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Abstract—This paper presents an adaptive video encoder that
can be used to compare the behavior of different adaptation
strategies using multiple actuators to steer the encoder towards
a global goal, composed of multiple conflicting objectives. A
video camera produces frames that the encoder manipulates
with the objective of matching some space requirement to fit a
given communication channel. A second objective is to maintain
a given similarity index between the manipulated frames and
the original ones. To achieve the goal, the software can change
three parameters: the quality of the encoding, the noise reduction
filter radius and the sharpening filter radius. In most cases the
objectives – small encoded size and high quality – conflict, since a
larger frame would have a higher similarity index to its original
counterpart. This makes the problem difficult from the control
perspective and makes the case study appealing to compare
different adaptation strategies.

I. INTRODUCTION

Many papers propose adaptation strategies for self-adaptive

systems to achieve specific run time objectives. For example,

one objective might be to ensure web server response time is

below a certain threshold. Another example is minimizing the

web server’s energy consumption. The list of objectives can

have multiple elements, together forming a global goal that the

adaptation strategy should reach. Objectives often conflict with

one another. For example, decreasing web server response time

will most likely lead to higher resource utilization, therefore

increasing the energy consumption.

In principle, all these strategies have limitations – conditions

in which they do not function correctly – and guarantees

on what they can achieve. The system designer wants to

choose the best adaptation strategy for a specific set of objec-

tives and working conditions. However, when the execution

scenario becomes complicated the theoretical comparison of

the limitations and guarantees of each adaptation strategy is

hardly fair and may be difficult to interpret. To select the

best alternative, we would like to compare strategies based

not only on qualitative metrics, but also on their quantitative

counterparts.

Testing how a technique performs in a software system

with conflicting objectives is a hard problem and often the

adaptation techniques cannot be tested in isolation. They run

alongside many other things that do not strictly belong to

the adaptation strategy. For example, in the Tele Assistance

System (TAS) [16] exemplar, multiple services can provide im-

plementations for the analysis of a patient physical conditions.

These services expose specific guarantees on their reliability,

response time, and cost. For each patient, the most appropriate

service should be invoked. This choice is based on the satisfac-

tion of conflicting objectives – for example, minimizing cost

while guaranteeing that the analysis is performed on time to

discover anomalies. However, the adaptation strategy is not a

component running in isolation, and failures can happen at any

other level. For example, other services are running in the same

underlying infrastructure, like ambulance management. In this

case study – but also in others, like the DEECo framework [1],

[10] or Internet-Of-Things-based exemplar [4] – it is therefore

difficult to isolate the adaptation strategy and compare the

results obtained with different alternatives. Yet, to test different

adaptation strategies, we want a case study that highlights

some the issues an adaptation strategy would face in a real

deployment scenario.

To define such a case study, this paper presents our Self-

Adaptive Video Encoder (SAVE). Our encoder simulates the

recording and manipulation of a video, using an mp4 stream

and processing each of the original frames to obtain a com-

pressed version of the stream. The encoding process’ goal

is to reach two conflicting objectives: compress the video

so that each frame occupies a specific size and obtain a

specific value for a well-known similarity index (SSIM) [15]

that compares the original frames with the compressed ones.

To achieve these two conflicting goals, the encoder can

change three parameters for each frame: the quality of

the encoding, the radius of a sharpen filter applied to the

image, and the radius of a noise reduction filter applied

to the frame. The quality parameter roughly relates to

a compression factor for the image. Its value is between 1

and 100 and represents the percentage of information that

is kept in the processed image. However, the relationship

between the quality and the size is very difficult to predict,

because it depends on the frame content, which is a priori

unknown. The sharpen and noise filter process the image.

For each pixel, they modify a certain number of pixels that are

within a specified radius with respect to the original one. This

processing can, for example, remove artifacts that appear due

to the compression of the original frame. However, the effect

of these filters is not obvious until processing takes place,

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.16

123

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.16

123



making it very difficult to develop a good adaptation strategy.

This case study is an extension of the video encoder used to

generate some of the results in [6]. The encoder shown in the

paper could only modify the quality parameter to obtain a

specific similarity index. As a control problem, this was clearly

easier than the one presented by this artifact. There was no

inter-dependency of multiple parameters on the final results

and the presence of one single goal simplified the overall

solution. Because of these additional difficulties, we believe

that this case study has the potential to unveil many of the

complications and the research challenges that still have to be

solved in building a proper adaptation strategy for software

systems.

With our encoder, we also present a random strategy, a

bangbang strategy, and a Model Predictive Control (mpc)

alternative, that can be used as a baseline comparison to see

how existing adaptation alternatives may behave.

II. THE ENCODER

The developed video encoder is a python prototype1. To

use it, it is not necessary to have a camera connected to the

system – any mp4 stream can be used as the data source. The

video encoder unpacks a list of mp4 streams that the user

places in an input folder and extracts a frame for each of the

original frames in the streams. The encoder uses the function

convert2 to manipulate the frames.

We emulate the type of manipulations that happen in a real

camera system; e.g., to simulate an adaptive video surveillance

camera. In this hypothetical scenario, we assume that the video

produced by the camera has to be sent on a network, and

that the network hosts many different cameras. The network

bandwidth becomes a precious and potentially scarce resource,

therefore the video encoder should achieve predictability in the

amount of information streamed for every frame.

This motivates the choice of our first goal. The size of

each processed frame is measured by the video encoder after

the encoding process terminates. SAVE should achieve a pre-

defined size for each frame, specified at command line as a

parameter upon execution. Clearly, we also want to convey the

information that was encoded in the original frame. To assess

if this is the case, we compute a structural similarity index, the

SSIM [15], for each frame. While some adaptation schemes

might maximize the similarity index given a determined size,

we test the adaptation strategy in the presence of conflicting

requirements. To do so, we include a setpoint also for the

SSIM, that can be selected at the command line. More

precisely:

• g1, the SSIM that quantifies the similarity between the

original and compressed frames. SSIM is a unitless met-

ric that ranges from 0 to 1, with near 1 indicating similar

images. gm,1 represents the SSIM measured value.

• g2, the frame size (in kilobytes), gm,2 represents the

measured value of the frame size.

1The code is available at https://github.com/martinamaggio/save and it was
tested on Linux.

2https://www.imagemagick.org/script/convert.php

Clearly, these two goals conflict with one another. When a

specific frame size is set, this will correspond to a specific

value for the SSIM on the frame. Similarly, if a specific SSIM
is reached, the corresponding frame will have a prescribed size.

We conduct tests to show how the adaptation strategy trades

one goal for the other to achieve the optimal value for the cost

function.

Our control systems can change the following parameters:

• a1, the same quality parameter used in [6] to specify

the compression density. It ranges between a1,min = 1
and a1,max = 100, where 100 preserves all frame details

and 1 produces the highest compression.

• a2, the sharpen parameter, which specifies the size of

a sharpening filter to be applied to the image. The size

ranges between a2,min = 0 and a5,max = 5 where 0
indicates no sharpening.

• a3, noise, which specifies the size of a noise reduction

filter, which varies between a3,min = 0 and a3,max = 5.

The software is extremely modular with respect to the

adaptation strategy. In a folder ctls all the code for the

adaptation strategies is included. The software contains three

different pre-specified adaptation strategies:

• random: is an adaptation strategy that selects a random

value for the actuators. Clearly, this would be used only

as a comparison and is not intended to be by any means

a good solution for such a complex problem.

• bangbang: is a solution that implements a Bang-Bang

adaptation strategy [9]. The strategy bounces between

the minimum and maximum value for the actuators,

depending on the sign of the error for both objectives.

In this case, the size objective – the primary one – is

tackled with the quality actuator, while the other two

are used to handle the SSIM objective.

• mpc: is a model predictive controller, synthesized using

the same principles of [2]. The controller tries to mini-

mize a cost function containing terms that factor in the

distance from each of the objectives and the use of the

actuation strategy. It is possible to express preferences

over both (1) which actuators should be used and (2)

which objective should be reached in case of unfeasible

situations. Moreover, the mpc uses a Kalman filter [8] to

keep an estimate of the current state updated. Section II-B

introduces the parameters used for the mpc controller.

The main idea behind the case study, however, is to have

a very modular adaptation layer, where a adaptation strategy

is easy to implement and replace. The choice of introducing

a random adaptation strategy is motivated by having a very

simple piece of code that shows how to actuate on the system.

At the same time, the bangbang adaptation strategy is the

simplest strategy that we could envision using knowledge

about the current progress. These two examples are mostly

introduced to show to a user how to develop a new control

strategy and to ease the learning phase for the software

usage. The mpc controller, on the contrary, exemplifies a more

complex adaptation strategy. It uses a library that we developed
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– included in the libs folder – that determines the general

behavior of a model predictive controller. At the same time, the

controller is initialized with models obtained with experiments

on one specific video – the Obama Victory Speech video3, with

a resolution of 854×480. Once the controller is initialized with

the model of the software behavior, the controller operation is

standard [5].

The code automatically generates some figures in the format

shown by Figure 1 and Figure 2 using TikZ and LATEX. Images

are found in the result folder.

A. Developing a new adaptation strategy

To introduce a new adaptation strategy, a user simply needs

to add a new python file in ctls, with the code for

the adaptation strategy. It is necessary to modify the file

encoder.py in three points:

• in the import area, import the new adaptation strat-

egy, for example the line import ctls.mpc as
mpccontroller is the import for the mpc controller;

• initialize the object controller, that corresponds to

the adaptation strategy just developed (lines 93 and

94 are the initialization for the random controller –

stating elif mode == "random": controller
= randomcontroller.RandomController());

• call the adaptation function specified by the newly

developed strategy with the needed arguments (lines

129 and 130 include the call for the bangbang
strategy – elif mode == "bangbang": ctl =
controller.compute_u(current_outputs,
setpoints)).

The name of the strategy, determined by the mode variable is

the same name that one uses as command line parameter to

invoke that precise strategy. Extensible code was one of the

criteria that we had in mind while developing the case study,

and it is one of the valuable characteristics of this case study.

B. Parameters for the Model Predictive Controller

Here we introduce the parameters used for the model

predictive controller. The matrices of the system have been

identified using a standard identification procedure [11]. The

prediction horizon used for the controller is 4, which has

shown consistent performance over a set of runs with different

videos.

• Objective weights: In the model predictive controller

(mpc), we need to specify weights for the different goals,

to indicate some priorities. As SSIM is between 0 and

1, we use weight w1 = 100 so that the corresponding

component of the cost function is in the hundreds. In the

mpc, we use a weight w2 = 0.001 so this second goal is

considered slightly more important than the first. When

the controller can reach only one goal, we prefer to hit

the size target, making communication predictable. Since

the controller tries to minimize the cost function, a lower

weight means that the controller will care less about that

3https://www.youtube.com/watch?v=nv9NwKAjmt0

0.7

0.8

0.9

S
S

IM

gm1

50000

100000

150000

si
ze

gm2

1

40

.80

q
u

al
it

y a1

0

2

0.4

sh
ar

p
en

a2

100 200 300 400 500
0

2

0.4

n
o

is
e

a3

Fig. 1: Results for the video experiment with the Obama

Victory Speech video, with the random adaptation strategy.

component of the cost function, while a higher weight

means that even a small improvement in that specific goal

will be substantially better from the control perspective.

• Actuators weights: We consider the quality as our

preferred choice for modifying the behavior of the system

and we specify a weight d1 = 100 for this actuator in that

controller. We select a weight d2 = 105 for the sharpen
actuator, as we would use it as a second choice, together

with the following one. Given its reduced range compared

to a1, we would like to use it less. For the noise
actuator, we specify a weight d3 = 105, equivalent to

sharpen.

III. EXPERIMENTS

We present here the results of some experiments obtained

with the developed case study and its adaptation strategies.

Figure 1 shows the first 500 frames encoded with one run of

the random strategy. As can be seen, all the actuators vary in

the determined domain in a random fashion. As a response

to that, the size and the SSIM change. However, it is

possible to see that the similarity index value is quite noisy but

around 0.86 (the average value, when outliers are eliminated).

This testifies that there is a complex relationship between the

actuator values that are set by the random strategy and the

behavior of the desired variables. For this reason, it is quite

difficult to achieve a proper and smooth control of the involved

quantities.

We have conducted some tests with the bangbang strategy

for the same frames. The strategy is configured such that a

minimum value for the quality parameter is selected (20)
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Fig. 2: Results for the video experiment with the Obama

Victory Speech video, with the bangbang adaptation strategy

and a setpoint of 0.7 for the SSIM and 10000 for the size.

in case the size is above the desired one, and the maximum

value (100) is selected in the opposite case. On the contrary,

the sharpen and noise values are set to the maximum

value (5) when the measured SSIM is below the setpoint and

to the minimum value (0) in the opposite case. As can be

seen in Figure 2, the strategy has difficulty achieving both the

objectives that correspond to the goal. In the first frames, the

quality varies tremendously between the maximum value

and the minimum one, as a result in the size change. When the

size stabilizes, the strategy finds an equilibrium point which

is, however, non-optimal.

For the mpc solution, we run the video compression ex-

ample using the Obama Victory Speech video, with different

combinations of goals g1 and g2. Specifically, we run all

possible combinations where g1 ∈ {0.7, 0.8, 0.9} and g2 ∈
{8000, 10000, 15000}. Notice that this is a stress test. In fact,

even setting the values of quality, sharpen and noise
that would achieve the lowest possible SSIM, this value hardly

ever becomes lower than 0.75, therefore the 0.7 setpoint

is not feasible. Also, the goals’ conflicting nature makes it

impossible to reach most goal combinations simultaneously.

For example, when g1 = 0.9, the frame size often exceeds

15000.

Figure 3 shows the nine different experiments with the

different values of g1 and g2. In these experiments, there are

only two feasible values for the setpoints: (1) g1 = 0.8 and

g2 = 8000 (Figure 3b) and (2) g1 = 0.9 and g2 = 15000
(Figure 3i). In all others it is impossible to achieve both the

SSIM and frame size setpoints. Therefore, as shown in the

figures, the controller opts to reach g2, which has an higher

relevance: w2 × g2. In the first row, Figure 3a shows that g2
and gm2 are basically equal, while the achieved SSIM gm1

is higher than desired. The encoding quality a1 is kept

low and there is no active noise compensation, while the

sharpen value a2 varies during the execution. Figure 3b

shows that both the SSIM and the size setpoint are achieved

using some sharpening, a small amount of noise reduction, and

a quality similar to that used for the previous combination of

setpoints. When the SSIM goal is increased – so, information

loss should be diminished – even more noise correction and

sharpening is added, as shown in Figure 3c. The setpoint g1
is reached for some frames, but overall the size limit (and the

fact it is weighted more heavily in the cost function) leads to

SSIM below the setpoint.

Figures 3d, 3e and 3f show that by allowing a higher frame

size the quality is increased, however the frame size does

not allow for a precise control of the SSIM g1, which is not

exceeded when its setpoint is equal to 0.7 and optimized as

much as possible when it is 0.8 and 0.9. Similar to Figure 3c,

the noise reduction is used by the controller in the experiment

corresponding to Figure 3f to achieve a better similarity index

without increasing the frame size.

Figures 3g, 3h and 3i show that it is possible to achieve

g1 = 0.9 and g2 = 15000 by selecting the values of a1, a2
and a3 and the controller therefore selects appropriate values

to achieve both the setpoints. In the opposite case, as seen

in Figures 3g and 3h, the size setpoint is achieved, while the

similarity index is kept as close as possible.

IV. DISCUSSION

We have done a quite extensive set of tests with the pro-

posed case study, trying to identify a suitable linear Multiple-

Input Multiple-Output (MIMO) model that could represent

the behavior of the software when quality, sharpen,

and noise are changed. More precisely, we tried to find a

linear model that could describe the variation of the size
and the SSIM given the variation of our actuation quantities.

In this process we have discovered that there is no good

linear approximation of the model that would work with

many different videos and in all the different phases that the

videos expose (for example, a video that records a conference

talk is mostly static, while a video of a sport event is very

dynamic with frequent changes of scene). This introduces

a non-negligible difficulty for adaptation strategies based on

control theory and because of that difficulty we consider this

an interesting case study for control-theoretical adaptation [3],

[7], [14].

Another difficulty in this case study is the interference

between the actuators’ values and the goals. All three actuators

influence both the goals, in conflicting ways, so that it is often

impossible – even testing all the possible configurations – to

meet all the objectives at the same time. This interference

is a problem regardless of the adaptation strategy and this

case study has the potential of fostering research on how to
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(a) g1 = 0.7 and g2 = 8000
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(b) g1 = 0.8 and g2 = 8000
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(c) g1 = 0.9 and g2 = 8000
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(d) g1 = 0.7 and g2 = 10000
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(e) g1 = 0.8 and g2 = 10000
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(f) g1 = 0.9 and g2 = 10000
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(g) g1 = 0.7 and g2 = 15000
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(h) g1 = 0.8 and g2 = 15000
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(i) g1 = 0.9 and g2 = 15000

Fig. 3: Results for the video experiment with the Obama Victory Speech video, with the mpc controller, various setpoints for

both the size and the SSIM.
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recognize and exploit the inherent trade-offs present in real

case studies with complex interactions between goals and

actuators.
Another reason why developing an adaptation strategy for

this specific case study is challenging is that a new video will

require adjustments. These adjustments should be automatic

at least to the extent this is possible – if one thinks of a

scenario in which the video is a stream of a surveillance

camera, there is no way to optimize for uncertain situations.

There is always a probability that the scene will be different

(partially or completely). In a recorded video, this can happen

because the scene has changed, for example from the speaker

or the athlete to the public. In a live stream because some

people have entered the camera range. The uncertainty in

the domain of video encoding makes this case study very

interesting for all the research that deals with uncertainty

reduction and uncertainty management at runtime.
However, one must also note that not all the challenges

in developing adaptation strategies are now covered by this

case study. For example, acuation latency [12], [13] is not

a concern for this case study. One could extend the current

work to include for example network latency in the control

signal actuation, as if the computation was done remotely and

a specific quality was requested by a streamer.
We also believe that there are many other extensions where

SAVE becomes one of the components in a more complex

system. This more complex system could, for example, stream

the video at a certain rate that depends on the client that is

requesting the video. Per-video optimization can be envisioned

in the case of a streaming-on-demand service, where videos

are retrieved from a common source.

V. CONCLUSION

In this paper we have presented SAVE, a self-adaptive video

encoder that realizes a case study for the development and

comparison of adaptation strategies. The code for SAVE can

be found at https://github.com/martinamaggio/save We have

developed SAVE with extensibility in mind and we have

equipped it with simple strategies that demonstrate how to

write an adaptation strategy without having to read – or even

understand – the encoder. We have highlighted why we believe

that SAVE is an excellent case study to compare the behavior

of different adaptation strategies and what we believe are the

challenges there.
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