the i-th level of cache.

The following function characterizes the locality of the
optimized version of our running example (see Figure 2(b)),
where Cs stands for the first level cache size of the archi-
tecture being analyzed:

MCost(L, {[1, N ]
︸︷︷︸

T1

, [1, N ]
︸︷︷︸

T2

, [0, Cs − 1]
︸ ︷︷ ︸

P1

, . . . , [0, Cs − 1]
︸ ︷︷ ︸

P6

})

3.2. Branch Model

As the issue rate and depth of pipelining of high perfor-
mance superscalar processors increase, the importance of
control-flow speculation becomes more vital to achieve the
potential performance of current processors. There is a se-
rious performance degradation in deep-pipelined machines
caused by branch miss-predictions [3]. Modern branch pre-
dictors work fairly well for loops, since they usually miss
at most once over all iterations of a loop. However, current
processors still miss-predict in this situation frequently.

Tiling must be applied carefully because it may increase
overhead due to the tiled code complexity. Besides, the



INPUT
L = {l1, . . . , ln} a loop nest
M = {M1, . . . ,Mu} a memory hierarchy with u levels
F = {T1, . . . , Tn, P1, . . . , Pt} a set of tile and pad factors

OUTPUT
LoopCost(L,M ,F ) = number of estimated cycles

ALGORITHM
< rmM1, wmM1, . . . , rmMu, wmMu > = MCost(L,F )

miss predictions = MissPred(L)

LoopCost(L,M ,F ) =
∑l≤u

l=1
(µRl ∗ rmMl + µWl ∗ wmMl)

+ µMP *miss predictions
WHERE
µRl = cost of a read miss in level l
µWl = cost of a write miss in level l
µMP = cost of a miss-predicted branch

Figure 3. LoopCost algorithm.

extra levels of loops may lead to larger number of miss-
predicted branches. In order to avoid a large performance
degradation due to branch miss-predictions, we incorpo-
rate into our model the number of possible miss-predicted
branches.

Let L be a loop nest with n normalized enclosing loops
L = {l1, . . . , ln}, with upper bounds {U1, . . . , Un} respec-
tively. If there is a branch miss-prediction for each loop
execution, the number of miss-predicted branches is:

MissPred(L) = 1 +

j≤n∑

j=2

i<j∏

i=1

Ui

Example. Let us consider our running example when
{N=100, T1=20, T2=20} (the pad factors are irrele-
vant for computing the number of miss-predicted jumps).
The number of miss-predicted branches for the non-tiled
version (see Figure 1(a)) is 1 +

∑j≤3

j=2

∏i<j

i=1
100 = 1 +

100 + 104.
The number of miss-predictions for the tiled version (see
Figure 2(a)) will be 1 +

∑j≤5

j=2

∏i<j
i=1

Ui = 1 + d 100

20
e +

d 100

20
e∗d 100

20
e+d 100

20
e∗d 100

20
e∗100+d 100

20
e∗d 100

20
e∗100∗20 =

1 + 5 + 25 + 2500 + 5 ∗ 104.
This is, over five times as many as the original program.
Thus, in order to have some speedup, we should have an
important reduction in number of misses to compensate this
overhead.

3.3. Cost Model

Once we account for misses across all different levels
and loop tiling overhead due to miss-predicted branches, we
can calculate the loop cost. In Figure 3, we give a detailed
description of our cost model function, LoopCost.

µR1 µW1 µR2 µW2 µMP

Pentium-4 24 24 150 150 20
Alpha-21264 6 6 84 84 7
Itanium 21 21 128 128 15

Table 1. Weights to calculate LoopCost for a
particular architecture.

MCost calculates the locality for the loop nest L given
the set of tile and pad factors, i.e., the number of read and
write misses for each cache level. MissPred estimates the
number of miss-predicted branches that the branch predic-
tor may incur in when executing loop nest L. LoopCost
then calculates the total cost of executing L. It simply adds
up all different misses and the number of miss-predictions,
weighting each value by its relative cost.

In Table 1, we give the relative costs used to model the
architectures we used in our study (see Table 2). Values
have been obtained from vendors’ specifications. We as-
sume a memory latency of 160ns.

3.4. Compiler Strategy

The main objective of a compiler strategy is to determine
which transformations to apply. In our case, our main con-
cern is to decide which tile and pad factors yield the best
results. In this subsection, we explain how we choose the
parameter values guided by our cost model.

We want to find a set of tile and pad factors that minimize
the LoopCost of a loop nest L. More formally stated:



Code SUIF2 CMEs IR Parameterized
Tiling & Padding GA CMEs

Solver

Optimized
Code

Figure 4. Optimizing framework.

MIN LoopCost(L,M,F )

1 ≤ Tk ≤ Uk

0 ≤ Padt ≤ Cs − 1

where LoopCost is called the objective function.
The relationship between tiling, padding and the num-

ber of misses is not linear. Moreover, recently it has been
proved that ”Unless P==NP there is no efficient optimal
algorithm for data placement that minimizes the number of
misses” [24].

Since both tile and pad factors can take only integer val-
ues, our problem is considered as a nonlinear integer opti-
mization problem (NLP).

One of the challenges in NLP is that some problems ex-
hibit local minima. Proposed algorithms to overcome this
problem are named Global Optimization. Real functions
have been studied deeply [11, 16, 31]. Unfortunately, inte-
ger functions are hard to optimize. There are some studies
based on {0,1} valued integer functions [14], but in gen-
eral, this is a hard and time-consuming problem. Hence, the
use of heuristics that traverse the solution space is neces-
sary. Tabu search [12] obtains promising theoretical results,
but only partial implementations have been reported so far.
On the other hand, simulated annealing [18] and genetic al-
gorithms [13, 15] have been used for years with very good
results.

3.4.1 Why a Genetic Algorithm?

The majority of research in optimization via high-level re-
structuring has relied on smart heuristics and very simple
models [4, 7, 20, 25, 30, 35], which manage to improve pro-
gram performance significantly. However, current results in
compiler theory [24] point out two important practical is-
sues: (i) the use of heuristics is a must, and (ii) the loss of
information is critical to find a good solution.

Our proposal is based on the use of a very accurate cost
model, thus reducing the loss of information. Then, we
use a heuristic, in this case a genetic algorithm, to optimize
function LoopCost. According to Petrank and Rawitz [24],

Processor Freq. L1 (Cs,Ls,K) L2 (Cs,Ls,K)
Pentium-4 1.6GHz (8,64,4) (512,128,8)
Alpha-21264 525MHz (64,64,2) (4096,64,4)
Itanium 800MHz (96,64,6) (2048,64,4)

Table 2. Processors used for the experimenta-
tion. Cs stands for cache size in KB, Ls stands
for cache line size in bytes, and K stands for
the degree of associativity.

the only way to evaluate the potential of our method is com-
paring it with previous ones. Our experimental results show
that with a small and reasonable compile-time overhead, our
method outperforms all other previous approaches, for all
benchmarks running on a variety of modern architectures.

For a detailed description of the decisions taken for im-
plementing the GA, we refer the interested reader to our
technical reports [1, 32].

4. Experimental Framework

Figure 4 depicts the framework used in our experiments.
We implement the analysis as general as possible, so the
compiler is written using the SUIF2 internal representation,
which can be generated from different front-ends. We use
SUIF2 to collect all information about memory accesses
and control flow.

The core block is the one that computes the equations
and solves them, which describes the cache behavior. We
have implemented the CMEs following the techniques out-
lined in our previous work [2, 33], choosing a confidence
interval width of 0.1 and a 90% confidence which proved to
be enough to guide our optimizations.

The genetic algorithm has been implemented following
techniques described in our technical reports [1, 32]. Our
experimental results show that an initial population of 30
individuals, with a crossover and mutation probability of
0.9 and 0.005 respectively, give near-optimal results after
15 generations.



Name Description
MATMUL Matrix multiplication
MATVEC Matrix vector multiplication
T2D 2D matrix transposition
ADI 2D ADI integration
VPENTA Invert 3 pentadiagonals

(a) Description of the kernels.

Name Size 1 Size 2
MATMUL 400+50i 1000+50i
MATVEC 500+43i 1000+43i
T2D 2000+53i 4000+53i
ADI 2000+53i 4000+53i
VPENTA 1028+47i 2056+47i

(b) Problem sizes (i = 0 . . . 14).

Table 3. Evaluated kernels.

Performance is reported for three modern machines. Ta-
ble 2 shows their memory configurations. An overview of
the five evaluated kernels can be seen in Table 3(a). For
all of them, we have studied 15 different sizes. The sec-
ond column of Table 3(b) shows the sizes considered for
the Pentium-4 and the Alpha-21264, whereas the third col-
umn shows the sizes used for experimenting on Itanium.
All kernels are written in FORTRAN, drawn from different
benchmarks (NAS , LIVERMORE). We chose these kernels
because they exhibit high number of capacity misses.

To evaluate our method, we compare our results with two
other methods which represent the state-of-the-art:

• lrw: Lam et al. [20] choose the largest non-conflicting
square tile.

• tss: Rivera and Tseng [27] extend Coleman and
McKinley’s [7] Euclidean GCD algorithm.

For the sake of comparison, all kernels are compiled with
“g77 -O3”.

5. Experimental Results

In this section we present performance results. We start
studying the importance of considering the loop tiling over-
head. We show that without an accurate estimate of the
penalty of miss-predicted branches, the degradation in per-
formance can be severe. Then, we analyze the efficiency of
our approach. We present results of applying our method,
and we compare them with previous works.

5.1. Loop Tiling Overhead

The results of our first set of experiments are shown in
Figure 5. In order to show the importance of consider-
ing branch predictor behavior, we have analyzed different

1
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1.5

1.6

MP=1 MP=5 MP=10 MP=15 MP=20 MP=25 MP=30
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lo

w
do

w
n

Matmul
T2D
ADI

Matvec
Vpenta

Figure 5. Impact of branch miss-prediction
overhead for the Pentium-4 processor. Re-
sults are normalized to our estimated penalty,
µMP = 20.

penalty values for the Pentium-4 processor. Since padding
does not change the shape of the loop nest, we only con-
sider the effects of tiling. We have run our approach for
obtaining the best tile sizes considering different values of
µMP , and compared the execution times to that of the es-
timated penalty (µMP = 20). We report results in terms
of slowdowns. We can see that in general, execution time
converges smoothly to our solution, which confirms our in-
tuition. When the penalty is set to small values, the degra-
dation in performance may be very important (up to 34%
for MATMUL). This is because we generate tiles that are
very small in order to minimize memory penalty, though in-
curring in a high overhead due to the increased number of
miss-predicted jumps. On the other hand, if we set large
penalty values, we prioritize branches overhead, thus, tiles
are bigger but we incur in more misses that can degrade per-
formance.

5.2. Performance Evaluation

Now, we show the effectiveness of our method compared
to lrw and tss (see Section 4).

5.2.1 Tiling the Matrix Multiplication Kernel

While lrw and tss can be applied to any loop nest, they
were originally thought for programs involving matrix op-
erations, and especially, for tiling matrix multiplication.

In this subsection we compare our tile selection approach
with them for the matrix multiplication kernel. We present
results for 5 possible loop orders, IKJ, JIK, JKI, KIJ and KJI
(the remaining IJK order is used in the next subsection). We
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Figure 6. Speedups obtained by our approach
compared with lrw and tss algorithms for 5
different loop orders of the MATMUL kernel.

use 15 different matrix sizes:

N = 1000 + 53i, 0 ≤ i ≤ 14

Figure 6 shows the average speedups of our method
(only tiling is applied) compared to lrw and tss. For ob-
taining these results, we have run all different approaches
to select the best tile sizes for each platform. Then, we have
executed the tiled version measuring the actual execution
time. The results show that our approach outperforms these
two techniques significantly, up to 310% for tss on the Al-
pha processor. We also show that our approach is better
than both techniques for all platforms, with improvements
ranging between 10% and 310%.

5.2.2 Tiling and Padding

We now present results for a set of common kernels that
may benefit from tiling and padding. Figure 7 shows, for
each machine, to what extent our method is better in terms
of execution time of the optimized codes.

We first consider the results where only loop tiling is
applied. For each program, the first two bars report the
speedup compared to lrw and tss respectively. In all cases
our method yields better results than previous approaches.
Our ability to select tile factors results in important run-time
improvements; on average, our transformed code runs 8%
and 49% faster on a Pentium-4 compared to lrw and tss. On
the Alpha machine results are even more impressive, with
average speedups of 63% and 195% respectively.

Now, we consider results where both tiling and padding
techniques are applied. The second set of bars reports the
speedup compared to lrwPad and tssPad, enhanced ver-
sions of lrw and tss where padding is allowed [27]. The

Processor MIN MAX AVG
Pentium-4 1.8 14.5 4.63

Alpha-21264 0.1 11.9 3.61
Itanium 0.4 17.0 5.50

Table 4. Compile-time overhead when select-
ing tile and pad factors on a Pentium-4 run-
ning at 1.6GHz. Time is measured in seconds.

memory requirement was roughly the same for all three ap-
proaches. We can see that the speedup is smaller on the
Pentium-4, where our transformed code runs 7.7% and 26%
faster than lrwPad and tssPad respectively. However, the
difference increases on the Alpha (260% and 271%).

Finally, in order to see to what extent tiling and padding
help enhancing the program, we show in Figure 8 the
speedups that the different approaches (with and without
padding) obtain w.r.t. the original kernel. The application
of padding on lrw and tss does not always translate to a
better performance. Padding improves especially tss on the
Pentium-4, but it yields worse results on the Alpha machine.
On the other hand, our approach applies padding in concert
with tiling using the same cost model; if padding is not use-
ful, our cost model will predict a performance degradation,
so pad factors will be set to 0. Overall, our approach obtains
(98%, 204%, 49%) average speedups on the Pentium-4, Al-
pha and Itanium respectively. Combining the other meth-
ods with padding, lrwPad obtains (69%, 19%, 16%) and
tssPad (20%, 80%, 11%). Otherwise, their speedups are
(74%, 78%, 9%) and (30%, 20%, 3%) for lrw and tss re-
spectively.

Note that the use of an accurate model allows us to obtain
always a version of the code that it is not worse than the
original one. For instance, when optimizing MATVEC for
the Itanium platform our cost model determines that tiling
is not useful, thus we do not apply it. However, the other
approaches do not have an accurate model that guides the
transformations, which results, some times, in an optimized
code that runs slower than the original version.

5.3. Compile-Time Overhead

Clearly, for our method to be considered a realistic opti-
mization approach, it must be shown that the compile time
required is small enough to be practical. In order to inves-
tigate this, we have collected the execution time needed to
obtain tile and pad factors for all our experiments. We ac-
count for 15 problem sizes for each of the 5 kernels. We also
include the time needed to optimize the different versions
of the matrix multiplication kernel. Overall, we account for
450 experiments.
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Figure 7. Speedup obtained by our approach compared with lrw and tss algorithms.
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Figure 8. Speedup of all approaches w.r.t. the original program.

Table 4 shows the average times needed to generate the
optimized version (including both tiling and padding) for
each architecture. We see that in the worst case, it takes an
average of 5.5 seconds to optimize a code, which we believe
is reasonable for a static compiler.

5.4. Summary

Overall, we have shown the effectiveness of our method
to select tile and pad factors. We first have presented re-
sults that highlight the importance of modeling the branch
predictor behavior. Later, we have seen that our approach
outperforms state-of-the-art techniques to select tile sizes
for all analyzed kernels, for all platforms. We have shown
how our cost model selects tile and pad factors in concert,
which translates to consistent speedups.

From these results, we conclude that accurate cost mod-
els that consider not only cache behavior but other hardware
components are necessary. A simple cost model may hinder
compiler’s ability to generate good code that improves over-
all performance. For instance, it is not clear when padding
should be combined with tiling for the lrw and tss algo-
rithms.

6. Related Work
Caches are an essential part of processors for reducing

memory latency and increasing memory bandwidth. By

reducing the number of accesses to the slow upper lev-
els of the memory hierarchy, significant speedups can be
achieved. Conflict misses may represent the majority of
intra-nest misses and about half of all cache misses for typ-
ical programs and cache architectures [22].

Researchers working on locality optimizations have con-
sidered re-ordering techniques such as loop interchange [9,
21, 35, 36], loop fission/fusion [21] and loop tiling [4, 7, 20,
27, 29, 35, 37, 38]. Recently, GAs have been used to reduce
code size [8] or select the best phase order [19].

The success of loop tiling depends on the tile size and
shape selection. Lam et al. [20] present an algorithm that
chooses the largest non-conflicting square tile, considering
caches with low associativity. Coleman and McKinley [7]
try to maximize the tile size while minimizing the cross-
interferences. Their cost model is based on computing the
footprints of the array references. Rivera and Tseng [27]
further extend the Euclidean algorithm [7] by computing
tile widths using a recurrence. They realize that there may
be some pathological problem sizes where tile selection
does not work very well. They propose padding the first
dimension of all arrays with the same pad to eliminate such
cases.

Array padding can help eliminate conflict misses. Rivera
and Tseng [25, 26] propose several simple heuristics that
are addressed to eliminate conflicts in some particular cases.



They mainly focus on conflicts that occur on every loop it-
eration, addressing only inter-padding for uniformly gener-
ated references (so they cannot remove conflict misses for
references such as B(i,j) and C(k,j)). On the other hand, they
do not use intra-padding to remove cross-interferences. In
the case they cannot remove all the conflicts, no changes are
done to the data layout. Besides, they use the padding al-
gorithm devised to avoid conflict misses for direct-mapped
caches to remove conflict misses for set-associative caches,
without taking into account that interferences arise in dif-
ferent situations for different cache architectures. They
presented an extension of this work targeting multi-level
caches [28], where they study the effects of optimizing L1
cache on L2 cache behavior.

Ghosh et al. [10] use the CMEs to propose a tiling
and padding technique. Padding works on direct-mapped
caches, optimizing conflicting arrays that have the same
column size. Their technique finds the optimal padding if
there is a padding such that the total number of replacement
misses after padding is zero. However, if such a padding
does not exist, their technique does not provide any solu-
tion. Note that replacement misses include both conflict
and capacity misses and one may expect the case where
replacement misses cannot be decreased up to zero to be
common. Tiling is based on maximizing the tile size for
every self-interference equation, which selects a tile that
has no conflicts for the given equation. However, they do
not give insights about how to combine the different tile
sizes obtained. Furthermore, tiling is not applied to cross-
interferences.

Our approach has several advantages over previous re-
search. First, our cost model describes accurately the cache
behavior of any memory hierarchy, and considers all ar-
ray accesses within a loop nest. Moreover, we model
tiling overhead due to miss-predicted branches. Second,
our padding considers different pad factors for each array
dimension, increasing the chances of finding a better opti-
mized code. Finally, we perform tiling and padding at the
same time, hence considering a global solution.

7. Conclusions

This paper presents a new approach to improve execu-
tion time of programs by improving data locality. It com-
bines tiling and padding to remove both capacity and con-
flict misses. First, we present a very accurate model that
describes cache locality across different levels. Moreover,
our cost model takes into account the possible tiling over-
head due to the added miss-predicted branches. We discuss
how this model can be tuned to describe accurately the per-
formance cost for different modern architectures.

Second, we introduce the use of genetic algorithms to
traverse the solution space. We show how our approach

can guide compiler optimizations efficiently; with a small
compile-time overhead (average of 4.58 seconds per ker-
nel), we obtain very important run-time improvements. Our
results show that, compared to the best of the state-of-the-
art approaches for each particular architecture, we have
7.7%, 63.2% and 35.7% average speedup for Pentium-4,
Alpha-21264 and Itanium respectively.

Overall, this paper contributes with a new technique that
makes a case for the use of accurate models to guide com-
pilers in order to improve execution time. Moreover, it does
not only model cache behavior but hardware components
such as branch predictors, which shows the possibility of
having complex and accurate models for actual architec-
tures.

While this work represents an important attempt for im-
proving global optimization, there are still some issues that
can be investigated further. Future work will first investi-
gate the application of padding and tiling for whole pro-
grams. For that purpose, we plan to plug our scheme to
the new analytical model that studies whole programs [34].
In addition, we want to explore the use of other compiler
techniques such as loop fusion, loop interchange and loop
unrolling.
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ported by CICYT project 995/2001.

We wish to thank Erik Hagersten for helpful discussions
on the importance of modeling “more than L1 caches” to
improve performance on current machines.

References
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