
Comparing Model-Based Predictive Approaches to
Self-Adaptation: CobRA and PLA

Gabriel A. Moreno∗, Alessandro V. Papadopoulos†, Konstantinos Angelopoulos‡, Javier Cámara§ and Bradley Schmerl§
∗Software Engineering Institute, Carnegie Mellon University, USA; Email: gmoreno@sei.cmu.edu

†Mälardalen University, Sweden; Email: alessandro.papadopoulos@mdh.se
‡University of Brighton, United Kingdom; Email: k.angelopoulos@brighton.ac.uk

§School of Computer Science, Carnegie Mellon University, USA; Email: {jcmoreno, schmerl}@cs.cmu.edu

Abstract—Modern software-intensive systems must often guar-
antee certain quality requirements under changing run-time
conditions and high levels of uncertainty. Self-adaptation has
proven to be an effective way to engineer systems that can
address such challenges, but many of these approaches are purely
reactive and adapt only after a failure has taken place. To
overcome some of the limitations of reactive approaches (e.g.,
lagging behind environment changes and favoring short-term
improvements), recent proactive self-adaptation mechanisms ap-
ply ideas from control theory, such as model predictive control
(MPC), to improve adaptation. When selecting which MPC
approach to apply, the improvement that can be obtained with
each approach is scenario-dependent, and so guidance is needed
to better understand how to choose an approach for a given
situation. In this paper, we compare CobRA and PLA, two
approaches that are inspired by MPC. CobRA is a requirements-
based approach that applies control theory, whereas PLA is
architecture-based and applies stochastic analysis. We compare
the two approaches applied to RUBiS, a benchmark system for
web and cloud application performance, discussing the required
expertise needed to use both approaches and comparing their
run-time performance with respect to different metrics.

Keywords-Self-adaptation; adaptive system; model predictive
control; latency; CobRA; PLA;

I. INTRODUCTION

Modern software-intensive systems are required to provide

service that can justifiably be trusted in spite of having

to operate under uncertain run-time conditions that might

include changes in the environment (e.g., resource variability,

workload fluctuations) or the system itself (e.g., faults). Over

the last decade, self-adaptation and autonomic computing

approaches [1], [2] have explored different solutions to endow

systems with the ability to adapt their structure and behavior

at run time in response to changes, as a way of improving

different system aspects such as performance or reliability.

While early approaches to self-adaptation tended to be

reactive [3], adapting the system in response to changes and

without reasoning about the long-term outcome of adaptation,

some recent proposals [4]–[7] have shifted towards a proactive
paradigm in which the ability to learn, predict, and act ahead
of time (i.e., before the conditions that demand adaptation are

actually given) are leveraged to improve the run-time behavior

of the system. In particular, while reactive approaches tend to

work well in systems in which the adaptation latency (i.e.,

the time it takes for an adaptation to become effective in

the system) is low, this type of adaptation is sub-optimal

and easily outperformed by proactive approaches in common

application domains like cloud computing, where the latency

is high. In such domains, adaptations like provisioning a

new virtual machine for scaling out the system can take up

to several minutes (leaving room for situations in which a

reactive approach might spin up virtual machines to deal with

a transient spike in load that would be gone by the time the

virtual machines become active).

CobRA [6] and PLA [7], [8] are among the approaches

on proactive self-adaptation that address situations like the

one above. Although there are other approaches that are

able to address similar situations using predictive adaptation

(e.g., in cloud-based [9] and service-based systems [5], [10]–

[12]), we chose CobRA and PLA for our study because

they are representative of two broad categories of adaptation

approaches (i.e., control- and architecture-based, respectively)

and their implementation is readily available. Moreover, these

approaches have shown promising results in improving system

performance and resilience by employing some of the main

ideas behind model predictive control (MPC) [13], such as:

(i) the use of models to predict future system behavior, (ii) the

computation of a sequence of control actions, committing only

to the first one, and (iii) the use of a receding horizon to

make control more robust against disturbances and possible

unpredictable system behavior not captured by models.

Despite the fact that CobRA and PLA both take inspiration

from MPC, the two approaches present important differences

in the models, reasoning mechanisms, and type of actuation

employed to adapt the system. One of the major differences

concerns the type of prediction employed to compute the

optimal control strategy: while PLA employs an explicit rep-

resentation of the predicted environment behavior to compute

future combined system-environment behavior, CobRA does

not include any prediction of the environment behavior but

employs a dynamic system model combined with a Kalman

Filter to predict future states. The second major difference

affects actuation, which is carried out in CobRA by setting

different control parameter values for actuation, whereas PLA

executes adaptations on the system via tactics, which can

range from changing parameter values, to carrying out system-

wide changes. These divergences between approaches entail

different levels of required engineering effort, limitations, and

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.2

42

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.2

42

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.2

42

performance variations under different circumstances, which

should be well-understood by researchers and practitioners.

In this paper we describe a comparison between CobRA and

PLA, which contributes to the existing body of knowledge on

self-adaptive systems by: (i) Enabling a better understanding

of the trade-offs of each of the approaches, as well as their

suitability to different types of adaptation scenarios, and

(ii) providing a template that can be adapted to carry out

comparisons of other predictive approaches.

We illustrate our comparison on the Rice University Bidding

System (RUBiS) [14], an open-source application widely em-

ployed as a benchmark in cloud computing [15]–[17] and for

evaluation of self-adaptive solutions [7], [18]. To enable a fair

comparison of the two approaches, we ran our experiments in

a simulation of RUBiS. In that way, we were able to replicate

experiments with exactly the same conditions for the two

approaches, avoiding uncontrolled effects that could alter the

results of experiments with the real system (e.g., background

processes, network delays).

The results of our study show that CobRA and PLA present

comparable levels of run-time performance in the general case,

although their performance levels are achieved in different

ways, and specific situations are better handled by one of

the approaches. Moreover, both approaches exhibit robustness

against the uncertainty associated with adaptation latency.

Our study also shows that the prerequisites for applying

these approaches are of a different nature: PLA requires the

availability of theories and models for prediction (e.g., queuing

models to predict performance), whereas CobRA does not

require such models but demands some level of expertise of

system dynamics and identification theory.

In the remainder of the paper, Section II presents the details

of the adaptation scenario employed for our comparative study.

Section III provides a summary of the main ideas behind

model predictive control, as well as an overview of CobRA and

PLA. Next, Section IV details our comparison and discusses

results. Section V describes related work. Finally, Section VI

presents conclusions and future research directions.

II. ADAPTATION SCENARIO

We illustrate our comparison of predictive approaches to

self-adaptation on the Rice University Bidding System (RU-

BiS) [14], an open-source application that implements the

functionality of an auctions website. Figure 1 depicts the

architecture of RUBiS, which consists of a web server tier that

receives requests from clients using browsers, and a database

tier that acts as a data provider for the web tier. Our setup

of RUBiS also includes a load balancer to support multiple

servers in the web tier, which distributes requests among them

following a round-robin policy. When a web server receives a

page request from the load balancer, it accesses the database to

obtain the data required to render the dynamic content of the

page. The only relevant property of the operating environment

that we consider in our adaptation scenario is the request

arrival rate prescribed by the workload induced on the system.

��

��

��

���	
��

�

�

�

�

��

Fig. 1. RUBiS architecture.

The system includes two actuation points that can be

operationalized by an adaptation layer to make the system

self-adaptive and deal with the changing loads induced by

variations in the request arrival rate:

• Server Addition/Removal. Server addition has an associated

latency, whereas the latency for server removal is assumed

to be negligible.

• Dimmer. The version of RUBiS used for our comparison

follows the brownout paradigm [18], in which the response

to a request includes mandatory content (e.g., the details of

a product), and optional content such as recommendations

of related products. A dimmer parameter (taking values in

the interval [0, 1]) can be set to control the proportion of

responses including optional content.

TABLE I
REQUIREMENTS FOR RUBIS.

Functional Requirements
R1 The target system shall respond to every request for serving its content.
R2 The target system shall serve optional content to the connected clients.

Non-Functional Requirements
NFR1 The target system shall demonstrate high performance. The average

response time r should not exceed T .
NFR2 The target system shall provide high availability of the optional

content. Subject to NFR1, the percentage of requests with optional
content (i.e., the dimmer value d) should be maximized.

NFR3 The target operating system shall operate under low cost. Subject to
NFR1 and NFR2, the cost (i.e., the number of servers s) should be
minimized.

The goals of the target system are summarized in two

functional and three non-functional requirements (Table I).

Note that there is a strict preference order among the non-

functional requirements that deal with optimization, so trade-

offs among different dimensions to be optimized are not possi-

ble (i.e., no solution should compromise on the maximization

of the percentage of requests with optional content to reduce

cost). The imposition of a preference order is aimed at better

capturing real scenarios and is not related to limitations to any

of the compared approaches, which are also able to capture

non-strict preference orders among requirements.

We capture non-functional requirements of our adaptation

scenario formally in a utility function that enables us to

quantify the quality of their satisfaction. This utility function

is defined based on two other functions, namely:

434343

• Utility associated with revenue per time interval:

URτ � τ · a · (d ·RO + (1− d) ·RM)

where τ is the length of the interval, a is the average request

rate, and d is the dimmer value. RM and RO are the rewards

for serving a request with mandatory and optional content,

respectively, with RO > RM .

• Utility associated with cost per time interval:

UCτ � τ · c · (s∗ − s)

where s∗ and s are the maximum available servers and the

number of servers employed during the interval respectively.

c is a constant capturing the cost of a server per time unit.

Based on the definitions above, the utility obtained in an

interval is given by

Uτ �

⎧⎪⎨
⎪⎩

URτ
+ UCτ

if r ≤ T ∧ URτ
= U∗

Rτ

URτ if r ≤ T ∧ URτ < U∗
Rτ

τ min(0, a− κ)RO if r > T

(1)

where U∗
Rτ

= τaRO denotes the optimal revenue utility

achievable in the interval, r is the average response time in

the interval, and κ is the maximum request rate that the site

is expected to handle. Hence, for requests served within the

acceptable time threshold T , Uτ returns the addition of the

utilities corresponding to revenue and cost, provided that the

revenue utility is the optimal achievable, and only the revenue

utility if it is sub-optimal (hence imposing the strict preference

order between utility and cost). In contrast, if the request is

served above T , Uτ returns a penalty directly proportional

to the maximum amount of requests with optional content

potentially lost during the interval.

III. MODEL-BASED PREDICTIVE SELF-ADAPTATION

We chose to compare recent approaches to self-adaptation

that are formulated as an optimization problem over a predic-

tion horizon and employ some of the main ideas behind model

predictive control (MPC) [13], namely: (i) the use of models

to predict future system behavior, (ii) the computation of a

sequence of adaptation actions, and (iii) the use of a receding

horizon (i.e., repeating the computation of the sequence of

control actions from the actual system state after the execution

of the first control action to account for potential disturbances).

These characteristics provide a common ground for comparing

CobRA and PLA, which are overviewed in this section.

A. Proactive Latency-aware Adaptation (PLA)

Proactive Latency-Aware Adaptation (PLA) is an approach

that fits the general closed-loop control MAPE-K model [19].

The different MAPE stages share a knowledge base that

integrates them, and cover the activities that are carried out

by the control loop, namely: (i) monitoring the system and

the environment; (ii) analyzing the information monitored

and deciding whether the system has to adapt; (iii) planning

the best course of action for adaptation; and (iv) executing

��������	�
 ��
	�

����	 ���	�
��

�������

�	
��
������������

�������

��������	�
��
���
������
����

��
	�����	�
�����	�
�	��
���
��	�

��������	�
����	�
�����	�
����	���
����

����
�
�������	��
�
��
������
	���	�

�	�	��
�������
���

���
���
	�	��
���

������	��

Fig. 2. The PLA adaptation loop.

adaptation. The aforementioned notional elements are realized

in PLA as follows (Figure 2):

Knowledge Model. In line with architecture-based self-

adaptation approaches [20], PLA employs an abstract repre-

sentation of the system and its environment that captures im-

portant characteristics and properties employed to reason about

adaptations. More specifically, the knowledge base captures

information about:

• Managed subsystem. Properties related to the system to be

controlled. In RUBiS, this includes the number of servers

connected to the load balancer and able to serve requests, the

maximum number of servers supported, the dimmer setting,

and the observed average response time.

• Managing subsystem. Properties related to the possible

adaptations, such as the latency of adaptation tactics, and

the progress of their execution at run time.

• Environment. Properties of the environment relevant to the

adaptation decisions. In our scenario, we only consider the

observed request arrival rate, and estimations of arrival rates

in the near future.

• Goals. System goals are encoded as a decision utility

function Ûτ , which assigns utility per measurement interval

and has to be maximized. In RUBiS, the decision utility

function is a simple additive utility function implementing

Uτ (defined in Eq. (1)), with an additional consideration

employed to avoid unstable solutions that would make it

very difficult to regain control of the system. In particular,

in a case in which all the configurations would exceed the

target response time, the utility function could choose the

one with the smallest number of servers to minimize cost.

This is not the right decision because removing resources

from an overloaded system would cause the backlog of

requests to increase at a higher rate, making the recovery

of the system in subsequent decisions even more unlikely.

Therefore, an exception to this rule is included in Ûτ to

favor the configuration with the most servers and lower

dimmer setting in such a case.

444444

Monitoring. Observations about the current state of the

system and the environment are collected and aggregated as

needed to update the model. In RUBiS, the request arrival rate

at the load balancer is monitored, and its average and standard

deviation are reflected in the model. Concerning the system,

architectural changes are also reflected in the model (e.g., a

server is marked as “active” in the model when it finishes

booting and is effectively connected to the load balancer).

Adaptation Decision. The analysis and planning stages of

MAPE-K are combined into a single activity in PLA. The

decision-making activity can be regarded as analysis from the

perspective that it is trying to resolve the need to adapt by

determining if there is a configuration that will yield a higher

utility than the current one. However, it can also be regarded as

planning, since the same process entails actually finding that

higher-utility configuration. Concretely, the high-level decision

that the adaptation is making is choosing which adaptation

tactic(s) should be started at the current time instant (if any)

to maximize the aggregate utility the system will provide over

the rest of its execution (bounded by the horizon).

PLA discretizes the execution timeline in decision periods

of duration τ , and solves the adaptation decision problem at

the start of each period. The process starts with encoding

the behavior of the system and the environment from the

current execution instant until the time horizon into processes

that are composed in parallel to build a Markov decision

process (MDP) model. The key idea behind the MDP model

is leaving the decision to execute adaptation tactics under-

specified in the process that encodes the behavior of the

system via nondeterminism. In such a way, an MDP solver

(e.g., a probabilistic model checker [7] or stochastic dynamic

programming-based [8]) can be employed to resolve that

nondeterminism in a way that maximizes the utility over the

horizon, resulting in the synthesis of a strategy that specifies

the tactics (or the lack thereof) that should be executed at every

time step to achieve that outcome. However, PLA employs

only the information for the first time step and discards the

rest, recomputing the entire strategy at the start of the next

τ -period to correct potential deviations in the realization of

the environment from the prediction employed to solve the

adaptation decision, consistent with MPCs.

Execution. The set of tactics computed by the adaptation

decision are executed by an execution manager. The execution

of tactics is asynchronous with respect to the adaptation

decision, so that if a tactic with a latency longer than the

adaptation period has to be executed (e.g., addition of a

server), the adaptation decision can still be run according

to its period. This enables PLA to complement slow tactics

with fast ones (as long as they do not interfere with each

other), executing them in parallel (e.g., it can change the

dimmer value right away, without waiting for an ongoing

server addition to complete).

B. Control-based Requirements-oriented Adaptation (CobRA)

The Control-based Requirements-oriented Adaptation (Co-

bRA) approach also follows the MAPE-K model, combining

principles from Requirements Engineering and Control The-

ory. The architecture of CobRA is depicted in Figure 3, where

each component corresponds to one of the MAPE stages.

��������
	�

��
	�

�������
����	�

����������	�

�	������
������	�

�����
����
�����	�

����
�
���
�����	�

����	����	��
���

�	�	�	��	�����
���	�

��
�����
���
���
����

����	�
	��
���	�

�����

�
��	�	�������

����
����
��
��

����������	��
�����	��

	�������	�
��	���	�	�

������
���
�	���	�	�

Fig. 3. The CobRA framework.

Knowledge Model. CobRA [6] combines requirements and

analytical models, along with information from the environ-

ment to construct adaptations. More specifically, CobRA’s

knowledge model is composed of the following elements:

����� ��
!��	
"�

"����������� "������#���"
����
��"��"

$
���
����������

��������	
����
	���

�!��	"

��������	������
	���

	

�
�
�����"
����

��"��"�
�#�
���
�
"%

��������	������
	���

Fig. 4. The target system’s goal model.

• Goal Model. System goals are captured by models as the

one in Figure 4 and refined by following boolean AND/OR

semantics. The root goal G0 is refined to two tasks that

must both be successfully executed for G0 to be satisfied.

The tasks t1 and t2 realize R1 and R2 described in the

Table I. The non-functional requirements are captured by the

softgoals High Performance, Low Cost, and High Optional

Content Availability.

• Awareness Requirements (AwReqs). This type of require-

ment imposes constraints over other requirements [21]. AR1

and AR2 dictate that the response time r and the number

of servers s should always be minimized, whereas AR3

prescribes the continuous maximization of the dimmer’s

value d. The variables r, s and d, named indicators, are

454545

used to measure the satisfaction of the system’s AwReqs

and constitute the system’s output. The difference between

the desired value for an indicator and the measured value

at run-time is known as the control error.

• Control Parameters. The variables of the system that can

be tuned by CobRA in order to fulfil its goals. These

variables constitute the system’s input and for our scenario

are the number of servers s and the dimmer value d. CobRA

discretizes the execution timeline in decision periods of

duration τ , and solves the adaptation decision problem at

the start of each period, as well as PLA.

• Adaptation Requirements (AdReqs). This type of require-

ment constrains the adaptation process [22] (e.g., by im-

posing that only one server can be added at a time).

• Evolution Requirements (EvoReqs). This type of require-

ment accommodates changes over time of the goals [23],

e.g. changing the threshold of the acceptable response time.

• Environment. Variables that cannot be tuned by CobRA but

affect the satisfaction of the system’s goals. In our scenario,

such a variable is the arrival rate of requests a, that is

measured and used as a feedforward signal.

• System Model. This model is a mathematical representation

of how a change in the control parameters affects the value

of the indicators over time [6]. More specifically, the system

behavior at the k-th decision period is described by a

discrete-time linear dynamic system{
x(k + 1) = A · x(k) +B ·ΔCP (k)

I(k) = C · x(k) +D · a(k) (2)

where x ∈ R
n is the state of the system, ΔCP ∈ R

m is

the set of control parameters variations, and I ∈ R
p is the

set of indicators. The state x does not always correspond to

physical aspects of the system, but it is useful in defining

succinctly the relation between CP and I , even in presence

of adaptation latency.

• Cost-Function. The optimality of CobRA’s adaptation is

relative to a cost function J which instructs CobRA to

minimize the control errors for all indicators by tuning

the parameters that require the minimum adaptation effort.

More specifically, given the expected values I◦, the mea-

sured values I and the systems control parameters ΔCP ,

the cost function minimized by CobRA is:

Jk =

H∑
i=1

p∑
j=1

qj
(
I◦k+i,j − Ik+i,j

)2
+

m∑
j=1

rjΔCP 2
k+i−1,j

(3)

where H is the prediction horizon, qj > 0 and rj > 0 are

weights associated with the priority of the jth indicator or

control parameter, and can be calculated using the Analytic

Hierarchy Process (AHP) [24].

Monitoring. CobRA collects information about its environ-

ment and the fulfilment of the system’s requirements. More

specifically, it monitors the arrival rate of requests and the

system’s indicators.
Adaptation Decision. The first step in the adaptation process

is executed by the Evolution Manager component which is re-

sponsible for updating the system’s goals as prescribed by the

EvoReqs of the stakeholders. When the system’s requirements

are updated, the MPC controller receives as input the expected

values for each indicator. In our scenario, the expected values

would be s◦ = 1, r◦ = 0 and d◦ = 1. Note that the number of

servers and the dimmer value are both control parameters and

indicators. This is common for systems where minimization of

used resources is required. Then, the MPC controller solves the

following optimization problem based on the current request

arrival rate and the following cost-function:

minimize
ΔCPk+h

Jk (4)

subject to Imin ≤ Ik+h ≤ Imax

CPmin ≤ CPk+h ≤ CPmax

ΔCPmin ≤ ΔCPk+h ≤ ΔCPmax

xk+h+1 = A · xk+h +B ·ΔCPk+h

Ik+h = C · xk+h +D · ak
xk = x(k), h = 0, . . . , H − 1.

The cost function Jk is optimized over a prediction horizon

H , based on the system model (2), that is an approximation

of the actual system. To compensate for the system model’s

imprecision, the Learning Component, which is an implemen-

tation of a Kalman filter, corrects the model based on the

system’s actual behavior.

The solution of (4) is a plan of actions for the considered

prediction horizon, and, similarly to PLA, only the first

element of the plan is applied; the entire strategy is recomputed

at the beginning of the next τ -period.

Execution. The application of the new values of the control

parameters is operated by actuators that are domain specific

and their implementation is the responsibility of system engi-

neers. The latencies of the actuation process are part of the

system’s dynamics captured in (2).

C. Main differences between CobRA and PLA

Despite the fact that both CobRA and PLA use some of the

basic elements of MPC, they exhibit some relevant differences

in the way in which they instantiate these elements:

Prediction. PLA employs an explicit representation of the

predicted environment behavior to compute the predicted

system-environment combined behavior and the corresponding

optimal control strategy. CobRA does not predict the future

behavior of the environment and employs a dynamic model

combined with a Kalman Filter to predict future states and

compute the optimal control strategy assuming that the average

workload will be constant over the next τ -period.

Actuation. CobRA is formalized based on the notion of “con-

trol increment” (control parameter value ranges are ordered

sets) and relies on setting different control parameter values for

actuation. In contrast, PLA executes adaptations on the system

via tactics, which are captured as scripts whose execution

464646

can effect changes that can range from modifying parameter

values, to carrying out system-wide changes.

Goal model. While CobRA tries to keep the values of indi-

cators around reference values obtained from the goal model,

PLA problem optimization is driven by a utility function that

captures goals.

IV. COMPARISON

The comparison of CobRA and PLA presented in this

section aims at facilitating an understanding of their trade-offs

and degree of suitability for different adaptation scenarios.

We compare each approach according to two types of

criterion: (i) development time, which is related to the arti-

facts and the required expertise needed for instantiating the

approaches for an adaptation scenario, and (ii) run time, which

concerns both adaptation performance and SASO properties

(i.e., Stability, Accuracy, Settling time, and Overshoot) [25],

[26] under a set of representative adaptation scenarios.

A. Development-time

1) PLA: PLA requires the following artifacts to be pro-

duced at development time.1

a) Configuration space: The properties of the system

that are needed to compute the utility function, or to evaluate

applicability conditions of adaptation tactics. In the case of

RUBiS, these are the number of active servers, and the

dimmer value. In addition, code for generating all the valid

configurations at system startup is needed. Doing this requires

discretizing continuous properties, such as the dimmer, in

a small number of levels. The definition of a configuration

and its properties can be implemented either by extending an

existing class or by using a generic one that supports dynamic

definition at startup.

b) Environment properties: These involves defining the

properties of the environment that are needed for computing

the utility function. In RUBiS, this is the request arrival rate.

This can be done through the same mechanisms of extension

or dynamic definition.

c) Environment model: An environment model, encoded

as a DTMC, is updated before every adaptation decision. The

class that encodes the DTMC is part of the framework, how-

ever what is needed at development time is the implementation

that generates the DTMC using this class, inserting nodes and

probabilistic transitions as needed. In the case of RUBiS, a

time series predictor is used to forecast future arrival rates, and

the output of this predictor is used to generate an environment

probability tree as described in [7].

d) Utility function: The function that computes the de-

cision utility value. This function is invoked during the de-

cision, receiving an instance of a system configuration, and

an instance of an environment state, and it must return the

computed utility. Since the utility function usually depends

on emergent properties of the system, such as response time,

1We focus on the details of PLA-SDP [8], which requires the most
development-time effort of the two PLA solutions.

the most demanding aspect of implementing this function is

computing the estimation of these properties based on system

and environment state. In RUBiS, for example, queuing theory

equations are used to estimate response time [27], but it is also

possible to use performance evaluation tools like OPERA [28].

e) System and tactic models: Models of the system

and the tactics specified in Alloy. Although this sounds

like particularly burdensome, it is actually straightforward

following the patterns shown in [8]. For the system model,

the properties of a configuration have to be defined (i.e.,

the number of servers and dimmer setting for RUBiS). For

tactics, there are two templates, depending on whether the

tactic has latency or is immediate. The template has to be

customized to (i) reflect how the completion of the tactic

affects system configuration properties, and (ii) determine the

tactic applicability as a predicate over system properties. In

addition, a tactic compatibility predicate that indicates whether

there is a conflict for concurrent execution with other tactics

must be provided, as described in [8].

f) Alloy-to-YAML conversion: PLA-SDP uses Alloy off-

line to generate reachability predicates that are encoded as

YAML files then used at run time. The customization effort

for this step requires creating a configuration class in Java with

the same system properties defined before, and a method that

parses the Alloy output to get the values of these properties.

The rest of the interaction with Alloy is already implemented.2

2) CobRA: CobRA requires the following artifacts to be

produced at development time.

a) Performance indicators: Indicators and performance

goals that must be measured to achieve the desired behavior

of the system.3 In the case of RUBiS, these are the response

time, the number of active servers, and the dimmer value.

b) Configuration space: The control parameters on

which CobRA can act for affecting the identified performance

indicators. In the case of RUBiS, these are the number of

active servers and the dimmer value. In addition, the definition

of the control parameters’ saturations is needed in order to

set up the optimization problem. Differently from PLA, the

control parameters are considered to be continuous values.

For example, in the case of RUBiS, both the dimmer value

and the number of servers are considered to be real numbers.

The number of servers is therefore actuated with the rounding

operator to make it discrete.

c) System model: Requires the definition of a set of

discrete-time difference equations, that can be obtained either

by exploiting some insight on the system to be controlled, or

by using system identification techniques [29]. This step re-

quires expertise of system dynamics and identification theory.

d) Environment properties: We employ the same envi-

ronment properties used for PLA (See IV-A1b).

e) Cost function: The function (3) that is minimized to

make the adaptation decision. In particular, this cost function

2This step can be completely automated, but since that has not been done
yet, it is included in this list.

3Performance indicators in PLA are already identified as part of the
properties of the system in the configuration space.

474747

TABLE II
ARTIFACT SPECIFICATION AND EXPERTISE REQUIRED FOR APPLYING COBRA AND PLA.

CobRA PLA
Category Artifact Prerequisite Specification Artifact Prerequisite Specification
Prediction Dynamic model Domain knowledge or

system identification
Manual specification
or automated identifi-
cation through exper-
iments

Environment model Domain knowledge
and prediction
approach

Implementation of
automated generation
of DTMC encoding
of the environment at
run time

Adaptation decision Cost function – Manual Decision utility function – Manual
System model Convex optimization Automated System model Domain (e.g., Queu-

ing Theory)
Manual

Tactic latency model Profiling Annotation

needs information on the performance goals, tuning with

respect to the weights, and the prediction horizon. These

design parameters have to be set only once, and affect the

obtainable performance in terms of the SASO of the adaptation

strategies [26], [30].

f) Python implementation: The implementation of Co-

bRA requires the definition of the system matrices of Equa-

tion (2), and the selection of the design parameters for the cost

function (3). There is a publicly available implementation of

the MPC controller4, and a developer needs only to write the

interface between the system and the MPC controller object.

B. Run-time

In this section, we compare PLA and CobRA according to

run-time criteria that include adaptation performance, as well

as SASO properties of the adaptation.

1) Experimental Setup: To better compare the two ap-

proaches, we ran experiments in a simulation of RUBiS. In

that way, we could replicate experiments with exactly the same

conditions for both approaches, avoiding uncontrolled effects

that could alter the results of experiments with the real system

(e.g., background processes, network delays).

We used SWIM, a simulation of web applications with the

architecture of RUBiS as shown in Figure 1. To simulate the

requests generated by users, SWIM reads the time stamp for

each request from trace files, and replays the traces with the

requests happening with their recorded interarrival time. The

requests arrive at the load balancer, and are forwarded to one

of the servers following a round robin algorithm. Each server

simulates the processing of requests in the web server, with a

maximum of 100 concurrent requests, while the rest waits in

a queue. When more than one request is being processed by

a server, their execution time is affected by the need to share

the processor in the server.

The processing of a request is simulated only in the time

that it consumes, not the results it produces. The service

time (i.e., the amount of time processing the request would

take if there was no contention) is drawn from a normal

distribution truncated so that service times are always positive.

For our experiments, the mean and variance of the distribution

were obtained profiling the service time of RUBiS running

in a privately hosted virtual machine. Since SWIM supports

4https://github.com/apapadopoulos/MPyC

brownout, when a request starts processing, it randomly de-

cides whether its response will include the optional content

or not according to the current dimmer setting. Depending

on the type of response, the service time is drawn from

a random distribution that represents the processing of that

type of response. All the random number generators used in

the simulation are seeded so that it is possible to replicate

experiments with the same conditions. In addition, SWIM

simulates the effect of caching, with responses taking longer

for newly instantiated servers.

SWIM provides a TCP interface that allows the adaptation

manager to access probes and effectors it can use to monitor

and execute adaptation actions on the system. The probes

provide the following information: dimmer setting, number of

servers and active servers, utilization of each server, average

request arrival rate, and average throughput and response

time for the two kinds of responses. The effectors allow

changing the dimmer setting, removing and adding servers. All

operations have negligible execution time, except for adding

a server, which takes an amount of time configurable in the

simulation. This time simulates the time it takes to boot a

server, or instantiate a new VM in the cloud.

To simulate the traffic generated by the users of the website,

we used traces from the WorldCup ’98 trace archive [31], and

from the ClarkNet traces [32]. Even though these traces do

not correspond to an auctions website, and are several years

old, we chose them because they still represent significantly

different, but common and realistic run-time situations [33].

In fact, both traces were scaled down to last for 105 minutes,

and to reach the maximum capacity of the validation setup

at their peak. Moreover, latency is one of the primary factors

that impact the performance of run-time adaptation in such

scenarios. Hence, for each trace we experimented with various

server boot latencies governed by different (truncated) normal

probability distributions, yielding a total of six scenarios for

our study (Table III). The baseline for the standard deviation

was selected according to some experimental results on server

boot presented in [34].
2) Performance: In this first set of experiments, a threshold

of T = 0.75 seconds was used to leave a safety margin to

the user’s tolerable waiting time, estimated to be around four

seconds [35], similarly to [18], [36], [37]. Both CobRA and

PLA were tuned on the WorldCup trace scenario, in the case

of deterministic boot latency, equal to one minute. Then, the

484848

TABLE III
SUMMARY OF ADAPTATION SCENARIOS.

Parameter Scenario
1 2 3 4 5 6

Trace WC WC WC CN CN CN

Avg. server boot latency [s] 60 60 180 60 60 180

Std. Dev. Server boot latency [s] 6 20 18 6 20 18

TABLE IV
ADAPTATION PERFORMANCE RESULTS.

Metric Approach Scenario (WorldCup’98)
1 2 3

Utility CobRA 4297 4307 4213
PLA 4156 4133 3863

% Optional CobRA 97.6 98.5 90.9
PLA 79.8 79.2 71.4

% Late CobRA 0.8 0.6 1.3
PLA 1.2 1.2 1.8

% Avg. Servers CobRA 1.9 1.9 1.9
PLA 1.8 1.8 1.8

Metric Approach Scenario (ClarkNet)
4 5 6

Utility CobRA 5378 5315 5266
PLA 5306 5321 5244

% Optional CobRA 89.0 85.8 82.9
PLA 69.1 69.0 65.4

% Late CobRA 3.3 3.4 3.8
PLA 0.6 0.5 0.4

% Avg. Servers CobRA 3.0 3.0 3.0
PLA 2.8 2.7 2.8

scenarios consider a random server boot time (c.f. Table III).

For performance evaluation, we considered: (i) the utility

function (1), which captures system requirements and their pri-

orities, (ii) the percentage of served optional content, (iii) the

percentage of requests that were served late with respect to the

threshold, and (iv) the average servers used along the scenario.

Results are shown in Figure IV-B2 and Table IV.

Focusing only on the utility metric (the higher the better),

CobRA performs slightly better than PLA across all scenarios,

except for Scenario 5, in which PLA does slightly better.

Both approaches are robust against the uncertainty associated

with server boot time. If the percentage of optional content is

considered (the higher the better), CobRA manages to serve

between 17% and 19% more requests with optional content.

This aspect becomes really relevant when dealing with e-

commerce websites, where it has been shown that serving

the optional content can increase the revenue of the provider

by up to 50% [38]. However, this aspect is only one of

the factors that contribute to utility according to (1), which

forces a trade-off with the timeliness of the responses, given

that when the average response time in a period exceeds the

threshold T , a penalty is imposed. Considering the percentage

of late requests, CobRA performs better (lower is better) in

the WorldCup scenarios than under the ClarkNet workload.

This is due to the fact that CobRA was tuned considering

a workload with less continual oscillations, and the selected

ut
ilit

y
�

%
 w

/o
pt

io
na

l �

�
�%

 la
te

�
�a

vg
. s

er
ve

rs

0

2000

4000

0

25

50

75

100

0

1

2

3

0

1

2

3
1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6scenario
CobRA PLA

Fig. 5. Adaptation performance results.

design parameters are pushing for optimizing performance,

rather than robustness against abrupt changes in the workload.

In contrast, PLA manages to keep this metric almost constant

across all scenarios, showing much better performance with

respect to CobRA in the ClarkNet scenarios. Finally, for the

average number of active servers (the lower the better), PLA

manages to always provide reasonably good performance,

while using less servers. This aspect is consistent with the

results observed for the amount of optional content served.

Indeed, the higher the served optional content, the higher the

number of servers needed to keep low the response time.

Since CobRA serves more optional content, it also needs

more servers to keep the response time under the threshold.

However, the utility function (1) gives a reward for saving

resources if the dimmer is at the maximum setting. Unlike

CobRA, PLA explicitly considers this reward in its decision

utility function and is more conservative with server usage.

For space limitation, we include only the graphs for the ex-

ecution of Scenarios 1 and 4 (Figure 6) with both approaches.

The solid line in the servers plot represents active servers,

whereas the dashed portion indicates a server that is booting

but not active yet. In both scenarios, the two approaches

achieve similar values for the utility function, but their run-

time decisions look quite different. In general, CobRA pushes

a bit more for the maximization of the optional content, while

PLA pushes more on the minimization of the number of

servers. Similar behavior can be observed also for the other

scenarios. In these figures it is also possible to observe the

difference in dimmer control for the two approaches, with PLA

using only the eight levels in which the dimmer setting was

discretized for this system. In Scenario 1 (Figures 6a and 6b),

PLA has a response time violation at the 4680 second mark.

Since PLA uses a model of the predicted environment behavior

494949

that depends on a time series predictor, this is probably a

case in which the time series predictor failed to estimate the

rapid increase in traffic, thus postponing the addition of a

server. In addition, it is possible to see that in Scenario 4

(Figures 6c and 6d), the workload is more crooked than in the

first scenario, and this makes CobRA act more on the dimmer

value, especially during the high peaks of incoming requests.

3) SASO Properties: For the second set of experiments,

we considered a trace with a constant average arrival rate

of 30 requests per second, and we evaluated the transient

with respect to a cold start. In particular, we considered two

types of scenarios: (i) when the minimum amount of servers

is initially allocated (Scenario Low), and (ii) when all the

servers are initially allocated (Scenario High). These two types

of scenarios are needed since the system behaves differently

when scaling up or down, due to its nonlinear nature. We

considered the same probabilistic characterization for server

boot time presented in Table III for the two scenarios.

In this context, the regular definitions of the SASO proper-

ties do not apply, since there is no setpoint for the considered

problem. Therefore, we adapted the definitions as follows:

• Stability tells if the behavior of the system converges to a

constant value. It is a binary property.

• Accuracy is related only to the response time, and it is

defined as the average response time exceeding the threshold

T over a run of N τ -periods:

A =
1

N

N∑
t=1

max (rt − T, 0) .

• Settling time is the minimum time for converging to a stable

solution.

• Overshoot is the maximum value of the residual response

time exceeding the threshold during the transient:

O = max
t=1...N

(rt − T, 0) .

TABLE V
SASO PROPERTIES RESULTS.

Metric Approach Scenario (Low)
1 2 3

Stability CobRA � � �
PLA � � �

Accuracy CobRA 2.1×10−4 3.1×10−4 2.6×10−3

PLA 2.1×10−4 1.4×10−3 1.9×10−4

Settling time (s) CobRA 300 300 480
PLA 180 120 300

Overshoot CobRA 0.77 1.12 5.18
PLA 0.77 3.69 0.67

Metric Approach Scenario (High)
4 5 6

Stability CobRA � � �
PLA � � �

Accuracy CobRA 0 0 0
PLA 0 0 0

Settling time (s) CobRA 300 300 300
PLA 60 60 60

Overshoot CobRA 0 0 0
PLA 0 0 0

Table V summarizes the obtained results. When considering

the SASO properties, PLA performs better than or comparably

to CobRA in all the metrics. In particular, PLA converges to

a solution faster than CobRA, showing a lower settling time

in all the experiments. This is related to the fact that CobRA

is an iterative process that requires some time to converge to

a stable solution. In fact, in the experiments, CobRA tries to

reduce the number of servers before converging to the stable

solution, and this requires some more iterations.
4) Discussion: The results of our comparison show com-

parable levels of run-time performance for CobRA and PLA.

However, we have observed that different situations are han-

dled more gracefully by one or the other approach, depending

on the specific run-time conditions. These observations lead

us to identifying some considerations that have to be made

when choosing an approach:

• Tradeoffs in tuning CobRA. The reduced performance of

CobRA under workloads that experience continual brusque

oscillations (e.g., Scenario 4) highlights the fact that the

approach relies on targeted tuning of the design parameters

to optimize different concerns that may sometimes be con-

flicting (in this case, robustness against abrupt changes vs.

performance). In contrast, PLA does not require parameter

tuning,5 and decisions are always optimal with respect to

what the decision utility function dictates, provided that the

prediction of the environment is accurate, as noted next.

• Reliance on accurate environment prediction of PLA. The

response violation experienced with PLA in Scenario 1

highlights the reliance of the approach on the performance

of the time series predictor. If the predictor fails to foresee

events in the environment like abrupt increases in workload,

the performance of the approach can suffer. It is worth

noting that the time series predictor has parameters that

could be tuned. However, the tuning in the case of PLA

is done only for the environment prediction, independent

from the system behavior, for which it does not require

tuning. With CobRA, on the other hand, both environment

and system behaviors are conflated in a single model.

V. RELATED WORK

Comparative evaluation of approaches to self-adaptation

has already been carried out in different contexts within the

self-adaptive systems community. Angelopoulos et al. [39]

report on a comparison between the use of architectural

and requirement-centric models for adaptation, identifying the

advantages and shortcomings of each approach, and pointing

at potential combinations of features that might improve

adaptation. Shevtsov et al. [40] compare a control-based and

an architecture-based approach to self-adaptation, identifying

differences between them in performance and formal guaran-

tees. Cámara et al. compare code-based and architecture-based

self-adaptation mechanisms, focusing on performance [41] and

probabilistic guarantees on system resilience [42].

5Although the length of the horizon and the decision interval are parameters
that could be tuned to particular domains, no tuning was done, and the
heuristics described in [8] were used.

505050

20

40

60

re
qu

es
ts

/s

0

1

2

3

se
rv

er
s

0.00

0.25

0.50

0.75

1.00

di
m

m
er

0.0

0.2

0.4

0.6

900 1440 1980 2520 3060 3600 4140 4680 5220 5760 6300
time (s)

re
sp

. t
im

e
(s

)

(a) CobRA (Scenario 1) (b) PLA (Scenario 1)

20

40

60

re
qu

es
ts

/s

0

1

2

3

se
rv

er
s

0.00

0.25

0.50

0.75

1.00

di
m

m
er

0.00

0.25

0.50

0.75

1.00

1.25

900 1440 1980 2520 3060 3600 4140 4680 5220 5760 6300
time (s)

re
sp

. t
im

e
(s

)

(c) CobRA (Scenario 4) (d) PLA (Scenario 4)

Fig. 6. Results obtained with the two frameworks in Scenario 1 and 4.

Aside from comparative evaluations of adaptive systems,

other related work deals with establishing the criteria for

evaluation of adaptive properties that can be used as a basis for

comparison. Kaddoum et al. [43] and Villegas et al. [26] aim at

assessing the impact of self-* properties on different aspects of

the system, such as performance, in addition to comparing the

adaptive features of different systems. Cámara et al. propose

a framework for comparative evaluation of adaptive systems

that focuses on resilience [44].

All the aforementioned works target approaches that tend

to be reactive in nature, do not require prediction of future

system-environment behavior, and work well in settings in

which adaptation latency is low and can be overlooked as a

first-order comparison element. In contrast, the study presented

in this paper compares proactive approaches that incorporate

major differences with respect to reactive approaches in the

way in which they carry out adaptation. These major differ-

ences are mainly derived from the prediction and optimization

mechanisms employed to overcome some of the limitations in

reactive approaches, and hence demand specific comparison

methods that factor in these elements.

Some approaches in cloud computing employ look-ahead

control to improve energy consumption and performance [45],

[46], as well as for dealing with multiple service level ob-

jectives [47]. These approaches offer remarkable performance

and efficiency improvements, although they tend to be fairly

application-specific. Approaches in the area of service-based

systems [5], [10], [12] employ proactive adaptation to improve

the quality of service of a system over time. Although these

approaches employ prediction to improve the operation of

the system, they are latency-agnostic, and their look-ahead is

limited. These approaches could be compared following an

analogous approach to the one proposed in this paper.

VI. CONCLUSIONS

In this paper we compared two predictive approaches for

self-adaptive software both in terms of development complex-

ity, and of run-time performance. While the two approaches

perform comparably in general, their run-time behavior can

be significantly different, both in terms of resource utilization

and the ways in which they attempt to maximize performance.

Moreover, our observations have highlighted the fact that the

two approaches have different dependencies that clearly condi-

tion their run-time performance and concern design parameter

tuning in the case of CobRA, and times series prediction in

PLA. Our study has also shown that the prerequisites for

applying these approaches are of a different nature: PLA

requires the availability of theories and models for predicting

specific types of property (e.g., queuing models to predict

performance), whereas CobRA does not require such models

but demands some level of expertise of system dynamics

and identification theory. In addition to the complementary

strengths of both approaches, each is better suited for different

kinds of control problems. CobRA is better suited to dealing

with continuous control inputs, whereas PLA, being tactic-

based, is better for discrete control. This can be observed in

Figure 6, with CobRA managing better the dimmer, and PLA

controlling better the number of servers. In addition, PLA can

naturally deal with the (in)applicability of adaptation tactics

depending not only on the system state but also on what other

tactics are being executed. These complementing features

indicate that a combined approach might lead to improved

results over using either of the approaches in isolation.
In future work, we plan to expand our comparison with

additional case studies, as well as other model predictive

approaches. We also plan to compare approaches based on

additional properties, such as resilience. Finally, we intend

to generalize the methodology followed for our comparison

to build a framework for evaluating proactive self-adaptive

approaches that can be reused for further comparisons.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Foundation for Strategic
Research under the project “Future factories in the cloud (FiC)” with grant
number GMT14-0032.

This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center. [Distribution Statement A] This
material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.
(DM-0004369).

REFERENCES

[1] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and R. de Lemos,
“08031 – Software Engineering for Self-Adaptive Systems: A Research

515151

Road Map,” in Software Engineering for Self-Adaptive Systems, 13.1. -
18.1.2008, 2008.

[2] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
- degrees, models, and applications,” ACM Comput. Surv., vol. 40, no. 3,
2008.

[3] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[4] R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic qos management and optimization in service-
based systems,” IEEE Trans. Software Eng., vol. 37, no. 3, pp. 387–409,
2011.

[5] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A framework
for proactive self-adaptation of service-based applications based on
online testing,” in 1st European Conference on Towards a Service-Based
Internet, ser. LNCS, P. Mahonen, K. Pohl, and T. Priol, Eds. Springer
Berlin Heidelberg, 2008, vol. 5377, pp. 122–133.

[6] K. Angelopoulos, A. V. Papadopoulos, V. E. Silva Souza, and J. My-
lopoulos, “Model predictive control for software systems with cobra,”
in Proceedings of the 11th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, ser. SEAMS ’16.
New York, NY, USA: ACM, 2016, pp. 35–46.

[7] G. A. Moreno, J. Cámara, D. Garlan, and B. R. Schmerl, “Proactive self-
adaptation under uncertainty: a probabilistic model checking approach,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, 2015, pp. 1–12.

[8] ——, “Efficient decision-making under uncertainty for proactive self-
adaptation,” in 2016 IEEE International Conference on Autonomic
Computing, ICAC 2016, Wuerzburg, Germany, July 17-22, 2016, 2016,
pp. 147–156.

[9] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou, and S. Sioutas, “Dependable Horizontal Scaling Based
on Probabilistic Model Checking,” in 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, May 2015,
pp. 31–40.

[10] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic QoS Management and Optimization in Service-Based
Systems,” IEEE Transactions on Software Engineering, vol. 37, no. 3,
pp. 387–409, May 2011.

[11] A. Metzger, O. Sammodi, and K. Pohl, “Accurate proactive adaptation
of service-oriented systems,” in Assurances for Self-Adaptive Systems,
J. Cámara, R. de Lemos, C. Ghezzi, and A. Lopes, Eds. Springer Berlin
Heidelberg, 2013, vol. 7740, pp. 240–265.

[12] C. Wang and J.-L. Pazat, “A Two-Phase Online Prediction Approach for
Accurate and Timely Adaptation Decision,” 2012 IEEE Ninth Interna-
tional Conference on Services Computing, pp. 218–225, Jun. 2012.

[13] E. Camacho and C. Bordons, Model Predictive Control, ser. Advanced
Textbooks in Control and Signal Processing. Springer London, 2004.

[14] “Rice University Bidding System,” http://rubis.ow2.org.

[15] K. Qazi, Y. Li, and A. Sohn, “Workload prediction of virtual machines
for harnessing data center resources,” in Proceedings of the 2014
IEEE International Conference on Cloud Computing, ser. CLOUD ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 522–529.

[16] M. A. Islam, S. Ren, A. H. Mahmud, and G. Quan, “Online energy
budgeting for cost minimization in virtualized data center,” IEEE Trans-
actions on Services Computing, vol. 9, no. 3, pp. 421–432, May 2016.

[17] S. Duttagupta, R. Virk, and M. Nambiar, “Predicting performance
in the presence of software and hardware resource bottlenecks,” in
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2014), July 2014, pp. 542–549.

[18] C. Klein, M. Maggio, K. Årzén, and F. Hernández-Rodriguez,
“Brownout: building more robust cloud applications,” in 36th Interna-
tional Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014, P. Jalote, L. C. Briand, and A. van der Hoek,
Eds. ACM, 2014, pp. 700–711.

[19] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[20] D. Garlan, B. R. Schmerl, and S. Cheng, “Software architecture-based
self-adaptation,” in Autonomic Computing and Networking, 2009, pp.
31–55.

[21] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos,
“Awareness requirements for adaptive systems,” in Proceedings of the

6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2011, pp. 60–69.

[22] K. Angelopoulos, V. E. S. Souza, and J. Mylopoulos, “Dealing with
multiple failures in zanshin: a control-theoretic approach,” in Proceed-
ings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. ACM, 2014, pp. 165–174.

[23] V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos,
“Requirements-driven software evolution,” Computer Science-Research
and Development, vol. 28, no. 4, pp. 311–329, 2013.

[24] T. L. Saaty, “What is the analytic hierarchy process?” in Mathematical
models for decision support. Springer, 1988, pp. 109–121.

[25] J. Hellerstein, S. Parekh, Y. Diao, and D. M. Tilbury, Feedback control
of computing systems. IEEE Press, John Wiley & Sons, 2004.

[26] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas,
“A framework for evaluating quality-driven self-adaptive software sys-
tems,” in Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, ser. SEAMS ’11.
New York, NY, USA: ACM, 2011, pp. 80–89.

[27] J. Zhang and B. Zwart, “Steady state approximations of limited processor
sharing queues in heavy traffic,” Queueing Systems, vol. 60, no. 3-4, pp.
227–246, nov 2008.

[28] M. Litoiu and C. Barna, “A performance evaluation framework for web
applications,” Journal of Software: Evolution and Process, vol. 25, no. 8,
pp. 871–890, 2013.

[29] L. Ljung, System Identification: Theory for the User. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1999.

[30] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung,
“Self-managing systems: a control theory foundation,” in Engineering
of Computer-Based Systems, 2005. ECBS ’05. 12th IEEE International
Conference and Workshops on the, April 2005, pp. 441–448.

[31] M. Arlitt and T. Jin, “A workload characterization study of the 1998
World Cup Web site,” IEEE Network, vol. 14, no. 3, pp. 30–37, 2000.

[32] M. F. Arlitt and C. L. Williamson, “Web server workload characteri-
zation,” in Proceedings of the 1996 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems - SIG-
METRICS ’96, vol. 24, no. 1. New York, New York, USA: ACM Press,
may 1996, pp. 126–137.

[33] A. A. Eldin, A. Rezaie, A. Mehta, S. Razroev, S. S. d. Luna, O. Selezn-
jev, J. Tordsson, and E. Elmroth, “How will your workload look like in
6 years? analyzing wikimedia’s workload,” in Proceedings of the 2014
IEEE International Conference on Cloud Engineering, ser. IC2E ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 349–354.

[34] A. V. Papadopoulos, A. Ali-Eldin, K.-E. Årzén, J. Tordsson, and
E. Elmroth, “PEAS: A performance evaluation framework for auto-
scaling strategies in cloud applications,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), vol. 1,
no. 4, pp. 15:1–15:31, 2016.

[35] F. F.-H. Nah, “A study on tolerable waiting time: how long are web
users willing to wait?” Behaviour & Information Technology, vol. 23,
no. 3, pp. 153–163, 2004.

[36] A. V. Papadopoulos, C. Klein, M. Maggio, J. Dürango, M. Dellkrantz,
F. Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén, “Control-based
load-balancing techniques: Analysis and performance evaluation via
a randomized optimization approach,” Control Engineering Practice,
vol. 52, pp. 24–34, 2016.

[37] D. Desmeurs, C. Klein, A. V. Papadopoulos, and J. Tordsson, “Event-
driven application brownout: Reconciling high utilization and low tail
response times,” in 2015 International Conference on Cloud and Auto-
nomic Computing, Sept 2015, pp. 1–12.

[38] D. Fleder, K. Hosanagar, and A. Buja, “Recommender systems and their
effects on consumers: The fragmentation debate,” in Proceedings of the
11th ACM Conference on Electronic Commerce, ser. EC ’10. New
York, NY, USA: ACM, 2010, pp. 229–230.

[39] K. Angelopoulos, V. E. S. Souza, and J. Pimentel, “Requirements and
architectural approaches to adaptive software systems: a comparative
study,” in Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2013, San
Francisco, CA, USA, May 20-21, 2013, M. Litoiu and J. Mylopoulos,
Eds. IEEE Computer Society, 2013, pp. 23–32.

[40] S. Shevtsov, M. U. Iftikhar, and D. Weyns, “Simca vs activforms: com-
paring control- and architecture-based adaptation on the TAS exemplar,”
in Proceedings of the 1st International Workshop on Control Theory
for Software Engineering, CTSE@SIGSOFT FSE 2015, Bergamo, Italy,

525252

August 31 - September 04, 2015, A. Filieri and M. Maggio, Eds. ACM,
2015, pp. 1–8.

[41] J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. R. Schmerl,
and R. Ventura, “Incorporating architecture-based self-adaptation into an
adaptive industrial software system,” Journal of Systems and Software,
vol. 122, pp. 507–523, 2016.

[42] J. Cámara, P. Correia, R. de Lemos, and M. Vieira, “Empirical resilience
evaluation of an architecture-based self-adaptive software system,” in
QoSA’14, Proceedings of the 10th International ACM SIGSOFT Con-
ference on Quality of Software Architectures (part of CompArch 2014),
Marcq-en-Baroeul, Lille, France, June 30 - July 04, 2014, 2014, pp.
63–72.

[43] E. Kaddoum, C. Raibulet, J.-P. Georgé, G. Picard, and M.-P. Gleizes,
“Criteria for the evaluation of self-* systems,” in Proceedings of the
2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, ser. SEAMS ’10. New York, NY, USA: ACM,
2010, pp. 29–38.

[44] J. Cámara and R. de Lemos, “Evaluation of resilience in self-adaptive
systems using probabilistic model-checking,” in 7th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS 2012, Zurich, Switzerland, June 4-5, 2012, 2012, pp. 53–
62.

[45] M. Gaggero and L. Caviglione, “Predictive control for energy-aware
consolidation in cloud datacenters,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 2, pp. 461–474, March 2016.

[46] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing environ-
ments via lookahead control,” in Proceedings of the 2008 International
Conference on Autonomic Computing, ser. ICAC ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 3–12.

[47] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna, “Replica placement in
cloud through simple stochastic model predictive control,” in Proceed-
ings of the 2014 IEEE International Conference on Cloud Computing,
ser. CLOUD ’14. Washington, DC, USA: IEEE Computer Society,
2014, pp. 80–87.

535353

