
Using Safety Contracts to Guide the Maintenance of
Systems and Safety Cases: An Example

Omar Jaradat∗
∗School of Innovation, Design, and Engineering

Mälardalen University
Västerås, Sweden

Email: omar.jaradat@mdh.se
Telephone: +46 (21) 101369, Fax: +46 (21) 101460

Iain Bate∗†
†Department of Computer Science

University of York
York, United Kingdom

Email: iain.bate@york.ac.uk
Telephone: +44 (1904) 325572, Fax: +44 (1904) 325599

Abstract—Changes to safety critical systems are inevitable
and can impact the safety confidence about a system as their
effects can refute articulated claims about safety or challenge the
supporting evidence on which this confidence relies. In order to
maintain the safety confidence due to changes, system developers
need to re-analyse and re-verify the system to generate new
valid items of evidence. Moreover, identifying the effects of a
particular change is a crucial step in any change management
process as it enables system developers to estimate the required
maintenance effort and reduce the cost by avoiding wider analyses
and verification than strictly necessary. This paper presents a
sensitivity analysis-based technique which aims at measuring the
ability of a system to contain a change (i.e., robustness) without
the need to make a major re-design. The technique exploits
the safety margins in the assigned failure probabilities to the
events of a probabilistic fault-tree analysis to compensate some
potential deficits in the overall failure probability budget due to
changes. The technique also utilises safety contracts to provide
prescriptive data for what is needed to be revisited and verified
to maintain system safety when changes happen. We demonstrate
the technique on a realistic safety critical system.

Keywords—sensitivity analysis, safety case, change impact, fail-
ure probabilities, maintenance.

I. INTRODUCTION

System safety is a major property that should be adequately
assured during the development process, the deployment and
the operation life of safety critical systems. System safety is
not assured by chance but rather it must be engineered and
evaluated in a systematic manners that might be mandated
by safety standards, best practices, experts’ recommendations.
Hence, safety critical systems are often subject to a compul-
sory or advisory certification process which often necessitates
building the systems in compliance with domain-specific safety
standards. For example, some automotive systems (e.g., pas-
senger cars) might be built in compliance with ISO 26262,
railway systems in compliance with EN 50126, certain airborne
systems in compliance with DO-178B, etc. Based on the level
of risks posed by a system, the safety standards help to define
the required safety assurance level (e.g., Safety Integrity Levels
(SILs), Design Assurance Level (DAL), etc.) and prescribe the
tools, techniques and methods that should be adopted by the
development and assessment lifecycle [13].

Following the standards prescriptions leads system de-
velopers to generate a lot of artefacts during and after the

development of their systems. These artefacts are used as
safety evidence to prove that the standards obligations and
recommendations were carried out. However, if the generated
artefacts are not demonstrated and explained properly, there
will be less certainty about their importance which may lead
the overall confidence being undermined. Therefore, develop-
ers of some safety critical systems construct a safety case (also
known as “assurance case”) to demonstrate the safety aspect
of a system by identifying all potential risks and describing,
in the light of the available evidence, how these risks have
been eliminated or duly mitigated to ALARP (As Low As
Reasonably Practicable). More clearly, a safety case comprises
both safety evidence (e.g. safety analyses, software inspections,
or functional tests) and a safety argument explaining that
evidence [25]. The safety argument shows which claims the
developer uses each item of evidence to support and how those
claims, in turn, support broader claims about system behaviour,
hazards addressed, and, ultimately, acceptable safety. That is,
safety cases provide evidential information about the safety
aspect of a system by which a regulatory body can reasonably
conclude that the system is acceptably safe and thus grants
the certification stamp. Safety cases have received industrial
attention and they have become common practice as they are
mandatory in some domains, and even when they are not
mandatory they are considered as a good practice. However,
safety cases are costly since they need a significant amount
of time and effort for them to be produced. In fact, the cost
of obtaining certification is significant, with estimates such
as 30% of lifecycle costs [9] and 25-75% of development
costs [35] are spent on certification [5].

Typically, safety critical systems are evolutionary and they
are always exposed to both predicted and unpredicted changes
during the different stages in their lifecycle. System changes
are due to the need of improving the systems performance
(i.e., perfective changes), correct discovered faults and errors
(i.e., corrective changes), or perhaps incorporate new system
modes and conditions (i.e., adaptive changes), etc. Changes to
a system can negatively affect the gained confidence because
these changes have the potential to compromise the safety evi-
dence which has been already collected. More clearly, evidence
after a change might no longer support the developers’ claims
because it reflects old development artefacts or old assumptions
about operation or the operating environment. In the updated
system, existing safety claims might be nonsense, no longer

reflect operational intent, or be contradicted by new data [25].

In order to maintain the confidence in the safety per-
formance, developers must update the safety case which, in
turn requires identifying, re-analysing, and re-checking the
impacted parts of the system and generate a new valid set
of evidence. This is more complicated task than it might first
appear. Change requests should be assessed before decision
makers decide whether or not to accept them. The assessment
should reveal if the change can cause unreasonable risks, and
the required cost to implement the change. Hence, system
developers should understand the change and the potential risks
that it might carry before they identify the impacted parts. For
example, a change might turn some implicit assumptions about
the context in which a system should operate to be wrong.
Misunderstanding the change might lead to skip those parts
of the system which are dependent on that assumptions. Also,
the developers need to understand the dependencies between
the system parts to identify the affected parts correctly. For
example, the effect of a change can propagate to other parts of
the system — creating aripple effect — and cause unforeseen
violations of the acceptable safety limits. If the impact of
change is not clear, developers might be conservative and do
wider analyses and verification (i.e., check more elements than
strictly necessary), and this will exacerbate the cost problem of
safety cases. It is also necessary for the developers to describe
how the change affects the system parts — that are listed
as affected — in order to correctly estimate the cost of the
response to that change. Otherwise, the response to a change
might generate unplanned further changes to which the system
must again respond [37], and this requires more cost than
originally calculated.

Despite clear recommendations to adequately maintain and
review the systems and their safety cases by safety standards,
existing standards offer little or no advice on how such
operations can be carried out [36]. Hence, there is an increas-
ing need for globally acceptable methods and techniques to
enable easier change accommodation in safety critical systems
without incurring disproportionate cost compared to the size
of the change. However, since broader re-verification and re-
validation require more effort and time, it is important for
any proposal aims at facilitating system changes to localise
the impact of the changes. More specifically, to alleviate the
cost of updating both a system and its safety case due to a
change, it is crucial to minimise the effects of that change
and prevent these effects from propagating into other parts
of the system as far as it is practically possible. In other
words, systems need to be more resilient to changes. In order
to enable such resilience, system designers need descriptions
of predicted changes, during the design phase of a system, to
construct the system design in a way that they decouple (or
minimise the coupling) the affected part from the other parts
to prevent the propagation. The problem though is that system
changes and their details cannot be fully predicted and made
available up front [17].

In our previous work [24], we introduced a Sensitivity
ANalysis for Enabling Safety Argument Maintenance (SANE-
SAM) technique that supports system engineers to antici-
pate potential changes. We also developed SANESAM+ [17]
as another version of SANESAM that covers wider variety
of change scenarios. The key principle of SANESAM and

SANESAM+ is to determine the flexibility (or robustness) of
a system to changes using sensitivity analysis. The output
is a ranked list of FTA events that system engineers can
refine. The result after the refinement is a list of events that
will be, most likely, related to the future changes. We use
safety contracts to record the information of the maximum
allowed changes to those events before violating the minimum
acceptable safety limits. Those contracts can be used as part
of later change impact analysis to advise the engineers what to
consider and check when changes actually happen. The focus
in this paper is not to show how SANESAM(+) can help
anticipating potential changes; rather the main contribution
of this paper is to propose a new approach through which
SANESAM(+) is used to contain (i.e., localise) the potential
changes in the smaller possible part of a system. More clearly,
we compare the calculated MAFP (Maximum Allowed Failure
Probability) of the events with new estimated FP of those
everts due to a change. If a new estimate FP of an event
is ≤ MAFP, then the change will not, necessarily, require
a considerable system modification, otherwise, it means that
there will be a deficit in that FP and more effort should be
considered. There could be several ways to respond to the
latter case, but some responses might require large planning
and massive re-engineering effort. Alternatively, we suggest,
in this paper, to use the FP margins(s) of other events to
compensate the resultant deficit. The paper uses the aircraft
Wheel Braking System (WBS) to illustrate different examples
of changes containment.

This paper is composed of five further sections. In Sec-
tion II, we present necessary background information to make
the paper self-contained. In Section III, we describe two
techniques to facilitate the maintenance of safety cases. We
use this description as a basis to introduce a new technique to
facilitate the maintenance of safety critical systems and safety
cases in Section IV. In Section V, we use the WBS system
as an illustrative example. Finally, we conclude and propose
potential future works in Section VI.

II. BACKGROUND AND MOTIVATION

A. Fault Tree Analysis (FTA)

In 1962, Bell Telephone Laboratories introduced the fault
tree technique as a means to evaluate safety in the launching
system of the intercontinental Minuteman missile [30]. The
Boeing Company improved the technique and introduced com-
puter programs for both qualitative and quantitative fault tree
analysis. Today FTA is the most commonly used technique for
safety and reliability studies.

FTA is a failure analysis method which focuses on one
particular undesired event and provides a method for deter-
mining causes of this event [2]. In other words, FTA uses
abductive reasoning to identify different causes to critical states
(from a safety or reliability standpoint). These states might be
associated with component hardware failures, human errors,
software errors, or any other pertinent events. FTA helps safety
engineers to identify plausible causes (i.e., faults) of undesired
events [34]. A fault tree illustrates the logical interrelationships
of the system’s components (Basic Events) that lead to the
undesired event or the system’s state (Top Event) [34], [30].
The logical interrelationships are called Logical Gates.

Moreover, FTA is used as a method to achieve Probabilistic
Safety Analysis (PSA). More specifically, probability of failure
is assigned to each of the failure events based on historical
data, and the failure probability of the top event is deter-
mined [33]. Quantitative FT evaluation techniques produce
three types of results: (1) numerical probabilities, (2) quan-
titative importance, and (3) sensitivity evaluations [2]. Both
SANESAM and SANESAM+ utilise the failure probabilities
of PSA(s) to measure how sensitive a system design is to a
particular aspect of individual event.

B. Sensitivity Analysis

Sensitivity analysis can be defined as: “The study of how
uncertainty in the output of a model (numerical or otherwise)
can be apportioned to different sources of uncertainty in the
model input” [32]. The analysis helps to establish reasonably
acceptable confidence in the model by studying the uncer-
tainties that are often associated with variables in models.
Many variables in system analysis or design models represent
quantities that are very difficult, or even impossible to measure
to a great deal of accuracy [29]. In practice, system, developers
are usually uncertain about variables in the different system
models and they estimate those variables. Sensitivity analysis
allows system developers to determine what level of accuracy
is necessary for a parameter (variable) to make the model
sufficiently useful and valid [8].

There are different purposes for using sensitivity analysis.
The analysis can be used to provide insight into the robustness
of model results when making decisions [10]. Also, the anal-
ysis can be used to enhancing communication from modelers
to decision makers, for example, by making recommendations
more credible, understandable, compelling or persuasive [28].
In safety domains, sensitivity analysis can be used in risk anal-
ysis models to determine the most significant exposure or risk
factors so to speak, and thus, it can support the prioritisation
of the risk mitigation. Sensitivity analysis methods can be
classified in different ways such as mathematical, graphical,
statistical, etc. In this paper we use the sensitivity analysis
to identify the safety argument parts (i.e., sensitive parts)
that might require unneeded painstaking work to update with
respect to the benefit of a given change. The results of the
analysis should be presented in the safety argument so that it
is always available up front to get developers’ attention.

SANESAM and SANEMSAM+ exploit sensitivity analysis
on FTAs to measure the sensitivity of outcome A (e.g., a safety
requirement being true) to a change in a parameter B (e.g., the
failure probability in a component). The sensitivity is defined
as ∆B/B, where ∆B is the smallest change in B that changes
A (e.g., the smallest increase in failure probability that makes
safety requirement A false). The failure probability values that
are attached to FTA’s events are considered input parameters
to the sensitivity analysis. A sensitive part of a FTA is defined
as one or multiple FTA events whose minimum changes (i.e.,
the smallest increase in its failure probability due to a system
change) have the maximal effect on the FTA, where effect
means exceeding failure probabilities (reliability targets) to
inadmissible levels. A sensitive event is an event whose failure
probability value can significantly influence the validity of the
FTA once it increases [24], [17]. In Section III, we provide
more descriptions about SANESAM and SANESAM+.

C. Safety Contracts

The term ‘contract’ is defined in English as: “A written
or spoken agreement, especially one concerning employment,
sales, or tenancy, that is intended to be enforceable by
law” [3]. A contract is intended to (1) establish a binding
relationship between one party’s offer and the acceptance
of that offer by one or more parties, and (2) set out the
terms and conditions that constrain this relationship. Using the
contracts is familiar in software development. For instance,
Design by Contract (DbC) was introduced by Meyer [22],
[23] to constrain the interactions that occur between objects.
Moreover, contract-based design is an approach where the
design process is seen as a successive assembly of components
where a component behaviour is represented in terms of
assumptions about its environment and guarantees about its
behaviour [7].

In 1969, Hoare introduced the pre- and postcondition
technique to describe the connection (dependency) between
the execution results (R) of a program (Q) and the values
taken by the variables (P) before that program is initiated [14].
Hoare introduced a new notation to describe this connection,
as follows:

P {Q} R

This notation can be interpreted as: “If the assertion P is true
before initiation of a program Q, then the assertion R will be
true on its completion” [14].

In the context of contract-based design, a contract is
conceived as an extension to the specification of software
component interfaces that specifies preconditions and post-
conditions to describe what properties a component can offer
once the surrounding environment satisfies one or more related
assumption(s).

A contract is said to be a safety contract if it guarantees
a property that is traceable to a hazard. There have been
significant works that discuss how to represent and to use
contracts [6], [39], [31]. In the safety critical systems do-
main, researchers have used, for example, assume-guarantee
contracts to propose techniques to lower the cost of developing
software for safety critical systems. Moreover, contracts have
been exploited as a means for helping to manage system
changes in a system domain or in its corresponding safety
case [15], [27], [12].

The following is an example that depicts the most common
used form of contracts [17]:

Guarantee: The WCET of task X is ≤ 10 millisec-
onds
Assumptions:
X is:

1) compiled using compiler [C],
2) executed on microcontroller [M] at 1000 MHz

with caches disabled, and
3) not interrupted

In this paper, we use safety contracts to record the depen-
dencies among failure probabilities of FTA’s events.

D. Safety Case

There are different definitions of safety case [18], [21].
Most of the available definitions indicate the consensus that a
safety case is oriented to demonstrate how a system reduces
risk of specific losses to an acceptable level and thus enable
a regulator to assess whether the system is acceptably safe to
operate. It is worth pointing out that the definition of safety
case by the UK Defence Standard 00-56 [38] is the most
common. The standard defines the safety case as: “A structured
argument, supported by evidence, intended to justify that a
system is acceptably safe for a specific application in a specific
operating environment”. Hence, a safety case comprises both
safety evidence (e.g. safety analyses, software inspections,
or functional tests) and a safety argument explaining that
evidence [25]. The development of a safety case as a means of
demonstrating acceptable risk began in the nuclear industry but
the application of this means was uncommon in other indus-
tries. From 1990s onwards the development of safety cases
spread across many other major hazard industries, such as
the automotive, avionics, railways, offshore oil, gas facilities,
etc. [40]. It is worth mentioning that the terms ‘safety case’
and ‘assurance case’ are, sometimes, used interchangeably.

E. Safety Argument

The main purpose of a safety case is to communicate
an argument. The argument demonstrates how someone can
reasonably conclude that a system is acceptably safe from the
evidence available [19]. An argument in the safety case defi-
nition is called a ‘safety argument’ or ‘safety case argument’
and it can be defined as a hierarchically connected series of
claims supported by evidence. Safety arguments are intended
to demonstrate to the reader that a system is acceptably safe
as an overall claim. The claim is defined as: A proposition
being asserted by the author or utterer that is a true or false
statement [26]. The evidence is defined as: Information or
objective artifacts being offered in support of one or more
claims [26].

In order for safety cases to be developed, discussed, chal-
lenged, presented and reviewed amongst stakeholders, as well
as maintained throughout the product lifecycle, it is necessary
for the (1) argument to be clearly structured and (2) items of
evidence to be clearly asserted to support the argument [1].
Figure 2 shows an overview of the safety case elements and
the relationships between them. There are several ways to
represent safety arguments (e.g., textual, tabular, graphical,
etc.). In this paper, however, a graphical representation is used.
More specifically, we use the Goal Structuring Notation (GSN)
[4], which provides a graphical means of communicating

Goal

Context

Assumption
A Strategy

InContextOf

SolvedBy

Away Goal

 <Module Name>

Requires further
development

Justification
J

Solution

ContractAway Goal

Module

Fig. 1. Notation Keys of the GSN

e.g., safety analyses, software
inspections, or functional
tests, etc.

Evidenc
e
Report 1

Analysis
Report 1Model

Report 1Test
Report 1Test

Report 1

Lifecycle Artefacts

Safety Objectives

Claim x Claim y Claim z Claim n......

Evidence
x

......

Supported by

Evidence
y

Evidence
z

Evidence
n

Sa
fe

ty
 A

rg
um

en
t

Fig. 2. Overview of a safety case and its elements [16]

(1) safety argument elements, claims (goals), argument logic
(strategies), assumptions, context, evidence (solutions), and
(2) the relationships between these elements. The principal
symbols of the notation are shown in Figure 1 (with example
instances of each concept).

A goal structure shows how goals are successively broken
down into (’solved by’) sub-goals until eventually supported
by direct reference to evidence. Using the GSN can clarify
the argument strategies adopted (i.e., how the premises imply
the conclusion), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated.

F. Safety Cases and Maintenance

Safety assurance and certification are amongst the most
expensive and time-consuming tasks in the development of
safety-critical embedded systems [11]. A key reason behind
for this is the increasing complexity and size of these systems
combined with their growing market demands. One of the
biggest challenges that affects safety case revision and main-
tenance is that a safety case documents a complex reality that
comprises a complex web of interdependent elements. That
is, safety goals, evidence, argument, and assumptions about
operating context are highly interdependent. Hence, seemingly
minor changes may have a major impact on the contents
and structure of the safety argument. Basically, operational or
environmental changes may invalidate a safety case argument
for two main reasons as follows:

1) Evidence is valid only in the operational and environmen-
tal context in which it is obtained, or to which it applies.
During or after a system change, evidence might no longer
support the developers’ claims because it could reflect old
development artefacts or old assumptions about operation
or the operating environment.

2) Safety claims, after introducing a change, might be non-
sense, no longer reflect operational intent, or be contra-
dicted by new data. Changing safety claims might change
the argument structure.

Hence, maintaining safety cases after implementing a system

change is a painstaking process, and this because of:

1) the lack of documentation of dependencies among the
safety cases contents, 2) the lack of traceability between a
system and its safety case, and 3) system changes and their
details cannot be fully predicted and made available up front
to contain them by design.

In this paper, we refer to “Maintainability” or “Mainte-
nance” as the ability to repair or replace the impacted elements
of a safety case argument, without having to replace still
valid elements, to preserve the validity of the argument. This
includes:

1) Identifying the impacted elements and those that are not
impacted.

2) Minimising the number of impacted elements.
3) Reducing the work needed to make the impacted elements

valid again.

III. SANESAM AND SANESAM+

In this section, we give an overview of SANESAM [24] and
SANESAM+ [17]. The key principle of both techniques is to
determine, for each component, the allowed range for a certain
parameter within which a component may change before it
compromises a certain system property (e.g., safety, reliability,
etc.). Sensitivity analysis is used in the techniques as a method
to determine the range of failure probability parameter for
each component. The techniques assume the existence of a
probabilistic FTA where each event in the tree is specified by
a current estimate of failure probability FPCurrent|event(x). In
addition, the they assume the existence of the required failure
probability for the top event FPRequired(Topevent), where the
FTA is considered unreliable if:

FPCurrentl(Topevent) > FPRequired(Topevent) [24].

A. SANESAM Process

Step 1. Apply the sensitivity analysis to a probabilistic
FTA: In this step the sensitivity analysis is applied to a FTA to
identify the sensitive events whose minimum changes have the
maximal effect on the FPTopevent. Identifying those sensitive
events requires the following steps to be performed:

1) Find the Minimal Cut Set (MC) in the FTA. The minimal
cut set definition is: “A cut set in a fault tree is a set
of basic events whose (simultaneous) occurrence ensures
that the top event occurs. A cut set is said to be minimal

Step 3:
Derive
safety
contracts
from FTAs

Step 4:
Build the safety
argument and
associate the
derived
contracts with it

Step 2:
Refine the
identified
sensitive
parts with
system
developers

Step 1:
Apply
Sensitivity
Analysis to
probabilistic
FTA(s)

Step 6:
Specify the affected
parts of the safety
argument

Step 5:
Analyze the
impact of
change

The SANESAM Phase

The Safety Argument Maintenance Phase

Step 7:
Update the
argument

Fig. 3. Process diagram of SANESAM [24]

<<ContractID>>

(b)(a)

Contract ID: [Contr_Name]
G1: The MAFP for the event [E] is ≤ [FP]
A1: No duplicates of [E] in the FTA [F] where the failure probability ≥ [FP]
A2: The logic in FTA [E] remains the same
(Option 1.)
A3: Event [E1] MAFP ≤ [FP]
A4: Event [E2] ≤ [FP]
(Option 2.)
A3: Event [E1] MAFP ≤ [FP]
A4: Event [E2] ≤ [FP] (No Change)
(Option 3.)
A3:Event [E1] MAFP ≤ [FP] (No Change)
A4: Event [E2] ≤ [FP]

Fig. 4. (a) FTA Safety contract notation, (b) Derived safety contract

if the set cannot be reduced without losing its status as a
cut set” [30].

2) Calculate the maximum possible increment to the failure
probability parameter of event x before the top event
FPRequired(Topevent) is no longer met, where x ∈
MC and (FPIncreased|event(x)−FPCurrent|event(x)) ;
FPIncreased(Topevent) > FPRequired(Topevent).

3) Rank the sensitive events from the most sensitive to the
less sensitive. The most sensitive event is the event for
which the following formula is the minimum:

FPIncreased|event(x) − FPCurrent|event(x)

FPCurrent|event(x).

Step 2. Refine the identified sensitive parts with system
developers: In this step, the generated list of sensitive events
from Step 1 should be discussed by system developers (e.g.,
safety engineers) as they should choose the sensitive events
that are most likely to change. The list can be extended to
add any additional events by the developers. Moreover, it is
envisaged that some events might be removed from the list or
the rank of some of them might change.

Step 3. Derive safety contracts from FTAs: In this step,
a safety contract or contracts should be derived for each
event in the list from Step 2. The main objectives of the
contracts are to 1) highlight the sensitive events to make
them visible up front for developers attention, and 2) to
record the dependencies between the sensitive events and
the other events in the FTA. Hence, if the system is later
changed in a way that increases the failure probability of a
contracted event where the increased failure probability is
still within the defined threshold in the contract, then it can
be said that the contract(s) in question still hold (intact) and
the change is containable with no further maintenance. The
contract(s), however, should be updated to the latest failure
probability value. On the other hand, if the change causes
a bigger increment to the failure probability value than the
contract can hold, then the contract is said to be broken
and the guaranteed event will no longer meet its reliability
target. It is worth noting that the role of safety contracts
in SANESAM is to highlight sensitive events, and not to
enter new event failure probabilities. We introduce a new
notation to FTAs to annotate the contracted events, where
every created contract should have a unique identifier, as
shown in Figure 4-a. We also create a template to document
the derived safety contracts. Figure 4-b shows an instantiation
of the contents of one of the derived safety contracts for WBS.

Step 4. Build the safety argument and associate the

derived contracts with it: In this step, a safety argument should
be built and the derived safety contracts should be associated
with the argument elements.

Essentially, SANESAM calculates the maximum possible
increment to the failure probability parameter of only one
event at a time before the top event FPRequired(Topevent) is
no longer met. In addition, it considers the events within the
MC only.

B. SANESAM+ Process

In [17], we suggested to extend SANESAM by SANE-
SAM+ to resolve some identified limitations. Briefly, SANE-
SAM+ was introduced to provide more freedom by considering
multiple events at a time and not only the events in the
MC. SANESAM+ gives the systems’ developers two options:
1) SANESAM+ without considering any predicted changes,
which is useful in the case of arbitrary changes because it
calculates the FP for all events in the FTA regardless of
any change scenario, 2) SANESAM+ For Predicted Changes,
this option increases the FP for only the events that are
associated to a predicted change. A derived safety contract by
SANESAM+ For Predicted Changes can guarantee higher FP
than the guaranteed FP (for the same event and using the same
set of assumptions) in a derived safety contract by SANE-
SAM+. Hence, the derived safety contracts by SANESAM+
For Predicted Changes are more tolerant and robust than those
derived by SANESAM+.

The main difference between the SANESAM process and
SANESAM+ process is observed while applying the sensi-
tivity analysis (i.e., Step 1). In addition, SANESAM+ does
not require any refinements of the sensitive events. Hence,
Step 2 in Subsection III-A shall be completely neglected for
SANESAM+. All other steps are identical.

1) SANESAM+ For Arbitrary Changes: The detailed in-
structions of how to apply sensitivity analysis (Step 1) of
SANESAM+ for arbitrary changes are as follows [17]:

1) Find the difference between new and current FP s of the
ancestor events, as follows:

∆FP(Ancestor) = FPNew − FPCurrent

The first run of this step should start with ∆FP(Topevent),
where the new FP in this specific case is the required
FP . The second run should be for each event in the very
next level and so on and so forth until the basic events
are reached.

2) This sub-step is very dependent on the type of the gate
between the ancestor and descendant events. In case of
OR gate, sub-steps 2-A and 2-B should be followed. In
case of AND gate, sub-step 2-C should be followed.
a) Find the ratio of the descendant events to the ancestor

event. The first run of this step should start with the
top event and the events beneath it. The second run of
this step should consider one more level down. In other
words, descendant events in the first run will become
ancestors in the second one. The ratio of a descendant
event to its ancestor is calculated by Equation 1, as
follows:

RatioDesc(x) =
FPCurrent(Desc(x))

FPCurrent(Ancestor)
(1)

b) Increase the FP for each of the descendant events by
∆FP(Ancestor) which is calculated in step 1. Increas-
ing events’ FP is done by Equation 2, as follows:

(2)
FPIncreased|Desc(x) =FPCurrent(Desc(x))

+ (Ratio(Desc(x)) ∗∆FP(Ancestor))

c) In this sub-step, we need to distribute the increment
to the FP of an ancestor event over its descendent
events in the presence of an AND gate. The increment
to each descendant event is calculated in two different
ways based on the number of descendent events and
if their FPs vary.

Case 1. if the events share the same FP value, we can
use: n

√
FP(Increased|Ancestor), where n is the number

of the descendent events.
LOOBS1 and LOOBS2 in Figure 7 represent an exam-
ple of this case.
Case 2. if the descendent events do not share the
same FP , then FP(Topevent) is distributed over them
unevenly, but rather based on the FP ratio of every
descendent event to ∆FP(Ancestor) as described by
Equation 3:

FPCurrent(Desc(x))+(
FPCurrent(Desc(x))∑
FPCurrent(AllDesc)

∗I) (3)

In order to determine I we need to consider all sibling
events as described in Equation 4:

(4)

(FPCurrent(Desc(x1))

+ (
FPCurrent(Desc(x1))∑
FPCurrent(AllDesc)

∗ I))

∗ (FPCurrent(Desc(x2))

+ (
FPCurrent(Desc(x2))∑
FPCurrent(AllDesc)

∗ I))

∗ (FPCurrent(Desc(xn)

+ (
FPCurrent(Desc(xn))∑
FPCurrent(AllDesc)

∗ I))

= FPIncreased(Ancestor)

LOOBS1 and SWFSIS1P in Figure 7 represent an
example of this case.

3) Repeat steps 1 and 2 until FP of the basic events
get increased. Unlike SANESAM, SANESAM+ process
distinguishes between duplicated events. That is, if an
event shows up in multiple locations in the FTA, we still
need to calculate its FP wherever we encounter it. Later
on when finish calculating the FP for all duplicates of an
event we unify the its FP by considering the minimum
calculated FP of them.

4) Finally, rank the sensitivity of events from the most
sensitive to the less sensitive. The most sensitive event
is the event for which Equation 5 is the minimum, as
follows:

Sensitivity(x) =
FPIncreased(x) − FPCurrent(x)

FPCurrent(x)
(5)

2) SANESAM+ For Predicted Changes: SANESAM+ can
be useful even for arbitrary changes. That is, even if the
system engineers are not sure of the potential future changes,
SANESAM+ enable the derivation of safety contracts for all
events in different levels in the FTA. Hence, when a change
request shows up, system engineers, and by returning to the
sensitivity results, can decide whether the effect of the change
is tolerable or not. However, SANESAM+ can be more useful
in the presence of a predicted change as it can increase
the effect tolerance of that change. More clearly, distribut-
ing ∆FP(Topevent) over all FTA’s events might increase the
change impact tolerance of some events that are unlikely
to change. On the other hand, the change impact tolerance
might be slightly increased for events that are more likely to
change. Consequently, having a change scenario in advance
will motivate increasing the change impact tolerance for only
the events that fall in the scope of that change. Since, however,
SANESAM+ (for predicted changes) will exclude the events
that are unlikely to change, we will slightly modify the steps
by which we calculate the FP of events. The following steps
give guidance on how to calculate the FP SANESAM+ for
predicted change scenarios:

1) Find the difference between the current and required FP
of the top event ∆FP(Topevent).

2) Find the highest event that contains the effect. If the
highest event does not fall directly under the top event,
the effect should be traced up the fault tree further until
we reach the affected event that falls directly under the
top event.

3) Distribute the calculated ∆FP(Topevent) in sub-step 1 to
the identified events in sub-step 2 based on the determined
ratio in sub-step 3. The first run of this sub-step should
start with the top event and the events beneath it, and the
second runshould consider one more level down.This sub-
step is very dependent on the type of the gate between
the ancestor and descendant events. In the case of an OR
gate sub-step 4-A should be followed. In the case of an
AND gate sub-step 4-B should be followed.
a) In this sub-step, we need to distribute the increment

to the FP of an ancestor event over its descendent
affected events in the presence of an OR gate. We first
need to find the ratio of the affected event to its ancestor
event. Afterwards, we need to use the calculated ratio to
determine the amount of the increment to the affected
event. The first run of this step should start with the
affected events that fall directly under the top event.
The second run of this step should consider one more
level down. In other words, descendant events in the
first run will become ancestors in the second one.
The simplest FP calculation is when to have two
descendent events and only one of them is affected.
This is because all what we need to do is to subtract
the unaffected FP from the increased ancestor event
to get the the increased FP of the affected event as
presented in Equation 6:

(6)
FPIncreased(Ancestor)

− FPCurrent(Unaffect|Desc(x))

= FPIncreased(Desc(x))

Otherwise, the ratio of a descendant event to its ances-

tor and the granted increment to an affected event is
calculated by Equation 7 as follows:

FPIncreased(Desc(x))

= (
FPCurrent(Desc(x))

FPCurrent(Ancestor) −
∑

FPCurrent(Unaffect)

∗ FPIncreased(Ancestor)) + FPCurrent(x)

(7)

b) In this sub-step, we distribute the increment to the
FP of an ancestor event over its affected descendent
events in the presence of an AND gate. The increment
calculation is dependent on five cases, as follows:
Case 1. Two descendent events and only one of them is
affected. This is the simplest case because all what we
need to do is to divide the increased FP of the ancestor
event on the current FP of the unaffected descendent
event as presented in Equation 8:

FPIncreased(Desc(x)) =
FPIncreased(Ancestor)

FPCurrent(Unaffect|Desc(x))
(8)

Case 2. All descendent events are affected and share
the same FP value. In this case, we apply:
n
√
FP(Increased|Ancestor), where n is the number of the

descendent events.
Case 3. All descendent events are affected and do
NOT share the same FP value. In this case, we apply
equations (3) and (4) as described in Section III-B1.
Case 4. NOT all descendent events are affected where
the affected ones share the same FP value. In this case,
we apply Equation 9 as follows:

(9)

FPIncreased(Desc(x))

= n

√
(

FPIncreased(Ancestor(x))∑
FPCurrent|Unaffect(x1)∗(x2)∗...∗(xn))

where n is the number of the affected events.
Case 5. NOT all descendent events are affected where
the affected ones do NOT share the same FP value.
In this case, we use Equation 10, as follows:

FPIncreased(Ancestor(x))∑
FPCurrent|Unaffected(x1)∗(x2)∗...∗(xn))

(10)

4) Repeat step 3 until the FP of all affected events get
increased.

IV. SAFETY CONTRACTS DRIVEN MAINTENANCE

The way we suggest to cope with some types of changes
is to contain their effects in the smallest possible set of events
to prevent (or minimise) the ripple of these effects from
propagation. In this section, we describe a new technique that
enables the containment of certain class of changes in safety
critical systems and safety cases. It is worth noting that this
technique utilises the same rules by which SANESAM and
SANESAM+ calculate the sensitivities and associate them with
a safety argument via safety contracts. However, the technique
adds additional steps to enable effective usage of the safety
margins in a probabilistic FTA. The new technique provides
solutions to accommodate a change even if the change broke
one or more safety contracts. The only needed input for the

process of the technique is a probabilistic FTA. The process
comprises 6 steps that can fall into two main phases, before and
after introducing a change. The three steps before perfroming
a change are similar to the first phase of SANESAM and
SANSAM+ as shown in Figure 3. However, we have made
some non-substantial changes to some of these steps, where
we describe the change to each step when we describe the
step itself. Steps 4-6 are novel and they were designed and
specified for the new technique.

Steps before performing a change:

1) Apply the sensitivity analysis to a probabilistic FTA:
This step is performed exactly as instructed in the process
of either SANESAM or SANESAM+.

2) Derive safety contracts: In this step, we need to derive
safety contracts from FTAs as described in Section III.
However, there are two main differences in the derivation
of safety contracts in this work. First, the guaranteed
MAFPs in the safety contracts are basically the results of
either multiplication or summation of multiple children
events. Hence, there is no point to derive contracts for
basic events in FTA because they simply do not have
children events. The second main difference is that the
contracts should provide multiple options for developers
to measure the tolerance of a change’s impact. More
clearly, each derived safety contract should assume that
only one child event is affected, multiple children events
are affected or all of them are affected.

3) Associate the derived contracts with safety arguments:
Unlike the same step in SANESAM (in Section III) and
to enable more freedom, the proposed technique in this
work considers that the construction of safety arguments
is not necessarily a part of the process. Hence, we assume
the existence of a safety argument no matter how it is
represented (e.g., textual, tabular, graphical, etc.). The
most important for us is the association itself because
this association highlights the suspect elements in the
argument to bring them to developers’ attention.

Steps after performing a change:

4) Check the ability of FTA to contain greater FP(s) than
those already exist: The key principle of this step is to
compare the new estimated FP of an affected event with
the guaranteed MAFP in the safety contract of that event,
or probably in the safety contracts of higher events.
As a quick check, we can determine the MC and calculate
the expected FP of the top event taking into consideration
the new increased FPs of the affected events and the

TABLE I. RATING THE IMPACT OF CHANGE

Impact
Level

Low

Medium

High

Highlight
Colour Description

Change to an event is contained within its safety
contract

Change to an event is not contained within its
safety contract, however is contained by another
higher level safety contract with sufficient margin
The change is not contained within any of the
derived safety contracts and the overall failure
target of the system cannot be met

Impact on Safety case

Argument Evidence

No change
necessary

Might reuse
the same
evidence

Might need
new

evidence

Need new
evidence

No change
necessary

Major impact
on the safety

argument
structure

current FPs (not the MAFP) of the unaffected ones. If
the new calculated FP of the top event is ≥ MAFP,
then the change is not containable and this means that
there will be a deficit in the overall FP budget where
the response to the change might require re-engineering
effort. Dealing with such a situation is beyond the scope
of this paper. In contrast, if the new calculated FP of
the top event is ≤ MAFP, this means that the change’s
impact is containable somewhere in the FTA, but we need
to know which safety contract contains it. To do that, the
new estimated FP of an impacted event should be checked
against the guaranteed MAFP in the safety contract of
that event, where it is containable iff it is ≤ MAFP.
If the change’s effect (i.e., difference between the new
estimated FP and the MAFP) is not containable in the
safety contract of the impacted event, then the safety
contract of the ancestor event should be investigated as
whether or not it can contain it. If the change’s effect
still cannot be contained by the ancestor, safety contracts
in one more level up should be investigated and so on
and so forth until a safety contract contains it. Once the
contract which contains the change’s effect is identified,
all associated claims with this contract together with their
supporting arguments and evidence should be highlighted
as suspect.

5) Re-balance the FPs of the FTA’s events as a prepa-
ration for future changes. If any event has received
a change that necessitates increasing its failure prob-
ability where the increment is still within the MAFP
threshold in its safety contract, then it can be said that
the safety contract in question still holds (intact) and
the change is containable with no further significant
maintenance. However, we need to re-balance the FPs
of the FTA’s events after accommodating a change to
prepare for further accommodation(s) of future potential
changes. Hence, we need to find ∆FP(Topevent) which
is the difference between the required FP and the new
FP of the top event after containing a change. The
current FPs of all unaffected events together with the
new FPs of the affected events are used to calculate
FPNew(Topevent) based on the determined MC from
Step 4. The resultant FPNew(Topevent) is subtracted from
FPRequired(Topevent).
The calculated ∆FP(Topevent) might be equal to 0 or it
can be an insignificant fraction which is not worth further
effort. In this case, Step 1-ii should be omitted (i.e., no
need for distribution) and we only need to update the
safety contracts as described in the next step.

6) Update the affected safety contracts with the new
FPs: The contracts should be updated by the latest failure
probability value(s) after containing a change. This step
can be seen as Step 2, the difference is that we do
not derive new contracts, but we rather modify/update
the ones we derived earlier. Figure 5 shows a flowchart
diagram that summarises Steps 4, 5 and 6.

In order to enhance the visibility of a change’s impact on
the system design and safety case, we highlight the parts of
the system design and the elements of the safety case that
are related to the affected events in FTA. Three levels of
impact based on the impact propagation within FTA were
defined, namely, Low, Medium and High. Table I categories

the changes and suggest highlighting/representing them with
different colours based on the rating of changes’ impact.

V. ILLUSTRATIVE EXAMPLE

We apply our proposed technique described in Section IV
to the Wheel Braking System (WBS) in which we assume three
different change request scenarios and evaluate their impacts
on the safety case.

A. Wheel Braking System (WBS): System Description

The WBS is described in Appendix L of Aerospace
Recommended Practice ARP-4761 [2] for safety assessment
processes. The main function of the system is to provide wheel
braking as commanded by the pilot when the aircraft is on
the ground. The system is composed of three main parts:
1) Computer-based part which is called the Brake System
Control Unit (BSCU), 2) Hydraulic part, and 3) Mechanical
part. The BSCU is internally redundant and consists of two
channels, BSCU System 1 and 2 (BSCU is the box in the
grey background in Figure 6). Each channel consists of two
components: Monitor and Command. BSCU System 1 and 2
receive the same pedal position inputs, and both calculate the
command value. The two command values are individually
monitored by the Monitor 1 and 2. Subsequently, values are
compared and if they do not agree, a failure is reported. The
results of both Monitors and the compared values are provided
to the Validity Monitor. A failure reported by either system
in the BSCU will cause that system to disable its outputs
and set the Validity Monitor to invalid with no effect on the
mode of operation of the whole system. However, if both
monitors report failure, the BSCU is deemed inoperable and is
shut down [20]. Figure 6 shows high-level view of the BSCU
implementation. More details about the BSCU implementation
can be found in ARP-4761 [2]. Figure 7 shows the “Loss

Step 6Step 4 Step 5

Check if the
safety contracts
of the ancestor
event contains
the increased FP

Check the increased
FP against the
guaranteed MAFP in
the safety contract of
the affected event

Highlight the
affected argument
elements

Determine the MC and
calculate the new FP of the
top event after a change

New FP> MAFP?
[No]

New FP> MAFP?

[No]

[Yes]

Contain the
change effect

New FP > MAFP?

[No]

[Yes]

[Yes]

Calculate the new
∆FP(topevent)
after containing
the change

Re-balance the FPs
of the FTA events
(Go back to Step 2)

Update the affected
safety contracts
with the new FPs

∆FP(Topevent)=0
"OR"

insignificant value?

[Yes][No]

Fig. 5. Flowchart presentation of steps 4-6

Command
modifier

OUT 1

 BSCU System 1

Monitor 1

BSCU System 2

Monitor 2

Braking System Control Unit (BSCU)

SystemMode(N,A,E)SelectAltModeNormalValvCMD AlternValvCMD

CMD/AS1
AS1

C
om

pu
te

r-
B

as
ed

 P
ar

t

Mechanical Part

Validity MonitorSwitch

Command 2

Command 1

CMD/AS2

AS2

Va
lid

D
ef

Va
lid

Pwr1
Pedal Pos1

Pwr2
Pedal Pos2

INS

Normal Mode

Alternate Mode

Emergency
Mode

Hydraulic Part

Power Supply

Power Supply

Fig. 6. A high-level view of the WBS [24]

of Braking Commands” probabilistic FTA (the original FTA
is without the grey shapes) whilst Figure 8 shows a GSN
fragment of the WBS safety argument.

B. Safety Contracts Driven Maintenance: An Example

Since we have now all the required inputs for our technique
(i.e., probabilistic FTA in addition to top event MAFP and
current FP), we can start applying the Steps before performing
a change (Steps 1-3 in Section IV), as follows:

1) Apply the sensitivity analysis: In this example we apply
SANESAM+ For Arbitrary Changes.

i) Find ∆FP(Topevent). The required and current prob-
abilities of the top event should be clearly defined.
Appendix L of the ARP-4761 states, as a safety
requirement on the BSCU, that: “The probability
of BSCU fault causes Loss of Braking Commands
shall be less than 3.30E-05 per flight”. This means
that: FPRequired(Topevent) < 3.30E-05. On the other
hand, the calculated FPCurrent(Topevent) by the
example in the same appendix is ≈ 1.50E-06. Hence,
∆FP(Topevent) = 3.15E-05.

ii) Distribute ∆FP(Topevent) over all events in FTA as
3.15E-05 > 0. Figure 7 shows the current FPs as
well as the MAFPs (in the grey boxes) for all of the
events. The MAFP of an event is basically the current
FP of that event plus its share from the distributed
∆FP(Topevent).

2) Derive safety contracts: After calculating the MAFPs
for all of the events in WBS FTA, a safety contract was
derived for each event non basic event. Each derived
contract considers multiple assumptions options based on
the number of the children events. For example, Figure 9
shows the derived safety contract for LOOBS1 in which
the summation of two FPs (i.e., the FPs for BSS1EF and
BSS1PSF) is guaranteed. A change to any FP or two of
them will result in a change to the guaranteed FP for the
LOOBS1. Hence, the Contr LOOBS1 considers three
options:
a) a change to BSS1EF and BSS1PSF,
b) a change to BSS1EF only, and
c) a change to BSS1PSF only.
The template of the safety contract in Figure 4-a was used
to represent the derived safety contracts. Also the contract

BSCU Fault Causes Loss
of Braking Commands

BSFCLOBC

BSCU System 1 and 2
Do Not Operate
BSS1&2DNO

Switch Failure Contributes to Loss
of BSCU Braking Commands

SWFCTLOBBC

Switch Failed Stuck to System 1
Position and System 1 Fails

SWFSTS1PAS1F

Switch Failed Stuck to System
2 Position and System 2 Fails

SWFSTS2PAS2F

Loss of BSCU
System 1
LOOBS1

Loss of BSCU
System 2
LOOBS2

Loss of
BSCU

System 2
LOOBS2

Loss of
BSCU

System 1
LOOBS1

BSCU System 1
Power Supply Failure

BSS1PSF

BSCU System 2
Electronics Failure

BSS2EF

BSCU System 2
Power Supply Failure

BSS2PSF

BSCU Validity Monitor Incorrectly Reports
a Failure Causing Switch to Alternate

BSVMIRFCSTA

BSCU System
1 Electronics

Failure
BSS1EF

BSCU System
1 Power

Supply Failure
BSS1PSF

BSCU System
2 Electronics

Failure
BSS2EF

BSCU System 2
Power Supply

Failure
BSS2PSF

Switch Failed
"Stuck" in System

1 Position
SWFSIS1P

Switch Failed
"Stuck" in System

2 Position
SWFSIS2P

Switch Failed Stuck in
Intermediate Position

SWFSIIP

BSCU System 1
Electronics Failure

BSS1EF

8.00E-074.71E-08 6.56E-07

2.17E-04 2.83E-09
6.50E-07

6.75E-05 1.30E-05 1.30E-051.50E-04 1.50E-046.75E-05

6.75E-056.75E-051.50E-04 1.50E-04

2.17E-04
2.83E-09

2.17E-042.17E-04

Actual FP 1.5E-06
Required FP 3.3E-05

Fig. 7. Loss of Braking Commands FTA [2]

S18AircraftWheelBrakingSafe —
S18 WBS is acceptably safe to operate in its
intended operating context

CxtOperational context—
During aircraft landing or RTO
[Ref: system description]

CxtAcceptablysafe —
Acceptably safe means that the
failure probability of the wheel
braking systems is < 5E-7 per
flight hour

CxtWBSS18—
[Ref: S18 wheel Braking system
(WBS) description]

ArgAllCaus—
Argument over BSCU contributions
to loss of braking commands

SafetyRequirements—
A set of requirements is specified to
mitigate BSCU contributions to H1

SolSRRprt:
Safety
Requiremen
ts Report

BSCUContIdent—
The ways in which BSCU contributes
to Loss of Braking Commands are
completely and correctly identified
 Safety Analysis

BSS1&2DNO—
BSCU System 1 and
2 operate when they
are required

SWFCTLOBBC—
Switch failures cause loss of BSCU
Braking Commands are managed

LOOBS1—
BSCU System 1
operates when
it is required

LOOBS2—
BSCU System
2 operate when
it is required

CxtDefReq—
BSCU is required to
operate upon the arrival of
braking commands

BSS2PSF—
System 2 Power Supply
failures are managed

BSS2EF—
System 2 Electronics
failure are managed

BSS1PSF—
System 1 Power Supply
failures are managed

BSS1EF—
System 1 Electronics
failures are amanged

SWFSIIP—
Switch is not stuck in
intermediate position

SWFSTS1PAS2F—
The case in which Switch Failed
Stuck to System 2 Position and System
2 Fails is adequately managed

BSVMIRFCSTA—
Incorrect reporting of
failures by Validity Monitor
is sufficiently managed

Contr_BSS1&2DNO

Contr_SWFSIIP

Contr_BSVMIRFCSTA

Contr_SWFCTLOBBC

Contr_LOOBS1 Contr_LOOBS2

SWFSTS2PAS2F

Contr_SWFSTS1PAS1F

SWFSTS1PAS1F—
The case in which Switch Failed Stuck
to System 1 Position and System 1 Fails
is adequately managed

Contr_SWFSIS1P—
Switch Failed is not Stuck
in System 1 Position

Contr_SWFSIS2P—
Switch Failed is not Stuck
in System 2 Position

CxtPSDesc—
[Ref: Power Supply
description]

Abstracted
argument

Fig. 8. Safety argument fragment for WBS

Contract ID: Contr_LOOBS1
G1: The MAFP for the event LOOBS1 is ≤ 1.018E-03
A1: No duplicates of LOOBS1 in the FTA where the failure probability ≥ 1.034E-06
A2: The logic in FTA remains the same
(Option 1.)
A3: BSS1EF MAFP ≤ 7.0368E-04
A4: BSS1PSF FP ≤ 3.17E-04
(Option 2.)
A3: BSS1EF MAFP ≤ 9.505E-04
A4: BSS1PSF FP ≤ 6.75E-05 (No Change)
(Option 3.)
A3: BSS1EF FP ≤ 1.50E-04 (No Change) A4: BSS1PSF MFP ≤ 8.68E-04

Fig. 9. A derived safety contract

notation in Figure 4-b was used to annotate the contracted
events in FTA as shown in Figure 7.

3) Associate the derived contracts with the safety ar-
gument: In this step, we assume the existence of a
safety argument no matter how it is represented (e.g.,
textual, tabular, graphical, etc.). In this example, we
use a GSN argument fragment to show the association.
Figure 8 shows how the derived safety contracts from
FTA are associated with a safety argument fragment for
WBS using the proposed contract notation in Figure 4-
a. We do not want to affect the way GSN is being
produced but we want to bring additional information
for developers’ attention. It is worth mentioning that a
safety contract should be associated with all claims that
are related to the event which the contract is derived for.
For example, the safety contract Contr SWFSTS2PAS2F
should be associated with any articulated claims about the
state when Switch Failed Stuck to System 2 Position and
System 2 Fails.

Now, let’s assume some change scenarios that can resemble
real life change requests.

Change request scenario (1)
The WBS developers have received a change request from
the senior management asking to replace the current installed
power supplies in BSCU 1 and 2 by a different model. Based
on the provided product specifications by the new power
supplies manufacturer, the FP of that model is 3.00E-04, which
means that it is 344.4% greater (i.e., less reliable) than the FP
of the current model in use (i.e., 6.75E-05). Subsequently, step
5 should be followed to assess the impact of the given change
scenario.

4) Check the ability of the FTA to contain greater FP(s)
than those already exist: In this step, we compare the
FP of the new power supply model with the guaranteed
MAFP of the current power supplies model. To do so
we first need to identify the events that represent the
power supplies in the FTA, and they are BSS1PSF and
BSS2PSF as shown in Figure 7. It is worth noting, how-
ever, that events related the power supplies are duplicated
in the FTA which means that we should be concerned
about four events. These four events are basic events and
since it is not possible to guarantee the MAFP of basic
events based on FP of lower level events, thus there were
no direct safety contracts derived for them. That is, the

MAFP of BSS1PSF, BSS2PSF and their duplicates are
recorded as assumptions in the safety contracts that were
derived for their parents event. This will lead us to four
contracts, namely, Contr LOOBS1, Contr LOOBS2,
Contr LOOBS1 D and Contr LOOBS2 D. As a quick
check and before start comparing the new FP with the
MAFPs in the safety contracts, we want to update the
FPs of the affected events based on the new given FPs
and calculate the new FP of the top event. This is because
we want to check whether or not the new calculated FP
of the top event exceeds the required FP by the safety
requirements.
Based on the MC of the FTA, FPCurrent(Topevent) =
8.00E-07 + 6.50E-07 + (1.50E-04 * 1.50E-04) + (1.50E-
04 * 3.00E-04) + (1.50E-04 * 1.30E-05) + (3.00E-04 *
1.50E-04) + (3.00E-04 * 3.00E-04) + (3.00E-04 * 1.30E-
05) + (1.50E-04 * 1.30E-05) + (3.00E-04 * 1.30E-05) =
1.646E-06.
Since 1.646E-06 <3.3E-05, the increments to the FPs of
BSS1PSF and BSS2PSF is tolerated (i.e., containable)
in the FTA but the question now is: Where can they be
contained?
The answer to this question is obtained by revisiting
the four identified safety contracts and check whether
or not they still hold in the light of the new FP. As
discussed in Step 3, each contract contains different
options in the assumptions list (as shown in Figure 9).
For the change scenario under discussion, we choose
Opt.1 in the four contracts and check if the MAFPs
of BSS1PSF or BSS2PSF can contain the new FP.
Since 3.16E-04 (MAFP) > 3.00E-04 (new FP), the
increments to BSS1PSF and BSS2PSF are contained
in Contr LOOBS1, Contr LOOBS2, Contr LOOBS1 D
and Contr LOOBS2 D and these contracts still hold. This
implies that replacing the power supply is rated as a
GREEN change which means — according to Table I
— that there is no need to make any structural changes
to the system design nor the safety argument. However, a
manual check for the argument is still needed to replace
out of date information about the old power supply with
new valid information. For example, the description which
the context CxtPSDesc refers to (in Figure 8) is out of
date and should be replaced by the new power supply
description. Table II summarises the impact on the FTA,
system design and the safety case due to the power supply
replacement.

5) Re-balance the FPs of the FTA’s events as a
preparation for future changes: In this step, we need

TABLE II. POTENTIAL IMPACTS OF A CHANGE

	
*	A	manual	check	to	all	related	argument	elements	is	still	needed	to	replace	
the	 name,	 descriptions,	 specifications,	 vendor	 information,	 etc.	 of	 the	 old	
power	supply	model	with	the	new	one.	
	

Change	
No.	

Source	of	
Impact	
(Design)	

Source	of	
Impact	
(FTA)	

Impact	size	
on	FP	of	the	
source	event	

(%)	

No.	of	
affected	
Events	

No.	of	
Affected	

Components	

Affected	
Argument	
elements	

Affected	
Evidence	

1	
BSCU	System	
1	power	
supply		

BSS1PSF	

Current	FP:		
6.75E-05	
Increase	
344.4%	

2	

BSCU	
System	1	
Power	
Supply	

0*	

Evidence	
supporting	
claims	about	old	
power	supply	1		

2	
BSCU	System	
2	power	
supply		

BSS2PSF	

Current	FP:		
6.75E-05	
Increase	
344.4%	

2	

BSCU	
System	2		
Power	
Supply	

0*	

Evidence	
supporting	
claims	about	old	
power	supply	2	

Contr_LOOBS1
G1: The MAFP for the event LOOBS1 is ≤ 1.0157E-03
A1: No duplicates of LOOBS1 in the FTA where the failure
probability ≥ 1.0157E-03
A2: The logic in WBS1_FTA remains the same
(Option 1.)
A3: BSS1EF MAFP ≤ 6.771E-04
A4: BSS1PSF FP ≤ 3.3857E-04
(Option 2.)
A3: BSS1EF MAFP ≤ 7.157E-04
A4: BSS1PSF FP ≤ 3.00E-04 (No Change)
(Option 3.)
A3: BSS1EF FP ≤ 1.50E-04 (No Change)
A4: BSS1PSF MFP ≤ 8.657E-04

Fig. 10. The updated version of Contr LOOBS1 after Scenario 1

to re-balance the FPs of the FTA’s events. In other
words, the reduction in the margins of the BSS1PSF and
BSS2PSF FPs should be shared by all of the events in
the FTA. That is, all current FPs should contribute to
make up the contraction of BSS1PSF and BSS2PSF FP
margins due to the power supply replacement. To do so,
we need to:

a) Find ∆FP(Topevent) which is the difference between
the required FP (i.e., 3.30E-05) and the new
FPCurrent(Topevent) after containing the change
which we have determined in Step 4 (i.e., 1.646E-06).
∆FP(Topevent)= 3.136E-05.

b) Repeat Step 2 to distribute 3.136E-05 over all FPs’
margins in the FTA (i.e., calculate the new MAFP for
all events including BSS1PSF and BSS2PSF). The
grey squashed rectangles in Figure 7 represent the new
calculated MAFPs after replacing the power supply.
To verify that the calculation of the new MAFPs was
done successfully, the determined MC can be used to
check whether the MAFP of the top event remains the
same.

6) Update the affected safety contracts with the new FPs:
Since new MAFPs have been calculated for all the FTA
events, all derived safety contracts should be updated
to reflect the new MAFP values. Figure 10 shows the
updated version of Contr LOOBS1.

Change request scenario (2)
This scenario is similar to scenario (1). The only difference
though is the FP value of the new power supply model, which
is in this case equals to 5.00E-03, which means that it is
7307.41% greater than the current FP (i.e., 6.75E-05). Since
Steps 6 and 7 are very similar to what we have done in the
previous scenario and for the sake of the space, we will apply
only Step 4 in this scenario, as follows:

Check the ability of the FTA to contain the change. As
a quick check, the FP of the top event after introducing
the change is 2.8106E-05, which means that it is <
FPRequired(Topevent). Hence, the change is containable and
we need to find the safety contract which contains it. Again
in this scenario the very direct contracts that are affected
by the change are Contr LOOBS1, Contr LOOBS2,
Contr LOOBS1 D and Contr LOOBS2 D. The FP of the

new power supply 5.00E-03 + 1.50E-04 (another assumption
in the contracts) = 5.15E-03 and this is greater than the
guaranteed MAFP in those contracts (i.e., 1.018E-03).
Hence, all direct contracts are broken and cannot contain
the change, and all of the events in their assumption lists
are affected by the change. Consequently, safety contracts of
higher events in the FTA should be checked for the change
containment. Since each pair of the contract are derived for
events that are duplicated in two different locations in the
FTA, we need to check the safety contracts of the parent
events in the two locations: 1) for Contr LOOBS1 and
Contr LOOBS2, we should check Contr BSS1&2DNO,
and 2) for Contr LOOBS1 D and Contr LOOBS2 D,
we should check Contr SWFSTS1PAS1F and
Contr SWFSTS2PAS2F.

Before start checking Contr BSS1&2DNO, the new FP
of BSS1&2DNO after the change should be calculated.
Since LOOBS1 and LOOBS2 are the events that make up
BSS1&2DNO and they are connected through an AND gate,
this implies 5.15E-03 * 5.15E-03 = 2.65225E-05.

However, the guaranteed FP for BSS1&2DNO is 1.0362E-
06 which is < its calculated FP after introducing the change.
That is, Contr BSS1&2DNO is broken, where LOOBS1 and
LOOBS2 are declared as affected events. To proceed, a higher
safety contract for a higher event in the FTA should be
investigated. The direct parent event for BSS1&2DNO is the
top event itself (i.e., BSFCLOBC).

The derived safety contract for the top event
(Contr BSFCLOBC) guarantees the MAFP for the entire
FTA and it assumes that the MAFPs of BSS1&2DNO,
BSVMIRFCSTA and SWFCTLOBBC are 2.1571E-06,
8.00E-07 and 3.005E-05, respectively. Since 2.65225E-
05 > 2.1571E-06, this contract still does not contain
the change. The only available solution is to contain the
change is to check whether or not the added margin to
the SWFCTLOBBC FP has 2.43654E-05 (2.65225E-05
- 2.1571E-06) as a surplus to contain the change. To do
that, the other location of the FTA, where BSS1PSF and
BSS2PSF are duplicated should be checked whether or
not it contains the change. Contr SWFSTS1PAS1F and
Contr SWFSTS2PAS2F are broken and all of the events in
their assumption lists are affected. This is because 5.15E-03
* 1.30E-05 (SWFSIS1P or SWFSIS2P) = 6.695E-08 and
this is greater than what Contr SWFSTS1PAS1F and
Contr SWFSTS2PAS2F guarantee. Consequently, we need
to check Contr SWFCTLOBBC as it is the contract of the
parent event of both SWFSTS1PAS1F and SWFSTS2PAS2F.

The contract in question guarantees the MAFP to be
1.4432E-05 and assumes the FPs of SWFSTS1PAS1F, SWF-
STS2PAS2F and SWFSIIP as 6.875E-06, 6.875E-06 and
6.50E-07, respectively. Since 6.875E-06 > 6.695E-08 this
contract contains the change and prevents its effect to ripple up
further. Now we need to ensure that the first location prevents
the ripple of the change’s effect. To this end, we calculate
the surplus in the guaranteed MAFP in SWFCTLOBBC and
BSVMIRFCSTA, and then use this surplus to compensate the
deficit in the FP of BSS1&2DNO. The minimum required FP
for SWFCTLOBBC is: 6.695E-08 + 6.695E-08 + 6.50E-07 =
7.839E-07, and BSVMIRFCSTA will remain 8.00E-07 as it
is not affected by the change. This means that the total surplus

Command
modifier

OUT 1

Fault Tree Analysis System Design (BSCU) Safety Argument

Change request scenario (2)

Change request scenario (1)

Argument

Command
modifier

OUT 1

Argument

Change request scenario (3)

Command
modifier

OUT 1

Argument

Fig. 11. The effect of change on the FTA, system design and the safety argument: An overview of the three scenarios

is 3.3E-05 - (7.839E-07 + 8.00E-07) = 3.14161E-05. That is,
the surplus can compensate the deficit in Contr BSS1&2DNO
since it is > 2.43654E-05 and thus the effect of change is also
contained in this contract.

Change request scenario (3)
This scenario is similar to the previously discussed scenarios
(2) and (3). The difference here is that the FP value of the
new power supply model is equal to 6.00E-03, which means
that it is 8788.89% greater than the current FP (i.e., 6.75E-
05). As a quick check, the FP of the top event should be
calculated in light of the new value of the power supply FP.
The new calculated FP for the top event is equal to 3.9432E-
05 and it is > 3.3E-05 (the MAFP for the top event). That
is, the resultant change effects due to replacing the power
supply by this specific model is not containable and the entire
FTA is going to be impacted. Hence, the WBS cannot meet
its current safety requirements without considering a major
structural changes/updates.

Figure 11 shows a high level view of the change effects in
the FTA that is caused by replacing the power supply in the
three discussed change scenarios. The figure also shows how
the safety contracts are used to highlight the affected parts in
the WBS design and the safety argument.

VI. CONCLUSION AND FUTURE WORK

Changes are often only performed long time after the initial
design of the system making it hard for the system designers
to know the impact of these changes on their system and its
safety case. In our previous works [17], [24] we introduced
SANESAM and SANESAM+ as techniques to facilitate the
maintenance of safety cases using safety contracts. In this pa-
per, we use the key principle of SANESAM and SANESAM+
to introduce a new technique that can save huge efforts in
re-verification or re-certification due to some design changes.
The technique can serve as a first impact analysis layer that
helps system’s developers to estimate the size of effort needed
to accommodate a design change. The technique can also
guide the developers to avoid massive re-engineering efforts
when it is not really needed. Although the technique can be
effective in maintaining safety systems and safety cases, the
scope of the changes addressed by it may seem limited in
the general maintenance scenario. However, these types of
changes are the most critical from a safety perspective and
they are worth making the emphasis. Future work will focus on
considering different properties other than failure probabilities
(e.g., timing) in order to consider additional types of changes.
In addition, development of an automation tool is considered
as a potential direction. We also intend to perform a case study
to validate both the feasibility and efficacy of the technique.

ACKNOWLEDGMENT

This work has been partially supported by the Swedish
Foundation for Strategic Research (SSF) (through SYNOPSIS
and FiC Projects) and the EU-ECSEL (through SafeCOP
project). We thank Sasikumar Punnekkat for his fruitful help
and comments.

REFERENCES

[1] GSN Community Standard, Version 1; (c) 2011 Origin Consulting
(York) Limited. http://www.goalstructuringnotation.info.

[2] SAE ARP4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, Dec.
1996.

[3] Oxford Dictionary of English (3 ed.). Oxford University Press, 2010.
[4] GSN community standard version 1. Technical report, Origin Consult-

ing (York) Limited, Nov. 2011.
[5] I. Bate, H. Hansson, and S. Punnekkat. Better, faster, cheaper, and

safer too – is this really possible? In Proceedings of the 17th
IEEE International Conference on Emerging Technologies for Factory
automation, 2012.

[6] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis. Multiple viewpoint contract-based specification and
design. In Proceedings of the 6th International Symposium on Formal
Methods for Components and Objects, pages 200–225, Springer Berlin
Heidelberg, 2007.

[7] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Vincentelli. Contract-
based design for computation and verification of a closed-loop hybrid
system. In Proceedings of the 11th International Workshop on Hybrid
Systems: Computation and Control, HSCC ’08, pages 58–71, Berlin,
Heidelberg, 2008. Springer-Verlag.

[8] L. Breierova and M. Choudhari. An introduction to sensitivity anal-
ysis. Technical report, Massachusetts Institute of Technology (MIT),
September 1996.

[9] R. Cleaveland. Formal certification of aerospace embedded software. In
National Workshop on Aviation Software Systems: Design for Certifiably
Dependable Systems, 2006.

[10] A. Cullen and H. Frey. Probabilistic techniques in Exposure assessment.
Plenum Press, New York, 1999.

[11] H. Espinoza, A. Ruiz, M. Sabetzadeh, and P. Panaroni. Challenges for
an open and evolutionary approach to safety assurance and certification
of safety-critical systems. In Proceedings of the 1st International
Workshop on Software Certification (WoSoCER), pages 1–6, Nov 2011.

[12] P. Graydon and I. Bate. The nature and content of safety contracts:
Challenges and suggestions for a way forward. In Proceedings of
the 20th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), November 2014.

[13] I. Habli and T. Kelly. Process and product certification arguments:
Getting the balance right. SIGBED Rev., 3(4):1–8, Oct. 2006.

[14] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, Oct. 1969.

[15] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, Y.
Oakshott. The who, where, how, why and when of modular and
incremental certification. In Proceedings of the 2nd IET International
Conference on System Safety, pages 135–140. IET, 2007.

[16] O. Jaradat. Enhancing the maintainability of safety cases us-
ing safety contracts, Mälardalen University, Västerås, Sweden.
http://www.es.mdh.se/publications/4082-, November 2015.

[17] O. Jaradat and I. Bate. Deriving hierarchical safety contracts. In
The 21st IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC 2015), November 2015.

[18] T. Kelly. Introduction to safety cases, lecture notes, 2007. [on-
line]. available: http://www.omg.org/news/meetings/workshops/SWA
2007 Presentations/00-T3 Kelly.pdf.

[19] T. Kelly. A systematic approach to safety case management. In
Proceedings of SAE 2004 World Congress, Detroit. The Society for
Automotive Engineers, March 2004.

[20] O. Lisagor, M. Pretzer, C. Seguin, D. J. Pumfrey, F. Iwu, and
T. Peikenkamp. Towards safety analysis of highly integrated technolog-
ically heterogeneous systems – a domain-based approach for modelling
system failure logic. In The 24th International System Safety Conference
(ISSC), Albuquerque, USA, 2006.

[21] R. Maguire. Safety Cases and Safety Reports: Meaning, Motivation and
Management. Ashgate Publishing, Ltd., 2012.

[22] B. Meyer. Design by contract. Technical Report TR-EI-12/CO,
Interactive Software Engineering Inc., 1986.

[23] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1st edition, 1988.

[24] O. Jaradat, I. Bate, and S. Punnekkat. Using sensitivity analysis to
facilitate the maintenance of safety cases. In Proceedings of the
20th International Conference on Reliable Software Technologies (Ada-
Europe), pages 162–176, June 2015.

[25] O. Jaradat, P. Graydon and I. Bate. An approach to maintaining safety
case evidence after a system change. In Proceedings of the 10th
European Dependable Computing Conference (EDCC), Newcastle, UK,
August 2014.

[26] Object Management Group (OMG). Structured Assurance Case Meta-
model (SACM), Technical report, Version 1.0, 2013. [Online]. Available:
http://www.omg.org/spec/SACM/1.0/PDF/.

[27] P. Conmy, J. Carlson, R. Land, S. Björnander, O. Bridal, I. Bate. Ex-
tension of techniques for modular safety arguments. Deliverable d2.3.1,
technical report, Safety certification of software-intensive systems with
reusable components (SafeCer), 2012.

[28] D. J. Pannell. Sensitivity analysis of normative economic models:
theoretical framework and practical strategies. Agricultural Economics,
16(2):139 – 152, 1997.

[29] J. Pate, K. R. Edlin, and K. I. Kawano. Sensitivity analysis of hardware-
in-the-loop (HWIL) simulation systems. In Proceedings of Modelling
and Simulation. ACTA, May 2005.

[30] M. Rausand and A. Høyland. System Reliability Theory: Models,
Statistical Methods and Applications. Wiley-Interscience, Hoboken, NJ,
2004.

[31] S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Ny-
man, and A. Wasowski. Moving from specifications to contracts in
component-based design. In Proceedings of the 15th International
Conference on Fundamental Approaches to Software Engineering,
FASE’12, pages 43–58, Berlin, Heidelberg, 2012. Springer-Verlag.

[32] A. Saltelli. Global sensitivity analysis: the primer. John Wiley, 2008.
[33] P. Shankar, J. Mathieson, R. Ramachandran, J. D. Summers, and

G. M. Mocko. Can design evaluation tools predict/prevent change
propagation? In Proceedings of Tools and Methods of Competitive
Engineering, 2012.

[34] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and
J. Railsback. Fault Tree Handbook with Aerospace Applications. Hand-
book, National Aeronautics and Space Administration, Washington, DC,
2002.

[35] N. R. Storey. Safety Critical Computer Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[36] T. Kelly and J. McDermid. A systematic approach to safety case
maintenance. In Proceedings of the Computer Safety, Reliability and
Security, volume 1698 of Lecture Notes in Computer Science, pages
13–26. Springer Berlin Heidelberg, 1999.

[37] N. Tracey, A. Stephenson, J. Clark, and J. McDermid. A safe change
oriented process for safety-critical systems. Heslington, York, 1999.

[38] U.K. Ministry of Defence. 00-56 Defence Standard — Safety Manage-
ment Requirements for Defence Systems, December 1996.

[39] W. Damm, H. Hungar, J. Bernhard, T. Peikenkamp, and I. Stierand.
Using contract-based component specifications for virtual integration
testing and architecture design. In Proceedings of the Design, Automa-
tion & Test in Europe Conference & Exhibition, pages 1–6, 2011.

[40] R. B. Whittingham. Preventing corporate accidents : An Ethical
Approach. Elsevier Ltd, 2008.

http://www.omg.org/news/meetings/workshops/SWA_2007_Presentations/00-T3_Kelly.pdf
http://www.omg.org/news/meetings/workshops/SWA_2007_Presentations/00-T3_Kelly.pdf
http://www.omg.org/spec/SACM/1.0/PDF/

	Introduction
	Background and Motivation
	Fault Tree Analysis (FTA)
	Sensitivity Analysis
	Safety Contracts
	Safety Case
	Safety Argument
	Safety Cases and Maintenance

	SANESAM and SANESAM+
	SANESAM Process
	SANESAM+ Process
	SANESAM+ For Arbitrary Changes
	SANESAM+ For Predicted Changes

	Safety Contracts Driven Maintenance
	Illustrative Example
	Wheel Braking System (WBS): System Description
	Safety Contracts Driven Maintenance: An Example

	Conclusion and future work
	References

