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Abstract—Providing computer-based services for vehicular
systems has evolved to the point where majority of functions
are realised by software. However, the need to provide safety in
critical functions such as braking and engine control requires an
approach that can guarantee reliable operation of the functions.
At the same time, there are a variety of vehicle functions that are
less critical. The main challenge for the vehicle manufacturers is
to provide both types of functions in an economic and reliable
manner. To meet this challenge, this paper considers the Rubus
tool chain for model- and component-based development of
vehicle software and a well-proven (in the industrial use for
over twenty years) and certified (according to ISO 26262) real-
time operating system for its execution. The paper provides
an overview of the Rubus approach and driving concepts as
well as the research results that are used in providing its tool
chain. Moreover, the paper presents a success story of a unique
academic-industrial collaboration in the vehicle domain that
has resulted in sustained development of the tool chain. The
collaborators form a clear value chain from academia, through
tool developer, to the end users of the technology. The paper also
highlights the perspectives of the collaborators and discusses the
challenges faced, experiences gained and lessons learned from
several technology transfer projects.

I. INTRODUCTION
A large share of innovation and customer value in modern

vehicles comes from advanced computer-controlled function-
ality. With the increasing volume of such functionality, the
vehicle software has tremendously increased in size and com-
plexity. For example, the amount of software in a car has
increased from 100 lines of code in late 1970s to more than
100 million lines of code in a span of approximately three
decades [1], [2]. The distributed nature of vehicle software
over tens of nodes or Electronic Control Units (ECUs) further
adds to its complexity. Moreover, the safety-critical nature of
several vehicle functions puts real-time requirements on them.
The developers of such functions are required to ensure that the
functions are predictable, i.e., they behave in a timely manner
when executed. The software complexity can be managed
by using the tools that employ the principles of component-
based software engineering (CBSE) [3] and model-driven
engineering (MDD) [4]. The predictability of the functions can
be verified by the tools that implement real-time schedulability
analysis [5], [6], [7]. Such analysis can validate the timing
requirements, without performing exhaustive testing, before
the functions are deployed to the target platforms.

This paper discusses a case of an industrial tool chain,
namely Rubus [8], that has proven to be very successful
in applying the principles of CBSE, MDD and real-time
scheduling theory in practice for over two decades. The Rubus
tool chain supports model- and component-based development
of vehicle software and its predictable execution on a real-time

operating system (RTOS) that is certified in ISO 26262 safety
standard according to ASIL D [9]. The paper describes the
experiences of various collaborators in the academic-industrial
collaboration shown in Fig. 1. The collaboration has been
ongoing for 20 years. It has resulted in the development of
the Rubus tool chain and its evolution based on the state-of-
the-art research, industrial needs and feedback from the end
users. One unique characteristic of the selected collaboration
is that it offers a clear value chain from academia (mainly
Mälardalen University); through tool developer (Arcticus Sys-
tems1); and finally, to the end users of the technology such
as Volvo Construction Equipment (VCE)2 and BAE Systems
Hägglunds3. The paper also describes some important lessons
learned during several technology transfer projects.
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Fig. 1. Example of flows of information within the collaboration.

II. RUBUS: HISTORY, EVOLUTION & DRIVING CONCEPTS

A. The Rubus Concept
Arcticus Systems introduced the Rubus Kernel for industrial

use in 1996. It was selected for the implementation of a
Limited Slip Coupling Device for four-wheel drive vehicles by
Haldex and later by Volkswagen. Since then Rubus has evolved
into a significant product that is utilised by several interna-
tional companies including VCE, BAE Systems Hägglunds,
Elektroengine, BorgWarner, Hoerbiger and Knorr-Bremse. The
Rubus concept is based upon the principles of CBSE and
MDD. It is centered around the Rubus Component Model
(RCM) [10] and its tool suite, namely Rubus-ICE (Integrated
Component model development Environment) that consists of
modelling tools, code generators, run-time infrastructure, anal-
ysis and simulation tools as shown in Fig. 3. An application

1 http://www.arcticus-systems.com. 2 https://www.volvoce.com.
3 http://www.baesystems.com.
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Fig. 2. System-level modelling and specification of timing constraints in a distributed embedded system using Rubus-ICE.

developed using Rubus-ICE can be executed on a variety of
platforms, that is, various hardware platforms and RTOSs.

The main goal of Rubus is to be aggressively resource effi-
cient and to provide means for developing predictable, timing
analysable and synthesisable control functions in resource-
constrained embedded systems. The highest-level hierarchical
element in RCM is called the system which contains the
models of nodes (ECUs) and networks. The lowest-level
hierarchical element in RCM is called the Software Circuit
(SWC). It encapsulates basic functions and has the run-to-
completion semantics. The name “software circuit” is derived
from the hardware analogy where component data and control
flow behave as a chain of circuits. This promotes the analysis
and verification of system timing constraints and resource
utilisation that is accomplished by separating data and control
flows in a network of SWCs. Various elements in RCM are
depicted in the example software architecture shown in Fig. 2.
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• RCM	-	Viewpoint	of	the	developer/development	team	model:	The	developer	designs	the	system,	
in	 a	 platform	 independent	 manner	 that	 focuses	 upon	 the	 application.	 Timing	 and	 resource	
constraints	are	expressed	in	the	model.			

• RAM	-	Viewpoint	of	the	analysis	model:	The	resulting	RCM	design	 is	formal	and	lends	 itself	to	
static	analysis	that	is	mapped	to	the	actual	run-time	platform.	The	analysis	includes	type	checking,	
execution	order,	real-time	requirements	such	as	response	times	and	worst-case	execution	times.	
This	analysis	helps	in	reducing	late,	costly	and	time-consuming	testing	efforts	of,	e.g.,	temporal	
errors.	 Furthermore,	 mathematical	 models	 and	 supporting	 tools	 provide	 formal	 evidence	 of	
fulfilling	requirements.		

• RRM	 -	 Viewpoint	 of	 the	 run-time	 platform	 model:	 The	 RCM	 design	 together	 with	 the	 RAM	
analysis	 is	 utilized	 to	 synthesize	 the	 code	 for	 the	 actual	 run-time	 platform.	 This	 automated	
synthesis	prevents	error	prone	and	costly	integration	errors.		The	run-time	platform	may	be	the	
Rubus	Kernel	or	some	other	Real	Time	Operating	System.	

These	 concepts	 have	 proven	 to	 be	 effective	 in	 providing	 scalability	 from	 small	 to	 large	 real-time	
applications	implemented	by	various	organizations.	

4 Rubus	Products	
The	main	products;	namely	Rubus	Tool	Suite	and	Rubus	RTOS	that	Arcticus	delivers	to	its	customers	are	
portrayed	in	Figure	3.		It	is	important	to	note	that	the	real-time	application	developed	using	Rubus	Tool	
Suite	can	be	executed	on	a	variety	of	real-time	platforms,	that	is,	various	hardware	and	various	real-time	
operating	systems.	

 

Figure	3:	The	Rubus	Product	Suite.	

4.1 The	Rubus	Tool	Suite	Product	
The	 Rubus	 Tool	 Suite	 (Integrated	 Component	 Model	 Development	 Environment)	 that	 is	 utilized	 by	
customers	 in	 developing,	 simulating	 and	 implementing	 time	 critical	 and	 non-time	 critical	 applications.		

Fig. 3. Various tools in the Rubus tool chain.

B. Model Driven Development using Rubus

MDD has had an increasingly important role in designing
and implementing software in vehicular embedded systems.
Due to the complexity of these systems, the development must
rely more and more upon automation and the interoperability
amongst models such as Simulink. Various features provided
by the Rubus tool chain are portrayed in Fig. 4. The three mod-
els provide various viewpoints reflecting all of the necessary
information concerning the development, analysis, synthesis
and execution of vehicular embedded systems.

1) Rubus Component Model - Viewpoint of the Development
Team: The Rubus Designer tool is used to interactively de-
scribe the application that is developed using RCM. The devel-
oper designs the system in a platform-independent manner that
focuses on the application. Timing and resource constraints
are expressed in the model. The structure of the application
is developed by means of SWCs. The structural model of
a distributed embedded system with multiple networks and
software architecture of a node in RCM are shown in Fig. 2.

2) Rubus Analysis Model - Viewpoint of the Analysis
Framework: The resulting RCM design is formal, which lends
itself to static analysis that is mapped to the actual run-
time platform. In this viewpoint, the Rubus Analyser analyses

the type checking, execution order and real-time require-
ments. This analysis helps in reducing late, costly and time-
consuming testing efforts. Furthermore, mathematical models
and supporting tools provide formal evidence of fulfilling the
requirements [6]. The Rubus Analyser supports pre-runtime
timing analysis of the system at various levels. For example, a
single node is analysed by calculating the tasks’ response times
and comparing them with corresponding deadlines. The Rubus
Analyser implements Response Time Analysis (RTA) of tasks
with offsets [11], RTA of Controller Area Network (CAN) and
its higher-level protocols [12], analysis of multiple networks,
end-to-end timing analysis [6], [13] for calculating the age
and reaction delays (corresponding constraints are specified in
Fig. 2), as well as timing analysis of black box nodes (see
Fig. 2) whose software architectures are not available [14].

The Rubus Inspector supports platform-independent formal
and semi-formal model-in-the-loop testing environment. It
supports unit testing as well as sub-system testing (node and
network) and system testing (distributed system with multiple
nodes and networks). Test inputs can be generated from
LabView/Simulink and Matlab environments. Another tool,
namely the Rubus Simulator provides for testing and verifying
the composite of the Rubus Kernel and application software.

3) Rubus Run-time Model - Viewpoint of the Run-time
Platform: The code for the actual run-time platform is synthe-
sised from the software architecture. This automated synthesis
prevents error-prone and costly integration errors. The Rubus
Kernel or any other RTOS can be used as the runtime platform.
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Fig. 4. Rubus Conceptual Models.

C. Certified Real-time Operating System (RTOS)
. The Rubus RTOS provides support for RCM in achieving

an optimised real-time software system. The RTOS has been
utilised in a wide variety of real-time applications such as
wheel loaders, articulated haulers, excavators and several four-
wheel drive vehicles. The main features of the RTOS include
the support for the execution and communication among time-
, event- and interrupt-triggered threads, static allocation of
resources, scalability and portability. The combination of dy-
namic and static scheduling supported by the Rubus RTOS en-



ables the design of optimised real-time software systems. The
RTOS has been ported to various targets and development en-
vironments including Freescale MPC-processors, Texas DSP,
Infineon xc167-processors and various compiler environments,
e.g., Green Hills, WindRiver, Tasking, Microsoft VS and GCC.

III. RELATED WORK

This paper targets the vehicle industrial domain where the
main focus is on EAST-ADL [15] and EAST-ADL-like models
for functional modelling and on AUTOSAR [16], RCM and
other models for the implementation of software architecture.

A. EAST-ADL and AUTOSAR
EAST-ADL is an architecture description language in the

automotive domain. EAST-ADL is inspired by the SysML
language [17] that is used for the systems engineering [18].
EAST-ADL is mapped to several automotive standards in-
cluding ISO26262 for functional safety and AUTOSAR for
the implementation of software architecture. It defines a top-
down development methodology that advocates the separation
of concerns principle by defining various abstraction levels
for the development of vehicle software. Fig. 5 shows the
abstraction levels along with various methodologies, models,
languages and tools that are used at each level. The highest
abstraction level, called the vehicle level, informally captures
the features and requirements on the end-to-end functionality
of the vehicle in a solution-independent way. The analysis
level formally captures the requirements in an allocation-
independent way. This level supports a high-level analysis for
functional verification. The artifacts at the design level are de-
veloped independent of implementation details. These artifacts
include middleware abstraction, hardware architecture and
software functions to hardware allocation. The implementation
level provides an implementation of the system functionality
in terms of software components and their interconnections.
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Fig. 5. Models and tools that are used at the abstraction levels of EAST-ADL.

AUTOSAR provides a standardised software architecture
for automotive embedded software at the implementation level
shown in Fig. 5. It describes the software development at a
higher abstraction compared to RCM. Unlike RCM, it does not
separate control and data flows among components within a
node. AUTOSAR does not differentiate between the modelling
of intra- and inter-node communication which is unlike RCM.
The timing model in AUTOSAR has been introduced fairly
recently compared to that of RCM. We refer the reader

to [19] for details about the timing models. There are some
similarities between AUTOSAR and RCM, e.g., the sender-
receiver communication in AUTOSAR resembles the pipe-
and-filter communication in RCM. AUTOSAR is more fo-
cused on the functional and structural abstractions, hiding the
implementation details about execution and communication.
B. TIMMO, TIMMO2USE, MARTE, TADL and TADL2

TIMMO [20] is an initiative to provide AUTOSAR with
a timing model. It is based on a methodology and the
TADL language that can express timing requirements on the
software architecture. TADL is inspired by the UML profile
MARTE [21]. The TIMMO methodology uses EAST-ADL for
structural modelling and AUTOSAR for the implementation
of the software architecture. Both TIMMO and EAST-ADL
focus on the top three levels in Fig. 5. TADL is redefined
and released in the TADL2 specification of the TIMMO2USE
project [20]. Most of these initiatives lack the support for
expressing the low-level details at the higher levels such as
linking information in distributed component chains. These
details are necessary to extract the timing model from the soft-
ware architecture to perform the end-to-end timing analysis.
C. Other Related Models, Approaches and Tools

There are several other related component models and
modelling approaches such as COMDES-II [22], ProCom [23]
and TECS [24]. The timing analysis supported by ProCom is
not performed with such a high precision as it is done in
Rubus-ICE [25]. To the best of our knowledge, none of these
models support the extraction of end-to-end timing models
at the higher abstraction levels. This is because these models
are developed to model the software architecture only at the
implementation level. These models rely on EAST-ADL at
the higher abstraction levels. The end-to-end timing models
cannot be completely extracted at the higher abstraction levels
of EAST-ADL mainly for two reasons: (1) EAST-ADL does
not differentiate between the control and data flows, (2) EAST-
ADL cannot express the low-level details at the higher levels
such as linking information in distributed chains [19]. There
are middleware approaches that support the modelling of the
software, e.g., RT CORBA, minimum CORBA and CORBA
lightweight services [26]. The downside of these approaches
is that their run-time frameworks are heavyweight which are
not suitable for resource-constrained embedded systems. On
the other hand, RCM has a small run-time footprint.

DaVinci4 is a tool for AUTOSAR-based development. It
does not support the extraction of timing models at the higher
abstraction levels. The Palladio tool5 allows for modelling of
the software architecture and its analysis based on several qual-
ity attributes including response times. However, this tool does
not support the end-to-end timing analysis [13], [6]. There
are several other tools that support modelling of the systems
using the methodology shown in Fig. 5, e.g., Papyrus, Mentor
Graphics VSA, Rubus-EAST, EATOP, MetaEdit+, Enterprise
Architect, No Magic and System Weaver [27]. These tools are
only usable at the first three levels in Fig. 5. None of these
tools support the extraction of end-to-end timing models at the
higher levels. After implementing the recent research results
identified by ComSIS 2013 [6], MASE 2015 [28], RTSCA
2015 [14], CBSE 2016 [29], ITNG 2016 [30] and SOSYM
2017 [31] in Fig. 5, Rubus-ICE supports the development of
vehicular embedded systems at all the abstraction levels.
4 http://vector.com/vi davinci developer en.html.
5 http://www.palladio-simulator.com/tools/quality dimensions.



IV. VARIOUS PERSPECTIVES IN THE COLLABORATION

This section discusses the perspectives of various stakehold-
ers in the academic-industrial collaboration shown in Fig. 1.
The stakeholders include academia, tool provider and two end
users of the tool chain. The end users have contributed to the
evolution of the tool chain by not only supplying industrial
needs, requirements and use cases but also providing the
efficacy of the new methods, techniques and tool extensions.

A. Perspective of the Tools Provider
There is a large number of tool providers in the vehicle

domain. In this paper we select the case of the Rubus tool
chain for several reasons. The software developed using Rubus
has a small run-time foot print (timing and memory overheads)
as compared to several other component-based development
technologies including AUTOSAR. While most of the tool
chains and models need complementary tools from other
vendors to support the software development at all abstraction
levels of EAST-ADL, the Rubus tool chain is usable at
all the abstraction levels. Arcticus and their customers are
relatively open in discussing the theories, methods and details
about their tools, use cases and experiences with the research
community, which is unlikely in the case of many companies.
Another reason is the successful usage of Rubus in the vehicle
industry for over 20 years. Other reasons include the support
for formal and early reasoning about the system functional
and extra-functional properties, automatic code synthesis and
traceability. According to the CEO of Arcticus Systems, “A
tool provider in the vehicle domain should strive to be agile
and fast in identifying the industrial needs and challenges and
providing solutions based on the state-of-the-art research in
close collaboration with academia.”

B. Academic Perspective
RCM was initially developed from the project BASEMENT

and its conceptual component model [32]. Since then RCM
and its tool chain have evolved through several technology
transfer projects. Vice versa, experience and feedback from the
industrial use of Rubus have inspired many research projects
over the years. A graphical view of different component
models that have been developed in academia and by Arcticus
Systems in collaboration with various industrial partners is
shown in Fig. 6. The number of participating researchers
(PhD students and senior researchers) in the projects shown in
Fig. 6 ranges from 3 to 25. As a result of this collaboration,
the state of the art has been extended in the area of model-
based software development of embedded real-time systems
by developing new theories, techniques, methods and models
as well as by performing several industrial case studies. The
scientific results produced within this collaboration have been
published in over 100 peer-reviewed research publications6,7.
According to the research leader at Mälardalen University,
“To remain academically excellent and scientifically relevant,
we find the long-term cooperation within the collaboration
highly invigorating. Over the years the collaboration have had
a profound impact on our whole research environment.”
C. End-user Perspective: Volvo Construction Equipment

VCE is the oldest and one of the world-leading manufactur-
ers of heavy construction equipment vehicles, e.g., wheel load-
ers, articulated haulers and excavators. The company has been

6 http://www.es.mdh.se/publications?filter=true&author=63&ppp=all.
7 http://www.arcticus-systems.com/research/publications/.

successfully applying model-based software development, us-
ing the Rubus tool chain, to provide computer-controlled
functionality in the vehicles since 1997. According to VCE,
Rubus has proven to work efficiently from small applications
with only a few objects up to very large applications with
thousands of objects. Some of their experiences are as follows.
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Fig. 6. Contributions to RCM and Rubus-ICE from academia and industry.

Development and testing times: Small development time
is of essence for VCE. The SWC concept in Rubus offers
advantages such as breaking down of an application into
smaller components that can be distributed to a large number
of developers. This enables development of vehicle function-
ality in parallel, hence shortening the development time. The
support for model-in-the-loop testing and creation of unit tests
for each component has resulted in reduction of the amount
of bugs that end up during the integration. As a result, time
to test has been significantly shortened.
Support for interoperability: Interoperability of information
and models during the development of vehicle software is very
important for VCE. The Rubus tool chain supports this by al-
lowing its integration with other tools such as Simulink. Using
Rubus, there are various means of either using the application
programming interfaces to read/write data or directly accessing
the model information using scripts like Python.
Information management: Rubus tool chain uses the XML
exchange format, which enables it to use existing change man-
agement systems such as SVN, ClearCase and GIT. Merging
is also facilitated since the information is human readable but
still possible for a machine to process. Hence, creating model
information from other tools becomes relatively easier.
Pre-runtime timing analysis: A lot of functionality in VCE’s
vehicles have real-time requirements. VCE is required to verify
such requirements before the functionality is deployed to
the vehicles. The pre-runtime end-to-end timing analysis in
Rubus-ICE [6] has proven to yield good results with respect
to early verification, feasibility validation and timing checks.
Certification: VCE needs to deliver safety certified vehicle
functionality. Since the Rubus RTOS is certified according to
ISO-26262:2011 ASIL-D, it serves the purpose for VCE.

According to the project manager of platforms development
at VCE, ”This collaboration has helped us in improving our
strategies for the development of predictable software in our
vehicles. In our view, the most attractive features of the tool
chain include user-friendly tools, simplicity to understand and
use by the engineers, light run-time footprint and automation.”



D. End-user Perspective: BAE Systems Hägglunds
BAE is a renowned global manufacturer of advanced de-

fense, combat and security systems. The main reasons for
selecting the Rubus tool chain for the software development
in their products are as follows.
Requirement for the time- and event-triggered execution:
BAE requires time-triggered architectural approach to execute
the software threads that compose majority of the repetitive
functions in their products. The support for event-triggered
execution of threads is needed to service various internal
and external events in the system. Both the time- and event-
triggered modelling and execution of software components are
fully supported by RCM, Rubus-ICE and Rubus RTOS.
Requirement to support background threads and services:
BAE requires the support to implement background threads
that are appropriate for services of diverse character such as
diagnostics and as well as vital functions for the implemen-
tation of communication protocols. This requirement is fully
supported by the Rubus tool chain.
Requirement for pre-runtime timing analysis: BAE requires
pre-runtime verification of the predictability of both time-
and event- triggered functions. BAE performs pre-runtime
verification of time-triggered SWCs by using the correct-by-
construction offline schedule generated by the Rubus sched-
uler. In the case of event-triggered SWCs, response-time
analysis and end-to-end timing analysis in Rubus-ICE provides
pre-runtime verification of the timing behaviour of the SWCs.
Requirement for coupling the SWCs with Simulink: The
behaviour of control functions are developed using Simulink.
Hence, it is required to couple each SWC in the software
architecture with Simulink. The coupling is achieved at a suit-
able level via a modified code generator. The generated code
becomes an entry point for the SWC, which is then allocated
to a time-triggered chain with an appropriate periodicity.

According to the senior software architect of land vehicles
at BAE Systems, “This long-term collaboration has been very
beneficial for us in getting the support of a useful tool chain.
With the time-triggered execution in Rubus, majority of our
functions are fully supported due to their repetitive nature.
The communication and diagnostics in our systems are well
supported by utilising the event-triggered execution in Rubus.
Interoperability between Rubus and Simulink eases our effort
to develop the control logic.”

V. ONGOING COLLABORATION: THE PREVIEW PROJECT

Contemporary functions and advanced features in modern
vehicles require new levels of computational power, true
parallelism and more complex coordination among subsys-
tems. Majority of ECUs that are used in the vehicle industry
include single-core processors which are unable to fulfil these
requirements. ECUs with multi-core processors offer an effi-
cient support for running such computation-intensive vehicle
functions by executing various activities in parallel [33]. As
compared to single-core ECUs, the multi-core ECUs are
more prone to unpredictable behaviour due to sharing of
caches and memory banks among the cores. This problem
is expected to increase in the future with the introduction
of more advanced architectures with cluster sets of cores
having more advanced memory interconnects, e.g., many-core
platforms. A seamless tool chain for model- and component-
based development of vehicle software and its predictable

execution on multi-core ECUs is still missing in the vehicle
industry. Providing such a tool chain is the main focus of an
ongoing project PreView [34] within the collaboration. Various
activities in this project are depicted in Fig. 7. Other ongoing
projects8 within the collaboration that are in line with this
goal include EMC2 [35] and DPAC [36]. The collaboration is
also developing a generic approach to model transformations
in order to seamlessly exchange information with other tool
chains in the vehicular domain.

Rubus RTOS
(Single-core)

End-to-end Timing Analysis

Code Generation and Deployment

Single-core Electronic Control Unit (ECU)

ISO-26262:2011	Certified	according	to	ASIL	D

Currently Supported Development

Modeling of Software Architecture Modeling of Software Architecture

End-to-end Timing Analysis

Code Generation and Deployment

Single-core
Hypervisor

Single-core 
Partitioned ECU

Rubus RTOS
(Per Partition)

Multi-core
Hypervisor

Multi-core ECU

Rubus RTOS
(Per Core)

Targeted Development

Extend

Extend

Extend

Extend

PreView Project (2016

PreView Project

Extend

Extend

Extend

Extend

Extend

Extend

Extend

Extend

Fig. 7. Ongoing research activities within the collaboration.

VI. EXPERIENCES AND LESSONS LEARNED

This section discusses important experiences and lessons
learned from the technology transfer projects shown in Fig. 6.

A. Simplicity, Learning Time and Ease of Use
Simplicity, short learning time and ease of use are very

important aspects of a tool chain that are associated to its
industrial adoption. No doubt, the tool chain can implement
complex methods, analysis techniques and optimisations; how-
ever, such complexities should be abstracted from the end
user. It can be challenging to hide the complexities in many
cases. In this regard, an effort should be made to minimise the
overhead that is related to the learning time of engineers when
the tool chain is extended/upgraded. We faced this challenge
in the EEMDEF project (see Fig. 6) when modelling and
timing analysis support in the Rubus tool chain was extended
from single-node to distributed embedded systems. In order
to address this challenge the implementer (a researcher who
developed the techniques and implemented them in the stand-
alone tools) and the integrator (an engineer with limited
experience of integrating complex modelling and real-time
analysis techniques but fully aware of overall objective) had to
not only implement, integrate and test the techniques but also
deliver tutorials, workshops, usage methodology and simple
use cases to the end users. The later activities contributed
towards minimising the learning efforts by the end users of
the extended tool chain. We expect to face the same challenge
in an ongoing project PreView [34] (see Fig. 6) that aims to
extend the model- and component-based software development
and end-to-end timing analysis support in the Rubus tool chain
from single-core to multi-core platforms.
8 http://www.arcticus-systems.com/research/.



B. Implementation, Integration and Testing Efforts
In the vehicle industry, a two-step approach is used to

transfer research results to an existing tool chain that supports
the plugin mechanism for the integration of new tools. In
the first step, the research results which have already been
formally proven for correctness by the research community
are implemented as a stand-alone tool. A typical challenge in
this step is to show that the implementation is correct. This
challenge can be addressed by implementing the sanity check-
ing and error handling routines as part of the implementation.
In addition, a significant number of test cases are created and
then verified to show the correctness of the implementation.
Model checkers like UPPAAL [37] can be helpful in this step.

In the second step, the stand-alone tool is plugged in with
the tool chain. The functionality of the plugin is verified
again because new bugs might have been introduced by the
glue code. Moreover, the input and output interfaces of the
plugin can be different from those in the first step. For the
verification during this step, many small and large applications
with varying architectures are created, modelled and analysed
by the extended tool chain. In addition, the implementer has
to verify these applications by hand or by means of semi-
automatic tools that are specifically developed for this purpose.
The correctness of the extended tool chain is verified by
comparing the results provided by the tool chain and the
results that are calculated manually or semi-automatically. In
crux, the second step requires continuous consultation and
communication between the plugin integrator and the imple-
menter of the research results. The second step, in particular,
integration testing is a non-trivial and time-consuming activity.
In our experience from several technology transfer projects,
the second step requires 4-5 times more time and effort than
the first step. It is important to carefully consider this aspect
in the planning for any technology transfer project.

C. Feedback from the End Users
The end users of the tool chain have been asked to provide

their feedback after each technology transfer project shown in
Fig. 6. One question that is common in the feedback received
from several projects is concerned with how can the tool
chain assist engineers in converting an infeasible system into
a feasible one. Assume that the end-to-end timing analysis
is performed on the software architecture of a system. The
analysis results show that some of the timing requirements
are violated. How can the tool chain guide the engineer to
make better design decisions or modify timing properties on
the software architecture such that the timing requirements are
met? It is not trivial for a tool chain to provide this feedback
because there can be many reasons behind the system being
unschedulable. Good news is that there are several heuristic
solutions that can be implemented in a tool chain to provide
such feedback. One possible solution is achieved by converting
data chains in the software architecture to trigger chains
and/or mixed chains [6]. Each software component in a data
chain is activated independently. Whereas in a trigger chain,
the first component is activated independently while the rest of
the components are activated by their predecessors. A mixed
chain is a combination of a data and a trigger chain. Another
solution is to implement a trace analyser in the tool chain. This
analyser records the execution of the system and then presents
a graphical comparison of the trace with the calculated end-to-
end delays. Such a comparison can help the engineer to acquire

better understanding of the system’s schedulability. Another
solution is to automatically apply job-level dependencies in
component chains to reduce the end-to-end delays [38].

D. Legacy Support
An extended tool chain should not only allow the devel-

opment of new systems but also support extension of legacy
(previously developed) systems. The tool chain should also
support modelling and end-to-end timing analysis of the sys-
tems that incorporate legacy ECUs, third-party propriety ECUs
and COTS components. It becomes challenging to model
and perform the end-to-end timing analysis of these systems
because the software architectures of these ECUs are hidden
or not available. For example, the ECUs in the steer-by-wire
system are provided by one tier-1 supplier. Whereas, another
tier-1 supplier extends the steer-by-wire system by adding
the collision-avoidance functionality. In order to deal with
this challenge, the black-box modelling and end-to-end timing
analysis technique [29], [14] can be implemented in a tool
chain. These techniques also allow model refinements early
during the development of vehicle software by supporting
early end-to-end timing analysis of the software architecture.

E. Academic Assumptions Vs Industrial Limitations
Often, there exists a gap between the assumptions on which

research results are based and the practical limitations that
are found in the industrial settings. When the research results
are implemented in an industrial tool chain, this gap should
be minimised so that the assumptions correctly correspond to
the industrial limitations. For instance, if timing analysis is
implemented in a tool chain then the gap can be minimised
by considering offsets in the timing analysis [39] instead of
using pessimistic assumptions such as “all events in the system
happen at once” [5]. Similarly, the assumptions in the timing
analysis should correctly match with practical limitations in
the interface controllers, types and size of message queues,
and transmission patterns supported by the higher-level proto-
cols/commercial extensions of in-vehicle networks. This lesson
was learned during the EEMDEF project (see Fig. 6). Conse-
quently, the existing analysis for CAN was extended [12]. If
the assumptions do not correctly match with the limitations,
the tool chain can provide underestimated analysis results,
which could result in the failure of the vehicular system.

F. Computation Time Complexity Vs Accuracy of the Tool
The analysis or optimisation tool that takes shorter time

to provide somewhat overestimated but safe results has a
better chance of industrial adoption as compared to the tool
that takes much longer time to provide exact results. For
instance, the real-time analyses are often iterative [6]. The
tools implementing the analyses may take significantly large
time while analysing a complex system. Provisioning of timing
analysis tools that provide tight results in short times (in the
order of few minutes or less) was one of the main requirements
in several technology transfer projects shown in Fig. 6.

G. Interoperability
Providing a seamless tool chain that consists of various tools

for the development of vehicle software is challenging. This
is because of the mismatch that exists between structural and
semantic assumptions in modelling languages that are used in



different phases. This mismatch causes large problems when
design artefacts are transformed among the corresponding
tools. Productivity in the industry is affected by ad hoc, non-
trivial, manual and tedious translations due to incompatibility
among the tools and their file formats. In this context, there
is a strong need to investigate two questions. First, how
to effectively and efficiently work with the tools at various
development phases. Second, how to support automated or
semi-automated translations among the tools at various devel-
opment phases while preserving their semantics. According to
the industrial members within the collaboration, “Automated
interoperability to allow information exchange among software
development tools and models for cyber-physical systems is
going to be the next big thing in the vehicle industry.”

VII. CONCLUSION

This paper has discussed a success story of the collaboration
between academia and the vehicle industry. The collabo-
ration has resulted in sustained development and evolution
of the Rubus component model and tool chain by lever-
aging the state-of-the-art research results and the industrial
needs. The Rubus tool chain supports model- and component-
based development of vehicle software and a well-proven and
safety certified real-time operating system for its execution.
The collaborators form a clear value chain, state-of-the-art
techniques are developed by academia, the tool developers
implement these techniques in the tool chain, and finally, the
end users employ the tool chain for reliable and cost-effective
development of vehicle software. The industrial impact of
the collaboration can be seen from the successful use of
the tool chain in the vehicle industry for over two decades.
Whereas, its scientific impact is evident from the fact that
there are over 100 peer-reviewed scientific publications that
directly/indirectly include the concepts, techniques, methods
and models behind the tool chain as well as the related
prototypes and case studies. The paper has also discussed
the perspectives of various stakeholders in the collaboration
and provided experiences and lessons learned during several
technology transfer projects in the vehicle domain. We believe,
the experiences and lessons learned in this paper can provide
useful guidance to researchers as well as to the tool developers,
integrators, application developers and practitioners during any
technology transfer project in the vehicle domain. Based on
the industrial impact of the techniques developed within this
collaboration, we believe that the tools implementing these
techniques can prove helpful for the vehicle manufacturers to
decrease the costs for the software development, configuration
and testing.
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